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1. Introduction. In a recent paper [1], J. K. Knowles has established new energy

decay estimates for solutions of the biharmonic equation in a semi-infinite strip,

subject to nonzero boundary conditions on the near end only. Such estimates, which

predict an exponential decay of energy with axial distance from the end, have been

used in the analysis of Saint-Venant's principle in plane elastostatics. (See [2] for a

review of recent work on principles of Saint-Venant type; for a discussion of earlier

results in the linear theory of elasticity, see [3].) These results are also relevant to

the study of the spatial evolution of stationary Stokes flows in a semi-infinite parallel

plate channel to fully-developed Poiseuille flow [4],

Energy decay arguments involving differential inequalities have been employed pre-

viously by Knowles [5] in the analysis of Saint-Venant's principle in plane isotropic

elastostatics for bounded, simply-connected domains of general shape. Similar ar-

guments were used by Toupin [6] in his investigation of the corresponding issue for

the three-dimensional elastic cylinder. In [5] an explicit estimate (lower bound) is

obtained for the rate of energy decay with distance from a portion of the domain

boundary carrying a self-equilibrated load. A modification of the analysis of [5] was

given by Flavin [7], yielding an improved estimate of the decay rate. An alternative

argument, leading to the same estimated decay rate as that obtained in [7], has been

provided by Oleinik and Yosifian [8], [9].1 The quality of the estimate for the decay

rate obtained in [7-9] may be tested by comparison with the exact decay rate for the

semi-infinite strip problem.2 It turns out that the results of [7-9] underestimate the

exact value by a factor of nearly one-half.

In [1], a third type of argument is employed to establish energy decay for the

biharmonic equation in a semi-infinite strip. The new feature contained in [1] is the

consideration of a "higher-order energy" in addition to the physical energy associated

with the problem. This method provides an improved estimated decay rate over that

of [7-9], although still underestimating the exact value.

^Received March 30, 1988.

'See also [10], [11],
2See [1], [2] and the end of Sec. 2 of the present paper for a discussion of this exact decay rate.
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In the present paper we describe yet another technique to examine energy decay

for the biharmonic equation in a semi-infinite strip. As in [1], our approach is based

on differential inequality techniques involving the higher-order energy introduced

therein. The detailed arguments used here and in [1] are quite different, however.

Indeed, our method is more closely akin to that of [5], [7]. A novel feature of the

present work is the use of a "conservation property" for solutions of the biharmonic

boundary-value problem under consideration. It turns out that the estimated decay

rate we obtain, while providing an improvement over the values given in [7-9], falls

short of the result obtained in [1].

It should be emphasized that the desire to obtain an estimated decay rate which

closely approximates the best possible one is motivated by far more than numerical

considerations. As is remarked in [1] (see also [2]), in several areas of elasticity theory

where one wishes to make quantitative applications of Saint-Venant's principle, the

energy decay inequality arguments have been inadequate because of the excessively

conservative estimated decay rates they predict. Thus it is of interest to investigate

modified energy arguments in the hope of remedying this defect.

2. The boundary-value problem. Let R be the semi-infinite strip for which 0 <

X\ < oo, 0 < x2 < h. As in [1], we are concerned with solutions <j>(x\,x2) of the

biharmonic equation

&A<t> = (fr.aapp = 0 on R, (2.1)

subject to the boundary conditions

<t>(0,x2) = f(x2), <f>,i(0,x2) = g(x2), 0 <x2<h, (2.2)

<f>(xi,0) = </>,2(xi,0) = <j){x\,h) = (f>,2{x\,h) — 0, jci > 0, (2.3)

i, x2) -* 0 (uniformly in x2) as x\ —> oo, (2.4)

where / and g are prescribed functions such that

/(0) = f{h) = f'(0) = f'(h) = g(0) = g(h) = 0. (2.5)

The foregoing problem arises in two different physical situations. In the theory

of plane strain for a homogeneous isotropic elastic material occupying the domain

R, with traction-free lateral sides, stresses vanishing at infinity and subject to self-

equilibrated end tractions, the function <j> is the Airy stress function. The stress

components rap{x\,x2) in the strip are given by

tafl (2*6)

where eax is the two-dimensional alternator: en = e22 = 0, E\2 = -621 = 1. It

is discussed in [1] (see also [2], [5]) how the boundary-value problem (2.1)—(2.5)

arises naturally in the analysis of Saint-Venant's principle for linear isotropic plane

elastostatics. A second physical interpretation for this problem may be given in

the context of two-dimensional Stokes flows. It is shown in [4] that the entry flow

problem governing the development of Stokes flows in a semi-infinite parallel plate

channel to fully-developed Poiseuille flow may be described by (2.1)—(2.5)3, where

3The asymptotic behavior at infinity (2.4) is slightly modified in the Stokes flow problem [4],
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now cj) is the stream function with velocity components va given by

Va (^*7)

In what follows, we shall assume the existence of a solution </> of (2.1)—(2.4) which

is four times continuously differentiable on the closure R of R. As was observed by

Knowles in [1], such a smoothness assumption imposes further restrictions on the

derivatives of / and g at x2 = 0, h in addition to those given in (2.5). Since these

conditions are not used in the present paper, we shall not write them down explicitly.

A discussion is provided in [1], [2] of how an eigenfunction expansion solution of

(2.1)—(2.5) in a series of eigenfunctions of the form <f> = e~lX] y/{xi) can be utilized

to show that the exact rate of exponential decay of <p is given by4

ReA = 4.20/h. (2.8)

3. Summary of previous and present results. The set of points (xi, X2) in R for

which X2 > z is denoted by Rz and so Rq = R. For each fixed z > 0, Lz denotes the

line segment in R containing the points (z,x2). Following [1], we call

E,(z) = [ <l),aB<P,aBdA, z >0, (3.1)

the first-order energy contained in Rz. In plane elasticity, E{(z) is related to the strain

energy stored in Rz ([1], [2]), while for Stokes flows, E\{z) is a measure of energy

dissipation [4], It has been shown by Knowles in [1] that E\(z) is finite.

The exponential decay estimates obtained in [5], [7-9], when specialized to the

semi-infinite strip, show that

Ei{z) < 2E{{Q)e-lkz, 0 < z < oo, (3.2)

for some positive constant k. From [5], the value of k is given by

k = (^2 1) (estimated decay rate in [5]) (3.3)

while from [7-9] the improved result

k = = -jj-> (estimated decay rate in [7-9]) (3.4)

is obtained.

Recently, Knowles [1] introduced a second-order energy £2(2) defined by

E2(z) = f <t>,\ap<P,\afidA, z> 0, (3.5)

(shown in [1] to be finite) and obtained the results

Ex{z)<[E{(Q) + {\/m)E2me-2kz, z> 0, (3.6)

E2(z)<[E2(0) + mEl(0)]e-2kz, z> 0, (3.7)

4The complex eigenvalues X are roots of the transcendental equation sin2 X - A2 = 0. The characterization

(2.8) is provided by the eigenvalue of smallest positive real part.
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for positive constants m and k given by

m = 22.4//J2, k = 2.7//?. (3.8)

The estimated decay rate k in (3.8) is an improvement over that of (3.4); however,

as pointed out in fl], it still underestimates the exact result, given by (2.8):

k = 4.2/h, (actual decay rate). (3.9)

In the present paper, we also use the second-order energy E2{z) to obtain an esti-

mated decay rate larger than that of (3.4). We shall show that, under the additional

hypothesis that 0,m is bounded (uniformly in x2) as X\ —► oo, the estimates

El(z)<2[El(0) + (l/m)E1(0)]e~2kz, z > 0,

E2{z) < 2[E2{0) + mE{(0)]e~2kz, z > 0

hold, where the positive constants m and k are given by

• n1 ■ 13.3 , . n(.ll) . 2.4
m - ^2(L35)~ h2 ' h h ' ^ ^

We observe that the estimates (3.10) and (3.11) are less sharp than (3.6)—(3.8) ob-

tained in [1], As in [1], we use differential inequality techniques to establish the

results (3.10) and (3.11). However, the detailed arguments are quite different and

are more closely akin to those of [5], [7], In addition, we make essential use of a

"conservation property" for solutions of (2.1)—(2.4), which we describe in the next

section.

4. A conservation law for solutions of (2.1)-(2.4). For any solution <p of the bihar-

monic equation (2.1) on R, we have

L<j) iAA(pdx2 = 0, z > 0. (4.1)
Lz

On integration by parts in (4.1) and making use of the boundary conditions (2.3), it

follows that

(0.1^.1111 _ 20120,121 + 0,220,221) dx2 - 0, (4.2)f.<L:

which we may write as

02n j 2 . 02:0,10,111 ~2~" 0J2 ] dx2 — 0, z> 0. (4.3)

= c = constant, z > 0, (4.4)

and so is independent of z. The conservation law (4.4) may also be derived from

considerations of invariance with respect to translations of the axial coordinate of a

variational principle equivalent to the boundary-value problem under consideration.

Such conservation laws, which are intimately connected with Noether's theorem,

have received wide attention in elasticity theory. The relevance of such conservation
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laws to the Saint-Venant problems for a three-dimensional elastic cylinder has been

discussed by Ericksen (see, e.g., [12]) and by Muncaster [13]. However, to the best of

our knowledge, the only application of such conservation properties to the analysis

of Saint-Venant's principle is that carried out by Horgan and Knowles [2] for the

three-dimensional Neumann problem for Laplace's equation (see pp. 198-199 of

[2]).
In our subsequent application of the conservation law (4.4), it is necessary to

impose another hypothesis on the behavior of 0 at infinity in addition to those already

assumed in (2.4). We require the constant c in (4.4) to be zero; in view of (2.4), a

sufficient condition to ensure c = 0 is that

0,in = 0(l) (uniformly in X2) as X\ —> 00 (4.5)

which we assume henceforth. Thus (4.4) may now be written as

(<^22 ~02ii -2</>2i2 + 2(/>,i0,ni)dx2 = 0, z >0. (4.6)
Lz

5. Preliminary inequalities. Before proceeding to establish the results (3.10),

(3.11), it is convenient to assemble here some inequalities which play a key role

in our analysis.

Firstly, we rewrite (4.6) and make use of the arithmetic-geometric mean inequality

in the form -lab < aa2 -I- b2/a {a > 0), to obtain

[ (0222 - 0211 - 202i2)</*2 = - I 20,(0,111 dxi
Lz Ll (5.1)

< / (a02! +(j)2ul/a)dx2.

Thus from (5.1), we have for any constant a > 0,

[ (t>\\\dxi> [ (q0222 ~ a02n _ 2q0212 - q202,) dx2, z > 0. (5.2)
JLZ JLz

Next we recall the following well-known Wirtinger-type inequalities for sufficiently

smooth functions w(xi) defined on (0, h):

(i) If w(x2) € C'(0. h) and u;(0) = 0, w(h) = 0, then

J w22dx2>j^ J w2 dx2- (5.3)

(ii) If w(x2) G C2{0,h) and w(0) = wi2(0) = 0, w{h) = w,2{h) = 0, then

fh 477-2 rh

^ w222 dx2 > -p- w\ dx2. (5.4)

(iii) If w satisfies the same conditions as in (ii), then

j w222 dx2 > w2 dx2, (5.5)
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where [io is the smallest positive root of the transcendental equation cos // cosh pi = 1

and so pio = 4.73, a value slightly greater than 3ti/2. For simplicity, we use the latter

value in (5.5) and so obtain

^ w222dx2>(^j p ^ w2dx2. (5.6)

The constants appearing on the right-hand sides of the inequalities (5.3)—(5.5) are

optimal and are given by smallest eigenvalues associated with a variational charac-

terization. For proofs of (5.3) and (5.4) see [14], [15] respectively. A general class

of inequalities, of which (5.5) is a special case, is considered in [16].

6. Energy decay estimates. In this section we establish the results (3.10), (3.11)

for the problem (2.1)—(2.5) and (4.5). As in [1], the main idea is to show that

the combination E2(z) + mE\(z) (m constant) satisfies a differential inequality. In

contrast to [1], where a first-order differential inequality is obtained, we make use of

a differential inequality of second-order analogous to that employed in the proof of

(3.2) and (3.3) given in [5].

We first record alternative representations for the energies E\{z), E2(z) given in

(3.1) and (3.5). On using the differential equation (2.1), the divergence theorem and

boundary conditions (2.3) and (2.4), it can be readily shown (see [1]) that

which can be written as

EX{Z) = - / {(p,a<t>,a\ ~ H,\U-H,\22)dX2, Z > 0,
Jl:

[en as

E^z) = -j-zjL{<t>.«<t>,a-UM)dX2, z> 0.

(6.1)

(6.2)

Similarly,

El{2) = ~TzjL I0^11 + ^22)dx^ z > 0. (6.3)

Thus, on employing the boundary conditions (2.4) at infinity, we deduce from (6.2)

and (6.3) the representations

Ei(QdC = (<t>,a4>,a-<f>(t>,n)dx2, z > 0, (6.4)

E2{ C) d^\jL (</>2,, + 0222) dx2, z > 0. (6.5)

From their definitions in (3.1) and (3.5), respectively, the derivatives of Ex(z),

E2(z) are given by

E[(z) = - f 4>,a^,afidx2, z >0, (6.6)
Jlz

E2(z) = -[ <t>,\ap4>.\andx2, Z> 0. (6.7)
JLZ

Let m and k be as yet undetermined positive constants and let

/OO

[£2(0 + m£,(0]rfC z >0. (6.8)
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Then, on using (6.4)-(6.8), we obtain the following identity, for z > 0,

F'(z) + 2kF{z) = - / + m(p:a/j(f)ia/j
Jl:

- 2k2{4>2n + <t>222 + 2m<t>,a(j),a - 2m4>(f>,ii)]dx2, (6.9)

which may be written as

F'(z) + 2kF(z) = - [ + <t>2n2 + 24>2n2 + (m - 2k2)(f)2n

+ (m - 2k2)<p222 + 2m(p2n - 4k2m(f)2\ - 4

+ 4k2m(t>(j) i [ ] dxi = -J(z).

(6.10)
Our objective now is to determine positive values for k and m for which the right-

hand side of (6.10) is nonpositive. Suppose for the moment that such values have

been found. Then it follows from (6.10) that

F'(z) + 2kF(z) < 0, z >0, (6.11)

which yields upon integration

F{z)<F(0)e~2kz, z> 0. (6.12)

By virtue of the definition of F(z) in (6.18), we deduce from (6.12) the inequality

E2(z) + mEi{z)<F{0)e~2kz, z > 0. (6.13)

By adapting the arguments of [5] to the present case, it is easily shown that

F(0) < 2[F2(0) + mE\(0)], (6.14)

so that (6.13) and (6.14) together yield

E2(z) + mEx{z)<2[E2{<d) + mEx{0)}e-2kz, z > 0. (6.15)

Since E\{z), E2(z) are nonnegative, it follows from (6.15) that

Ex{z) <2 £,(0) + 1^(0) e~2kz, z >0, (6.16)

E2(z) < 2[E2(0) + mE\(0)]e~ , z> 0, (6.17)

which are the desired results (3.10).

It remains to verify that the choices (3.11) for m and k do indeed render the right-

hand side of (6.10) nonpositive. To this end, we show that, for the values of m and

k given by (3.11), the integral J(z) on the right-hand side of (6.10) is nonnegative.

The first step is to make use of the inequality (5.2) to obtain, for any constant a > 0,

j(z) > J [02122 + 202112 + (m - 2k2 - a)4>2M + (m - 2k2 + a)4>222

-I- 2(m - a)(f)2n - (4k2m + a2)<t>2\ - 4k2m4>22 (6.18)

+ 4k2m(t)(j),\i]dx2.
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On using the arithmetic-geometric mean inequality in the form —2</><j>:li < yep2 +

<P2\ih (y > 0), we have

[ 2<j>(f>M dx2 > -7 f <t>2dx1-y~x [ <f)2udx2. (6.19)
JL: JL2 JL:

On employing the inequality (5.6) with the choice w(x2) = 4>{x\,x2) for each fixed

x\ > 0 (recall the boundary conditions (2.3)), we obtain from (6.19)

200,n dx2 > ^ <t>222 dx2 ~ J'1 fL 4>\ i dx2' (6-20)

which may be used in (6.18) to yield

J(z) > f [4>\ 22 + 202n2 + (m- 2 k2 - a- 2 k2my~l)(j)2u
J Lz

+ {m - 2k2 + a - 2k2myh'i('iTt/2)~4}(f)222 + 2(m - a)<p2l2

- (4k2m + a2)<p2i - 4k2m<j>22]dx2,

for arbitrary positive constants a, y, m, and k.

The inequality (5.4), with the admissible choices w(x2) = cf)(x\,x2) for each fixed

X\ > 0, and w(x2) = <t>,\ yields

J <j)22dx2 < J (\>222 dx2, z> 0, (6.22)

and

(t>2ndx2 < ^ 4>2mdx2, z > 0, (6.23)

respectively. Similarly the choice w = 4>,n in (5.3) yields

Jl <t>2n2dx2 > ^ Jl fin dx2- (6.24)

The choice w — 0 i in (5.6) gives

4>2\ dx2 < JL <t>2122 dx2, z > 0. (6.25)

On using (6.22)-(6.25) in (6.21), provided that

m - a < 0, (6.26)

we obtain the inequality

> f \( (4k2m + a2)h4 (m-a)h2\ 2
(z)> A, [\ " w

+ j^ry- + - 2k1 - a - 2k2my~l j 02,, (6.27)

[ 2 2k2myh4 k2mh2\ 2 1 ,
+ {m-2k-l + a-^j2jr --?-)#» dx2'
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The desired result J(z) > 0 now follows if the constants a, y, m, and k can be chosen

to satisfy (6.26) and to be such that the coefficients of </>2122> 02n> and <j>222 ^e

integrand in (6.27) are nonnegative.

It is convenient to introduce the notation

m = *2 = f*2. y=p' <6-28>

Thus, we seek positive constants fi, S, M, and K such that

fi>M, (6.29)
1 B2 4k2 M

1 + 4(Af - fi) - tJtzu - ttt^z > 0, (6.30)
2 (3/2)4 (3/2)4 - v '

2 + M - fi - 2K2{ \ + M8~x) > 0, (6.31)

M + fi-K2(M + 2 + ^^j>0. (6.32)

Among all such constants satisfying the constraints (6.29)-(6.32), we desire the choice

which maximizes K and so, by (6.28), maximizes the estimated decay rate k in (6.16)

and (6.17). From (6.29), (6.30), and (6.31) it can be shown that such a value of k is

obtained if we choose

fi = M. (6.33)

Of course (6.29) is then satisfied and the remaining conditions (6.30)-(6.32) may be

written as

K2 < [(§)4-M2]/4M, (6.34)

K2 < (1 +MT1)-1, (6.35)

K2 < 2M/[2 + M+ 2Md(l)-4]. (6.36)

It is easily verified that the right-hand sides of (6.34)-(6.36) are strictly monotone

functions of each of the parameters M and 8. Thus an appropriate choice for M and

3 which maximizes the corresponding value of K is obtained by equating the three

expressions on the right-hand sides of (6.34)-(6.36). This leads to the following

sextic polynomial equation for M\

{\)\M2 + 4M- (|)4][A/3 + 10M2 - (|)4M - 2(|)4] - 2M2[(§)4 - M2]2 = 0, (6.37)

whose second5 positive root may be readily computed to be M = 1.35. The corre-

sponding maximum value of K is then found on choosing the equality sign in (6.34).

In this way, we obtain the values

a: = 0.77, M - 1.35, <5 = 2.02. (6.38)

On combining (6.38) with (6.28), we obtain the values of m and k stated in (3.11).

This completes the proof of our main results (3.10) and (3.11).

sThe smallest positive root of (6.37) gives rise to a negative value of S and so is inadmissible.
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7. Stress and velocity estimates. It has been shown in [1] how the energy decay

inequalities (3.6) and (3.7), with m,k given by (3.8), may be used to obtain cross-

sectional mean-square estimates for the stresses in plane elasticity. Similar estimates

follow from our results (3.10) and (3.11). Thus by (2.6) and (6.5) we have

(7.1)[ (Tn + t22) dx2 = [ (<p2u + ct>\2) dx2 = 2 [ E2{o dC
Jl2 Jl2 Jz

and so from (3.10) it follows that

(*n + r222)dx2 < tIe2(0) + mE{(0)]e~2kz, z> 0, (7.2)L

L

k

with the values of k and m given by (3.11). Knowles has shown in [1] that

[ <?l2dx2= [ r22dx2<[El(z)E2(z)]"2, (7.3)
JLZ JLz

and so (3.10) and (3.11) yield

Aidx2 < -j=[E2(Q) + mEi(0)]e~2kz, z > 0. (7.4)
v wi

Similar cross-sectional estimates follow readily for the velocities in the Stokes flow

problem. Thus, by virtue of (2.7), (6.22), (7.1), and (7.2) we obtain

J v2dx2 = J 4>22dx2 < -^^[E2{0) + mE\{0)]e~2kz, z > 0. (7.5)

The choice w = (fij in (5.3) yields the inequality

f 4>\ dx2<^[ <t>2l2dx2, (7.6)
Jl, k2- Jl.

and so, by (2.7), (7.3), and (7.4) we obtain

2 h2
[ v\dx2 = [ 4>21 dx2 < V1.—[£2(0) + mEi(0)]e 2kz, z > 0.

Jlz J l2 ' nly/m
(7.7)

The issue of obtaining pointwise estimates is more elaborate and will not be pur-

sued here. Interior estimates (using only E\(z)) readily follow from a mean value

theorem for biharmonic functions [5]. Pointwise estimates for velocities in the Stokes

problem, valid up to the boundary of R, can be obtained from the results of the

present paper for E2(z). As pointed out in [1], analogous results for stresses in the

elasticity problem would require consideration of a third-order energy E^(z). Finally,

upper bounds for the total energies E\(0),E2(0) in terms of the given boundary data

fg in (2.2) would be required to render the estimates (3.10) fully explicit. Such

results were obtained for £i(0) in [5]. Modifications of the techniques used in [5]

can be employed to find corresponding bounds for ^(O).

Acknowledgments. This work was supported by the U.S. National Science Foun-

dation under Grant MSM-85-12825. The author is grateful to L. E. Payne of Cornell

University for several helpful discussions concerning this research and for his read-

ing of the final manuscript. Initial work on this paper was carried out during the



DECAY ESTIMATES FOR THE BIHARMONIC EQUATION 157

summer of 1982 while the author held an appointment as visiting professor, Center

for Applied Mathematics, Cornell University.

Note added in proof. Since this paper was written, a paper [17] has been published

in which a generalization of the conservation law (4.4) has been established, as well as

other related conservation laws for solutions of the biharmonic equation on a rectan-

gular strip. By making use of these laws, yet another energy-type decay estimate was

obtained in [17] for solutions of the biharmonic equation subject to self-equilibrated

end conditions. When specialized to the semi-infinite strip, the estimated decay rate

obtained in [17] is slightly less than that obtained in the present paper. In another

recent paper [18], it is shown that the multiplicative factor of 2 on the right-hand side

of (3.2) may be eliminated, thus repairing an obvious shortcoming in that estimate

at z = 0. By adopting the argument presented in [18], it may be easily shown that the

multiplicative factors of 2 on the right-hand sides of (3.10) may also be eliminated.
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