

NEW YORK UNIVERSITY
Institute of Mathematical Sciences
Division of Electromagnetic Research

Decay Exponents and Diffraction Coefficients for Surface Waves on Surfaces of Non-Constant Curvature

JOSEPH B. KELLER and BERTRAM R. LEVY

```
Contract No.AF19(604)5238
```

OCTOBER1959

NEW YORK UNIVERSITY

Institute of Mathematical Sciences Division of Electromagnetic Research

Research Report No. EM-147

DECAY EXPONENTS AND DIFFRACTION COEFFICIENTS FOR SURFACE WAVES ON SURFACES OF NON-CONSTANI

CURVATURE

> by

Joseph B. Keller
and
Bertram R. Levy

Tom Rehi
Morris Kline
Project Director

The research reported in this document has been sponsored by the Air Force Cambridge Research Center, Air Research and Developmont Command, under Contract No. AF 19(604)5238.

Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY DOCUMENIS SERVICE CENTHR
ARLINGION HALL STATION
ARLINGTON 12, VIRGINIA
Department of Defense contractors must be established for ASTIA service or have their 'need-to-know' certified by the cognizant military agency of their project or contract.
All other persons and organizations should apply to the:
U.S. DEPARTMENT OF COMMERCE OFFICE OF TECHNICAL SERVICES WASHINGTON 25, D.C.

Abstract

The diffraction of a plane scalar wave by a hard elliptic cylinder is investigated theoretically. The field is obtained and expanded asymptotically for incident wavelengths small compared with the dimensions of the generating ellipse. The method of obtaining the asymptotic expansion of the diffracted field parallels the methods of reference [9]. However, additional terms in the asymptotic expansion are obtained. In reference [9] it was shown that the asymptotic expansion of the diffracted field was in agreement with the geometrical theory of diffraction as presented in references [4] and [5]. The additional terms in the field obtained in this paper we interpret geometrically as higter order corrections to the decay exponents and diffraction coefficients as given in reference [5]. Finally, we obtain additional terms to those given in reference [8] for the asymptotic expansion of the field diffracted by a parabolic cylinder. We then show that these higher order corrections have the same geometrical interpretation as in the case of the elliptic cylinder. The determination of these corrections permits the geometric theory to be extended to longer wavelengths than could be treated previously. Similar results are obtained for soft cylinders. Then the field on a hard convex cylinder of arbitrary shape is determined asymptotically by a quite different method - that of asymptotically solving an integral equation. The result is found to coincide with the generalization based upon the solution for the elliptic cylinder.

Table of Contents

1. Introduction
$\frac{\text { Page }}{1}$
2. Difffraction by an elliptic cylinder 3
3. Diffraction by a parabolic cylinder 13
4. Integral equation method 21
Appendix 32
References 36
5. Introduction

When a wave is incident upon an opaque object large compared to the Incident wavelength a shadow is cormed. Some radiation penetrates into the shadow. The first quantitative analysis of this penetration effect for the case of a smooth object was that of G. N. Watson ${ }^{[1]}$. He showed that the field in the shadow of a sphere consists of a sum of modes. Each mode decays exponentially with increasing distance from the shadow boundary into the shadow. Numerous authors have pursued Watson's analysis, considering spheres which are not opaque or which are surrounded by non-uniform media. Many of these investigaton are described by H. Bremmer ${ }^{[2]}$. Independent~ ly W. Franz and K. Depperman $[3]$ discovered the existence of an exponentially decaying wave travelling around a circular cylinder. They also observed that this wave continues travelling into the illuminated region. These results, as well as those referred to above pertain to bodies of constant curvature. What are the corresponding results for objects of non-constant curvature?

This question is answered by the geometrical theory of diffration introduced by J. B. Keller ${ }^{[4]}$, which predicted that radiation travels along surface rays. These rays are geodesics on the surface of any object which originate at the shadow boundary. They continually shed diffracted rays which irradiate the shadow and also enter the illuminated region. A quantitative theory of the field diffracted by a cylinder of arbitrary convex cross-section was constructed with the aid of these rays [5]. In this theory certain decay exponents and diffraction coefficients were introduced. The decay exponents determine the rate of decay of the various field modes along a surface ray. The diffraction coefficients determine the amplitudes of the various modes on a surface ray,
and the amplitude of the field on the shed diffracted rays. It was assumed that the decay exponents and diffraction coefficients depend only upon local properties of the ray and the surface. By comparing the predictions of this theory with the results of W. Franz ${ }^{[6]}$ for the circular cylinder, the decay exponents and diffraction coefficients were determined. A similar analysis was performed for three dimensional curved objects by B. R. Levy and J. B. Keller ${ }^{[7]}$.

The results of the geometrical theory of diffraction have been tested by comparing them with the exact solutions of certain diffraction problems involving objects of non-constant curvature. To make this comparison it was necessary to expand the exact solution asymptotically for wavelength small compared to the dimensions of the object. This has been done for the field diffracted by a parabolic cylinder by $S . O$. Rice ${ }^{[8]}$, an elliptic cylinder by B. R. Levy $[9]$ and by R. K. Ritt and N. D. Kazarinoff $[10]$, and for an ellipsoid of revolution by J. B. Keller and B. R. Levy $[I I]$ and by R. K. Ritt and N. D. Kazarinoff $[12]$. In all cases the leading term in the asymptotic expansion agreed precisely with the results of the geometrical theory.

We now propose to improve the geometrical theory of diffraction by an arbitrary cylinder so that it will also yield the next term in the asymptotic expansion. To this end we must determine the next terms in the expressions for the decay exponents and the diffraction coefficients. The previously determined terms involve the radius of curvature of the cylinder. The new terms will involve the derivative of the radius with respect to arclength along the crosssectional curve. To find the new terms we shall examine the next term in the asymptotic expansion of the exact expression for the field diffracted by an elliptic cylinder. We shall express terms of local geometrical quantities such as the radius of curvature and its derivative. Then we shall assume that
the final geometrical expression is correct for an arbitrary cylinder. As a first test of this result, we shall show that it correctly yields the next term for the field diffracted by a parabolic cylinder. Of course, it also yields the correct term in the case of a circular cylinder. The results are also obtained by asymptotically solving the integral equation for the cylinder current. These results coincide with those obtained by generalizing the results obtained for the elliptic cylinder.

The determination of these new corrections permits us to use our theory for longer wavelengths than could have been treated previously. The improvement resulting from the correction to the decay exponent is shown in [7].

2. Diffraction by an elliptic cylinder

Let us consider the field u produced by a line source parallel to the generators of an eliptic cylinder. Then u is the solution of the following problem

$$
\begin{align*}
& \left(\Delta+k^{2}\right) u=\delta\left(\xi-\xi \xi_{0}\right) \delta(\eta) \tag{1}\\
& \frac{\partial u(a, \eta)}{\partial \xi}=0 \tag{2}\\
& \lim _{r \rightarrow \infty} r\left(i k u-u_{r}\right)=0 \tag{3}
\end{align*}
$$

For simplicity the source has been taken to lie in the plane containing the major axis of the ellipse. The elliptic coordinates (ξ, η) are related to cartesian coordinates by the equations

$$
\begin{align*}
& x=h \cosh \xi \cos \eta \tag{4}\\
& y=h \sinh \xi \sin \eta
\end{align*}
$$

In (4) and (5) h denotes one half the interfocal distance of the ellipses $\xi=$ constant, of which $\xi=a \operatorname{ls}$ the cross-section of the cylinder.

In reference [9] it is shown that on the cylinder the solution of (1) - (3) can be written in the form

$$
\begin{equation*}
u(a, \eta)=(k h)^{2} \sum_{n=1}^{\infty} b_{n} \frac{C_{n}(\eta-\pi)}{C_{n}^{\prime}(\pi)} \quad \frac{v_{n}^{(I)}\left(\xi_{0}\right)}{\partial / \partial b_{n} V_{n}(I)^{\prime}(a)} \tag{6}
\end{equation*}
$$

The functions C_{n} and $V_{n}^{(I)}$ are defined and asymptotically expanded for large kh in reference [9]. A breif review of the pertinent properties of these functions follows.

The function $V_{n}{ }^{(1)}$ is the outgoing solution of the equation

$$
\begin{equation*}
\frac{d^{2} v_{n}(1)}{d \xi^{2}}-(k h)^{2}\left(b_{n}^{2}-\cosh ^{2} \xi\right) v_{n}^{(1)}=0 \tag{7}
\end{equation*}
$$

For large kh it has the asymptotic expansion

$$
\begin{equation*}
V_{n}^{(1)}(\xi) \sim \xi^{1 / 4} 3^{1 / 3} \pi^{-1}\left(b_{n}^{2}-\cosh ^{2} \xi\right)^{-1 / 4} \mathrm{~A}\left(3^{1 / 3} e^{-1 \pi / 3}(\mathrm{kh})^{2 / 3} \xi\right) \tag{8}
\end{equation*}
$$

Here b_{n} is defined by

$$
\begin{equation*}
V_{n}(1)^{\prime}(a)=0 \tag{9}
\end{equation*}
$$

The functions ζ and A are defined by

$$
\begin{equation*}
\frac{2}{3} \zeta^{3 / 2}=-\int_{\cosh ^{-1} b_{n}}^{\xi}\left(b_{n}^{2}-\cosh ^{2} x\right)^{1 / 2} d x \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
A(t)=\int_{0}^{\infty} \cos \left(z^{3}-t z\right) d z \tag{11}
\end{equation*}
$$

The function $C_{n}(\eta)$ is the even solution of the equation

$$
\begin{equation*}
c_{n}^{\prime \prime}+(k h)^{2}\left(b_{n}^{2}-\cos ^{2} \eta\right) c_{n}=0 \tag{12}
\end{equation*}
$$

For large kh it has the asymptotic expansion

$$
c_{n} \sim \cos \left[k h \int_{0}^{\eta}\left(b_{n}^{2}-\cos ^{2} \pi\right)^{1 / 2} d \eta\right]\left\{\left(b_{n}^{2}-1\right) /\left(b_{n}^{2}-\cos ^{2} \eta\right)\right\}^{1 / 4} \cdot(13)
$$

We now specialize (6) to the case of plane wave incidence. To do this we multiply (6) by $e^{3 \pi i / 4} 2^{3 / 2} \pi^{1 / 2}\left(k h \cosh \xi_{0}\right)^{1 / 2} \exp \left[-i k h \cosh \xi_{0}\right]$ and let $\xi_{\mathrm{o}} \rightarrow \infty$. Then we obtain

$$
\begin{equation*}
u(a, \eta)=E \sum_{n=1}^{\infty} \frac{b_{n} c_{n}(\eta-\pi)}{C_{n}^{\prime}(\pi)} \frac{\exp \left[-1 k h \int_{0}^{\pi / 2}\left(b_{n}^{2}-\cos ^{2} \eta\right)^{1 / 2} d \eta\right]}{\partial / \partial b v_{n}^{(1)^{\prime}}(a)} \tag{14}
\end{equation*}
$$

Here $E=e^{5 \pi i / 6} 2^{1 / 2}(k h)^{7 / 3}$. Upon expanding the C_{n} function we find that (14) becomes

$$
\begin{aligned}
& u(a, \eta) \sim \frac{1 E}{k h} \sum_{n=1}^{\infty} b_{n}\left\{\left(b_{n}^{2}-1\right)\left(b_{n}^{2}-\cos ^{2} \eta\right)\right\}^{-1 / 4} \\
& \times \frac{\exp [i \operatorname{khG}(\pi / 2, \eta)]+\exp [i \operatorname{khG}(\eta, 3 \pi / 2)]}{\partial / \partial b V_{n}^{(1)^{\prime}}(a)}\{1-\exp [2 i k h G(0, \pi)]\}^{-1}
\end{aligned}
$$

[^0]In (15) G is defined by

$$
G(\alpha, \beta)=\int_{\alpha}^{\beta}\left(b_{n}^{2}-\cos ^{2} \eta\right)^{1 / 2} d \eta
$$

In reference [9] the leading term in the asymptotic expansion of each of the summands in (15) was computed. In order to carry out this calculation it was found necessary to compute two terms in the asymptotic expansion of the eigenvalue b_{n}. We shall now compute a further term in the asymptotic expansion of each of the terms in (15). In order to do this we shall first compute another term in the asymptotic expansion of b_{n}. To do this we first observe that the leading terms in the asymptotic expansion of $\mathrm{V}_{\mathrm{n}}^{(1)^{\prime}}(\xi)$ are obtained by differentiating (8). The leading term in the asymptotic expansion of $V_{n}^{(1)}(\xi)$ comes from differentiating the Airy function A. Therefore ζ_{n} will be nearly equal to the result obtained in [9] so we write it in the form

$$
\begin{equation*}
\zeta_{n}=3^{-1 / 3} e^{i \pi / 3}(k h)^{-2 / 3}\left(1+\delta_{n}\right) q_{n} \tag{17}
\end{equation*}
$$

Here $\zeta_{n}=\zeta(a), q_{n}$ is the nth root of the equation $A^{\prime}\left(q_{n}\right)=0$, and δ_{n} is an as yet undetermined correction which is small compared to unity.

We now set $b_{n}=\cosh a+\epsilon_{n}$ and insert this expression into (10)
which determines ζ. In this way we obtain

$$
\begin{equation*}
\frac{2}{3} \zeta_{n}^{3 / 2}=\frac{2^{3 / 2}}{3} \frac{(\cosh a)^{1 / 2}}{\sinh a} \epsilon_{n}^{3 / 2}-\frac{2^{1 / 2} \epsilon_{n}^{5 / 2}\left(\cosh ^{2} a+7\right)}{30 \sinh ^{3} a(\cosh a)^{1 / 2}}+O\left(\epsilon_{n}^{7 / 2}\right) \cdot \tag{18}
\end{equation*}
$$

Now we insert (17) and the above form of b_{n} into (9) and obtain the following result for δ_{n}

$$
\begin{equation*}
\delta_{n}=\frac{3^{2 / 3} e^{1 \pi / 3}\left(\cosh ^{2} a+15 \sinh ^{2} a+7\right)}{80 e^{1 / 3}(\sinh a \cosh a)^{4 / 3}(k h)^{2 / 3}}+o\left((k h)^{-4 / 3}\right) . \tag{19}
\end{equation*}
$$

By comparing (18) and (17), and using (19) for δ_{n}. we determine ϵ_{n}. Then b_{n} is given by

$$
\begin{aligned}
b_{n}= & \cosh a+\frac{\tau_{n}(\sinh a)^{2 / 3}}{(\cosh a)^{1 / 3}(k h)^{2 / 3}}+\frac{\tau_{n}^{2}\left(\cosh ^{2} a+7\right)}{30(\sinh a)^{2 / 3}(\cosh a)^{5 / 3}(k h)^{4 / 3}} \\
& -\frac{\left(2 \cosh ^{2} a-1\right)}{20 \tau_{n}(\sinh a)^{2 / 3}(\cosh a)^{5 / 3}(k h)^{4 / 3}}+O\left((k h)^{-2}\right) .
\end{aligned}
$$

In (20), the quantity τ_{n} is defined in terms of q_{n} by

$$
\begin{equation*}
\tau_{n}=\frac{q_{n} e^{i \pi / 3}}{6^{1 / 3}} \tag{21}
\end{equation*}
$$

Upon substituting (20) into (16) and asymptotically expanding the the integral, we obtain

$$
\begin{aligned}
\operatorname{ikhG}(\alpha, \beta)= & i k h \int_{\alpha}^{\beta}\left(\cosh ^{2} a-\cos ^{2} \eta\right)^{1 / 2} d \eta+1(k h)^{1 / 3}(\sinh a \cosh a)^{2 / 3} \\
& \times \int_{\alpha}^{\beta}\left(\cosh ^{2} a-\cosh ^{2} \eta\right)^{-1 / 2} a \eta+\frac{i \tau_{n}^{2}}{30(k h)^{1 / 3}(\cosh a \sinh a)^{2 / 3}}
\end{aligned}
$$

$x \int_{a}^{\beta}\left(\cosh ^{2} a-\cos ^{2} \eta\right)^{-3 / 2}\left\{\left(\cosh ^{2} a+7\right)\left(\cosh ^{2} a-\cos ^{2} \eta\right)\right.$
$\left.-15 \sinh ^{2} a \cos ^{2} \eta\right\} d \eta-\frac{1\left(2 \cosh ^{2} a-1\right)}{20 \tau_{n}(k h)^{1 / 3}(\sinh a \cosh a)^{2 / 3}}$
$\times \int_{\alpha}^{\beta}\left(\cosh ^{2} a-\cosh ^{2} \eta\right)^{-1 / 2} d \eta+O\left((k h)^{-1}\right)$.

In reference [9] it was shown that the first two integrals in (22) have simple geometric interpretations in terms of the arclength s along the ellipse. To show this we let s_{1} and s_{2} be the values of s corresponding to $\eta=a$ and $\eta=\beta$ respectively. Then we find that the first term on the right of (22) is just ik times the arclength

$$
\begin{equation*}
i k \int_{s_{1}}^{s_{2}} d s \tag{23}
\end{equation*}
$$

Similarly, the second term on the right of (22) is

$$
\begin{equation*}
i k^{1 / 3} \tau_{n} \int_{s_{1}}^{s_{2}^{2}} b^{-2 / 3} d s \tag{24}
\end{equation*}
$$

Here $b(s)$ denotes the radius of curvature of the ellipse.

We shall now express the third and fourth terms appearing on the right side of (22) in geometric terms.

The third term can be written as

$$
\frac{1 \tau_{n}^{2}}{30 k^{1 / 3}} \int_{s_{1}}^{s_{2}} b^{-4 / 3}\left(1+\frac{16}{9} b_{s}^{2}-\frac{8 b b s s}{3}\right) d s
$$

The fourth term is equal to

$$
-\frac{i}{20 \tau_{n^{k^{1 / 3}}}} \int_{s_{1}}^{s} 2 b^{-4 / 3}\left(2+\frac{2}{9} b_{s}^{2}-\frac{b b_{s s}}{3}\right) d s
$$

The second derivatives in (25) and (26) can be eliminated by integrating by parts . Then (25) and (26), respectively become

$$
\begin{align*}
& \frac{1 \tau_{n}^{2}}{30 k^{1 / 3}}\left\{-\frac{8}{3} \frac{b_{s}}{b^{1 / 3}}\right]_{s_{1}}^{s_{2}}+\int_{s_{1}}^{s_{2}} b^{-4 / 3}\left(1+\frac{8}{9} b_{s}^{2}\right) d s \tag{27}\\
& -\frac{1}{20 \tau_{n} k^{1 / 3}}\left\{-\frac{1}{3} \frac{b_{s}}{b^{1 / 3}}\right]_{s_{1}}^{s_{2}}+\int_{s_{1}}^{s_{2}} b^{-4 / 3}\left(2+\frac{1}{9} b_{s}^{2}\right) d s . \tag{28}
\end{align*}
$$

Let us now insert (22) into the expression (15) for $u(a, \eta)$. In doing so we shall utilize the geometric forms (23), (24), (27) and (28) for the integrals in (22). We must also evaluate $\partial V_{n}^{\prime}(a) / \partial b$ which we find, by the methods of reference [9], to be given by

$$
\begin{align*}
\frac{\partial}{\partial b} V_{n}^{\prime}(a) \sim & \pi^{-1}(k h)^{4 / 3} e^{1 / 2}(\sinh a)^{-1 / 2}(\cosh a)^{1 / 2} e^{-2 i \pi / 3} \tag{29}\\
& \times q_{n} A\left(q_{n}\right)+0\left((k h)^{2}\right) .
\end{align*}
$$

When all these expressions are inserted into (15), we finally obtain the following asymptotic formula for u :

$$
\begin{align*}
u(a, \eta)= & \frac{\pi(\cosh a)^{1 / 2}}{\left(\cosh ^{2} a-\cos ^{2}\right)^{1 / 4}} \sum_{n=0}^{\infty}\left\{q_{n} A\left(q_{n}\right)\right\}^{-1}\left(\exp \left[i k t_{1}+\int_{Q_{1}}^{P} \beta_{n} d s\right]\right. \tag{30}\\
& \left.+\exp \left[i k t_{2}+\int_{Q_{2}}^{P} \beta_{n} d s\right]\right)\left\{\gamma_{n}+0(k h)^{-2 / 3}\right\} \\
& \times\left\{1+\exp \left[i k T-\int_{0}^{T} \beta_{n} d s\right]\right\}^{-1} .
\end{align*}
$$

$$
\begin{equation*}
\gamma_{n}=\exp \left[\frac{e^{i \pi / \sigma^{1 / 3}} b_{b s(P)}}{k^{1 / 3} b_{b}^{1 / 3}(P)}\left(\frac{q_{n}^{2}}{45}+\frac{1}{60 q_{n}}\right)\right] . \tag{32}
\end{equation*}
$$

We shall now relate (30) to the geometric theory of diffraction presented in reference [5]. When this theory is applied to the present case it yields

$$
\begin{align*}
u^{d}(P)= & 2^{1 / 2} \sigma^{1 / 3} \pi^{-1 / 2_{k} 1 / \sigma_{e}-1 \pi / 12_{b}-1 / 3}(P) \sum_{n=0}^{\infty} A\left(q_{n}\right) B_{n}(P) \tag{33}\\
& \left\{B_{n}\left(Q_{1}\right) \exp \left[i k t_{1}+\int_{Q_{1}}^{P} \beta_{n} d s\right]+B_{n}\left(Q_{2}\right) \exp \left[i k t_{2}+\int_{Q_{2}}^{P} \beta_{n} d s\right]\right\} \\
& \left\{1-\exp \left[i k T-\int_{0}^{T} \beta_{n} d s\right]\right\}
\end{align*}
$$

$$
\begin{equation*}
B_{n}(P)=B_{n}^{o}(P) \gamma_{n}(P) \tag{36}
\end{equation*}
$$

The new results (31) and (36) for β_{n} and B_{n} agree with the previous results (34) and (35) to the lowest order in k^{-1}. The new value of β_{n} is valid to $O\left(k^{-2 / 3}\right)$ and the new value of B_{n} to $O\left(k^{-3 / 4}\right)$. Thus they contain corrections to the previous results.

The preceding results pertain to a hard elliptic cylinder - i.e one on which $\partial u / \partial n=0$. We have performed a similar calculation for a soft elliptic cylinder - i.e. one on which $u=0$. In this case we also find corrections to the decay exponents and to the diffraction coefficients. For the decay exponents we obtain

$$
\begin{equation*}
\beta_{n}=i \tau_{n} k^{1 / 3} b^{-2 / 3}+\frac{i \tau_{n}^{2} b^{-4 / 3}}{30 k^{1 / 3}}\left(1+\frac{8}{9} b_{s}^{2}\right) \tag{37}
\end{equation*}
$$

Here $\tau_{n}=6^{-1 / 3} q_{n} e^{i \pi / 3}$ and q_{n} is the nth root of the equation $A\left(q_{n}\right)=0$. For the diffraction coefficients we find

$$
\begin{equation*}
B_{n}(P)=B_{n}^{\circ}(P) \exp \left[\frac{e^{i \pi / 6} 6^{1 / 3_{b}}(P) q_{n}^{2}}{45 k^{1 / 3_{b} 1 / 3}(P)}\right] \tag{38}
\end{equation*}
$$

Here $B_{n}{ }^{\circ}(P)$ is the lowest order result for the diffraction coefficient, given in reference [5], as

$$
\begin{equation*}
B_{n}^{\circ}(P)=\pi^{3 / 4} 2^{1 / 4} 6^{-2 / 3} k^{-1 / 12}\left[A^{\prime}\left(q_{n}\right)\right]^{-1} e^{i \pi / 24} b^{1 / 6} \tag{39}
\end{equation*}
$$

The new results (37) and (39) contain corrections to the previous results, as in the hard case.

We now assume that the results (31) and (36) apply to any hard cylinder and that (37) and (38) apply to any soft cylinder. Of course the cylinder must have a smooth cross section. As a first check on these results we see that when $b_{s}=0$ (31) and (37) agree with the results (Al7a) and (Al7b) of W. Franz [6] for a circular cylinder.
3. Diffraction by a parabolic cylinder.

As a check on the higher order corrections to the decay exponents and diffraction coefficients which were derived in Section 2 we now consider the problem of diffraction by a parabolic cylinder. Our solution will closely parallel that of S. O. Rice [8]. However, we find it more convenient to use parabolic cylinder functions which differ from his and hence we wili rederive his results. We again consider the problem of evaluating the field on the surface of a hard parabolic cylinder due to an incident plane wave. For convenience we first consider the diffraction problem for an incident cylindrical wave and then obtain the plane wave result by a limiting procedure.

To formulate the diffraction problem we take the z axis of an (x, y, z) rectangular coordinate axis to be parallel to the generators of the parabolic cylinder. In the (x, y) plane we introduce parabolic coordinates ($5, \eta$) through

$$
\begin{align*}
& x=\xi \eta \\
& y=\frac{1}{2}\left(\eta^{2}-\xi^{2}\right) \tag{1}
\end{align*}
$$

Here $\eta>0$ and $-\infty<\xi<\infty$. The parabolic cylinder is defined by $\eta=$ constant $=\eta_{0}$. The line source is located at $y=0, x=x_{0}$, i.e.. $\xi=\eta=a=x_{0}^{l / 2}$. The wave function $u(\xi, \eta)$ then satisfies the equation

$$
\begin{equation*}
u_{\xi \xi}+u_{\eta \eta}+k^{2}\left(\xi^{2}+\eta^{2}\right) u=\delta(\xi-a) \delta(\eta-a) . \tag{2}
\end{equation*}
$$

In addition u satisfies the boundary condition

$$
\begin{equation*}
u_{\eta}(a, \xi)=0, \tag{3}
\end{equation*}
$$

and the Sommerfeld radiation condition

$$
\lim _{r \rightarrow \infty} r\left(i k u-u_{r}\right)=0
$$

Now to find u we first note that the product $\phi(\xi) \psi(\eta)$ satisfies (2) with the delta functions replaced by zero if ϕ and ψ satisfy the ordinary differential equations

$$
\begin{align*}
& \psi^{\prime \prime}-k^{2}\left(b^{2}-\eta^{2}\right) \psi=0 \tag{5}\\
& \phi^{\prime \prime}+k^{2}\left(b^{2}+\xi^{2}\right) \phi=0 . \tag{6}
\end{align*}
$$

Here b is an arbitrary separation constant. We next note that for an infinite set b_{n} of values of b, there exist solutions of (5), $\psi_{n}(\eta)$, which are 'outgoing ' ' and for which

Since the polar coordinate variable r is equal to $\xi^{2}+\eta_{1}^{2} / 2$ we take the outgoing condition on ψ to mean that as $\eta \rightarrow \infty, \psi \rightarrow A e^{i k \eta^{2} / 2}$. Here and in the following A will denote a generic amplitude function.

$$
\psi_{n}^{\prime}(a)=0 .
$$

We next assume that the $\psi_{n}(\eta)$ are complete and express u as

$$
\begin{equation*}
u(\xi, \eta)=\sum_{n=0}^{\infty} \Phi_{n}(\xi) \psi_{n}(\eta) . \tag{7}
\end{equation*}
$$

By exactly the same calculation as was carried out in reference [9] it is easy to show that

$$
\begin{equation*}
\int_{\eta_{0}}^{\infty} \psi_{n}\left(\eta_{1} \psi_{m}\left(\eta_{1}\right)=-\delta_{n m}\left(2 k^{2} b_{n}\right)^{-1} \psi_{n}\left(\eta_{0}\right) \frac{\partial}{\partial b} \psi_{n}^{\prime}\left(\eta_{0}\right) .\right. \tag{8}
\end{equation*}
$$

Here $\delta_{n m}$ is the Kronecker delta and $\partial / \partial b \psi_{n}^{\prime}\left(\eta_{0}\right)$ is the value of $\partial / \partial b \psi^{\prime}(\eta)$ evaluated at $b=b_{n}$ and $\eta=\eta_{0}$. Thus upon substituting (7) into (2) multiplying by $\psi_{n}(\eta)$, integrating from η_{0} to ∞, and making use of (8) we find that Φ_{n} satisfies

$$
\begin{equation*}
\Phi_{n}^{\prime \prime}+k^{2}\left(b^{2}+\xi^{2}\right) \Phi_{n}=\frac{-2 k^{2} b_{n} \psi_{n}(a)}{\psi_{n}\left(\eta_{0}\right) \partial / \partial b \psi_{n}^{\prime}\left(\eta_{0}\right)} \delta(\xi-a) \tag{9}
\end{equation*}
$$

To solve (9) we first characterize the solutions of (6) by means of their asymptotic expansions as $k \rightarrow \infty$. As $k \rightarrow \infty$ there exist solutions $\phi^{(1)}(\xi)$ and $\phi^{(2)}(\xi)$ having the following asymptotic expansions

$$
\begin{equation*}
\phi^{(1)}(\xi) \sim\left(b^{2}+\xi^{2}\right)^{-1 / 4} \exp \left[i k \int_{0}^{\xi}\left(b^{2}+\xi^{2}\right)^{1 / 2} d \xi\right] \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\phi^{(2)}(\xi) \sim\left(b^{2}+\xi^{2}\right)^{-1 / 4} \exp \left[-i k \int_{0}^{\xi}\left(b^{2}+\xi^{2}\right)^{1 / 2} d \xi\right] \tag{11}
\end{equation*}
$$

A simple calculation shows that as $|\xi| \rightarrow \infty$

$$
\begin{align*}
& \phi^{(1)} \sim A \exp [i k \xi|\xi| / 2] \tag{12}\\
& \phi^{(2)} \sim A \exp [-i k \xi \mid \xi / / 2] . \tag{13}
\end{align*}
$$

It is thus apparent that as $\xi \rightarrow \infty, \varnothing^{(1)}$ is the outgoing solution of (6), while as $\xi \rightarrow-\infty, \phi^{(2)}$ is the outgoing solution of (6). Since the variable ξ takes on both positive and negative values, we see that for $\xi>\xi$ o the solution of (9) is proportional to $\phi^{(1)}(\xi)$, while for $\xi<\xi$ o the solution of (9) is proportional to $\emptyset^{(2)}(\xi)$. These conditions together with the jump conditions imposed by the delta function allow a unique determination of $\Phi_{n}(\xi)$. We then find that for $\xi<\xi_{0}$

$$
\begin{equation*}
u(\xi, \eta)=i k \sum_{n=0}^{\infty} b_{n} \psi_{n}(\eta) \phi_{n}^{(2)}(\xi) \frac{\phi_{n}^{(1)}(a) \psi_{n}(a)}{\psi_{n}\left(\eta_{0}\right) \partial / \partial b \psi_{n}^{\prime}\left(\eta_{0}\right)} . \tag{14}
\end{equation*}
$$

Now to pass to plane wave excitation we multiply by

$$
\begin{equation*}
c=e^{3 \pi i / 4} 2^{3 / 2} \pi^{1 / 2} k^{1 / 2} a e^{-i k a^{2}} \tag{15}
\end{equation*}
$$

and let a $\rightarrow \infty$. In order to evaluate this limit we require the asymptotic expans on of the function $\psi_{n}(a)$. Using the methods of Olver $[13]$ as in Section II we find

$$
\begin{equation*}
\psi_{n}(\eta) \sim \zeta^{1 / 4} 3^{1 / 3} \pi^{-1}\left(b^{2}-\eta^{2}\right)^{-1 / 4} A\left(3^{1 / 3} e^{-i \pi / 3} k^{2 / 3} \zeta\right) \tag{16}
\end{equation*}
$$

Here

$$
\begin{equation*}
\frac{2}{3} \zeta^{3 / 2}=\int_{b}^{\pi}\left(b^{2}-\eta^{2}\right)^{1 / 2} d \eta . \tag{17}
\end{equation*}
$$

When $\eta>b$, (16) becomes

$$
\begin{equation*}
\psi_{n}(\eta) \sim e^{i \pi / 12} k^{-1 / 6} 2^{-1} \pi^{-1 / 2}\left(\eta^{2}-b^{2}\right)^{-1 / 4} \exp \left[i k \int_{b}^{\eta}\left(\eta^{2}-b^{2}\right)^{1 / 2} d \eta\right] \tag{18}
\end{equation*}
$$

Now a simple calculation shows that as $n \rightarrow \infty$

$$
\begin{equation*}
\int_{b}^{\eta}\left(\eta^{2}-b^{2}\right)^{1 / 2} d \eta \sim--\frac{b^{2}}{2} \log \frac{2 \eta}{b}+\frac{\eta^{2}}{2} \tag{19}
\end{equation*}
$$

Also as $\xi \rightarrow \infty$

$$
\begin{equation*}
\int_{0}^{\xi}\left(\xi^{2}+b^{2}\right)^{1 / 2} d \xi \sim \frac{b^{2}}{2} \log \frac{2 \xi}{b}+\frac{\xi^{2}}{2} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{a \rightarrow \infty} c \phi_{n}^{(1)}(a) \psi_{n}(a)=2^{1 / 2} k^{1 / 3} e^{5 \pi i / 6} \tag{21}
\end{equation*}
$$

Thus for $\eta=\eta_{0}$ and for an incident plane wave (14) becomes

$$
\begin{equation*}
u\left(\xi, \eta_{0}\right)=k^{4 / 3} e^{4 \pi i / 3} 2^{1 / 2} \sum_{n=0}^{\infty} b_{n} \frac{\phi_{n}^{(2)}(\xi)}{\partial / \partial b \psi_{n}^{(1)^{\prime}}\left(\eta_{0}\right)} \tag{22}
\end{equation*}
$$

To obtain the asymptotic expansion of (22) as $k \rightarrow \infty$ we proceed exactly as in the case of the elliptic cylinder. We first find the following three term asymptotic expansion of b_{n} from the condition that $\psi_{n}^{\prime}\left(\eta_{0}\right)=0$.

$$
\begin{equation*}
b_{n}=\eta_{0}+\frac{\tau_{n}}{k^{2 / 3} \eta_{0}^{1 / 3}}-\frac{7}{30} \frac{\tau_{n}^{2}}{k^{4 / 3} \eta_{0}^{5 / 3}}-\frac{1}{20 \tau_{n} k^{4 / 3} \eta_{0}^{5 / 3}}+0\left(k^{-2}\right) \tag{23}
\end{equation*}
$$

Then upon using (23) in (16) and (11) we find

$$
\begin{align*}
\partial / \partial b \psi_{n}^{\prime}\left(\eta_{0}\right)= & \pi^{-1} e^{-2 i \pi / 3} q_{n} A\left(q_{n}\right) 2^{1 / 2} \eta_{0}^{1 / 2} k^{4 / 3}+0\left(k^{2}\right) \tag{24}\\
\phi_{n}^{(2)}(\xi)= & \left(\eta_{0}^{2}+\xi^{2}\right)^{-1 / 4} \exp \left[-1 k \int_{0}^{\xi}\left(\eta_{0}^{2}+\xi^{2}\right)^{1 / 2} d \xi-i k^{1 / 3} \tau_{n^{\prime} \eta_{0}}^{2 / 3}\right. \tag{25}\\
& \times \int_{0}^{\xi}\left(\eta_{0}^{2}+\xi^{2}\right)^{-1 / 2} d \xi-\frac{i \tau_{n}^{2} \eta_{0}^{4 / 3}}{30 k^{1 / 3}} \int_{0}^{\xi}\left(\eta_{0}+\xi^{2}\right)^{-3 / 2} \\
& \left.\times\left(8 \xi^{2} / \eta_{0}^{2}-7\right) d \xi+\frac{\eta_{0}}{20 \tau_{n} k^{1 / 3} \eta_{0}^{2 / 3}} \int_{0}^{\xi}\left(\eta_{0}^{2}+\xi^{2}\right)^{-1 / 2} d \xi\right]
\end{align*}
$$

Upon substituting (24), (25) and (23) into (22) we find

$$
\begin{align*}
u\left(\xi, \eta_{0}\right)= & \pi \eta_{0}^{1 / 2}\left(\eta_{0}^{2}+\xi^{2}\right)^{-1 / 4} \sum_{n=0}^{\infty}\left[q_{n} A\left(q_{n}\right)\right]^{-1}\left\{\operatorname { e x p } \left[-i k \int_{0}^{\xi}\left(\eta_{0}{ }^{2}+\xi^{2}\right)^{1 / 2} d \xi\right.\right. \tag{26}\\
& -i k^{I / 3} \tau_{n} \eta_{0}^{2 / 3} \int_{0}^{\xi}(2 \theta \\
& \times\left(\eta_{0}^{2}+\xi^{2}\right)^{-1 / 2} d \xi-\frac{i \tau_{n} \eta_{0} \eta_{0}^{4 / 3}}{30 k^{1 / 3}} \int_{0}^{\xi}\left(\eta_{0}{ }^{2}+\xi^{2}\right)^{-3 / 2} \\
& \left.\left.\times\left(\eta_{0}^{2}-7\right) d \xi+\frac{i}{20 \tau_{n} k^{1 / 3} \eta_{0}^{2 / 3}} \int_{0}^{\xi}\left(\eta_{0}{ }^{2}+\xi^{2}\right)^{-1 / 2} d \xi\right]+0\left(k^{-2 / 3}\right)\right\}
\end{align*}
$$

In the case of the parabolic cylinder the incident rays are parallel to the x axis and the diffracted ray to the point (ξ, η_{0}) follows the path QP as shown in Figure 2.

Figure 1
A cross section of the elliptic cylinder showing the points Q_{1} and Q_{2} at which two incident rays are tangent to it. The incident field is a plane wave coming from the right. The tangent rays produce diffracted rays which travel distances t_{I} and t_{2} to a point P on the surface.

Figure 2
A cross section of the parabolic cylinder. The incident field is a plane wave coming from the right. The diffracted ray follows the parabolic path QP.

A simple calculation shows that the element of arclength along the parabola, ds, is given by

$$
\begin{equation*}
d s=\left(\xi^{2}+\eta_{0}^{2}\right)^{1 / 2}|d \xi| \tag{27}
\end{equation*}
$$

Thus the first term in the exponent in (26) is ikt, since ξ is negative. Similarly, we find that the radius of curvature of the parabola, b, is given by

$$
\begin{equation*}
b=\eta_{0}^{-1}\left(\eta_{0}^{2}+\xi^{2}\right)^{3 / 2} \tag{28}
\end{equation*}
$$

Upon using (27) and (28) a simple calculation shows that the exponent in (26) can be written as

$$
\begin{equation*}
\gamma_{n} \exp \left[i k t+\int_{Q}^{P} B_{n} d s\right] \tag{29}
\end{equation*}
$$

Here β_{n} and γ_{n} are defined by (31) and (32) of Section II. Upon applying the geometric theory of reference [5] to the present case it is easy to show that the geometric construction agrees with (26) to lowest order in k^{-1}. Again we have in (26) higher order corrections to the diffraction coefficients $B_{n}^{\circ}(P)$ and the decay exponents β_{n}° as given by equations (34) and (35) of Section II. These corrections are identical with those given by equations (31) and (36) of Section II.
4. Integral equation method.

We will now derive the asymptotic expansion of each mode of the diffracted field on an arbitrary convex cylinder by a different method. In this method we begin with an integral equation and obtain a formal asymptotic solution of it. This asymptotic solution coincides with the expression for a mode given by the geometric theory of diffraction, with the corrected decay exponents and diffraction coefficients found in section 2. This independent derivation, which follows the procedure used by W. Franz and K. Depperman [3] in the case of a circular cylinder, confirms our previous result.

We consider the two dimensional problem of finding a function $u(x, y)$ satisfying the following equations

$$
\begin{array}{r}
\left(\nabla^{2}+k^{2}\right) u=0 \quad \text { in } D \\
\text { ou/on }=0 \quad \text { on } C \\
\lim _{r \rightarrow \infty} r^{1 / 2}\left(\frac{\partial u}{\partial r}-i k u\right)=0 \tag{3}
\end{array}
$$

Here C is a given simple smooth convex curve with a piecewise continuous second derviative. If C is closed, D denotes $1 t s$ exterior. If C is open and extends to infinity, D denotes the non-convex portion of the plane, bounded by C.

Fron (1) - (3) it follows that on C, u satisfies the following integral equation

$$
\begin{equation*}
u(s)=-\frac{i}{2} \int_{C} u\left(s^{\prime}\right) \frac{d}{d n^{\prime}} H_{0}^{(1)}\left[\operatorname{kr}\left(s, s^{\prime}\right)\right] d s^{:} \tag{4}
\end{equation*}
$$

Here s denotes arclength along C measured from some fixed point, $u(s)$ is the value of u at the point s on $C, r\left(s, s^{\prime}\right)$ is the distance between the points s and s^{\prime}, and the normal n^{\prime} points into D.

If C is closed, the only single-valued solution of (4) 's u $\equiv 0$.
If C is open, presumably the only bounded solution is also $u \equiv 0$. Therefore if u is to represent a mode, it must be multi-valued in the former case, or unbounded in the latter case. Consequently we assume that on C a single mode u has the following asymptotic expansion for large values of k

$$
\begin{equation*}
u(s) \sim \exp \left[i k s+\sum_{n=-1}^{\infty} v_{n}(s) k^{-n / 3}\right] \tag{5}
\end{equation*}
$$

The coefficients $v_{n}(s)$ are to be determined by requiring (5) to satisfy (4) asymptotically.

Before inserting (5) into (4), we note that for large values of k the function $\partial H_{o}^{(I)}\left[\operatorname{kr}\left(s, s^{\prime}\right)\right] / \partial n^{\prime}$ has the asymptotic expansion

$$
\begin{equation*}
\frac{\partial H_{0}^{(l)}\left[k r\left(s, s^{\prime}\right]\right.}{i n^{\prime}} \sim \frac{\partial r}{\partial n^{\prime}}\left(\frac{2 k}{\pi r}\right)^{1 / 2} e^{i(k r+\pi / 4)} \sum_{m=0}^{\infty} \frac{(-1)^{m}(0, m)}{(2 i k r)^{\frac{1}{r}}}\left[I-\frac{m+1 / 2}{i k r}\right] \tag{6}
\end{equation*}
$$

The symbol $(0, m)$ is defined by

$$
\begin{equation*}
(0, m)=\Gamma\left(\frac{1}{2}+m\right) / m!\Gamma\left(\frac{1}{2}-m\right) \tag{7}
\end{equation*}
$$

Now we insert (5) and (6) into (4) and then divide by the left hand side of the resulting equation. In this way we obtain the equation

$$
\begin{aligned}
I \sim & e^{-i \pi / 4}(k / 2 \pi)^{1 / 2} \int_{C} \frac{\partial r}{\partial n}, r^{-1 / 2} \sum_{m=0}^{\infty}(-1)^{m}(0, m)(2 i k r)^{-m}\left[I-\frac{m+1 / 2}{i k r}\right] \\
& \quad \times \exp \left[i k (r - s - s ^ { \top }] \operatorname { e x p } \left[\sum_{n=-1}^{\infty} k^{-n / 3}\left(v_{n}\left(s^{\prime}\right)-v_{n}(s)\right] d s^{\prime} .\right.\right.
\end{aligned}
$$

In order to determine the $\mathrm{v}_{\mathrm{n}}(\mathrm{s})$ from (8) we first expand the integral in (8) asymptotically for large values of k. We perform this expansion by using the concept of stationary phase. The derivative of the phase of the integrand is $1+\mathrm{dr} / \mathrm{ds}$ ', which vanishes if $d r / d s^{\prime}=-1$. This condition is satisfied only at $s^{\prime}=s$, and then only if dr/ds' denotes the one sided derivative computed with $s^{\prime}<s$. Thus to evaluate the integral we expand the integrand in the one sided neighborhood $s^{\prime}<s$ of the point $s^{\prime}=s$. For this purpose we use the following expansions which are derived in the appendix

$$
\begin{align*}
& r=\sum_{n=1}^{\infty} c_{n}(s)\left(s-s^{\prime}\right)^{n} \tag{9}\\
& r^{-1 / 2} \partial r / \partial n^{\prime}=-\frac{k(s)}{2}\left(s-s^{\prime}\right)^{1 / 2} \sum_{n=0}^{\infty} \rho_{n}(s)\left(s-s^{\prime}\right)^{n} \tag{10}\\
& \sum_{m=0}^{\infty}(-1)^{m}(0, m)(21 k r)^{-m}\left[1-\frac{m+1 / 2}{i k r}\right]=\sum_{n=-\infty}^{\infty} \beta_{n}(s, k)\left(s-s^{\prime}\right)^{n} \tag{11}
\end{align*}
$$

Here k(s) denotes the curvature of C. The first few of the coefficients c_{n}, ρ_{n} and β_{n} are listed in Table I.

We now insert (9) - (11) into (8), making use of the explicit values of ρ_{0}, c_{1}, c_{2} and c_{3}. We also expand $v_{-1}\left(s^{\prime}\right)$ in a power series about the point $s^{\prime}=s$. Then (8) assumes the form

$$
\begin{align*}
I \sim & e^{3 \pi i / 4} k(s)(k / 8 \pi)^{I / 2} \int_{-\infty}^{s}\left(s-s^{\prime}\right)^{I / 2} \exp \left[-\frac{i k k^{2}(s)}{24}\left(s-s^{\prime}\right)^{3}\right. \\
& \left.-k^{1 / 3} \dot{v}_{-1}(s)\left(s-s^{\prime}\right)\right] F\left(k, s, s^{\prime}\right) d s^{\prime} . \tag{12}
\end{align*}
$$

The function $F\left(k, s, s^{\prime}\right)$ appearing in (12) is defined by

$$
\begin{aligned}
F\left(k, s, s^{\prime}\right)= & \exp \left[1 k \sum_{n=4}^{\infty} c_{n}(s)\left(s-s^{\prime}\right)^{n}+\sum_{n=-1}^{\infty} \sum_{m=1}^{\infty} k^{-n / 3} \frac{v_{n}^{(m)}(s)\left(s^{\prime}-s\right)^{m}}{m!}\right. \\
& \left.-k^{I / 3} \dot{v}_{-1}(s)\left(s^{\prime}-s\right)\right] \sum_{n=0}^{\infty} \rho_{n}(s)\left(s-s^{\prime}\right)^{n} \sum_{n=-\infty}^{\infty} \beta_{n}(s, k)\left(s-s^{\prime}\right)^{n} .
\end{aligned}
$$

In (13) $\mathrm{v}_{\mathrm{n}}^{(\mathrm{m})}(\mathrm{s})$ denotes the m-th derivative of $\mathrm{v}_{\mathrm{n}}(\mathrm{s})$.
To complete the asymptotic evaluation of the integral we introduce the new variable t by means of the definition

$$
\begin{equation*}
s-s^{\prime}=e^{-i \pi / 6}\left(\frac{24}{x^{2}(s) k}\right)^{1 / 3} t \tag{14}
\end{equation*}
$$

When (14) is used in (13), it shows that $F\left(k, s, s^{\prime}\right)$ has an expansion of the form

$$
\begin{equation*}
F\left(k, s^{\prime} s^{\prime}\right) \sim 1+\sum_{n=1}^{\infty} k^{-n / 3} b_{n}(t, s) . \tag{15}
\end{equation*}
$$

We next define a(s) by the equation

$$
\begin{equation*}
\dot{v}_{-1}(s)=\alpha(s)(k(s))^{2 / 3}(24)^{-1 / 3} e^{i \pi / 6} \tag{16}
\end{equation*}
$$

Finally we insert (14) - (16) into (12), which becomes

$$
\begin{equation*}
I \sim i(3 / \pi)^{1 / 2} \int_{0}^{\infty}+1 / 2 e^{-a t-t^{3}}\left(1+\sum_{n=1}^{\infty} k^{-n / 3} b_{n}(t, s)\right) d t \tag{17}
\end{equation*}
$$

Upon comparing coefficients of the various powers of k in the asymptotic form of the integral equation (17), we obtain the following set of equations

$$
\begin{align*}
& 1-i(3 / \pi)^{1 / 2} \int_{0}^{\infty} t^{1 / 2} e^{-\alpha t-t^{3}} d t=0 \tag{18}\\
& \int_{0}^{\infty} t^{1 / 2} e^{-\alpha t-t^{3}} b_{n}(t, s) d t=0, \quad n=1,2, \ldots \tag{19}
\end{align*}
$$

From these equations we shall determine the coefficients $v_{n}(s)$.
W. Franz [6] has shown that the left side of (18) can be rewritten in terms of the Airy function A defined in equation (11) of section 2 . Thus (18) becomes

$$
\begin{equation*}
\frac{12}{\pi} e^{-i \pi / 6} A^{\prime} \quad\left(-\frac{e^{i \pi / 3}}{4^{1 / 3}} \alpha\right) A^{2}\left(-\frac{e^{-i \pi / 3}}{4^{1 / 3}} \alpha\right)=0 \tag{20}
\end{equation*}
$$

The appropriate value of α is determined by the vanishing of the A^{\prime} factor in (20). If we denote by q_{n} the roots of the equation $A^{\prime}\left(q_{n}\right)=0$, then the values a_{n} of x are given by

$$
\begin{equation*}
a=a_{n}=-e^{i \pi / 3} 4^{1 / 3} q_{n} \tag{21}
\end{equation*}
$$

It will be useful to introduce the function $h(\alpha)$ defined by

$$
\begin{equation*}
h(\alpha)=\int_{0}^{\infty} t^{-1 / 2} e^{-\alpha t-t^{3}} d t \tag{22}
\end{equation*}
$$

Franz [6] has shown that

$$
\begin{equation*}
h(\alpha)=4^{5 / 6} \sqrt{3 / \pi} \quad A \quad\left(-\frac{e^{i \pi / 3} \alpha}{4^{1 / 3}}\right) \quad A \quad\left(-\frac{e^{-i \pi / 3} \alpha}{4^{1 / 3}}\right) \text {, } \tag{23}
\end{equation*}
$$

and that h satisfies

$$
\begin{equation*}
h^{\prime \prime \prime}(\alpha)=-\frac{1}{6} h(\alpha)-\frac{\alpha}{3} h^{\prime}(\alpha) . \tag{24}
\end{equation*}
$$

To determine the consequences of (19) we must first compute the b_{n} We shall calculate only b_{1} and b_{2}. To do so we substitute (14) and (16) into (13), expand the exponential functions and multiply together the resulting series in powers of $k^{-1 / 3}$. In this way we obtain

$$
\begin{align*}
b_{1}= & e^{-i \pi / 6}(24)^{1 / 3} \frac{\dot{k}}{k^{5 / 3}}\left\{\left(\frac{-2}{3}-\dot{v}_{0} \frac{k}{\dot{k}}\right) t+\frac{\alpha}{3} t^{2}+t^{4}\right\} \tag{25}\\
b_{2}= & \frac{3 e^{2 i \pi / 3} k^{2 / 3}}{8(24)^{1 / 3} t}-\frac{e^{-i \pi / 6}(24)^{1 / 3}}{k^{2 / 3}} \dot{v}_{1} t+e^{-i \pi / 3}(2)^{2 / 3} \\
& \times\left\{\frac{t^{2}}{4 / 3}\left(\frac{\ddot{i}}{3 k}-\frac{k^{2}}{48}+\frac{\dot{k}^{2}}{24 k^{2}}\right)+\frac{2 a t^{3}}{3 k^{2}}\left(-\frac{\ddot{k}}{6 k^{1 / 3}}-\frac{13 \dot{k}^{2}}{36 k^{4 / 3}}\right)(26)\right. \tag{26}\\
& +\frac{\alpha^{2} \dot{k}^{2} t^{4}}{13 k^{10 / 3}}+\frac{24 t^{5}}{k^{10 / 3}}\left(-\frac{k \pi}{80}+\frac{k^{4}}{1920}-\frac{33 \dot{k}^{2}}{720}\right)+\frac{a^{-2} t^{6}}{\left.3 k^{10 / 3}+\frac{\dot{k}^{2} t^{8}}{2 k^{10 / 3}}\right\}}
\end{align*}
$$

When (25) is inserted into (19) an equation for \dot{v}_{\circ} is obtained. This equation contains integrals of the form

$$
\begin{equation*}
\int_{0}^{\infty} t^{n-1 / 2} e^{-\alpha t-t^{3}} d t=(-1)^{n_{h}(n)}(\alpha) \tag{27}
\end{equation*}
$$

In (27) the integral has been expressed in terms of the n-th derivative of $h(w)$ which is defined by (22). Thus from (19) we find that the right hand side of (25) must vanish when t^{n} is replaced by $(-1)^{n+1} h^{(n+1)}(\alpha)$. This yields

$$
\begin{equation*}
\left(\frac{-2}{3}-\dot{v}_{0} \frac{k}{\dot{k}}\right) \quad h^{\prime \prime}-\frac{\alpha}{3} h^{\prime \prime \prime}(\alpha)-h^{(y)}(\alpha)=0 . \tag{28}
\end{equation*}
$$

By using (24) we find that

$$
\begin{align*}
& h^{(I V)}(\alpha)=-\frac{1}{2} h^{\prime}-\frac{\alpha}{3} h^{\prime \prime} \tag{29}\\
& h^{(V)}(\alpha)=\frac{\alpha}{18} h+\frac{\alpha^{2}}{9} h^{\prime}-\frac{5}{6} h^{\prime \prime} \tag{30}
\end{align*}
$$

When (24) and (30) are used in (28), the following expression for \dot{v}_{o} results

$$
\begin{equation*}
\dot{v}_{0}=\frac{1}{6} \frac{\dot{k}}{k} . \tag{31}
\end{equation*}
$$

Upon integrating (31) we finally obtain for v_{o} the expression

$$
\begin{equation*}
v_{0}=\log \kappa^{1 / 6}+\delta \tag{32}
\end{equation*}
$$

Here δ is an integration constant.
The analysis of (19) for the case $n=2$ proceeds in exactly the same way. In this case we obtain the condition that the right hand side of (26) vanishes when t^{n} is replaced by $(-1)^{n+1} h^{(n+1)}(\alpha)^{\dagger}$. In order to simplify the resulting expression we must express the sixth through ninth derivatives of h in terms of h, h^{\prime}, and $h^{\prime \prime}$. Upon doing this we find
\dagger In order to avoid writing cumbersome equations we denote by $\mathrm{b}_{2}{ }^{*}$ the right hand side of (26) with t^{n} replaced by $(-1)^{n+1} h^{(n+1)}(\alpha)$.

$$
\begin{align*}
& h^{(V I)}=\frac{7}{36} h+\frac{5 \alpha}{9} h^{\prime}+\frac{a^{2}}{9} h^{\prime \prime} \tag{33}\\
& h^{(V I I)}=-\frac{a^{2}}{54} h+\frac{3}{4} h^{\prime}-\frac{a^{3}}{27} h^{\prime}+\frac{7}{9} \alpha h^{\prime \prime} \tag{34}\\
& h^{(V I I I)}=-\frac{\alpha}{6} h-\frac{7}{18} a^{2} h^{\prime}+\frac{55}{36} h^{\prime \prime}-\frac{a^{3}}{27} h^{\prime \prime} \tag{35}\\
& h^{(I X)}=\frac{a^{3}}{162} h-\frac{91}{216} h-\frac{157}{108} a h^{\prime}+\frac{\alpha^{4}}{81} h^{\prime}-\frac{a^{2}}{2} h^{\prime \prime} . \tag{36}
\end{align*}
$$

We also note that

$$
\begin{equation*}
h^{\prime \prime}(\alpha)=-\frac{\alpha}{6} h(\alpha) . \tag{37}
\end{equation*}
$$

This result follows upon differentiating (23) twice, then using the equation satisfied by $A(x)$

$$
\begin{equation*}
A^{\prime \prime}+\frac{x}{3} A=0 \tag{38}
\end{equation*}
$$

and finally noting that when α is defined by (21)

$$
\begin{equation*}
A^{\prime}\left(\frac{-e^{i \pi / 3} \alpha}{4^{I / 3}}\right)=0 \tag{39}
\end{equation*}
$$

We now insert the preceding relations for the derivatives of h, together with (31) and (37) into $\mathrm{b}_{2}{ }^{*}$. We then find that the coefficient of h^{\prime} vanishes and that the equation $b_{2}^{*}=0$ may be solved to yield

$$
\begin{align*}
& \dot{v}_{1}=6(24)^{1 / 3} k^{2 / 3} \alpha^{-1} e^{-i \pi / 6}\left\{\frac{k^{2 / 3}}{64}-\frac{1}{6 r^{4 / 3}}\left(\frac{1}{3} \frac{\ddot{k}}{k}-\frac{1}{48} k^{2}+\frac{1}{24} \frac{\dot{k}^{2}}{k^{2}}\right)\right. \\
&+\frac{a^{3}}{27 k^{2}}\left(\frac{\ddot{k}}{6 k^{1 / 3}}+\frac{13}{36} \frac{\dot{k}^{2}}{k^{4 / 3}}\right)+\frac{7 a^{3}}{648} \frac{\dot{k}^{2}}{k^{10 / 3}}+\frac{24}{k^{10 / 3}}\left(\frac{7}{36}-\frac{a^{3}}{54}\right) \tag{40}\\
&\left.\times\left(\frac{k \ddot{k}}{80}-\frac{k^{4}}{1920}+\frac{33}{720} \dot{k}^{2}\right)-\frac{4 a^{3}}{81} \frac{\dot{k}^{2}}{k^{10 / 3}}+\frac{1}{2} \frac{\dot{k}^{2}}{k^{10 / 3}}\left(\frac{29 x^{3}}{324}-\frac{91}{216}\right)\right\}
\end{align*}
$$

We next make use of (21) of this section and (21) of section 2 and set $k^{-1}=\mathrm{b}=$ the radius of curvature of C . Then a straightforward calculation shows that (40) may be written as

$$
\begin{align*}
\dot{v}_{1}= & \frac{i \tau_{n}^{2}}{30}\left(b^{-4 / 3}+\frac{16}{9} b^{-4 / 3} b_{s}^{2}-\frac{8 b^{-1 / 3}}{3} b_{S S}\right) \\
& -\frac{1}{20 \tau_{n}}\left(2 b^{-4 / 3}+\frac{2}{9} b^{-4 / 3} b_{s}^{2}-\frac{b^{-1 / 3}}{3} b_{s s}\right) \tag{41}
\end{align*}
$$

Let us now combine our results (16), (21), (32), and (41). By inserting them into (5) we obtain the asymptotic expansion of $u(s)$ on the cylinder C up to and including terms in $k^{-1 / 3}$.

$$
\begin{align*}
u \sim & E b^{-1 / 6}(s) \exp \left[i k s+i k^{1 / 3} \tau\right. \\
n & \int^{s} b^{-2 / 3}(s) d s \tag{42}\\
& +\frac{1 k^{-1 / 3}}{30} \tau_{n}^{2} \int^{s}\left(b^{-4 / 3}+\frac{16}{9} b^{-4 / 3} b_{s}^{2}-\frac{8 b^{-1 / 3}}{3} b_{S S}\right) d s \\
& \left.-\frac{i k^{-1 / 3}}{20 \tau} \int_{n}^{s}\left(2 b^{-4 / 3}+\frac{2}{9} b^{-4 / 3} b_{s}^{2}-\frac{b^{-1 / 3}}{3} b_{s s}\right) d s+\ldots\right]
\end{align*}
$$

Here E denotes an arbitrary constant.
Let us now compare the result (42) with the expression for a mode given by the geometric theory of diffraction [5]. That theory yields for u a single term of the sum in (33) of section 2. Let us insert into that equation the improved decay exponents (31) and diffraction coefficients (36). Then we find that each term of (33) coincides with (42) provided that the product of the constant coefficients in (33) is equated to the constant E in (42). This agreement between the two methods of obtaining the improved decay exponents and diffraction coefficients again confirms the results of section 2. The method of the present section can also be modified to apply to soft cylinders, on which $u=0$.

In order to calculate the quantity $r\left(s, s^{\prime}\right)$ in the neighborhood of $s=s^{\prime}$ we first observe that if $\vec{x}(s)$ is the position vector to the curve C, then

$$
\begin{equation*}
r^{2}=\left(\vec{x}(s)-\vec{x}\left(s^{\prime}\right)\right)^{2} \tag{1}
\end{equation*}
$$

By Taylor's theorem

$$
\begin{equation*}
\vec{x}\left(s^{\prime}\right)-\vec{x}(s)=\sum_{n=1}^{\infty}\left(s^{\prime}-s\right)^{n} \frac{\vec{x}^{(n)}(s)}{n!} \tag{2}
\end{equation*}
$$

Thus, upon taking the dot product of (2) with itself we find

$$
\begin{equation*}
r^{2}=\sum_{\rho=2}^{\infty}\left(s^{\prime}-s\right)^{\rho} b_{\rho} . \tag{3}
\end{equation*}
$$

Here

$$
\begin{equation*}
b_{p}=\sum_{n=1}^{p-1} \frac{\vec{x}^{(n)}(s) \cdot \vec{x}^{(p-n)}(s)}{n!(p-n)!} \tag{4}
\end{equation*}
$$

Since s is arclength along C we have

$$
\begin{equation*}
\stackrel{\rightharpoonup}{x}(s) \cdot \stackrel{\rightharpoonup}{x}(s)=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\overrightarrow{\mathrm{x}}}{\mathrm{x}}(\mathrm{~s}) \cdot \stackrel{\rightharpoonup}{\mathrm{x}}(\mathrm{~s})=0 . \tag{6}
\end{equation*}
$$

From the Frenet equations of differential geometry we have

$$
\begin{equation*}
\ddot{\vec{x}}(s)=\dot{k} k^{-1 \ddot{\vec{x}}-k^{2} \dot{\vec{x}} ~} \tag{7}
\end{equation*}
$$

Upon using (5), (6), and (7) recursively to obtain the higher derivatives of $\vec{x}(s)$ in terms of $\dot{\vec{x}}(s)$ and $\vec{x}(s)$ we see that b_{ρ} can be expressed in terms of k and its derivatives. In this way we find

$$
\mathrm{b}_{2}=1 ; \quad \mathrm{b}_{3}=0 ; \quad \mathrm{b}_{4}=\frac{-k^{2}}{12} ; \quad \mathrm{b}_{5}=-\frac{k \dot{k}}{12} ; \mathrm{b}_{6}=-\frac{1}{45} \dot{k}^{2}-\frac{1}{40} k \dot{k}+\frac{k^{4}}{360} .
$$

Then upon taking the square root of the right hand side of (3) we find

$$
\begin{equation*}
r=\sum_{n=1}^{\infty} e_{n}\left(s-s^{1}\right)^{n} \tag{9}
\end{equation*}
$$

Here

$$
\begin{equation*}
c_{1}=b_{2} ; \quad c_{2}=b_{3} ; \quad c_{3}=\frac{b_{4}}{2} ; \quad c_{4}=\frac{-b_{5}}{2} ; \quad c_{5}=\left(\frac{b_{6}}{2}-\frac{b_{4}^{2}}{8}\right) . \tag{10}
\end{equation*}
$$

From (8) and (10) the entries for c_{n} in Table I are obtained.
In order to calculate $r^{-1 / 2} \partial r / \partial n^{\prime}$ we note that the unit normal to C at s^{\prime} is $K^{-1}\left(s^{\prime}\right) \ddot{x}\left(s^{\prime}\right)=\vec{v}_{2}\left(s^{\prime}\right)$ and hence

$$
\begin{equation*}
\frac{\partial r}{\partial n}=\nabla(\vec{r}) \cdot \vec{v}_{2}\left(s^{\prime}\right)=\frac{\stackrel{\rightharpoonup}{r} \cdot \stackrel{\rightharpoonup}{v}_{2}\left(s^{\prime}\right)}{r} \tag{11}
\end{equation*}
$$

Thus by making use of (2) and the Taylor expansion of $\vec{v}_{2}\left(s^{\prime}\right)$ about $s=s^{\prime}$ we obtain

$$
\begin{equation*}
r \frac{\partial r}{\partial n^{i}}=\sum_{\rho=1}^{\infty}\left(s^{\prime}-s\right)^{\rho} f_{\rho} . \tag{12}
\end{equation*}
$$

Here

$$
\begin{equation*}
f_{\rho}=\sum_{k=1}^{\rho} \frac{\vec{x}^{(k)}(s) \cdot \vec{v}_{2}^{(p-k)}(s)}{k!(p-k)!} \tag{13}
\end{equation*}
$$

Again upon using the Frenet equations recursively the coefficients f_{ρ} may be easily evaluated to obtain

$$
\begin{equation*}
f_{1}=0 ; \quad f_{2}=-\frac{K}{2} ; f_{3}=-\frac{\dot{k}}{3} ; f_{4}=-\frac{\ddot{k}}{8}+\frac{k^{3}}{24} \tag{14}
\end{equation*}
$$

Now by applying the binomial theorem to (3) we find

$$
\begin{equation*}
r^{-3 / 2}=\left(s-s^{1}\right)^{-3 / 2}\left(b_{2}-\frac{3}{4} b_{4}\left(s-s^{1}\right)^{2}+\frac{3}{4} b_{5}\left(s-s^{1}\right)^{3}+\ldots\right) \tag{15}
\end{equation*}
$$

Thus upon multiplying (15) and (12) we find

$$
\begin{equation*}
r^{-1 / 2} \frac{\partial r}{\partial n},=-\frac{k(s)}{2}\left(s-s^{\prime}\right)^{1 / 2} \sum_{n=0}^{\infty} \rho_{n}(s)\left(s-s^{\prime}\right)^{n}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{0}=1 ; \quad \rho_{1}=\frac{2 f_{3}}{k} ; \quad \rho_{2}=-\frac{2 f_{4}}{k}-\frac{3}{4} b_{4} . \tag{17}
\end{equation*}
$$

Thus from (8), (14), and (17) we obtain the values of ρ_{n} given in Table I. Upon using (9) and the values of ($0, m$) given in section 4 it is a simple matter to calculate the values of β_{0} and β_{-1} as given in Table I and to conclude that $\beta_{n}\left(s-s^{\prime}\right)^{n}=O\left(k^{-2 / 3}\right)$ for $n \neq 0,-1$ and $s-s^{\prime}=O\left(k^{-1 / 3}\right)$.

- 35 -

Table I

n	β_{n}	ρ_{n}	c_{n}
-1	$3 i / 8 k$		
0	1	1	
1	-	$-\frac{2}{3} \frac{\dot{k}}{k}$	1
2	-	$\frac{\ddot{k}}{4 K}-\frac{k^{2}}{12}+\frac{k^{2}}{16}$	0
3	-	-	$-\frac{k^{2}}{24}$
4	-	-	$\frac{K \dot{K}}{24}$
5	-	-	$-\frac{\dot{k}^{2}}{90}-\frac{\kappa \ddot{K}}{80}+\frac{\kappa^{4}}{1920}$

[1] Watson, G. N.
[2] Bremmer, H .
[3] Franz, W. and Depperman, K.
[4] Keller, J. B.
[5] Keller, J. B.
[6] Franz, W.
[7] Levy, B. R., and Keller, J.B.
[8] Rice, S. O.,
[9] Levy, B.R.
'The diffraction of electric waves by the earth and the transmission of electric waves around the earth', Proc. Roy. Soc. (London), Vol. A95, pp. 83-99, Oct. 1918, pp. 546-563, July 1919.
'Terrestrial Radio Waves', Elsevier Publishing Co., New York, N.Y.
'Theorie der Beugung am Zylinder unter Berucksichtigung der Kriechwelle', Ann. der Phys., Vol. 10, No. 6. pp. 361-373, 1952.
'A geometric theory of diffraction', Calculus of Variations and its Applications, Proc. of Symposia in Applied Math., Vol. VIII, pp. 27-52, McGraw-Hill, New York, N.Y., 1958.
'Diffraction by a convex cylinder', I.R.E. Trans. on Ant. and Prop., Symp. on Electromagnetic Wave Theory, Vol. Ar-4, pp. 312-321, July 1956.
'Uber die Greenschen Funktionen des Zylinders and der Kugel', Ze1t. fur Naturf', Vol. 9a, pp. 705-716, 1954.
'Diffraction by a smooth object', Comm. Pure and Appl. Math., 12, No. 1, 159-209, 1959.
'Diffraction of plane radio waves by a parabolic cylinder', Bell Sys. Tech. J., Vol. 33, pp. 417-502, March 1954.
'Diffraction by an elliptic cylinder', New York Univer., Inst. of Math. Sci., Div. of EM Res., Res. Report No. EM-l2l, (1958).
[10] Kazarinoff', N. D. and Ritt, R. K. 'Scalar Diffraction by an elliptic cylinder', Univer. of Michigan, Res. Inst., Scientific report.
[11] Levy, B. R. and Keller, J. B.
[12] Ritt, R. K. and Kazarinoff, N. D. 'Studies in radar cross sections XXX, The theory of scalar diffraction with application to the prolate spheroid', Univer. of Michigan Res. Inst., Scientific Report No. 4, 1958.
[13] Olver, F.W.J.
'Diffraction by a spheroid', New York Univer., Inst. of Math. Sci., Div. of EM Res., Res. Report No. EM-130(1959 'The asymptotic solution of linear differential equations of the second order for large values of a parameter', Phil. Trans. Roy. Soc. of London, Series A, 247, pp. 307-368(1954.

Contract No. AF 19(604)5238
(ONE copy unless otherwise noted)

Commander

Air Research and Davelopment Command
Andrews A1r Force Base
Washington 25, D. C.
4ttn: Major E. Wright, RDTCC
D1rector of Resident Training
$3380 t h$ Technical Training Group
Kessler Air Force Base, Mississippl
Attn: OA-3011 Course
Diractor
Air University Library
Maxwell Air Force Base, Alabama

Commander

Air Force Missils Test Center
Patrick Air Force Base, Florida
Attn: MTB - for classified documents
Attn: M0-411, Technical Library - for unclassfified documents

Tactical A1r Group
Directorata of Research and Davelopment DCS/D
Heedquarters, USAF
Washington, D. C.
4ttn: Major R. L. Stell
Director, Communications and Electronics
Hq. U. S. Air Force
Washington 25, D. C.
4ttn: AFOAC S / E

Commander

Wright Air Development Center
Wright-Patterson Air Force Base, Ohlo
Attn: WCLRS-6, Mr. Portune
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
Flight Resaarch Laboratory
Research Division
Attn: wCRRA

Commanter

Wright Air Development Center
Wright-Patterson Air Force Sase, Ohio
Attna N. Draganjac, WCLNQ-4

Commander

Wright Air Davelopmant Center
Wright-Fatterson Air Force Base, Ohio
Attnt Mr. Paul Springer. WCLPE-5

Commanier

Air Technical Intelligenca Centar
Wright-Fatterson Air Force Base, Ohio
Attn: $A A_{C I N}-4 B i a$

Commander

Rome Air Development Center
Griffiss Air Force Base, New York Attn: RCSSTL-1

Commander

Rome Air Development Center
Griffiss Air Force Base, New York
Attn: Mr. Donald Dakan, RCUE

Commandar

Rome Air Davelopment Center (ARDC)
Griffiss Air Porce Rase, New York
Attni Dr. John S. Burgess, RCE
Commender
Air Force Missile Davelopmsnt Center
Holloman Air Force Base, Naw Mexico
Attn: HDOIL, Technical Library

Director

U. S. Army Ordnance

Ballistic Research Leboratories
Aberdeen Proving Ground, Maryland
Attn: Ballistic Measurements Laboratory
Ballistic Resarch Laboratoriea
Aberdean Proving Ground, Maryland
Attn: Technical Information Branch

Director

Evans Signal Laboratory
Belmar, New Jersey
Attn: Mr. O. C. Woodyard
v. S. Amay Signal Engineering Labs.

Evans Signal Laboratory
Belmar, New Jersey
Attr: Technical Document Center
Massachusetts Institute of Tachnology
Signal Corps Liaison Officer
Cambridge 39, Mass.
Attn: A. D. Bedrosian, Room 26-131
Commanding General, SIGFM/EL-PC
U. S. Army Signal Engineering Labs.

Fort Monmouth, New Jersey
Attnt Dr. Horst H. Kedesdy Deputy Chief, Chem-Physics Pranch

Commander
Army Rocket and Guided Missile Agency
Redstone Arsenal, Alabama
Attn: Technical Library, OrDXR-畀L
Commanding Genersi
U. S. Army Signal En inaering Labs.

Fort Monmouth, New Jersoy
Attn: SIGFM/EL-AT
Department of the Army
Office of the Chief Signal Officer Washington 25, D. C.
Attn: SIGRD-7
Office of Chief Signal Officer
Engineering and Technical Division
Washington 25, D. C.
Attn: SIGNET-5
Guided Missile Fuze Library
Diamond Ordnance Fuze Latoratories
Washington 25, D. C.
Attn: R. D. Hatcher, Chief Microwave
Development Section
(10)Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
(2) Library

Boulder Laboratoriea
National Bureav of Standards
Boulder, Colorado
National Bureau of Standards
Departinent of Commerce
Washington 25, D. C.
Attn: Mr. A. G. McNish
National Bureau of Standards
Department of Commerce
Washington 25, D. C.
Attn: Gustave Shapiro, Chief

> Engineering Electronics Section

Electricity and Electronics Div.
(2) Oifice of Tachnical Serfices

Department of Commerce
Washíngton 25, D. C.
Attn: Technical Reports Section
(thelassified only)
Director
National Security Agency
Washington 25, D. C.
Attn: R/D (331)
(2) Ho. Air Force Cambridge Resaarch Center Laurence G. Henscom Field
Bedford, Mass.
Attn: CROTLR-2

- P. Condon
(5) Hq. Air Force Cambridge Research Center Laurence C. Hanscom Field
Bedford, Mass.
Attnt CROTLS - J. Artastrong
(5) Hq. A1r Force Canbridge Research Center

Laurence 0 . Henscom Field
Bedford, Mass.
Attn: CRRD
Director, Avionics Division (AV)
Burean of Aeronautics
Department of the Navy
Washington $25, D . C$.
Chief, Bureau of Ships
Deportment of the Navy
Weshington 25, D. G.
Attn: Mr. E. Johnston, Code 833E

Commander

U. S. Naval Air Missile Test Center

Point Mugu, Califormia
Attn: Code 366
U. S. Naval Ordnance Laboratory

White Oak
Silver Sprine 10, Maryland
Attn: The Library

Commander

U. S. Naval Ordnance Tast Station

China Lake, California
Attn: Code 753

Librarian

U. S. Naval Poatgraduate School

Montarey, California
Air Forse Developmant Field Represantative
Naval Research Laboratory
Washington $25, D . C$.
Attn: Code 1072

Director

V. S. Naval Research Laboratory

Washington 25, D. C.
Attn: Code 2027
Dr. J. I. Bohnert, Code 5210
U. S. Naval Research Laboratory

Washington 25, D. C. (Unclassified only
Classified to to sent to:
Director
U. S. Naval Hesearch Lahoratory

Attn: Code 5200
Washington 25, D. C.
Commanding Officer and Director
U. S. Navy Underwater Sound Lahoratory

Fort Trumbull, New London, Connecticut
Chief of Naval Research
Dopartment of the Navy
Kashington 25, D. C.
Attn: Code 427
Commanding Oificer and Director
O. S. Navy Electronica Laboratory (Library)

San Dlego 52, Californis
Chief, Bureau of Ordnance
Department of the Navy
hashington 25 , D. C.
Attn: Code Ad3
Chief, Bureau of Ordnance
Department of the Navy
Surface Guided Missile Branch
Washington 25, D. C.
Pten: Coda RaSl-e
Ch1ef, Buresu of Ordnance
Department of the Navy
Washington 25, D. C.
Attn: Fire Control Branch (RaSL)
Department of the Navy
Burean of Asronautics
Technical Data Diviaion, Code 4106
Washington 25, D. C.
Chisf, Buresu of Ships
Department of the Navy
Waahington 25, D. C.
Attn: Code 817B

Comanding officer
U. S. Naval Air Develoment Center

Johnsoille, Pennsylvania
Attn: NADC Library
Comnander
U. S. Naval Air Test Center

Patuxent River, Maryland
Attn: ET-315, Antenna Eranch

Director

Naval Ordnance Laboratory
Corona, California
Commanding officer
U. S. Naval Ordnance Laboratory

Corona, Celifornia
Attn: Mr. W. Horenstein, Division 72
Airborne Instrumenta Lahoratory, Inc.
Jto Old Country Road
Mineols, New York
Attn: Dr. E. G. Fubini, Director Rasearch and Engineering Division

Aircom, Inc.
354. Main Street

Winthrop, Mass.
American Machine and Foundry Company
Electronics Division
infs Commonwealth Avenue
Boston 15, Mass.
Attn: Mrs. Rita Moravesik, Librarian
Andrew Alford, Consulting Engineers
299 Atlantic Avenue
Boston 10, Maaa.
Avion Division
ACF Industries, Inc.
800 No. Pitt Street
Alexandria, Virginis
Attn: Library
Battelle Menorial Institute
505 KIng Avenue
Attn: Wayne E. Rife, Project Leader
Electrical Engineering Division
Columbue 1, Ohio
Bell Aircraft Corporation
Post Office Box One
Buffalo 5, New York
Attn: Eunice P. Hazelton, Librarian
Bell Telephone Laboratories, Inc.
Whippany laboratory
Whippany, New Jersey
Attn: Technical Information Library
Pacific Division
Bendix Aviation Corporation
11 too Sherman Way
North Hollywood, California
Engineering Library
Attn: Peggie Robinson, Librarian
Bendix Radio Division
Bendix Aviation Corp.
E. Joppa Road

Towson 4 , Maryland
Attn: Dr. D. M. Allison, Jr. Director Engineering and Resaarch

Boeing Airplane Company
Pilotlesa Aircraft Division
P.C. Box 3707

Seattle 2h, Washington
Attn: R.R. Barber, Library Supervisor
Boaing Airplane Company
Wichita Division Enginaering Library
Wichits 1, Kansas
Attn: Kenneth C. Knight, Librarian
Booing Airplane Company
Seattle Division
Seattle 1 h , Washington
Attn: E.T. Allen, Library Supervisor
Bjorksten Research Labs, Inc.
P. O. Box 265

Madison, Wiaconsin
Attn: Mrs. Fern B. Korsgard

Convair, A Division of General Dymamics Corp.
Fort Worth, Texas
Attn: K.C. Brown, Division Rasearch Librarian

Convair, A Division of General Dynamics Corp.
San Diego 12, California
Attn: Mrs. Dors B. Burre, Engineering Librarian

Cornell Aeronautical Laboratory, Inc.
山L55 Genesee Streat
Buffalo 21, New York
Attn: Librarian
Dalmo Victor Company
A Division of Textron, Inc.
1515 Industrial Way
Belmont, California
Attr: Msry Ellen Addems, Technical Librarian

Dorne and Margolin, Inc.
29 New York A venue
Westbury, Long Island, N. Y.
Douglas Aircraft Company, Inc.
P.O. Box 200

Long Beach 1, Califormis
Attn: Enginaering Library (C-250)
Douglag Aircraft Co., Inc.
R27 Lapham Street
El Sagundo, California
Attn: Engineering Library
Douglas Aircraft Company, Inc.
3000 Ocean Park Boulevard
Santa Monica, California
Atto: P.T. Cline
Eq. Sec. Refference Files, Eq. Eng. A250

Douglas Aircraft Company, Inc.
2 nno North Memorial Drive
Tulas, Oklahoma
Attn: Engineering Library, D-250
Elactronics Communication, Inc.
1830 York Road
Timonivm, Marvland
Emeraon and Cuming, Inc.
\{ 69 Waahington Street
Canton, Mase.
Attn: Mr. W. Cuming
Emerson Electric Mfg. Co.
8100 West Florissant Avenue
St. Louis 21, Missouri
Attn: Mr. E.R. Breslin, Librarian
Sylvania Elec. Prod. Inc.
Electronic Defense Laboratory
P.C. Box 205 - (Uncl)

Mountain View, Califorma
Attn: Library
Fairchild Aircraft Diviaion
Fairchild Eng, and Airplane Corp.
Hagerstown, Maryland
Attn: Library
Farnoworth Electronics Company
3700 East Pontiac Street
Fort Wayne 1, Indiane
Attn: Technical Library
Federal Telecommunication Labs.
500 Washington Avenue
Nutley 10, New Jersey
Attr: Technical Library
The Gabrisl Electronics
Division of the Gabriel Company
135 Crescent Road
Needham Heights $\%$, Mass.
Attint Mr. Steven Galagan

General Electric Advanced Electronics Center
Cornell University
Ithaca, Naw York
Attn: J. B. Travis
General Electric Company
Electronics Park
Syracuse, New York
Atin: Documents Library, B. Fletcher Building 3-143A

General Pracision Laboratory, Inc.
63 Bedford Road
Pleasant ville, Now York
Attn: Mrs. Mary G. Herbst, Librarian
Goodvear Aircraft Corp.
1210 Masaillon Road
Akron 15, Ohio
Attn: Library D/120 Plant A
Granger Associates
Electronic Systems
966 Commercial Street
Palo Alto, California
Atta: John V. N. Granger, President
Grumman Aircraft Enginearing Corporation
Bethpage, Long Ialand, N. Y.
Attn: Mrs. A. M. Grav, Librarian Engineering Library, Plant No. 5

Tha Rallicraftars Company
Lhol West 5th Avenue
Chicago 2h, Illinois
Attn: Laverne LaGioia, Librarian
Hoffman Laboratories, Inc.
376. South Hill Street

Los Angeles 7, California
Attn: Enginaering Library
Hughes Aircraft Company
Antenna Dopartment
Microwave Laboratory
Building 12, Room 2617
Culver City, California
Attn: M. D. Adcock
Hughea Aircrsft Company
Florence and Teale Streeta
Culver City, California
Attn: Dr. L.C. Van Atta, Associate Director Research labs.

Hycon Eastern, Inc.
75 Cambridge Parkway
Cambridge, Maes.
Attn: Mre. Lois Seulowitz Technical Librarian

Internationsl Business Machines Corp.
Military Products Divaion
500 Madison A venue
New York 33, New York
Attr: Mr. C.F. McElwain, Genersl Manager
Intarnational Bugineas Machinas Corp.
Military Producte Divigion
Owego, Nэн York
Attn: Mr. D. I. Marr, Lihrarian Department 459

International Reaiatance Company
401 N. Broad Street
Philadelphis 8, Pa.
Attn: Research Library
Jansky and Bailey, Inc.
1339 Wisconsin Avenue, N. W.
Washington 7, D. C.
Attn: Mr. Dalmer C. Porta
Dr. Kenry Jasik, Consulting Engineer
298 Shames Drive
Brush Hollow Industrial Park
Westbury, New York
Electromagnatic Research Corporation
711 listh Street, N. W.
Washington 5, D. C.

Lockheed Aircraft Corporation
2555 N. Hollywood Way
California Diviaion Engineering Library
Departmant 72-75, Plant $A-1$, Bldg. 63-1
Burbank, California
Attn: N. C. Harnois
The Martin Company
P. O. Box 179

Denver 1, Colorado
Attn: Mr. Jack McCormick
The Glenn L. Martin Company
Baltimore 3, Maryland
Attn: Engineering Library
Antenna Design Group
Marvland Electronic Manufacturing Corp.
5009 Calvert Road
College Park, Maryland
Attn: Mr. H. Warren Cooper

Mathematical Reviewa
190 Hope Street
Providence 6, Rhode Island
The W. L. Maxson Corporation
460 West 34th Street
New York, N. Y.
Attn: Miss Dorothy Clark
McDonnell Alrcraft Corporation
Lambert Saint-Louis Municipal Airport
Box 516, St. Louis 3, Missouri
Attn: R. D. Detrich, Engineering Library
McMillan Laboratory, Inc.
Erownville Avenue
Ipswich, Massachusetts
Attn: Sacurity Officer, Document Room

Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Virginia
Attn: Engineering Technical Library
Microwsve Development Laboratory 90 Broad Street
Babson Park 57, Masaachusetts
Attn: N. Tucker, Genaral Manager

Microweve Radiation Company Inc.
19223 South Hamilton Streat
Gardena, California
Attn: Mr. Morris J. Ehrlich, Presidant
Chance Vought Aircraft, Ino.
9314 West jefferson Streat
Dallss, Texas
Attn: Mr. H. S. White, Lihrarian
Northrop Aircraft, Inc.
Hawthorne, California
Attn: Mr. E. A. Freitas, Library Dept 3145 1001 E. Broadway

Remington Rand Univ. - Division of Sperry Rand Corporation
1900 West Allagheny Avenue
Philadelphia 29, Pennsylvania
Attn: Mr. John F. McCarthy R and D Salea and Contracts

North American Aviation, Inc.
1221/s Lakewood Boulevard
Downey, Californis
Attn: Engineering Library $495-115$
North American Aviation, Iac.
Los Angeles International Airport
Los Angeles 15, Cslifornis
Attn: Enginearing Technical File
Page Communications Enginears, Inc.
710 Fourteanth Street, Northwest
Washington 5, D. C.
Attn: Librarian
Philco Corporation Research Division
Branch Library
4700 Wissachickon Avenue
Philadel phia W, Pa.
Attn: Mrs. Dorothy S. Collins

Pickard and Burns, Inc
$240 \mathrm{Highland} A$ vemue
Needham 94, Masa.
Attn: Dr. J. T. DeBettencourt
Polytechnfc Research and Developmant Company, Inc.
202 Tillary Street
Brooklyn 1, New York
Attn: Technical Library
Radiation Enginaering Laboratory
Majn Street
Maynerd, Mass.
Attn: Dr. John Puze
Radiation, Inc.
P. O. Drawer 37

Melbourne, Florida
Attn: Technical Library, Mr. M.L. Cox
Radio Corp. of America
RCA Laboratories
Rocky Faint, New York
Attn: P. S. Carter, Lab. Library

RCA Laboratories

David Sarnoff Research Center
Princeton, New Jersey
Attn: Miss Fern Cloak, Librarian Research Library

Radio Corporation of America
Defense Elactronic Projists
Building 10, Floor 7
Camden 2, New Jersey
Attni Mr. Harold J. Schrader Staff Engineer, Organization of Chief Technical Admindstrator
(2) The Ramo-Wooldridge Corporation
P.O. Box 45453 Airnort Station

Los Angeles 45, Californis
Attn: Margaret C. Whitnah, Chief Librarian

Hoover Microwave Co.
9592 Baltimore Avenue
College Park, Marvland
Director, USAF Project RAND
Via: Air Force Liaison Office
The Rand Corporation
1700 Main Street
Santa Monica, California
Rantec Corporation
Calabasaa, California
Attn: Grace Keaner, Office Managar
Raytheon Manufacturing Company
Miselle Systems Division
Bedford, Mass.
Attn: Mr. Irving Goldstein
Raytheon Manufacturing Company Wayland Laboratory, State Road Wayland, Mass.
Attn: Mr. Robert Borts
Raytheon Manufacturing Company
Wayland Laboratory
Wayland, Masa.
Attn: Miss Alice G. Anderson, Librarian

Rapublic Aviation Corporation Farmingdale, Long Island, N. Y.
Attn: Enginearing Lihrary
Thru: Alr Force Plant Representative Reprotic Aviation Corp. Famingdale, Long Island, N. Y.

Rheem Manufacturing Company
9236 East Hall Road
Downey, California
Attn: J. C. Joerger
Trana-Tach, Inc.
P. 9. Box 346

Frederick, Maryland

Ryan Aeronautical Comnany
Lindhergh Field
San Diego 12, California
Attn: Librarv - unclassified
Sapa Laboratories
159 Indien Street
Wellesley 81, Masa.
Sanders Associates
95 Ganal Street
Nashua, New Hampshire
Attn: N. R. Wild, Library
Sandis Corporition, Sandia Base
P.O. Sox 5900, Albu 子uerfue, New Mexico

Attn: Classified Document Division
Sperry Gyroacope Company
Great Neck, Long Island, New York
Attn: Florence W. Turnbull, Engr. Librarian
Stanford Rasearch Instituta
Manlo Park, California
Attin: Library, Englneering Division
Sylvania Electric Products, Inc.
100 First Averue
Walthar 54, Nass.
Attn: Charles A. Thornhill, Report Librarian Waltham Lahoratories Library

Systems Lahoratories Corforation
14852 Ventura Boulevard
Sherman Oaks, Califormia
Attn: Donald L. Margerum
TRC, Inc.
17 Union Square West
New York 3, N. Y.
Attn: M. L. Henderson, Librarian
A. S. Thomas, Inc.

161 Davonshire Street
Boston 10, Mass.
Attr: A. S. Thomas, Presidant
Bell Talaphone Laboratories
Murray Hill
Naw Jersay
Chu Associatas
P. O. Box 3R7

Whitcomb A venue
Littleton, Mass.
Microwave Asqociates, Inc.
Burlington, Mase.
Raytheon Manufacturing Company
Missile Division
Hartwell Rasd
Badford, Mass.
Radio Corporation of America
Aviation Systems Laboratory
225 Crescent Streat
Walthem, Maas.
Lockhaed Aircraft Corporation
Misaile Systems Division Research Library
Box 504, Sunnyvala, California
Attn: Miss Eva Lou Robertson, Chief Librarian

Tha Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Dr. W. C. Hoffman

Commander

AF Office of Scientific Research
Air Resaarch and Developmant Command
14th Streat and Constitution Avenue
Washington, D. C.
Attn: Mr. Ytting, SRY
Westinghouse Electric Corp.
Electronics Division
Friendship Int '1 Airport Box 716
Baltimore 3, Maryland
Attn: Enginaering library

Wheeler Laboratories, Inc.
122 Cutter M111 Raad
Great Neck, New York
Attn: Mr. Harold A. Wheelar
Zenith Plagtica Ca.
Box 91
Gariena, California
Attra: Mr. S. S. Oleasky
Library Geophysical Institute
of the University of Alaska
College
Alaska
University of Califoinia
Rerkeley 4, California
Attn: Dr. Samuel Silver,
Prof. Enginearing Science
Division of Elec. Eng. Electronics Research Lab.

Indversity of Californis

Electronics Research Lab.
332 Cory Hall
Rerikeley 4, Calfornis
Attn: J. R. Whinnery
California Institute of Technolagy
Jet Propulsion Laboratory
4800 Oak Frove Drive
Pasadena, California
Attn: Mr. I. E. Newlan
California Institute of Technology
1201 E. Califormi s Street
Pasadena, California
Attot: Dr. C. Papas
Cernagie Institute of Tachnology, Schenley Park
Plttsburgh 13, Pennsylvania
Attn: Prof. A. E. Heins
Cornell University
School of Elactricel Enginearing
Ithaca, New York
Attn: Prof. G. C. Delman
T'niversity of Florida
Department of Electrical Engineering
Gainesville, Florida
Attn: Prof. M. H. Latour, Library

Linnary

Georgia Institute of Technology
Engineering Experiment Station
Atlante, Georgia
Attn: Mrs. J.H. Crosland, Librarian
Harvard Univeraity
Technical Reports Collection
Gordon McKay Library, 303A Plerce Hall
Oxford Street, Cambridge 3R, Mass.
Attn: Mrs. E.L. Hufschmidt, Librarian
Harvard College Obsarvatory
(0$)$ Garden Street
Cambridge 37, Mass.
Attn: Dr. Fred L. Whippla
Univeraity of Illinois
Documenta Division Library
Urbana, Tllinois
University of Illinois
College of Engineering
Urbana, Illinois
Attn: Dr. P. E. Moyes, Department of Electrical Engineering

The Johns Hopkins University
Homewood Campus
Department of Physice
Baltimore 18, Maryland
Attn: Dr. Donald E. Kerr
Sandia Corporation
Attin: Organization 1423
Sandia Basa
Albutuertue, New Mexico

Applied Physics Laboratory
The Johfe Hopkins Uni veralty
8621 Georgia A venue
Silver Spring, Maryland
Attn: Mr. George L. Seielstad
Massachusetts Institute of Technology
Research Laborstory of Electronics
Room 20B-221
Cambridge 39, Massachusetts
Attr: John H. Hewltt
Massachusetts Institute of Technology
Lincoln Laboratory
P. O. Box 73

Lexington 73, Mass.
Attn: Document Room A-229
University of Michigan
Electronic Defense Group
Engineering Research Institute
Ann Arbor, Michigan
Attn: J. A. Boyd, Supervisor
University of Michigan
Engineering Research Institute
Radiation Laboratory
Attn: Frof. K. M. Siegel
912 N. Main St.,
Ann Arbor, Michigan
University of Michigan
Engineering Research Institute
Willow Run Laboratories
Willow Run Airport
Ypsilanti, Michigan
Attn: Librarian
Univeraity of Minnesota
Minneapolis 14 , Minnescta
Attn: Mr. Robert H. Stumm, Library
Northwestern University
Microwave Laboratories
Evanston, Illinois
Attn: R. E. Beam
Ohio State University Research Found.
Ohio State University
Columbus 10, Ohio
Attin Dr. T.E. Tice Dept. of Elec. Engineering

The University of Oklahoma
Research Institute
Norman, Oklahona
Attn: Frof. C. L. Farrar, Chairman Electrical Engineering

Polytachnic Institute of Brooklyn
Microwave Research Institute
55 Johnson Street
Brooklyn, New York
Attn: Dr. Arthur A. Oliner
Polytechnic Institute of Brooklyn
Microwave Rasearch Institute
55 Johnson Street
Rrooklyn, New York
Attn: Mr. A. E. Laemmel
Syracuse University Research Institute
Collendale Campus
Syracuse 10, New York
Attn: Dr. C. S. Grove, Jr.
Diractor of Engineering Research
The Univeraity of Texas
Elec. Engineering Research Laboratory
P. 2. Box 8026, University Station

Austin 12, Texas
Attn: Mr. John R. Gerhardt
Assistant Director
The Undversity of Texas
Dafense Research Laboratory
Austin, Texas
Attn: Claude W. Horton, Physics Library
University of Toronto
Department of Electrical Enginearing
Toronto, Canads
Attn: Prof. G. Sinclair

Lowell Technological Institute
Rasearch Foundation
P. O. Box 709, Lowell, Maes.

Attn: Dr. Cherles R. Mingins
University of Washington
Department of Elactrical Engineering
Seattle 5, k'asinington
Attn: C. Held, Associate Professor
Stanford University
Stanford, California
Attn: Dr. Chodoraw
Microwave Laboratory
Physicel Science Laboratory
New Mexico College of Agriculture
and Machanic Arts
State College, New Mexico
Attn: Mr. H. W. Hass
Brown University
Department of Electrical Enginearing
Providence, Rhode Island
Attn: Dr. C. M. Angulo
Case Institute of Technology
Cleveland, Ohio
Attn: Frof. S. Seeley
Columbia University
Department of Electrical Engineering
Morningside Heights
New York, N. Y.
4ttn: Dr. Schlasinger
McGill Univeraity
Niontreal, Canada
Attn: Prof. G. A. Woonton
Director, The Eaton Electronics Rosearch Lab.

Purdue University
Department of Electrical Engineering
Lafayette, Indiana
Attn: Dr. Schultz
The Pennaylvania State University
Department of Electrical Enginaering
UnŚversity Park, Pennsylvanie
Oniversity of Pennsvlvania
Institute of Conperative lasearch
3400 Walnut Street
Philadelphia, Pennsylvania
Attn: Dept. of Electrical Engineering
University of Tennessee
Ferris Hall
W. Cumbarland Avenue

Knoxville 16, Tannessea
University of Wisconsin
Department of Electrical Engineering
Madison, Wisconsin
Attn: Dr. Scheibe
Univarsity of Seattile
Department of Electrical Engineering
Saattle, Washington
Attn: Dr. D. K. Reynolds
Wayne University
Detrait, Michigan
Attn: Prof. A. F. Stevenson
Elactronics Research Laboratory
Illinois Institute of Technology
3300 So. Federal Street
Chicago 16, Illinois
Attn: Dr. Lester C. Peach Research Engineer

Advisory Group on Electronic Parts
Room 103
Moore School Building
200 South 33rd Street
Philadelphia L, Pennsylvania

Ionosphere Research Laboratory
Pennsylvania State College
State College, Pennsylvanis
ATTV: Profesaor A. H. Wamick, Director
Institute of Mathematical Sciences
25 Waverly Place
New York 3, Vew York
ATTN: Librarisn
Electronice Division
Rand Corporstion
1700 Main Street
Santa Monica, California
ATTN: Dr. Robert Kalab
National Bureau of Standards
Washington, D. C.
ATTN: Dr. W. K. Saunders
Applied Mathematics and Statistics Lah. Stanford University
Stanford, alifornia
ATTN: Dr. Albert H. Bowker
Department of Physics and Astr nomy
Michigan State College
East Lansing, Michigan
ATTN: Dr. A. Leitner
Uni versitr of Tennessee
Knoxville, Tennessee
ATTN: Dr. Frel A. Ficken
Lebanon Ta?ley College
Annville, Pennsylvania
ATTN: Professor B.H. Bissinger
General Atomic
P. O. Box 608

San Diego 12, Califormia
Attn: fr. Edward ferjuoy
Department of Physice
Amherst College
Amherst, Mass.
ATTN: Dr. Arnold Arons
California Institute of Technology
1201 E. Califormis Street
Pasadens, California
ATTN: Dr. A. Erdelyt
Msthematica Department
Stanford Iniversity
Stanfort, Califnmia
ATTN: Dr. Harold Levine
University of Minnesota
Minneapolis l_{1}, Minnesots
ATTN: Professor Pzul C. Rosentloom
Department of Mathematics
Stanford University
Stanford, Califormia
ATTN: Professor Bernard Epstein
Applied Physics Laboratory
The Johns Hopkins Oniversity
8621 Georgia Avemue
Silver Spring, Marfland
ATTN: Dr. B. S. Gourary
(2) Exchange and Gift Division The Library of Congress washington 25, D. C.

Electrical Engineering Department Massachusetts Institutc of Technology Cambridge 39, Mass.
ATTN: Dr. I. J. Chu
Nuclear Development Associates, Inc.
5 New Street
White Plains, New York
ATTN: Library
California Institute of Technology
Electrical Engineering
Pasadena, Callfornia
ATTN: Dr. Zohrab A. Kaprielian

Dr. Rodman Doll
311 W. Cross Street
Ppsilanti, Michizan
Californis Inst. of Technology
Pasadena, Califormia
ATTN: Mr. Calvin Wilcox
(3) Mr. Robert Erockhurst Woods Hole Oceanographic Institute Woods Mole, Mass.

National Bureau of Standards
Boulder, Colorado
ATTN: Dr. R. Gallet
Dr. Solomon L. Schwebel
3689 Louls Road
Palo Alto, Eellformía
University of Minnesota
The University of Library
Minneapolis $1 h_{4}$, Minnesota
ATTN: Exchange Division
Department of Mathemstics
University of California
Berkelev, California
ATTN: Profes:or Bernari Friedman
Lincoln Laboratory
Masasachusetts Institute of Technology P. D. $B \subset \times 73$

Lexington 73, Massachusetts
ATTN: Dr. Shou Chin Wang, Room C-351
Melpar, Inc.,
3000 Arlington Boulevard
Falls Church, Virginia
ATTN: Mr. K. S. Kelleher, Section Head
Hq. Air Force Cambridge Research Center Laurence G. Hanscom Field
Bedford, Mass.
ATTN: Mr. Francis J. Zucker, CRRD
Hq. Air Force Cambridge Researoh Center Laurence G. Yanscom Field
Bedford, Mass.
4TTNz Dr. Philip Newman, CRRK
Mr. N. C. Gerson
Trapelo Road
South Lincoln, Mass.
Dr. Richard B. Berrar
Systems Development Corp.
2400 Colorado Averne
Santa Monica, Califomia
Columbia University Hudson Laboratories P.D. Box 239
$1 / 5$ Palisade Straet, Dobbs Ferry, N. Y. ATTN: Dr. N. W. Johnson

Institute of Fluid Dymamics
and Applied Mathematics
University of Maryland
College Park, Maryland
ATTN: Dr. Elliott Montroll
Department of Electrical Engineering Washington University
Saint Louis 5, Mo.
ATTN: Professor J. Van Bladel
Department of the Navy
Office of Naval Research Branch Office
1030 E. Green Street
Pasadena 1, California
Brandeis "niversity
Waltham, Mass.
ATTN: Library
General Electric Company
Mictowave Laboratory
Electronice Division
Stanford Industrial Park
Palo Alto, California
ATTN: Library

Smyth Research Associstes
3555 Aero Court
San Diego 3, Californis
ATTN: Dr. John B. Smyth

Electricsl Engineering
Californis Institute of Technology
Pasadena, California
ATTV: Dr feorges G. Welll

Naval Research Laboratory
Washington 25, D. C.
ATTN: Henry J. Passerini, Code 5278A
Dr. Feorge Kear
5 Culver Court
Orinda, Californis
Brooklyn Polytechnic
85 Livingston Street
Brooklyn, New York
ATTN: Dr. Nathan Marcuvitz
Department of Electrical Engineering
Brcoklyn Polytechnic
R5 Livingston Street
Brooklyn, New York
ATTN: Dr. Jerry Shmoys
Department of Mathematics
Univergity of New Mexico
Alhuquerque, New Mexico
ATTV: Dr. I. Kolodner

Mathematics Department
Polytechnic Institute of Brooklyn
Johnson and Jay Street
Brooklyn, New York
ATTN: Dr. Harry Hochetadt
Ballistics Research Laboratory
Aberdeen Proving Grounds
Aberdeen, Maryland
ATTN: Dr. Pullen Keats
Dr. Lester Kraus
1.935 Whit.ehaven Way

San Diego, California
University of Minnesota
Institute of Technology
Minneapolis, Minnesota
Atin: Dean Athelston Spilhaus
Ohio State Univergity
Columbus, Ohio
Attn: Prof. C. T. Tai
Department of Electrical Eng.
Naval Research Laboratories
Washington 25, D. C.
Attn: W. S. Ament, Code 5271
Naval Research I-sboratory
Washington 25, D. C.
Attn: Dr. Leslie f. McCracken, Jr. Code 3933A

Office of Naval Research
Deoartment of the Navy
Attn: Geophysics Branch, Code L16 Washingt on 25, D. C.

Office of Chief Signal Officer
Signal Plans and Operations Division
Attn: SIGOL-2. Room 29
Com. Liaison Br., Radio Prop. Sect. The Fentagon, Washington 25, D. C.

Defence Research Member
Caradian Joint Staff
2001 Connecticut Street
Washington, D. C.
Central Radio Prop. Lab.
Nationsl Bureau of Standards
Attn: Technical Reports Library
Boulder, Colorado
U. S. Weather Pureau
U. S. Department of Comnerce

Washineton 25, D. C.
Attn: Dr. Harry Wexler

DL -6

Federal Communications Commiesion
Washinuton 25, D. C.
Attn: Mrs. Barbara C. Grimes, Librarian
Ipper Atmosphere Research Section
Central Radio Propagation Laboratory
National Bureau of Standards
Bouldar, Colorado
Argonne National Lahoratory
P.?. Rox 299

Lemont, Illinois
Attn: Dr. Hoylande D. Young

Bell Telephone Labs.
Murray Hill, New Jersey
Attn: Dr. S. O. Rice, 3B-203
Carnegie Institute of Washineton
Dept. of Terrestrial Magnetiam
5241 Broad Branch Road, N. W.
washington 15, D. C.
Attn: Hbrary
Georgis Tech Research Institute
225 N. Avenue, N. W.
Attn: Dr. Jemes E. Boyd
Atlanta, Georgia
University of Maryland
College Park, Maryland
Attn: Dr. A. Weinstein
Institute of Fluid Dynsmics
Mrssachusetts Institute of Tech
Lincoln Laboratory
Lexington 73, Massachusetts
4ttn: Prof. Radford, Division
Willow Pun Research Center University of Michigan Willow Run Airport Ypailanti, Michigan Attn: Dr. C. L. Dolph

School of Engineering New York University University Haights
New York, New York
Shell Fellowship Committee of
Shell Companies Foundation, Inc
50 West 5 Jth Street
New York 20, N. Y.
attn: Mr. J. R. Jansgan
Esso Research and Englneerling
P. O. Box 51

Linden, New Jersey
Attn: Mr. C. L. Brown, Manage
Urion Carbida and Carbon Corp. 30 E. L2nd Street New York 17, New York Attn: Mr. L. E. Erlandion

Convair
San Diego 12, California
Attn: Mr. Marvin Stern
Bell Telephons Lsbs., Inc.
1,63 West Straet
New York 13, N. Y.
Attn: Dr. Mervin J. Kelly
Ergineering Library
University of California
405 Hilgard Avenue
Los Angeles 2l4, Californis

Conveir, A Div. of General Dynamics Corp.
Fort Worth 1 , Texas
Attn: F. W. Lavia, Chiof Engineer
Convair. A Div, of General Dynamics Corp.
Pomona, California
Attn: C. D. Parrine
Ass ${ }^{\text {it }}$ Div. Manager, Engin.
Shell Development Comsany
Exploration and Production Ros. Div. 3737 Bellaire Boulevard
Houstion 25, Texas
Attri: Miss Aphrodite Mamoulides
RCA Lahoratories
Princetcn, New Jersey
Attn: Dr. Cherles Folk
Stanford Research Institute
S. Pasadena, Califormia

Attn: Dr. J. Erandstatten
Wayne St,ate University
Kresge-Hooker Science Library
5250 Second Boulevard
Detroit. 2, Nichigan

Major Vernon Lee Dawson
RSDD-OML (MO)
Redstone Arsenal
Huntsville, Alabama
Grumman Aircarft Engineering Corp.
South Oveter Eay Road
Eethpage, Lons Island, N. Y.
Pttn: Dr. Charles Nack
AF Office of Scifntific Resparch
washington 25, D. C.
Attn: Dr. Karl Kanlan
Universitv of California
Radiation Laboratory
F. O. Box ROR

Livermore, California
Attn: Dr. Bernard A. Lippmarn
Depertment of Electrical Engineering
Case Institute of Technolcgy
University Circle
C leveland 6 , Ohio
Attn: Professor Altert E. Collin
Antenna Laboratory
Air Force Cambridge Research Center
Laurence G. Hanscom Field
Bedford, Massechusetts
Rttn: Mr. Philip Blackstone
Mart J. Eeran, CRRD
Force Cambridge Research Center
ence G. Hanecom Field
ord, Nassachusetts
Richard Mack, CRRD
Force Cambridge Research Conter
pnce G. Hanscom Field
ord, Massachusetts
em Development Corporation
Colorado Avenue
a Monica, California
: Library

Convair, A Division of Ganeral Dymamics worp.
Daingerfield, Texas
Attn: J. E. Arnold, Diviaion Manager
Convair, A Division of General Dynamics Corp. Attn: Dr. Sullivan
San Diego 12, Califormia
Attn: R. L. Bayleas, Chiaf Engineer
Convair, a Diviaion of General Dymamica Corp.
San Diego 12, Califormia
Attn: K. J. Bosgart, Chief Enginaer-WS107A

Dr. V. M. Papadopouloa
Dept. of Engineering
Brown Univeraity
Providence, R. I.

```
NYU
ERT-
```



```
IYU
LH7 Kellor, J.B.
c. I Decay exponents and
diffraction coefficients
for surface waves...
```

机 1 8 名 7
N. Y. U. Institute of

Mathematical Sciences
25 Waverly Place
New York 3, N. Y.
\checkmark

[^0]: \dagger The details of the evaluation of the limit are to be found in reference [$[\mathrm{l}]$, p. 14 .

