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Abstract

We evaluate whether features extracted from

the activation of a deep convolutional network

trained in a fully supervised fashion on a large,

fixed set of object recognition tasks can be re-

purposed to novel generic tasks. Our generic

tasks may differ significantly from the originally

trained tasks and there may be insufficient la-

beled or unlabeled data to conventionally train or

adapt a deep architecture to the new tasks. We in-

vestigate and visualize the semantic clustering of

deep convolutional features with respect to a va-

riety of such tasks, including scene recognition,

domain adaptation, and fine-grained recognition

challenges. We compare the efficacy of relying

on various network levels to define a fixed fea-

ture, and report novel results that significantly

outperform the state-of-the-art on several impor-

tant vision challenges. We are releasing DeCAF,

an open-source implementation of these deep

convolutional activation features, along with all

associated network parameters to enable vision

researchers to be able to conduct experimenta-

tion with deep representations across a range of

visual concept learning paradigms.

1. Introduction

Discovery of effective representations that capture salient

semantics for a given task is a key goal of perceptual

learning. Performance with conventional visual representa-

tions, based on flat feature representations involving quan-

tized gradient filters, has been impressive but has likely

plateaued in recent years.

It has long been argued that deep or layered composi-

tional architectures should be able to capture salient as-
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pects of a given domain through discovery of salient clus-

ters, parts, mid-level features, and/or hidden units (Hin-

ton & Salakhutdinov, 2006; Fidler & Leonardis, 2007; Zhu

et al., 2007; Singh et al., 2012; Krizhevsky et al., 2012).

Such models have been able to perform better than tradi-

tional hand-engineered representations in many domains,

especially those where good features have not already been

engineered (Le et al., 2011). Recent results have shown

that moderately deep unsupervised models outperform the

state-of-the art gradient histogram features in part-based

detection models (Ren & Ramanan, 2013).

Deep models have recently been applied to large-scale

visual recognition tasks, trained via back-propagation

through layers of convolutional filters (LeCun et al., 1989).

These models perform extremely well in domains with

large amounts of training data, and had early success in

digit classification tasks (LeCun et al., 1998). With the

advent of large scale sources of category-level training

data, e.g., (Deng et al., 2009), and efficient implementa-

tion with on-line approximate model averaging (“dropout”)

(Krizhevsky et al., 2012), they have recently outperformed

all known methods on a large scale recognition challenge

(Berg et al., 2012).

With limited training data, however, fully-supervised

deep architectures with the representational capacity of

(Krizhevsky et al., 2012) will generally dramatically overfit

the training data. In fact, many conventional visual recog-

nition challenges have tasks with few training examples;

e.g., when a user is defining a category “on-the-fly” us-

ing specific examples, or for fine-grained recognition chal-

lenges (Welinder et al., 2010), attributes (Bourdev et al.,

2011), and/or domain adaptation (Saenko et al., 2010).

In this paper we investigate semi-supervised multi-task

learning of deep convolutional representations, where rep-

resentations are learned on a set of related problems but

applied to new tasks which have too few training exam-

ples to learn a full deep representation. Our model can ei-

ther be considered as a deep architecture for transfer learn-

ing based on a supervised pre-training phase, or simply
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as a new visual feature DeCAF defined by the convolu-

tional network weights learned on a set of pre-defined ob-

ject recognition tasks. Our work is also related to represen-

tation learning schemes in computer vision which form an

intermediate representation based on learning classifiers on

related tasks (Li et al., 2010; Torresani et al., 2010; Quat-

toni et al., 2008).

Our main result is the empirical validation that a generic

visual feature based on a convolutional network weights

trained on ImageNet outperforms a host of conventional vi-

sual representations on standard benchmark object recog-

nition tasks, including Caltech-101 (Fei-Fei et al., 2004),

the Office domain adaptation dataset (Saenko et al.,

2010), the Caltech-UCSD Birds fine-grained recognition

dataset (Welinder et al., 2010), and the SUN-397 scene

recognition database (Xiao et al., 2010).

Further, we analyze the semantic salience of deep convo-

lutional representations, comparing visual features defined

from such networks to conventional representations. In

Section 3, we visualize the semantic clustering properties

of deep convolutional features compared to baseline rep-

resentations, and find that convolutional features appear to

cluster semantic topics more readily than conventional fea-

tures. Finally, while conventional deep learning can be

computationally expensive, we note that the run-time and

resource consumption of deep-learned convolutional fea-

tures are not exceptional, compared with features such as

HOG (Dalal & Triggs, 2005) or KDES (Bo et al., 2010).

2. Related work

Deep convolutional networks have a long history in com-

puter vision, with early examples showing successful re-

sults on using supervised back-propagation networks to

perform digit recognition (LeCun et al., 1989). More re-

cently, these networks, in particular the convolutional net-

work proposed by Krizhevsky et al. (2012), have achieved

competition-winning numbers on large benchmark datasets

consisting of more than one million images, such as Ima-

geNet (Berg et al., 2012).

Learning from related tasks also has a long history in ma-

chine learning beginning with Caruana (1997) and Thrun

(1996). Later works such as Argyriou et al. (2006) devel-

oped efficient frameworks for optimizing representations

from related tasks, and Ando & Zhang (2005) explored how

to transfer parameter manifolds to new tasks. In computer

vision, forming a representation based on sets of trained

classifiers on related tasks has recently been shown to be

effective in a variety of retrieval and classification settings,

specifically using classifiers based on visual category de-

tectors (Torresani et al., 2010; Li et al., 2010). A key ques-

tion for such learning problems is to find a feature represen-

tation that captures the object category related information

while discarding noise irrelevant to object category infor-

mation such as illumination.

Transfer learning across tasks using deep representations

has been extensively studied, especially in an unsupervised

setting (Raina et al., 2007; Mesnil et al., 2012). However,

reported successes with such models in convolutional net-

works have been limited to relatively small datasets such

as CIFAR and MNIST, and efforts on larger datasets have

had only modest success (Le et al., 2012). We investi-

gate the “supervised pre-training” approach proven suc-

cessful in computer vision and multimedia settings using a

concept-bank paradigm (Kennedy & Hauptmann, 2006; Li

et al., 2010; Torresani et al., 2010) by learning the features

on large-scale data in a supervised setting, then transferring

them to different tasks with different labels.

To evaluate the generality of a representation formed from

a deep convolutional feature trained on generic recognition

tasks, we consider training and testing on datasets known

to have a degree of dataset bias with respect to ImageNet.

We evaluate on the SUN-397 scene dataset, as well as

datasets used to evaluate domain adaptation performance

directly (Chopra et al., 2013; Kulis et al., 2011). This eval-

uates whether the learned features could undo the domain

bias by capturing the real semantic information instead of

overfitting to domain-specific appearances.

3. Deep Convolutional Activation Features

In our approach, a deep convolutional model is first trained

in a fully supervised setting using a state-of-the-art method

Krizhevsky et al. (2012). We then extract various fea-

tures from this network, and evaluate the efficacy of these

features on generic vision tasks. While the forward pass

computed by the architecture discussed in this section does

achieve state-of-the-art performance on ILSVRC-2012, at

least two important questions remain: Do features ex-

tracted from the CNN generalize to other datasets? How

does performance vary with network depth? We address

these questions both qualitatively and quantitatively, via vi-

sualizations of semantic clusters below, and experimental

comparision to current baselines in the following section.

3.1. An Open-source Convolutional Model

To facilitate the wide-spread analysis of deep convolu-

tional features, we developed a Python framework that

allows one to easily train networks consisting of various

layer types and to execute pre-trained networks efficiently

without being restricted to a GPU (which in many cases

may hinder the deployment of trained models). Specif-

ically, we adopted open-source Python packages such as

numpy/scipy for efficient numerical computation, with
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(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012 validation set. (a) LLC , (b) GIST, and features

derived from our CNN: (c) DeCAF1, the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed in color).

parts of the computation-heavy code implemented in C and

linked to Python. Our implementation is able to process

about 40 images per second with an 8-core commodity

machine when the CNN model is executed in a minibatch

mode.

Our implementation, decaf, is publicly available1. In ad-

dition, we have released the network parameters used in our

experiments to allow for out-of-the-box feature extraction

without the need to re-train the large network2. This also

aligns with the philosophy of supervised transfer: one may

view the trained model as an analog to the prior knowledge

a human obtains from previous visual experiences, which

helps in learning new tasks more efficiently.

As the underlying architecture for our feature we adopt the

deep convolutional neural network architecture proposed

by Krizhevsky et al. (2012), which won the ImageNet

Large Scale Visual Recognition Challenge 2012 (Berg

et al., 2012) with a top-1 validation error rate of 40.7%.
3 We chose this model due to its performance on a difficult

1000-way classification task, hypothesizing that the activa-

tions of the neurons in its late hidden layers might serve

as very strong features for a variety of object recognition

tasks. Its inputs are the mean-centered raw RGB pixel in-

tensity values of a 224× 224 image. These values are for-

ward propagated through 5 convolutional layers (with pool-

ing and ReLU non-linearities applied along the way) and 3

fully-connected layers to determine its final neuron activ-

1https://github.com/

UCB-ICSI-Vision-Group/decaf-release
2We note that although our CPU implementation allows one

to also train networks, that training of large networks such as the
ones for ImageNet may still be time-consuming on CPUs, and
we rely on our own implementation of the network inside of the
cuda-convnet GPU framework provided by Alex Krizhevsky
to train such models.

3The model entered into the competition actually achieved a
top-1 validation error rate of 36.7% by averaging the predictions
of 7 structurally identical models that were initialized and trained
independently. We trained only a single instance of the model;
hence we refer to the single model error rate of 40.7%.

ities: a distribution over the task’s 1000 object categories.

Our instance of the model attains an error rate of 42.9% on

the ILSVRC-2012 validation set – 2.2% shy of the 40.7%

achieved by Krizhevsky et al. (2012).

We refer to Krizhevsky et al. (2012) for a detailed discus-

sion of the architecture and training protocol, which we

closely followed with the exception of two small differ-

ences in the input data. First, we ignore the image’s orig-

inal aspect ratio and warp it to 256 × 256, rather than re-

sizing and cropping to preserve the proportions. Secondly,

we did not perform the data augmentation trick of adding

random multiples of the principle components of the RGB

pixel values throughout the dataset, proposed as a way of

capturing invariance to changes in illumination and color4.

3.2. Feature Generalization and Visualization

We visualized the model features to gain insight into the

semantic capacity of DeCAF and other features that have

been typically employed in computer vision. In particular,

we compare the features described in Section 3 with GIST

features (Oliva & Torralba, 2001) and LLC features (Wang

et al., 2010).

We visualize features in the following way: we run the t-

SNE algorithm (van der Maaten & Hinton, 2008) to find a

2-dimensional embedding of the high-dimensional feature

space, and plot them as points colored depending on their

semantic category in a particular hierarchy. We did this on

the validation set of ILSVRC-2012 to avoid overfitting ef-

fects (as the deep CNN used in this paper was trained only

on the training set), and also use an independent dataset,

SUN-397 (Xiao et al., 2010), to evaluate how dataset bias

affects our results (see e.g. (Torralba & Efros, 2011) for a

deeper discussion of this topic).

One would expect features closer to the output (softmax)

4According to the authors, this scheme reduced their models’
test set error by over 1%, likely explaining much of our network’s
performance discrepancy.

https://github.com/UCB-ICSI-Vision-Group/decaf-release
https://github.com/UCB-ICSI-Vision-Group/decaf-release
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Figure 2. In this figure we show how our features trained on

ILSVRC-2012 generalized to SUN-397 when considering seman-

tic groupings of labels (best viewed in color).

layer to be linearly separable, so it is not very interesting

(and also visually quite hard) to represent the 1000 classes

on the t-SNE derived embedding.

We first visualize the semantic segregation of the model

by plotting the embedding of labels for higher levels of

the WordNet hierarchy; for example, a strong feature for

visual recognition should cluster indoor and outdoor in-

stances separately, even though there is no explicit mod-

eling through the supervised training of the CNN. Figure 1

shows the features extracted on the validation set using the

first pooling layer, and the second to last fully connected

layer, showing a clear semantic clustering in the latter but

not in the former. This is compatible with common deep

learning knowledge that the first layers learn “low-level”

features, whereas the latter layers learn semantic or “high-

level” features. Furthermore, other features such as GIST

or LLC fail to capture the semantic difference in the image

(although they show interesting clustering structure).5

More interestingly, in Figure 2 we can see the top per-

forming features (DeCAF6) on the SUN-397 dataset. Even

there, the features show very good clustering of seman-

tic classes (e.g., indoor vs. outdoor). This suggests De-

CAF is a good feature for general object recognition tasks.

Consider the case where the object class that we are try-

ing to detect is not in the original object pool of ILSVRC-

2012. The fact that these features cluster several interme-

diate nodes of WordNet implies that these features are an

excellent starting point for generalizing to unseen classes.

3.3. Time Analysis

While it is generally believed that convolutional neural net-

works take a significant amount of time to execute, a de-

tailed analysis of the computation time over the multiple

5Some of the features were very high dimensional (e.g. LLC
had 16K dimension), in which case we preprocess them by ran-
domly projecting them down to 512 dimensions – random pro-
jections are cheap to apply and tend to preserve distances well,
which is all the t-SNE algorithm cares about.

(a) (b)

Figure 3. (a) The computation time on each layer when running

classification on one single input image. The layers with the most

time consumption are labeled. (b) The distribution of computation

time over different layer types. In the piechart, fc = fully con-

nected layers, conv = convolution layers, pool = pooling layers,

and neuron = neuron layers such as ReLU, sigmoid, and dropout.

layers involved is still missing in the literature. In this sub-

section we report a break-down of the computation time

analyzed using the decaf framework.

In Figure 3(a) we lay out the computation time spent on

individual layers with the most time-consuming layers la-

beled. We observe that the convolution and fully-connected

layers take most of the time to run, which is understandable

as they involve large matrix-matrix multiplications6. Also,

the time distribution over different layer types (Figure 3(b))

reveals an interesting fact: in large networks such as the

current ImageNet CNN model, the last few fully-connected

layers require the most computation time as they involve

large transform matrices. This is particularly important

when one considers classification into a larger number of

categories or with larger hidden-layer sizes, suggesting that

certain sparse approaches such as Bayesian output coding

(Hsu et al., 2009) may be necessary to carry out classifica-

tion into even larger number of object categories.

4. Experiments

In this section, we present experimental results evaluat-

ing DeCAF on multiple standard computer vision bench-

marks, comparing many possible featurization and classi-

fication approaches. In each of the experiments, we take

the activations of the n
th hidden layer of the deep convo-

lutional neural network described in Section 3 as a feature

DeCAFn. DeCAF7 denotes features taken from the final

hidden layer – i.e., just before propagating through the fi-

nal fully connected layer to produce the class predictions.

DeCAF6 is the activations of the layer before DeCAF7, and

DeCAF5 the layer before DeCAF6. DeCAF5 is the first

set of activations that has been fully propagated through

the convolutional layers of the network. We chose not to

evaluate features from any earlier in the network, as the

6We implemented the convolutional layers as an im2col

step followed by dense matrix multiplication, which empirically
worked best with small kernel sizes and large number of kernels.
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DeCAF5 DeCAF6 DeCAF7

LogReg 63.29± 6.6 84.30± 1.6 84.87± 0.6

LogReg with Dropout - 86.08± 0.8 85.68± 0.6

SVM 77.12± 1.1 84.77± 1.2 83.24± 1.2

SVM with Dropout - 86.91± 0.7 85.51± 0.9

Yang et al. (2009) 84.3
Jarrett et al. (2009) 65.5
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Figure 4. Left: average accuracy per class on Caltech-101 with 30 training samples per class across three hidden layers of the network

and two classifiers. Our result from the training protocol/classifier combination with the best validation accuracy – SVM with Layer 6

(+ dropout) features – is shown in bold. Right: average accuracy per class on Caltech-101 at varying training set sizes.

earlier convolutional layers are unlikely to contain a richer

semantic representation than the later features which form

higher-level hypotheses from the low to mid-level local in-

formation in the activations of the convolutional layers. Be-

cause we are investigating the use of the network’s hidden

layer activations as features, all of its weights are frozen

to those learned on the Berg et al. (2012) dataset.7 All im-

ages are preprocessed using the procedure described for the

ILSVRC images in Section 3, taking features on the center

224× 224 crop of the 256× 256 resized image.

We present results on multiple datasets to evaluate the

strength of DeCAF for basic object recognition, domain

adaptation, fine-grained recognition, and scene recogni-

tion. These tasks each differ somewhat from that for which

the architecture was trained, together representing much of

the contemporary visual recognition spectrum.

4.1. Object recognition

To analyze the ability of the deep features to transfer to

basic-level object category recognition, we evaluate them

on the Caltech-101 dataset (Fei-Fei et al., 2004). In addi-

tion to directly evaluating linear classifier performance on

DeCAF6 and DeCAF7, we also report results using a reg-

ularization technique called “dropout” proposed by Hinton

et al. (2012). At training time, this technique works by ran-

domly setting half of the activations (here, our features) in a

given layer to 0. At test time, all activations are multiplied

by 0.5. Dropout was used successfully by Krizhevsky et al.

(2012) in layers 6 and 7 of their network; hence we study

the effect of the technique when applied to the features de-

rived from these layers.

In each evaluation, the classifier, a logistic regression (Lo-

gReg) or support vector machine (SVM), is trained on a

random set of 30 samples per class (including the back-

ground class), and tested on the rest of the data, with pa-

7We also experimented with the equivalent feature using ran-
domized weights and found it to have performance comparable to
traditional hand-designed features.

rameters cross-validated for each split on a 25 train/5 vali-

dation subsplit of the training data. The results in Figure 4,

left, are reported in terms of mean accuracy per category

averaged over five data splits.

Our top-performing method (based on validation accuracy)

trains a linear SVM on DeCAF6 with dropout, with test set

accuracy of 86.9%. The DeCAF5 features perform substan-

tially worse than either the DeCAF6 or DeCAF7 features,

and hence we do not evaluate them further in this paper.

The DeCAF7 features generally have accuracy about 1-2%

lower than the DeCAF6 features on this task. The dropout

regularization technique uniformly improved results by 0-

2% for each classifier/feature combination. When trained

on DeCAF, the SVM and logistic regression classifiers per-

form roughly equally well on this task.

We compare our performance against the current state-of-

the-art on this benchmark from Yang et al. (2009), a method

employing a combination of 5 traditional hand-engineered

image features followed by a multi-kernel based classifier.

Our top-performing method outperforms this method by

2.6%. Our method also outperforms by over 20% the two-

layer convolutional network of Jarrett et al. (2009), demon-

strating the importance of the depth of the network used

for our feature. Note that unlike our method, these ap-

proaches from the literature do not implicitly leverage an

outside large-scale image database like ImageNet. The

performance edge of our method over these approaches

demonstrates the importance of multi-task learning when

performing object recognition with sparse data like that

available in the Caltech-101 benchmark.

We also show how performance of the two DeCAF6 with

dropout methods above vary with the number of train-

ing cases per category, plotted in Figure 4, right, trained

with fixed parameters and evaluated under the same metric

as before. Our one-shot learning results (e.g., 33.0% for

SVM) suggest that with sufficiently strong representations

like DeCAF, useful models of visual categories can often

be learned from just a single positive example.
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4.2. Domain adaptation

We next evaluate DeCAF for use on the task of domain

adaptation. For our experiments we use the benchmark Of-

fice dataset (Saenko et al., 2010).The dataset contains three

domains: Amazon, which consists of product images taken

from amazon.com; and Webcam and Dslr, which con-

sist of images taken in an office environment using a web-

cam or digital SLR camera, respectively.

In the domain adaptation setting, we are given a training

(source) domain with labeled training data and a distinct

test (target) domain with either a small amount of labeled

data or no labeled data. We will experiment within the su-

pervised domain adaptation setting, where there is a small

amount of labeled data available from the target domain.

Most prior work for this dataset uses SURF (Bay et al.,

2006) interest point features (available for download with

the dataset). To illustrate the ability of DeCAF to be ro-

bust to resolution changes, we use the t-SNE (van der

Maaten & Hinton, 2008) algorithm to project both SURF

and DeCAF6, computed for Webcam and Dslr, into a 2D

visualizable space (See Figure 5). We visualize an image

on the point in space corresponding to its low dimension

projected feature vector. We find that DeCAF not only pro-

vides better within category clustering, but also clusters

same category instances across domains. This indicates

qualitatively that DeCAF removed some of the domain bias

between the Webcam and Dslr domains.

We validate this conclusion with a quantitative experiment

on the Office dataset. Table 1 presents multi-class accu-

racy averaged across 5 train/test splits for the domain shifts

Amazon→Webcam and Dslr → Webcam. We use the

standard experimental setup first presented in Saenko et al.

(2010). To compare SURF with the DeCAF6, and DeCAF7

deep convolutional features, we report the multi-class accu-

racy for each, using an SVM and Logistic Regression both

trained in 3 ways: with only source data (S), only target

data (T), and source and target data (ST). We also report

results for three adaptive methods run with each DeCAF

we consider as input. Finally, for completeness we report a

recent and competing deep domain adaptation result from

Chopra et al. (2013). DeCAF dramatically outperforms the

baseline SURF feature available with the Office dataset as

well as the deep adaptive method of Chopra et al. (2013).

4.3. Subcategory recognition

We tested the performance of DeCAF on the task of subcat-

egory recognition. To this end, we adopted one of its most

popular tasks - the Caltech-UCSD birds dataset (Welinder

et al., 2010), and compare the performance against several

state-of-the-art baselines.

Following common practice in the literature, we adopted
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(a) DPM detections (b) Parts (c) DPD

Figure 6. Pipeline of deformable part descriptor (DPD) on a sam-

ple test images. It uses DPM for part localization and then use

learned pooling weights for final pose-normalized representation.

two approaches to perform classification. Our first ap-

proach adopts an ImageNet-like pipeline, in which we fol-

lowed the existing protocol by cropping the images re-

gions 1.5× the size of the provided bounding boxes, re-

sizing them 256×256 and then feeding them into the CNN

pipeline to get the features for classification. We computed

DeCAF6 and trained a multi-class logistic regression on top

of the features.

Our second approach, we tested DeCAF in a pose-

normalized setting using the deformable part descriptors

(DPD) method (Zhang et al., 2013). Inspired by the de-

formable parts model (Felzenszwalb et al., 2010), DPD ex-

plicitly utilizes the part localization to do semantic pool-

ing. Specifically, after training a weakly-supervised DPM

on bird images, the pool weight for each part of each com-

ponent is calculated by using the key-point annotations to

get cross-component semantic part correspondence. The fi-

nal pose-normalized representation is computed by pooling

the image features of predicted part boxes using the pool-

ing weights. Based on the DPD implementation provided

by the authors, we applied DeCAF in the same pre-trained

DPM model and part predictions and used the same pool-

ing weights. Figure 6 shows the DPM detections and visu-

alization of pooled DPD features on a sample test image.

As our first approach, we resized each predicted part box

to 256 × 256 and computed DeCAF6 to replace the KDES

image features (Bo et al., 2010) used in DPD paper.

Our performance as well as those from the literature are

listed in Table 2. DeCAF together with a simple logistic re-

gression already obtains a significant performance increase

over existing approaches, indicating that such features, al-

though not specifically designed to model subcategory-

level differences, captures such information well. In addi-

tion, explicitly taking more structured information such as

part locations still helps, and provides another significant

performance increase, obtaining an accuracy of 64.96%,

compared to the 50.98% accuracy reported in (Zhang et al.,

2013). It also outperforms POOF (Berg & Belhumeur,

2013), to our knowledge the best accuracy reported in the

literature prior to this work.

amazon.com
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(a) SURF features (b) DeCAF6

Figure 5. Visualization of the webcam (green) and dslr (blue) domains using the original released SURF features (a) and DeCAF6 (b).

The figure is best viewed by zooming in to see the images in local regions. All images from the scissor class are shown enlarged. They

are well clustered and overlapping in both domains with our representation, while SURF only clusters a subset and places the others in

disjoint parts of the space, closest to distinctly different categories such as chairs and mugs.

Method Accuracy

DeCAF6 58.75

DPD + DeCAF6 64.96

DPD (Zhang et al., 2013) 50.98

POOF (Berg & Belhumeur, 2013) 56.78

Table 2. Accuracy on the Caltech-UCSD bird dataset.

We note again that in all the experiments above, no fine-

tuning is carried out on the CNN layers since our main

interest is to analyze how DeCAF generalizes to different

tasks. To obtain the best possible result one may want to

perform a full back-propagation. However, the fact that we

see a significant performance increase without fine-tuning

suggests that DeCAF may serve as a good off-the-shelf vi-

sual representation without heavy computation.

4.4. Scene recognition

Finally, we evaluate DeCAF on the SUN-397 large-scale

scene recognition database (Xiao et al., 2010). Unlike ob-

ject recognition, wherein the goal is to identify and classify

an object which is usually the primary focus of the image,

the goal of a scene recognition task is to classify the scene

of the entire image. In the SUN-397 database, there are 397

semantic scene categories including abbey, diner, mosque,

and stadium. Because DeCAF is learned on ILSVRC, an

object recognition database, we are applying it to a task for

which it was not designed. Hence we might expect this

task to be very challenging for these features, unless they

are highly generic representations of the visual world.

Based on the success of using dropout with DeCAF6 and

DeCAF7 for the object recognition task detailed in Sec-

tion 4.1, we train and evaluate linear classifiers on these

dropped-out features on the SUN-397 database. Table 3

gives the classification accuracy results averaged across 5

splits of 50 training images and 50 test images. Parameters

are fixed for all methods, but we select the top-performing

method by cross-validation, training on 42 images and test-

ing on the remaining 8 in each split.

Our top-performing method in terms of cross-validation ac-

curacy was to use DeCAF7 with the SVM classifier, result-

ing in 40.94% test performance. Comparing against the

method of Xiao et al. (2010), the current state-of-the-art

method, we see a performance improvement of 2.9% us-

ing only DeCAF. Note that, like the state-of-the-art method

used as a baseline in Section 4.1, this method uses a large

set of traditional vision features and combines them with a

multi-kernel learning method. The fact that a simple linear

classifier on top of our single image feature outperforms

the multi-kernel learning baseline built on top of many tra-

ditional features demonstrates the ability of DeCAF to gen-

eralize to other tasks and its representational power as com-

pared to traditional hand-engineered features.

5. Discussion

In this work, we analyze the use of deep features applied in

a semi-supervised multi-task framework. In particular, we

demonstrate that by leveraging an auxiliary large labeled

object database to train a deep convolutional architecture,

we can learn features that have sufficient representational

power and generalization ability to perform semantic visual

discrimination tasks using simple linear classifiers, reliably
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Amazon→ Webcam Dslr→ Webcam

SURF DeCAF6 DeCAF7 SURF DeCAF6 DeCAF7

Logistic Reg. (S) 9.63± 1.4 48.58± 1.3 53.56± 1.5 24.22± 1.8 88.77± 1.2 87.38± 2.2

SVM (S) 11.05± 2.3 52.22± 1.7 53.90± 2.2 38.80± 0.7 91.48± 1.5 89.15± 1.7

Logistic Reg. (T) 24.33± 2.1 72.56± 2.1 74.19± 2.8 24.33± 2.1 72.56± 2.1 74.19± 2.8

SVM (T) 51.05± 2.0 78.26± 2.6 78.72± 2.3 51.05± 2.0 78.26± 2.6 78.72± 2.3

Logistic Reg. (ST) 19.89± 1.7 75.30± 2.0 76.32± 2.0 36.55± 2.2 92.88± 0.6 91.91± 2.0

SVM (ST) 23.19± 3.5 80.66± 2.3 79.12± 2.1 46.32± 1.1 94.79± 1.2 92.96± 2.0

Daume III (2007) 40.26± 1.1 82.14± 1.9 81.65± 2.4 55.07± 3.0 91.25± 1.1 89.52± 2.2

Hoffman et al. (2013) 37.66± 2.2 80.06± 2.7 80.37± 2.0 53.65± 3.3 93.25± 1.5 91.45± 1.5

Gong et al. (2012) 39.80± 2.3 75.21± 1.2 77.55± 1.9 39.12± 1.3 88.40± 1.0 88.66± 1.9

Chopra et al. (2013) 58.85 78.21

Table 1. DeCAF dramatically outperforms the baseline SURF feature available with the Office dataset as well as the deep adaptive

method of Chopra et al. (2013). We report average multi-class accuracy using both standard and adaptive classifiers, changing only the

input feature from SURF to DeCAF. Surprisingly, in the case of Dslr→Webcam the domain shift is largely non-existent with DeCAF.

DeCAF6 DeCAF7

LogReg 40.94± 0.3 40.84± 0.3

SVM 39.36± 0.3 40.66± 0.3

Xiao et al. (2010) 38.0

Table 3. Average accuracy per class on SUN-397 with 50 training

samples and 50 test samples per class, across two hidden layers

of the network and two classifiers. Our result from the training

protocol/classifier combination with the best validation accuracy

– Logistic Regression with DeCAF7 – is shown in bold.

outperforming current state-of-the-art approaches based on

sophisticated multi-kernel learning techniques with tradi-

tional hand-engineered features. Our visual results demon-

strate the generality and semantic knowledge implicit in

these features, showing that the features tend to cluster im-

ages into interesting semantic categories on which the net-

work was never explicitly trained. Our numerical results

consistently and robustly demonstrate that our multi-task

feature learning framework can substantially improve the

performance of a wide variety of existing methods across

a spectrum of visual recognition tasks, including domain

adaptation, fine-grained part-based recognition, and large-

scale scene recognition. The ability of a visual recogni-

tion system to achieve high classification accuracy on tasks

with sparse labeled data has proven to be an elusive goal in

computer vision research, but our multi-task deep learning

framework and fast open-source implementation are signif-

icant steps in this direction. While our current experiments

focus on contemporary recognition challenges, we expect

our feature to be very useful in detection, retrieval, and cat-

egory discovery settings as well.
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