DECAY ESTIMATES FOR NONLOCAL PROBLEMS VIA ENERGY
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ABSTRACT. In this paper we study the applicability of energy methods to obtain bounds
for the asymptotic decay of solutions to nonlocal diffusion problems. With these energy
methods we can deal with nonlocal problems that not necessarily involve a convolution,
that is, of the form u;(x,t) = [p. G(x — y)(u(y,t) — u(x,t))dy. For example, we will
consider equations like,

() = /R T, y)uly, £) — u(z, ) dy + F(u)(x, 1),

and a nonlocal analogous to the p—Laplacian,

u(@,t) = /d (@, y)luly, t) — ule, )P (uly, t) — u(z, 1)) dy.
R
The energy method developed here allows us to obtain decay rates of the form
u(- )| paray < Ot

for some explicit exponent « that depends on the parameters, d, ¢ and p, according to
the problem under consideration.

1. INTRODUCTION

In this paper our main aim is to apply energy methods to obtain decay estimates for
solutions to nonlocal evolution equations.

First, let us introduce the prototype of nonlocal equation that we have in mind. Let
G : R — R be a nonnegative, compactly supported, radial, continuous function with
Jga G(2) dz = 1. Nonlocal evolution equations of the form

(1.1) u(z,t) = (G*u—u)(x,t) = / Gz —y)u(y,t) dy — u(z, 1),

Rd
and variations of it, have been recently widely used to model diffusion processes. Equation
(1.1) is called nonlocal diffusion equation since the diffusion of the density u at a point x
and time ¢ does not only depend on u(z,t), but on all the values of u in a neighborhood
of x through the convolution term G * u. As stated in [20], if u(x,t) is thought of as a
density at the point z at time ¢ and G(x — y) is thought of as the probability distribu-
tion of jumping from location y to location z, then [, G(y — z)u(y,t) dy = (G * u)(x,1)
is the rate at which individuals are arriving at position x from all other places and
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—u(z,t) = — [pa G(y—x)u(z,t) dy is the rate at which they are leaving location x to travel
to all other sites. This consideration, in the absence of external or internal sources, leads
immediately to the fact that the density u satisfies equation (1.1). For recent references
on nonlocal diffusion see [1]-[9], [11], [13]-[22], [26] and references therein. This equation
shares many properties with the classical heat equation, u; = Awu, such as: bounded sta-
tionary solutions are constant, a maximum principle holds for both of them and, even if GG
is compactly supported, perturbations propagate with infinite speed, [20]. However, there
is no regularizing effect in general.

The asymptotic behavior as ¢ — oo in for the nonlocal model (1.1) was studied in
[12], see also [21] and [22], where the authors prove that every solution to (I1.1) with
an initial condition wuy such that wug, @y € L'(R?) has an asymptotic behavior given by
-, &)l ey < CE2.

The proof of this fact is based on a explicit representation formuli for the solution in
Fourier variables. In fact, from equation (I.1) we obtain @ (§,t) = (G(§) — 1)u(¢,t), and

hence the solution is given by, u(¢,t) = e (©)=Dtiy(€). From this explicit formula it can be
obtained the decay in L>(R?) of the solutions, see [12] and [21]. This decay, together with
the conservation of mass, gives the decay of the L4(R%)-norms by interpolation. It holds,
Ju(-, )] paray < C't=2(171/9 Note that the asymptotic behavior is the same as the one
for solutions of the heat equation and, as happens for the heat equation, the asymptotic
profile is a gaussian, [12].

As we have mentioned, our main task here is to develop an energy method to obtain decay
estimates. Our motivation to introduce energy methods to deal with nonlocal problems
is twofold, first we want to see how energy methods can be applied to equations possibly
without any regularization effect and moreover we want to deal with nonlinear problems
for which there are no explicit representation formula for the solution (in general, Fourier
methods are not applicable to nonlinear problems).

To begin our analysis, we first deal with a linear nonlocal diffusion operator with a
nonlinear source, that is, we consider the following evolution problem

(12 wle.t) = [ Tyl ) = ule0) dy + fw)(a 1)

with f a locally Liptshitz function satisfying the sign condition f(s)s < 0 and J(z,y) a
symmetric nonnegative kernel.

We generalize the previous results in two ways, we allow a nonlinear term f(u) imposing
only a dissipativity condition, f(s)s < 0, and, what is even more relevant, we can consider
equations in which the nonlocal part is not given by a convolution but for a general operator
of the form [, J(x, y)(u(y) — u(z)) dy.

Our first result reads as follows: wunder adequate hypothesis on J (see Theorem (2.1
in Section 2) and f a locally Liptshitz function satisfying the sign condition f(s)s < 0,
consider an initial condition ug € L*(RY) N L>®(R?) with d > 3. Then, for any 1 < ¢ < oo
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the solution to (1.2) verifies the following decay bound,

(s D)l pagray < Ct_%(l_%)'

Our main hypotheses on J can be summarized as follows: J(z,y) is strictly positive
(> ¢1 > 0) for |y — a(x)| < o, where a is a function with bounded derivatives.

We remark that this decay bound need not be optimal, in the final section we present
examples of functions J that give exponential decay in L*(R). To obtain a complete
classification of all possible decay rates seems a very difficult but challenging problem.

Our energy approach not only simplifies the proof of the asymptotic decay in the linear
case but also can de applied to handle nonlinear operators, like a nonlocal analogous to
the p—Laplacian. Let p > 2 and consider

(1.3) w(w,t) = | J(@g)luly,?) —ulz, I (uly. t) — ulw, 1)) dy.

This problem, with a convolution kernel, J(z,y) = G(x — y) was considered in [3] and
[2] where the authors found existence, uniqueness and the convergence of the solutions
to solutions of the local p—Laplacian evolution problem, v; = div(|Vv[P72Vv) when a
rescaling parameter (that measures the size of the support of the convolution kernel G)
goes to zero.

In this case the asymptotic decay is described as follows: given uy € L*(RY) N L*°(RY)
there exists a unique solution to (1.3). Moreover, under adequate hypothesis on J (see
Theorem 2.1 in Section2) and 2 < p < d, its asymptotic decay is bounded by

e, )| gy < (jt—(m)(l—%),

for1l < g < .

This asymptotic decay is the same one that holds for solutions to the local p—Laplacian,
vy = div(|]Vu[P72Vv), see Chapter 11 in [28].

The assumption on the initial data, uy € L*(R%) N L>(R?), is imposed since, in general,
nonlocal evolution equations have no regularizing L*(R?) — L(R¢) effect. In the particular
case of a convolution kernel J(z,y) = G(z — y), i.e. equation (1.1), in [12] it is proved
that solutions u can be written as u(t) = e fug + K, * ug, where K, is a smooth function.
As a consequence at any time ¢ > 0, the solution u is as regular as the initial datum wuyg
is. Thus, it is hopeless to guarantee that at any time ¢ > 0, the solution wu(t) belongs to
L4(RY) without assuming that ug € LI(RY).

The rest of the paper is organized as follows: In Section 2 we collect some preliminaries
and prove a decomposition theorem that will be used to apply energy methods; in Section 3
we deal with the decay of solutions with linear nonlocal diffusion and a nonlinear dissipative
source and in Section 4/ we prove the decay for the nonlocal p—Laplacian. Finally in
Section 5 we present examples of J for which we can prove exponential decay bounds for
the linear problem.
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2. PRELIMINARIES

In this section we collect some preliminaries and state and prove a crucial decomposition
theorem. In what follows we denote by

the usual Sobolev exponent, while

denotes the usual conjugate exponent.

First, let us describe briefly how the energy method can be applied to obtain decay
estimates for local problems. Let us begin with the simpler case of the estimate for solutions
to the heat equation in L?*(R%)-norm,

Uy = Au.

If we multiply by u and integrate in R¢, we obtain

— [ WP(z,t)dr = — | |Vu(z,t)]*dz.
dt Rd R4

Now we use Sobolev’s inequality

2/2*
/ \Vul*(z,t)dv > C (/ lu|? (1) dzz)
Rd Rd

d 2/2*
— [ WP(x,t)de < —C (/ lu|? (z,t) dx) :
dt R4 R4

If we use interpolation and conservation of mass, that implies |lu(t)|| 1 rey < C for any
t > 0, we have

to obtain

) ey < ) e 0) 355y < )30
with o determined by
1 11—« , 2% —2
52@4-7, that is, a:m.

Hence we get

-«

a4 w?(x,t)dr < —C (/ u?(x,t) d:zc)
dt Rd Rd

from where the decay estimate

lut)] L2 ey < Ct—g(l_%), t >0,
follows.
In the case of the p—Laplacian in the whole space,

u = Ayu,
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the argument is similar, we multiply by u, integrate in R and use Sobolev inequality, that
in this case reads,

*

p/p
\VulP(z,t)de > C (/ lul?" (z, ) d:v>
R4 R4

and interpolation to get a similar inequality for the L?-norm of a solution

9
K w?(x,t)dv < —C (/ u?(x,t) dx)
dt Rd Rd

for an explicit # < 1 that depends on p and d. As before this inequality implies a decay
bound for the L?-norm.

We want to mimic the steps for the nonlocal evolution problem
g, t) = » J(2,y)(u(y,t) — u(z,1)) dy.
Hence, we multiply by v and integrate in R? to obtain,
(2.4) % » u?(x,t) dx = /Rd » J(z,y)(u(y, t) —u(x,t)) dyu(z, t) dy dx.

Now, we need to “integrate by parts”. Therefore, let us begin by a simple algebraic
identity (whose proof is immediate) that plays the role of an integration by parts formula
for nonlocal operators.

Lemma 2.1. If J is symmetric, J(x,y) = ) then it holds

/Rd/w"m)(w(y) (@) (2)dyde = — /R d /R @ y)(ey) = (@) (@ (y) ~ v (@) dyde.

If we apply this lemma to (2.4) we get

d 1
G [ nde =5 [ [ sl - w0 dyds
dt Rd 2 Rd ]Rd

but now we run into troubles since there is no analogous to Sobolev inequality. In fact, an
inequality of the form

/Rd R I, y)(uly. 1) - u(z, 1)) dyde > C (/Rd ul(z,1) d:c) :

can not hold for any ¢ > 2.

Now the idea is to split the function u as the sum of two functions © = v + w, where on
the function v (the “smooth”part of the solution) the nonlocal operator acts as a gradient
and on the function w (the “rough”part) it does not increase its norm significatively.

Therefore, we need to obtain estimates for the LP(R¢)-norm of the nonlocal operators.
The main result of this section is the following.



6 LIVIU I. IGNAT AND JULIO D. ROSSI

Theorem 2.1. Let p € [1,00) and J(-,-) : R? x R — R be a symmetric nonnegative
function satisfying
HJ1) There exists a positive constant C' < oo such that

sup/ J(z,y)de < C.
Rd

y€eRd

HJ2) There exist positive constants ¢y, co and a function a € C1(R? R?) satisfying
(2.5) sup |Va(z)| < oo

z€R4

such that the set
(2.6) B, ={y¢€ RY - ly —a(x)] < co}

verifies
B, C{yeR: J(x,y) > c1}.

Then, for any function u € LP(RY) there exist two functions v and w such that u = v+w
and

2D 1ol + 0l < COD) [ [ T@luta) = ul)P dody.
Moreover, if u € LY(R?) with q € [1,00] then the functions v and w satisfy
(2.8) [0l Laway < C(J, @)lul| paray

and

(2.9) [l Laray < C(J, q)[|ull Lara).

Before the proof we collect some remarks and a prove a corollary.

Remark 2.1. The above result says that there exists a decomposition of u in a smooth
part, v, and a rough part, w, such that the action of the nonlocal operator is like a gradient
on the smooth part and as the identity on the rough part.

Remark 2.2. We note that in the case 1 < p < d using the classical Sobolev’s inequality
[Vl Lo* may < IVl Loray we get that (2.7) implies

||UHL,,* (RY) + ”wHLp (R4) < C(J7p)/ e J(z,y)lu(z) — u(y)|’ dv dy.
Remark 2.3. In particular, we can consider a(x) = x, that is, the case of a convolution
kernel, J(z,y) = G(x — y), with G(0) > 0. In fact, it is reasonable to assume that
J(z,x) > 0 since in biological models this means that the probability that some individuals
that are in x at time t remain at the same position is positive.
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To simplify the notation let us note by (A,u,u) the following quantity,

(Apu,u) == // (z,y)|u(z) — u(y)? de dy.

Observe that, in order that the above quantity to be finite, we have to assume a priori that
u belongs to LP(R?).

Note that our main result of this section, Theorem 2.1 gives estimates from below for
(Apu,u). A corollary of this result is the following.

Corollary 2.1. Let J(-,) : R¢ x RY — R be a symmetric nonnegative function satisfying
hypotheses HJ1) and HJ2) in Theorem|2.1 and p € [1,d). There exist two positive constants
C, = C1(J,p) and Cy = Cy(J, p) such that for any u € L*(R?) N LP(R?) the following holds:

(2.10) 2l ey < Cullulls g™ (Apu, w)*® + Co(Ayu, u),
where a(p) satisfies:
I alp
LWy o)
p p
Remark 2.4. The explicit value of a(p) is given by
P dlp-1)

2.11 a(p) = = _

— R R P

Remark 2.5. In the case of the local operator Byu = —div(|Vul|P~2Vu), using Sobolev’s
wnequality and interpolation inequalities we have the following estimate

el zay < Cullul28 g™ By, )@,
(

In the nonlocal case an extra term involving (Apu,w) occurs, see (2.10).

Proof of Corollary|2.1. We use the decomposition u = v + w given by Theorem 2.1 to
obtain

[l o ey < N0ll70@ay + W70 ga)-
Also, by (2.7), we have
||VU||LP(Rd <C(J, p><Apu7 u)
and
0l gy < C(T,p){ Ay, ).
Then, from the interpolation inequality

[ e [ AN [0y

we obtain that the LP(R?)-norm of u satisfies

(1
[ 1 0 e [

< Vol 508, ull & o + C(J, p)(Apu, u)
< Cy ]| 2P A, u) @) - Oy Ay, ),

L(R4)
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as we wanted to prove. U
Now we proceed with the proof of the decomposition theorem.

Proof of Theorem 2.1. We divide the proof in two steps. First of all, we prove under the
assumptions HJ1)-HJ2) the existence of a function p(-,-) satisfying

H1) p(z,-) € C2(R?) for a.e. z € RY,

H2) [pap(z,y)dy =1 for ae. x € RY,

H3) sup,ega [pa p(2,y) de < M < oo,

H4) supp p(z,-) C B, for a.e. x € RY

H5) sup,cpa [|p(z, ')HLP'(Rd) <M < oo,

H6) 22:1 SUP,cp || O, p(, ')HLP’(Rd) <M < oo.
Next, we define

~— — —— ~—

oie) = [ pau)dy. wd  w—u-w
and prove (2.7), (2.8) and (2.9).

Step I. Construction of p. With ¢y given by HJ2) we consider a smooth function
1 € C°(RY) supported in the ball B,,(0), 0 <1 < C and having mass one:

/ W(x)dr =1.
Be, (0)

For any z € R? we consider the function a(z) and the set B, as in (2.6), see HJ2). We
then define p(z,y) by

(2.12) p(z,y) = ¥y — a(z)).

We will prove properties H3) and H6) since the others easily follow with a constant
M(J). We point out that the assumption on the existence of a ball B, centered at a(x)
with radius ¢ is necessary in proving H5). Otherwise, inf,cga |B,| = 0 and by Holder
inequality, we get

Jpap(@y)dy 1
o, M e = =557 = 5
and then
[p(z, )] = : -
s ot Moo 2 o =

Therefore, we cannot obtain property H5).
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We now prove property H3). Observe that, by definition (2.12) of the function p(,-)
and the fact that ¢y < C we have

sup [ ple.)de = sup [ty o)) do = sup | by — alx)) da
R4 ly—a(z)|<c2

y€ERd ycRd J R4 yERd
< Csup [{a: Iy — ae)| < 2}
yER4

It remains to show that the last term in the right hand side is finite. Indeed, given y, we
have
J 1
{z: |y — a(z)] < e} g/ (.9) 4, < L J(z,y)dz < C.

{w:lyn—a(@)|<c2} €1 €1 Jrd

We now prove HJ6). By definition (2.12) for any z € R? we have

1Ous (2, M Lo (ray = V(- = a(@)) - O a(@)]| 1ot (may < [0, al@)[[[ V| L (ga)-
Using (2.5) and the construction of ¢ we obtain HJ6).

Step 1I. Proof of the estimates on u, v and w. We have proved that there exists a
function p satisfying hypotheses H1)-H6). Let us take

v(x) = /Rd plx,y)u(y) dy, and w=u—u.

First we prove (2.8) and (2.9). Holder’s inequality applied to the function v and H2)
guarantee that

@< [ ottt ([ senan)” = [ sty

Then, property H3) gives us

/ fo(@)] d < / Juy) / (2,y) dz dy < sup / olz, y)da / ()| dy
yeR JRd Rd

<M / ()| dy
Rd

U=

which proves (2.8).
Also, we obviously have

W] Lamay < [|ullLaay + [|V]| Loray < (1 + Ml/q)HUHLq(Rd)-

We now proceed to prove (2.7). To do that we prove the following inequalities:

213) ol < s oo [ [ Ieilute) = )l dady

zCR4
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and

d
Q1) V0l < 3065 500 1000 My [ [ Taluta) = ul)l dady

k=1 rCcRd

The fact that for any z € R?, p(z,-) is supported in the set B, and has mass one gives the
following

wia) = u(e) = [ ooy = [ ole.(u) = ul)dy
— [ ol (ute) - ul) dy.

x

Then by Holder’s inequality we get:

e = | \ [ plauta) =ty
S/Rd N |u(z) — u(y)[Pdy (/zp(w,y)p'dy)p da

< sup ( / p(x,y>p’dy) / u() — u(y)P dy de
CCERd T Rd Bz
\u

< sup (o W [, [ Tuto) = uto)l dy

zCRd

p

dx

s

Using now that for any € R? and y € B, we have J(x,y) > c¢; we obtain

ol gy < ex sup lo(, )17, gy S (@, y)|u(z) = u(y)[” dy dz
) (

zeR

< et sup [l (// (e, y)lu(x) - uly)]" dy da

rER4

which proves (2.13)).
In the case of v we proceed in a similar manner, by tacking into account that for any
x € R the mass of 0, p(x,y), k =1,...,d vanishes:

/Rd Ou (2, y) dy = %(/Rd p(x,y)dy) = 0.

The definition of v and this mass property gives,

O v(z) = /Rd D p(, y)(uly) — ulz)) dy =/ Oy, p(z,y) (u(y) — u(x)) dy.

x



DECAY ESTIMATES FOR NONLOCAL PROBLEMS 11

Thus, by Hoélder inequality and the fact that J(x,y) > ¢; for all y € B, we obtain,

00 = [ | / 0yl ) (uly) — u(w))dy|

dx
< /d/ )| dy (/ |0, 0 (2, y)\pldy) dx
R =

= Sup ”aa:kp Lp Rd / / |pd.1}dy
z€RI T
< e s 0,06y | / (e, y)luly) — u(e)] dz dy
S

< e sup [0, (o Lde)//nyw )~ u(e)P da dy.

zERd
Summing the above inequalities for all k = 1,...,d we get (2.14).
The proof is now finished since (2.13) and (2.14) imply (2.7). O

Now we present a similar result to Corollary 2.1/ which can be used to obtain less accurate
bounds (hence we prefer to use the more general result presented above) in the particular
case of the nonlocal laplacian, i.e. p =2, and J(z,y) = G(x—y). The result is no so general
as Corollary 2.1, but it is obtained using Fourier analysis tools and has the advantage that
the previous decomposition © = v 4+ w can be better understood. We include it here just
for this purpose. In fact this decomposition can be viewed as a Fourier splitting of the
function u in two parts, the first one, v, corresponding to the low frequencies (the smooth
part) of u, and the second one, w, corresponds to the high frequencies component (the
rough part) of w.

We will use that in the particular case p = 2 and J(z,y) = G(z — y), G with mass one,
the operator (Asu, u) can be represented by means of the Fourier transform of G as follows

(= [ [ G —ylu) —ul)l dedy = [ (1= Gepface)as

Lemma 2.2. Let d > 3 and G be such that its Fourier transform G(f) satisfies

G <1- ¢ <R,
2.15) (O =<1-% &<

GE)<1-6, [ >R,

for some positive numbers R and §. Then, for any € € (0,1) there exists a constant

C =C(e,0,R,d) such that the following

(2.16) lull2ge) < Cllull g (Aou, u)*® + (Ayu, u)
holds for all w € L'*¢(R%) N Lz(Rd) where
B(e) = (1—¢)d

d+2—e(d-2)
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Remark 2.6. The limit case ¢ = 0 cannot be obtained since an estimate of the type
1L ge<ry@) o ray < flullpr ray

does not hold for all functions u € L*(R?). In dimension one this can be seen by choosing
a sequence ue with ||uc||p1gay = 1 such that u. — dy, the Dirac delta. Then

(Lge<ryte)’ = ue * sin( 1) _, sinRx

Rx Rx
and the last function does not belong to L*(R?). Thus ||(1qe<myte) |z ray — o0 but

luel pray = 1.

Remark 2.7. The same arguments can be used to obtain estimates for any function G
which satisfies

Gy <1-H2 ¢l <R,

— 2

GE)<1-46, =R,

for some positive numbers R, § and s.

Proof of Lemma 2.2. For any function v € L*(R?) we define its projections on the low and
high frequencies respectively,

(2.17) V= (1{‘5|§R}a)v, w = (1{|£‘ZR}Q)V.

Using that the function G satisfies (2.15) we obtain the following estimate for the oper-
ator As:

1) (= [ 0-G@a©raz [ Eaopas [ oRa

l€1>R
—5 | em@Pde+s [ o
>(6) (I Vol 22y + 02 e
>c(0) (1012 gy + 1022z )

In order to estimate from above the L?(R%)-norm of u as in (2.16)), using the orthogonality
of v and w it is sufficient to estimate each projection v and w since

1l ey = 10lz2 gy + 102

In the case of w, using (2.17) and (2.18) we have the rough estimate:

1
(219) J0]3ags) < —={Azu, ).

— ()
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Next we estimate the L?(R?)-norm of v. We recall that classical results on Fourier
multipliers (see Chapter 4 in [27]) give us that for any p € (1,00) the LP(R%)-norm of v,
defined by (2.17), can be bounded from above by the LP(R%)-norm of u as follows:

(2.20) ]| Lr(rey < C(p, d)]|ull Lrga)-

Using this estimate and interpolation inequalities we obtain that v, the low frequency
projection of u, satisfies

1 Jé] 1
@21) ol < (IR 01 k) < (ele Dl 012, )

< (e, d)e(0) O Jul 5D (Agu, u)*©),

where ¢(e, d) is given by applying (2.20) with p =1+ ¢ and 3(¢) b
1—

_1=p@) | Ble)

1
2 1+e¢ 2%

that is,

B (1—¢e)d
b€ =T iy

Combining (2.18), (2.19) and (2.21) we obtain

(2.22) el ey < e, 8, )l 2050 (Ag, )™ + (Agu, w).

The proof is now finished. O

We end this section with a crucial but simple result concerning the decay of solutions to
a differential inequality.

Lemma 2.3. Let ty > 0 and ¢ : [0,00) — (0,00) such that for all t > ty
(2.23) Uy + apPt’ <0

holds for some constants « > 0, 3 > 1 and . Then there ezists a positive constant c(a, ()
such that

B(t) < cla, B,7) (1 = (o)) T
holds for all t > ty.

Proof. Inequality (2.23) gives us
P +at? <0.
Integrating on [to, t] we find that for any ¢ > ¢,

IO () (7 — (80))
-3  1-3 + o o < 0.

Then
at™™ = (ko)) (B -1 (y+ 1) <)
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and hence )
D(t) < ela, B,7) (T = (o)) T
where c(«, 3,7) is a constant. O

3. DECAY ESTIMATES FOR THE LINEAR DIFFUSION PROBLEM WITH A NONLINEAR
SOURCE.

In this section we will obtain the long time behavior of the solutions u to the following
equation

(3.24) wle.t) = [ Tty t) = ule0) dy + fw)(a 1)

under suitable assumptions on the kernel J and the nonlinearity f. Our goal is to obtain
here a proof of the decay rate of the solution u to (3.24) by using energy methods.

The main result of this section is the following theorem.

Theorem 3.1. Let J(x,y) be a symmetric nonnegative kernel satisfying HJ1) as in Theo-
rem 2.1 and f be a locally Lipshitz function with f(s)s < 0. For any uy € L*(RY) N L>®(R?)
there exists a unique solution to equation (3.24) which satisfies
(3.25) [u(®)]|rmay < lluollrway  and  [[u(t)|| Lo @ay < lluol| Lo ray
for every t > 0.

Moreover, if d > 3 and J also satisfies HJ2) then the following holds:

_d(_1
(3.26) ()| zagye < Clq, d)l|uo| prrayt 27
for all g € [1,00) and for all t sufficiently large.

Remark 3.1. The proof uses the results of Theorem 2.1 and Corollary |2.1 obtained in
Section |2 in the particular case p = 2. In order to apply Corollary 2.1 we need to assume
d>2,ie d>3.

The same arguments we use here also work for the convection diffusion equation:
(3.27)
ui(t,r) = (Gy *u—u) (t,2) + (Go * (|u|""tu) — Ju|"" ) (¢, 2), t>0,ze€RY
u(0,z) = up(x), z € RY,
where r > 1 and GG; and G4 are positive functions with mass one. We have to mention

that this time the dissipativity condition on the nonlinear part have to be understood in
the following sense

/ (G (Ju]"""u) = |u] ") [ul'u < 0
Ra

for any ¢ > 1.

In the case of equation (3.27), the same decay as in (3.26) has been obtained in [21]
by means of the so-called Fourier Splitting method introduced by Schonbek in [23], [24]
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and [25] in the context of the local convection-diffusion equation. Our method also works
if the convolution terms in (3.27) are replaced by integral operators as in (3.24).

The following lemma will be used in the proof of Theorem [3.1.

Lemma 3.1. Let d > 2 and u such that u(t) € L*(RY) N L2(RY) for all t > 0 satisfying:

d
pr u?(z,t)dr + (Aqu(t), u(t)) <0, for allt > 0,
Rd

with J as in Theorem 2.1. Assuming that
(3.28) Ju®ll gy < Nu(O) gy, for allt >0,
there exists a constant c(d, J) such that
_d(p_1
lu() 2@y < e(d, I)[[u(0)]| rayt 212
holds for all t large enough.

Remark 3.2. Under the same hypotheses we can replace the initial time t = 0 with any
positive time tqy, the result being the same for large time t,

_d(q-1
()| 2y < e(d)llulto) | preay (t — to) 2172,
Proof of Lemma!3.1. By Corollary 2.1 and property (3.28) we obtain

lu(0) 72y < CoDNu(®)|7 g6 (Asu(t), u(®))*® + Co(J)(Azu(t), u(t))
< Co()[[u(O) 17 iy (Azu(t), u(t))*® + Co(T)(Agu(t), u(t))

where «(2) = d/(d + 2) is given by (2.11). To simplify the presentation we will assume
without loss of generality that Cy(J) = Cy(J) = 1 (otherwise one can track the constants
that appear in each step of the proof). Then for any ¢ > 0, (Asu(t), u(t)) satisfies

“Hllu®)l72me) < (Asult),u(t))
where
H(z) = u(0)|[ 3 g 22® + .
Analyzing the function H, 3(z) = az”’ + z, a > 0, 3 € (0, 1), we observe that
2r x> aﬁ,
2az”, x < aﬁ

and then

(3.29) H, 5(y) >
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Applying this property to a = ||u(0 )HlLloﬁg = «(2) we find that (Asu(t),u(t)) verifies:
5”“( )HLQ (R4)> Hu( )HL2(Rd >2 Hu( )HLI(Rd
(Agu(t), u(t)) = )2 o)
@2 ma, 3t )
(aprerstn) ™ Ol ey < 2 N0l oy

Then, ¢(t) = |Ju(t)]3- (r) Satisfies the following differential inequality for all ¢ > 0:

L
a(2)

gb(t) ¢(t)
R A T B CCE R

This implies the existence of a time ¢, such that ¢(ty) < 2||u(0) If not, then for all

time t > to we get ¢(t) > 2[|u(0)[]3, (R4) and

||L1 Rd

6ut) + 50(0) <0

Integrating the above inequality on (¢, t) we obtain ¢(t) < e~(%)/2¢(¢,) which contradicts
our assumption. Thus, there exists ¢y such that ¢(to) < 2[|u(0)]3, (- Using that ¢;(t) <

we obtain that ¢(t) < 2[lu(0)[|3, (ray holds for all ¢ > ¢, and qb( ) satisfies the followmg
differential inequality for all ¢ > to

9(t)
2
20Oy
Integrating it on (to,t) we get by Lemma 2.3/ with v = 0 that ¢ satisfies

P(t) < C‘|U(O>‘|%1(Rd)(t —to)” d(l_f) t > o,

oi(t) +

in other words N
Ju()|| 2 may < C||u(0)||L1(Rd)t—§(1—§)
holds for all time ¢ large enough. .

Proof of Theorem |3.1. Step I. Global existence and uniqueness. First, let us prove
the existence and uniqueness of a local solution. To this end we use a fixed point argument.

Let us consider the space
X =C°([0,T]; LY(RY) N L>*(RY))
with the norm
Jullx = ma. { ()]s ey + ) e -
We observe that the operator A : X — X defined by

Aute) = [ T uly.6) = ule. 0)dy
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is continuous since using HJ1) and the symmetry of J we get

[Aul| oo may < 2[[ul| oo (ray sUp /d J(z,y)dy < 2C|[ul oo ey
R

z€R4

and

| Aul| L1 ey < 2|l 1 gay sup / J(z,y)dy < 2C||ul| ey
z€R? J R4

Since the map u — f(u) is Lipschitz continuous on bounded subsets of X (as a consequence
of the properties of f) classical results on semilinear evolution problems (see for example
[10], Proposition 4.3.3) guarantees the existence of a unique local solution w.

We now prove (3.25) which guarantee the global existence of solutions to equation (3.24)).

We multiply equation (3.24) with sgn(u) and integrate on R¢:

d

— | Ju(z,t)|dx = / w(z, t) sgn(u(z,t))dz

dt R4 R4

— [ [ et - ute.)snlu(e. 0)dsdy
Re JRd
+ [ flu(z,t))sgn(u(z,t))dz.
R4

Using Lemma 2.1 and the fact that f(s)s < 0,s € R, we get

(z,t)|dx < /]Rd » J(z,y)(u(y, t) — u(z,t)) sgn(u(z, t))dydx

B _% /Rd /Rd J (@, y)(uly, 1) — u(z, 1)) (sgn(u(y, 1)) — sgn(u(z, t)))dyde

<0.

dt Ra ’u

From here it follows that
lu()|l L way < lluoll Lt (way-
Now, multiplying the equation by (u(x,t)—M),, where M = |lug|| o (ra), and integrating
on R we get

% 5 (”@’t)z_ M 4 = / welz, ) (u(z, t) — M), dx

-/, /R )ty £) = e, ) (ul, 1) — M) dyds

+ » flu(z, t))(u(z, t) — M) dz.

Using Lemma 2.1, the sign property of the function f and the fact that for any two real
numbers a and b we have

lay = b < (a—Db)(ay —by),
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it follows that
d [ (u(z,t)— M)3

— tdx =

dt Jra 2
< [ [ It t) = e ) ) = M)sdyda
=5 [ ] I utnt) = e ) (o) = M) = (uo.6) = ), ) dy

<=3 [ [ I@nlwt.n =0~ (e, = M) Py,

Therefore,

/Rd (u(x’t)z_ M)i— dr =0

and we obtain that u(z,t) < M for all t > 0 and a.e. x € R%.
In a similar way we get u(x,t) > —M for all t > 0 and a.e. z € R%
We conclude that ||u| gy < ||l fo(rey and that the solution u is global.

Step 1I. Proof of the long time behaviour. We divide the proof in several steps.
Step II a). The case p = 2. Multiplying equation (3.24) by sgn(u) and u we obtain

(3.30) %/Rd lu(t, )] dz < 0
and
(3.31) L2y de + (Asu(t), u(t)) < 0.

ERd

Inequality (3.30) implies that (3.28) holds.
Inequalities (3.30)) and (3.31) allow us to apply Lemma 3.1. Thus we obtain that

_d-1
||u(t)||L2(]Rd) < ||u0||L1(]Rd)t (1 2).

holds for large enough ¢. This gives us, by interpolation, the long time behaviour of the
solution v in any L?(R?)-norm when 1 < ¢ < 2.

Step II b). The case p = 2""!. We use an iterative argument to prove that once the
result is assumed for p = 2" we get the result for p = 27+1,

Assume that it holds for p = 2". Then

_d_ L
()| om gy < o] 1yt 27

holds for all ¢ large enough.
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Let us fix r = 2", We multiply equation (3.24) with "' to obtain

1d

rdt Jga u'(z, t)de < /Rd dJ(:E,y)(u(x,t) —u(y, t))u""(z,t) du dy

=5 [ [ It t) = ulp ) . 0) = o) de dy
<—t) [ [ It = w0 dedy

/2 yverifies:

4
dt

Then v = u

v (z, t)dx + c(r)(Av(t),v(t)) <0, t>0.

By Lemma 3.1 and Remark 3.2/ we obtain that for large time ¢ the following holds:

_d_1
[o(8)]| 2y < l0(t/2)|| o1 gayt 272
Then
1 72(8) | gy < |u"2(t/2) || prgayt ™22

and using that r = 2"+
()11 gy < Oy ) [t /2)|[Fom =272,
Using the hypothesis on the L?"(R?)-norm of u we get

Y T W
HU( )HLG+1 (Rd) < C( )”u(t/Q)”LW R ¢ d )
C( )HUOHLl Rd)t 2( gn)t_*(ﬁ—m)

IA

C( )”uOHLl(Rd)t 2( 2n+1)'

The proof is now finished since we can interpolate between the cases r = 2" and r = 271,
n > 0 an integer. Indeed, given ¢ € (1,00) we can find a positive integer n such that
2" < g < 2" Then

ol oceey < el a1l 2 g

where a = a(g,n) is given by
1 a n 1—a
q omn 2n+1

and the general case follows.
The proof of decay property (3.26) is now finished. O
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4. DECAY ESTIMATES FOR THE NONLOCAL p—LAPLACIAN

In this section we deal with the following nonlocal analogous to the p—laplacian evolu-
tion,

432 wlet) = [ Tl - ue O ) e, 0) dy

Existence and uniqueness of a solution follows from the results in [2] (see also [3] for
the Neumann problem). Again for this case we have to note that in those references a
convolution kernel was considered J(z,y) = G(x — y) but it can be checked that the same
proof gives existence and uniqueness for a general J(z,y).

Theorem 4.1. (2], Proposition 2.4) Let 1 < p < oo. For any initial condition uy € LP(R?)
there exists a unique global solution u € C([0,00) : LP(RY)) N WL1((0,00) : LP(RY)) of
equation (4.32).

Concerning the long time behaviour of the solutions of equation (4.32) we have the
following result.

Theorem 4.2. Let ug € L*(RY)NL®(RY) and 2 < p < d. For any 1 < q < oo the solution
to (4.32) verifies

(4.33) [ )| gy < o (as) (1-1)
for all t sufficiently large.

Remark 4.1. The condition p > 2 is used in the inductive step in our proof. Also p < d
1s necessary in order to use Corollary 2.1.

Proof. We multiply equation (4.32) by |u|""2u(z), 1 < r < oo, and integrate to obtain,
using Lemma 2.1]

— \u]”(:c,t)dx—/ lu|" " 2uuy (z, t)dx
dt R4 d

= /Rd /Rd J(z,y)|u(y, t) — u(z, t)|p_2(u(y,t) — u(z, t))|U|T_2u(I7t) dy dx

——c [ [ Tl = P ) — )

X (Ju]" " ?uly, t) — |u| " ?u(z,t)) dy dx

p+r—2 p+r—2 p
<= [ [ I Wl )~ ol )| dyde
Rd JRd
In the last line we have used that for any p,r > 1 the following holds
—1J7, VzeR.

ptr—2

|z — 1P (@ = (Ja*2 = 1) > c(p,r)l|z| >
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The above inequality gives us that for any 1 < r < oo, u, the solution to (4.32)), satisfies

d p+r 2 ptr—2

gt L el ) + Co A u®] ™2 Ju(®)] ) < 0

This inequality is cruc1al to obtain the long time behaviour (4.33) of a solution wu to (4.32).

(4.34)

Next, we will prove by induction that the sequence {p,},>0 defined by
p=1  pppr=ppn—p+2,  n=0,
satisfies

(4.35) [[u(t) ]| Lo () < Ot~

where
d 1
dy=—[(1——).
d(p—2)+p( pn)

As the sequence p,, verifies p, — 00 as n — oo the desired inequality (4.33) follows by
interpolation. Indeed, given 1 < g < oo there exists n such that p, < ¢ < p,y1. Then, we
conclude applying (4.35) and the standard interpolation inequality

el oy < Tl gy Nl
where a = a(n, q) is given by

q B Dn Pn+1 '

1 a 1—a
= — +

Now, we proceed with the inductive proof of (4.35).

Case I. n = 0. Observe that in this case inequality (4.35) holds since the L'(R?)-norm
of u does not increase:

% lu(x, t)|dx_/ u(x, t) sgn(u(z,t))dx

@/ (@)l ) = ule, )2 (u(y. 1) = ula, ) (sen(ule, 1)) = sgn(u(y, 1)) dy da

Case 1I. Inductive step. We assume that
(Ol o ey < CE
and prove that
[ ()] prnsa ey < O+,

To this end we will obtain a differential inequality for the LPr+1(R%)-norm of w.

Step 1. Differential inequality for the LP#+1(R%)-norm of u. Using inequality
(4.34) with r = p,41 we get

d

(4.36) -

|U(35 O+t de + c(p, @) {(Aplu@)[P", [u(t)[P*) < 0.
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We now get an upper bound for (Ap|u[P, [u[P*) in terms of ||ul|yrn+1(ga). This together
with (4.36) will allow us to construct a differential inequality for [|u[| rnt1(ga, integrating
it we will obtain the desired result.

By the crucial decomposition estimates of Corollary 2.1, for any function v € L'(R%) N
LP(RY) we have that

< (ol (A, 0)*® + (Ayv, v).

v L1(R9)

||LP ]Rd)
This implies, taking v = |u(t)|®*"~2/P that
(4.37) ()| 2 gy < ()| V2P0 @A Ly ()| =2/ oy (1)@= D))

Lp+r Q(Rd) L(p+r 2)/p Rd
(A uE) 4 (D),

where a(p) = p*/p'(p* — 1). Using that r = p, 41 we get
pHr—=2=p+puy1 —2=ppn
and then u satisfies

a2y < M@ a2 A ()P, () [P )@+ (A fu(t) P, [u(t)P").

Lppn (Rd) Lprn (Rd
Using that p > 2 we get p,+1 < pp,. Thus we can use now the interpolation inequality
()l zonsr ey < NI o gy 1w 3 Gay < Cllul®) T gay

where ¢,, satisfies

L e 1—¢,
Pnt1 DD I
i.e.
_ PPn Pny1— 1
" Pat1 ppn— 1

Then for any t large enough by (4.37) we get
() [pEne < Clult)|[2E:

Pni1 PPn

< @l A fu) P, [ul®) ) + (Aplu()P", Ju(t)P)

n

< Ot @ (A fu() P, [u(t) P )W) + (Apu(t)[P, [u(t) ).
Denoting 1 (t) = ||u(t)||E»+* and using (4.36) we get that for ¢ large enough v satisfies the

Pn
following differential ineqalality
ppn—1
(4.38) Z/Jt + Hgl <¢Pn+1—1> <0
where

Hn(x) — t—dn(l_a(p))ppnxa(p) + x.
Using inequality (3.29) for the function H,, with

a = tidn(lfa(p))ppn
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and 5 = a(p) we get
%’ y > 2t—dnpnp,
(4.39) H, (y) >

n

)1/a(p)

—d
(m ;Y < 207 PeP

Thus v satisfies the following differential inequality:
(4.40) Dy(£)FaprnsiT (t)X@JZ’Iﬁ(t) > Qt—dnpnp> n

ppn—1 dnpnp(l—a(p))

n @/}pnﬂ*lﬁ(t)tWX(@/)%(t) <27br) <0,

Step 2. Decay of the function . First, we show that the function v satisfies
(4.41) tlirn W(t) =0.

First observe that (4.38) gives us that 1 is a non-increasing function. Let us assume that
there exists a sequence t,, — oo such that

Y(tn) < 2t, PP,

Using that v is a non-increasing function we get (4.41).

In the case when the above assumption is not satisfied we obtain the existence of a time
to such that for all ¢t > tg, ¥(t) > 2t~ %P»P_ Using (4.40) we obtain that for any t > to, ¢
satisfies:

n—1

Yo(t) + P (£) <0,
The definition of the sequence (p,),>o guarantees that pp, — 1 > p,+1 — 1 and then ¢(t)
satisfies (4.41).

Step 3. Sub and super-solutions for (4.38). We prove that any two functions ¢
and 9 which satisfy

— ___ppn—1 ppn—1
Gi(t) + H (1) > 0 > 4 (t) + Hy (e T) - for all ¢ > ¢,

Y(to) > p(to),

verifies

(4.42) Y(t) > 1(t), for all t > to.

To prove the above statement let us assume that (4.42) does not holds for all ¢ > #,. Then
there exists a first 1 > #o such that ¢(t;) = ¥ (t1). Thus

0> (= P)ultn) > Hy (977 (1)) = Hy (@77 (1)) = 0.
This implies that our assumption does not hold and then (4.42) holds for all ¢ > ¢,.

Step 4. Construction of a supersolution. We consider supersolutions of the type
(4.43) U(t) = kit~ dnrrprin
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since out final goal is to obtain a bound of the type 1(t) < 1 (t) < Ct~dn+1Pats,

We prove the existence of positive constants k and t, such that ¢ is a supersolution for
equation (4.38):

___ppn—1
(4.44) PP (1) < TP Y >
and
— ___ppn—1
4.45 U, (t) + H H(prn+71) > 0, Vit > to.
t n
Introducing the explicit form of ¢ given by (4.43) in (4.44) we get
e Pl (pp,—1) < i (pu—1)p
Using that for any n > 0,
dnPn d
4.46 =c(p,d) = ——-—
it remains to impose that ¢ty and k satisfy
(4.47) friT < DDy s g

In what concerns (4.45) we use that (4.44) holds. Thus, (4.39) gives us that

H @,}Z’f{_ﬂ (£)) > 27 Vo) <tdnpn(1fa(p))p a% (t)) 1/a(p)

and

___ppn—1

V() +H, ()
ppn—1 > 1/a(p)

> —kdy 1Pt P 4 9—1/a(p) (tdnpn(1*a(p))pt_dn+1pn+1 e

Hence, we have to choose k and t; such that

(448) <td"p"(1_a(p))ptid"+1p”+lPipfl_*ll ) How) > 21/04(19)kdn+1pn+lt—dn+1pn+1—1.
We claim that
(4.49) dnpn(1 — a(p))p — dn—i—lpn—i-lﬁ = —a(p)dnt1Pnt1 — a(p).

n+1 =

This implies that (4.48) holds for k& small enough. Once £ is fixed we choose t such that
(4.47) also holds. We have constructed a function 1 which verifies (4.45) for all ¢ > t,.
We now prove the above claim, (4.49). Using (4.46) we have to check that

c(p,d)(pn — 1)(1 — a(p))p — c(p, d)(ppn — 1) = —a(p)e(p, d)(pns1 — 1) — a(p)

or equivalently

c(p, d)a(p)(p — ppn) — c(p, d)(p — 1) = —a(p)c(p, d) (Pni1 — 1) — a(p).
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Using the definition of p,, 1 = pp, — p + 2 we get
c(p, d)a(p)(p — ppn) — c(p,d)(p — 1) = c(p, d)a(p)(—=pnt1 +2) — c(p,d)(p — 1)
= —c(p, d)a(p)(Pnt1 — 1) + c(p, d)a(p) — c(p,d)(p — 1).

It remains to prove that

p—1
c(p,d)|l — ——— = —1.
-2
Using the definition of a(p) we easily can prove this fact:
p—1 dp—1)+p 1
l———=1-— =— )
a(p) d c(p, d)

Step 5. Decay of . Let us choose k, t; and 1 as in Step 4. Using Step 2 we can find
T > 0 such that (T +ty) < p(to). Thus ¥(t) = (T +t) is a subsolution for equation

(4.38) which satisfies ¥ (to) < ¥(to). Step 3 gives us that ¥ (t) < 1(t) for all ¢ > to. Then
V() < k(t —tg —T) tipntt Y ¢ > ¢,
The proof is now finished. g
5. EXAMPLES OF EXPONENTIAL DECAY

In this section we present a simple example of J(z,y) for which we obtain exponential
decay of the solutions to the linear problem

(5.50) wie,t) = [ Jep)(uly.t) - e ) dy.
R
Note that, to simplify, we restrict ourselves to one space dimension.

Lemma 5.1. Let a: R — R be a diffeomorfism. Assume that

1
J(z,y) > 5 on ly — a(z)] <1,

where the function a satisfies

S%p\(a’l)x] <1 or i%f\(a’l)x] > 1
then there exists a positive constant C such that
(Azu, u) > Cllul|7 (g
Proof. Using the symmetry of the function J we get
J(z,y) > %on |z —a(y)| < 1.
Thus

1 1
(5.51) J(z,y) > X le-awl<tt + T X{ly-a(a)l<1}-
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Observe that this inequality is “optimal” in the sense that we can get J defined by
1 1
J(l’, y) - §X{|x—a(y)|<1} + §X{|y—a(x)|<1}a
if {|z —a(y)] <1} and {Jy — a(x)| < 1} are disjoint.
Let us consider ¢ : R — R a smooth positive function, supported on (—1,1). Then

200l ey (2, y) = p(z,y) = (z — aly)) +P(y — a(z))

and
(5.52) 2 ey ( Azt 1) > // (2, ) (u(x) — uly))*dudy.
R2

Let be 6 a positive constant which will be fixed latter. Using the elementary inequality
2

1
(b—c)2:b2+02—2bczb2+c2—062—502:(1—0)(b2—%)

we get
// 2p<x,y><u<x>—u< sty > 0-0) [[ o —a<x>>(u2<x>—“2§y))dxdy
=(1- / d:)j/@b dy——/ /@ZJ —aa:)da:dy
=(1— /u z) /w dy——/z/Jx—a dydx
= / /z/) dy——/wx— )Idy>
2 e S
Then

//Rg pla,y)(u(x) — u(y))® dz dy

5 vt [ o) (- 2Rty g <

i/R@/)(y) dy/RUQ(x) (9 - —mjgw*(;?;l;)x) dr, 0 <1.

sup|(a™).(z)] < 1
zeR

(D) < v

v

If

then
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We choose 6 satisfying
supg ¥ |(a”!)s|
Je ¥ (y)dy

<f<1

and thus by (5.52)
20|40l oo () (A, w) > C(8,9, a)|lull 22 g

The other case

: -1
inf |(a™)o(2)] > 1

can be treated in a similar way. Here we have
int (v (@) > [ vy
and then we choose 0 satisfying
infr 9 * [(a™1),]
Je b (y)dy

>60>1

and thus
20|90l oo () (Agu, w) > C(6,9, a)|lull 22 g

Theorem 5.1. Let ug € L*(R) N L>®(R). Then the solution to (5.50) verifies
[l )|z < Ce™
for all t > tg.

Proof. Multiplying equation (5.50) by u we obtain
% g u?(t) do + (Aqu(t), u(t)) <0,
and using our previous estimate (Lemma [5.1) we get
d
dt Jpa

from where the result follows. O

u?(t) dw + C/ u?(t)dw <0,

Rd

Acknowledgements. We want to thank A. Vargas for several useful conversations on
this subject.

L. I. Ignat partially supported by the reintegration grant RP-3, contract 4-01/10/2007 of
CNCSIS Romania, by the grant MTM2008-03541 of the Spanish MEC and the DOMINO
Project CIT-370200-2005-10 in the PROFIT program (Spain).

J. D. Rossi partially supported by UBA X066, CONICET (Argentina) and by projects
MTM2004-02223 and MTM2008-05824 and SIMUMAT (Spain).



28

1]

[10]
1]
12]
13]
14]
15]
16]

[17]

[18]

[19]

LIVIU I. IGNAT AND JULIO D. ROSSI

REFERENCES

F. Andreu, J. M. Mazén, J. D. Rossi and J. Toledo. The Neumann problem for nonlocal nonlinear
diffusion equations. J. Evol. Equations. 8(1), (2008), 189-215.

F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo. The limit as p — oo in a nonlocal p— Laplacian
evolution equation. A nonlocal approximation of a model for sandpiles. To appear in Calc. Var. PDE.
F. Andreu, J. M. Mazén, J. D. Rossi and J. Toledo. A nonlocal p— Laplacian evolution equation with
Neumann boundary conditions. J. Math. Pures Appl. 90(2), (2008), 201-227.

G. Barles, E. Chasseigne and C. Imbert. On the Dirichlet problem for second-order elliptic integro-
differential equations. Indiana Univ. Math. J. 57 (2008), 213-246.

P. Bates, X. Chen and A. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite
nonlocal interactions. Calc. Var. PDE 24 (2005), 261-281.

P. Bates and A. Chmaj. An integrodifferential model for phase transitions: stationary solutions in
higher dimensions. J. Statistical Phys., 95, (1999), 1119-1139.

P. Bates and A. Chmaj. A discrete convolution model for phase transitions. Arch. Rat. Mech. Anal.,
150, (1999), 281-305.

P. Bates, P. Fife, X. Ren and X. Wang. Travelling waves in a convolution model for phase transitions.
Arch. Rat. Mech. Anal., 138, (1997), 105-136.

L. Caffarelli, S. Salsa and L. Silvestre. Regularity estimates for the solution and the free boundary of
the obstacle problem for the fractional Laplacian. To appear in Inventiones Mathematicae.

T. Cazenave and A. Haraux. An introduction to semilinear evolution equations. Oxford Lecture Series
in Mathematics and its Applications. 13, 1998.

C. Carrillo and P. Fife. Spatial effects in discrete generation population models. J. Math. Biol., 50(2),
(2005), 161-188.

E. Chasseigne, M. Chaves and J. D. Rossi. Asymptotic behaviour for nonlocal diffusion equations. J.
Math. Pures Appl., 86, (2006), 271-291.

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: existence and stability. J. Diff.
Eqns., 155 (1999), 17-43.

C. Cortazar, M. Elgueta and J. D. Rossi. A non-local diffusion equation whose solutions develop a
free boundary. Annales Henri Poincaré, 6(2), (2005), 269-281.

C. Cortazar, M. Elgueta and J. D. Rossi. Nonlocal diffusion problems that approximate the heat
equation with Dirichlet boundary conditions. To appear in Israel J. Math.

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski. Boundary fluxes for non-local diffusion. J.
Differential Equations, 234, (2007), 360-390.

C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski. How to approzimate the heat equation with
Neumann boundary conditions by nonlocal diffusion problems. Arch. Rat. Mech. Anal., 187(1),
(2008), 137-156.

J. Coville and L. Dupaigne. Propagation speed of travelling fronts in monlocal reaction diffusion
equations. Nonl. Anal. TMA 60 (2005), 797-819.

J. Coville and L. Dupaigne. On a nonlocal equation arising in population dynamics. Proc. Roy. Soc.
Edinburgh, 137 (2007), 1-29.

P. Fife. Some nonclassical trends in parabolic and parabolic-like evolutions. Trends in nonlinear analy-
sis, 153-191, Springer, Berlin, 2003.

L. I. Ignat and J.D. Rossi. A nonlocal convection-diffusion equation. J. Funct. Anal., 251(2) (2007),
399-437.

I.L. Ignat and J.D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations. To appear
in J. Evol. Eqns.

M. Schonbek, Decay of solutions to parabolic conservation laws, Comm. Partial Differential Equa-
tions, 5(5) (1980), 449-473.



DECAY ESTIMATES FOR NONLOCAL PROBLEMS 29

[24] —, Uniform decay rates for parabolic conservation laws, Nonlinear Anal., 10(9), (1986), 943—
956.

[25] , The Fourier splitting method, Advances in geometric analysis and continuum mechanics
(Stanford, CA, 1993), Int. Press, Cambridge, MA, 1995, 269-274.

[26] L. Silvestre. Holder estimates for solutions of integro-differential equations like the fractional laplace.
Indiana University Math. J., 55(3) (2006), 1155-1174.

[27) E.M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical
Series, No. 30, Princeton University Press, N.J., 1973.

[28] J. L. Vazquez Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous
Medium Type. Oxford University Press, 2006.

L. I. IeNAaT

INSTITUTE OF MATHEMATICS “SIMION STOILOW” OF THE ROMANIAN ACADEMY,
P.O. Box 1-764, RO-014700 BUCHAREST, ROMANIA.

E-mail address: liviu.ignat@gmail.com

Web page: http://www.imar.ro/~1lignat

J. D. Rosst

IMDEA MATEMATICAS

C-IX, Campus CANTOBLANCO UAM,

MaADRID, SPAIN.

ON LEAVE FROM DPTO. DE MATEMATICAS, FCEYN
UNIVERSIDAD DE BUENOS AIRES, 1428

Buenos AIRES, ARGENTINA.

E-mail address: jrossi@dm.uba.ar
Web page: http://mate.dm.uba.ar/~jrossi/



