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The effect of a background rotation on the decay of grid-generated turbulence is
investigated from experiments using the large-scale ‘Coriolis’ rotating platform. A
first transition occurs at 0.4 tank rotation (instantaneous Rossby number Ro ≃ 0.25),
characterized by a t−6/5 → t−3/5 transition of the energy-decay law. After this transition,
anisotropy develops in the form of vertical layers, where the initial vertical velocity
fluctuations remain trapped. The vertical vorticity field develops a cyclone–anticyclone
asymmetry, reproducing the growth law of the vorticity skewness, Sω(t) ≃ (Ωt)0.7,
reported by Morize, Moisy & Rabaud (Phys. Fluids, vol. 17 (9), 2005, 095105). A
second transition is observed at larger time, characterized by a return to vorticity
symmetry. In this regime, the layers of nearly constant vertical velocity become thinner
as they are advected and stretched by the large-scale horizontal flow, and eventually
become unstable. The present results indicate that the shear instability of the vertical
layers contributes significantly to the re-symmetrization of the vertical vorticity at
large time, by re-injecting vorticity fluctuations of random sign at small scales. These
results emphasize the importance of the nature of the initial conditions in the decay
of rotating turbulence.

Key words: rotating flows, rotating turbulence, wave–turbulence interactions

1. Introduction

Turbulence subjected to solid-body rotation is a problem of first importance
for engineering, geophysical and astrophysical flows. Its dynamics is dictated by a
competition between linear and nonlinear effects. Linear effects, driven by the Coriolis
force, include anisotropic propagation of energy by inertial waves (IWs), preferentially
along the rotation axis (hereafter referred to as ‘vertical’ axis by convention), on the
time scale of the system rotation, Ω−1 (Greenspan 1968). Nonlinear interactions,
on the other hand, are responsible for energy transfers towards ‘horizontal’ modes
(Cambon & Jacquin 1989; Waleffe 1993). For infinite rotation rate, i.e. for vanishing
Rossby number, these IWs reduce to Taylor–Proudman columns, corresponding
to a two-dimensional flow (2D) invariant along the rotation axis. Importantly,
this 2D flow is not two-component (2C) in general, because the third (vertical)
velocity component, insensitive to the Coriolis force, behaves as a passive scalar field
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transported by the horizontal flow. This ‘passive’ vertical velocity, originating from the
initial conditions in the case of decaying turbulence, may, however, become ‘active’
through shear instabilities at small scale. This mechanism may have considerable
importance in the nature of the decay and the partial two-dimensionalization
of an initially three-dimensional (3D) turbulence subjected to background
rotation.

This paper reports an experimental study of the influence of the background
rotation on the decay of an initially isotropic turbulence. Turbulence is generated
by translating a grid in a channel mounted on the large-scale ‘Coriolis’ rotating
platform. The aim of this paper is first to characterize, in detail, the decay law of
the energy, in a situation of weak lateral confinement. This situation contrasts with
the previous experiments by Morize, Moisy & Rabaud (2005) and Morize & Moisy
(2006), performed in a rotating tank with an aspect ratio of order one, showing
significant confinement effects. Second, the anisotropy growth is investigated, with the
aim to characterize the influence at large time of the initial vertical fluctuations on
the vertical vorticity statistics.

For turbulence which is subjected to moderate rotation (Rossby number Ro ≃ O(1)),
the linear and nonlinear time scales are of the same order, resulting in a complex
interplay between linear-energy propagation by IWs and anisotropic energy transfers
by nonlinear interactions. This complexity is unavoidable in decaying rotating
turbulence starting from large initial Rossby number, in which the instantaneous
Rossby number decays and crosses O(1) at some transition time. At this time, in the
so-called ‘intermediate-Rossby-number range’ (Bourouiba & Bartello 2007), the effects
of the rotation, namely the anisotropy growth and the cyclone–anticyclone symmetry
breaking, become significant, and accumulate as time proceeds. Accordingly, the
statistical properties of the rotating turbulence at large time are the result of the
turbulence history integrated from the initial state and may therefore depend on
the details of the initial state. Generic properties should, however, be expected if the
initial state is 3D isotropic turbulence with Ro ≫ 1, which is the situation examined
in this paper.

Because of the fast growth of the vertical correlation due to IW propagation
(Jacquin et al. 1990; Squires et al. 1994), confinement along the vertical axis plays a
significant role in the dynamics of rotating turbulence, therefore comparisons with
homogeneous turbulence in idealized unbounded systems should be made carefully.
One consequence of the vertical confinement is a preferential alignment of the axis
of the vortices normal to the walls, therefore reinforcing the 2D nature of the large
scales, as observed by Hopfinger, Browand & Gagne (1982) and Godeferd & Lollini
(1999). Second, confinement selects a set of discrete resonant inertial modes (Dalziel
1992; Maas 2003; Bewley et al. 2007), which may couple to the small-scale turbulence.
Third, an extra mechanism of dissipation of the IWs takes place in the boundary
layers, acting on the Ekman time scale h(νΩ)−1/2, where h is the confinement scale
along the rotation axis, which may dominate the energy decay at large time (Phillips
1963; Ibbetson & Tritton 1975; Morize & Moisy 2006).

The most remarkable feature of rotating turbulence is the spontaneous emergence
of long-lived columnar vortices aligned with the rotation axis (Hopfinger et al. 1982;
Smith & Waleffe 1999; Longhetto et al. 2002). Nonlinear mechanisms (Cambon &
Scott 1999; Cambon 2001) and linear mechanisms (Davidson, Staplehurst & Dalziel
2006; Staplehurst, Davidson & Dalziel 2008) have been proposed to explain the
formation of these columnar structures, and the interplay between the two is still a
matter of debate. The recent numerical simulations of Yoshimatsu, Midorikawa &
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Kaneda (2010) suggest that both effects should be actually considered to account for
the formation of these vertical structures.

A striking property of these vortices for intermediate Rossby numbers is the
symmetry breaking between cyclones and anticyclones, observed both in forced
(Hopfinger et al. 1982; Smith & Lee 2005) and decaying (Bartello, Métais &
Lesieur 1994; Smith & Waleffe 1999) turbulence. This symmetry breaking has
received considerable interest in recent years. It has been quantified in terms of
the vorticity skewness, Sω = 〈ω3

z〉/〈ω2
z〉3/2 (where ωz is the vorticity component along

the rotation axis), which is found to be positive for Ro ≃ 1 (Bartello et al. 1994;
Morize et al. 2005; Bourouiba & Bartello 2007; van Bokhoven et al. 2008; Staplehurst
et al. 2008; Yoshimatsu et al. 2010). In decaying rotating turbulence, starting from
initial conditions such that Ro ≫ 1, a power-law growth has been observed in the form
Sω ≃ (Ωt)0.6 ± 0.1 by Morize et al. (2005), suggesting a build-up of vorticity skewness
acting on the linear time scale Ω−1.

Several explanations have been proposed for the cyclone–anticyclone asymmetry
growth, although none provides a complete description of the experimental data. First,
in a rotating frame, for a given vertical strain, ∂uz/∂z, the vortex stretching of the
axial vorticity, (2Ω + ωz)∂uz/∂z, is larger for cyclonic than for anticyclonic vorticity.
Gence & Frick (2001) have shown that, for isotropic turbulence suddenly subjected
to a background rotation, Sω grows linearly at short time, i.e. for t ≪ Ω−1. At larger
time, the growth is expected to be slower, because the strain ∂uz/∂z is reduced by
the rotation. Second, anticyclonic vortices are more prone to centrifugal instabilities.
This effect can be readily shown for idealized axisymmetric vortices, for which the
generalized Rayleigh criterion in a rotating frame (Kloosterziel & van Heijst 1991)
is more likely to become negative for anticyclonic vorticity. Sreenivasan & Davidson
(2008) have actually shown, using a model of axisymmetric vortex patches, that
cyclonic vortices first develop columnar structures, while anticyclonic vortices become
centrifugally unstable.

Interestingly, a return to vorticity symmetry has been reported at large times
(smaller Ro values) by Morize et al. (2005, 2006). This decrease may originate both
from internal (2D) diffusion or Ekman-pumping-induced diffusion of the vortices.
On the contrary, vortex merging would lead to an increase in Sω, similarly to what
is observed for the vorticity flatness in 2D turbulence (McWillams 1984; Carnevale
et al. 1991). The decrease in Sω was first attributed to confinement effects, more
specifically the nonlinear Ekman pumping on the rigid walls. However, this was
questioned by the results of van Bokhoven et al. (2008), in which a decrease of Sω is
also observed at large times, but in a numerical simulation with periodic boundary
conditions, and hence, without Ekman pumping. According to these authors, the
decrease in Sω is an effect of the phase mixing of IWs, which damps all triple
correlations of turbulent fields in the limit of low Rossby numbers.

The non-monotonic time evolution of the vorticity skewness is confirmed by the
present experiments, although the boundary conditions significantly differ from those
of Morize et al. (2005). The present results suggest an additional contribution for
this decrease at large times: as time proceeds, the vertical velocity, initiated by the
3D initial conditions, forms vertically coherent layers transported by the large-scale
quasi-2D flow. The horizontal straining of these layers by the large-scale structures
produces smaller scales, in a process similar to the enstrophy cascade in 2D turbulence.
This mechanism reinforces the horizontal gradient of the vertical velocity, making
these layers prone to inertial instabilities, producing small-scale horizontal vorticity.
This horizontal vorticity produces in turn random vertical vorticity, resulting in a
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Figure 1. Side view (a) and top view (b) of the experimental set-up. The grid is translated from
left to right along ex . The angular velocity is Ω = Ωez, with Ω > 0 (anticlockwise rotation).
The PIV camera is located either at C1 or C2, for measurements in the horizontal and vertical
planes, respectively. The dashed squares show the corresponding imaged areas.

reduction of Sω at large times. This re-injection of symmetric vorticity fluctuations
at small scale is thought to be a generic mechanism in decaying rotating turbulence,
provided the initial state contains a significant amount of vertical velocity, which is
the case for an initial 3D isotropic turbulence.

This paper is organized as follows. Section 2 describes the experimental set-up, the
particle-image-velocimetry (PIV) measurements and discusses the separation between
the mean flow and the turbulence. The influence of the background rotation on the
energy decay and the time evolution of the non-dimensional numbers are presented in
§ 3. The anisotropy growth and the formation of the vertical layers are characterized
in § 4. The structure and dynamics of the vertical vorticity field is described in § 5,
with emphasis on the cyclone–anticyclone asymmetry growth and the influence of the
shear instability of the vertical layers. Finally, § 6 summarizes the different regimes
observed during the decay.

2. Experimental set-up and procedure

2.1. Experimental apparatus

The experimental set-up, shown in figure 1, consists of a 13 m × 4 m water channel,
filled to a depth of h = 1 m, mounted on the Coriolis rotating platform. Details about
the rotating platform may be found in Praud, Fincham & Sommeria (2005) and
Praud, Sommeria & Fincham (2006), and only the features specific to the present
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Rotation period T (s) ∞ 120 60 30
Symbol � � � �

Angular velocity Ω (rad s−1) 0 0.052 0.105 0.209
Grid Rossby number Rog ∞ 20.4 10.2 5.1
Ekman layer thickness δE (mm) ∞ 4.4 3.1 2.2
Ekman time scale tE (s) ∞ 4370 3090 2185

Table 1. Flow parameters. The symbols are used in the following figures.

experiments are described here. One set of experiments without rotation, and three
sets with rotation periods of T = 30, 60 and 120 s, have been carried out (see table 1).
The angular velocity Ω =2π/T is constant within a precision of �Ω/Ω < 10−4. The
parabolic elevation of the surface height induced by the rotation along the channel
length is 0.3 cm (respectively, 4.5 cm) for the lowest (respectively, highest) rotation
rate.

Turbulence is generated by horizontally translating a vertical grid, of width
equal to the channel width, at a constant velocity Vg =30 cm s−1 over a
distance of Lx =9.1 m along the channel (see supplementary movie 1 available at
journals.cambridge.org/flm). The streamwise, spanwise and vertical axes are denoted
x, y and z, respectively, with ex , ey and ez being the corresponding unit vectors. The
grid is made of square bars of width b = 30 mm, with a mesh size of M =140 mm
and a solidity (ratio of closed to mesh area) σ = 1 − (1 − b/M)2 =0.38. The mesh is
significantly smaller than the grid cross-section, ensuring weak vertical confinement
effects at small time (h/M = 7), and negligible lateral confinement effects even at
large time (Ly/M = 28). The grid is hung from a carriage moving above the free
surface. The velocity of the grid increases linearly from 0 to Vg , remains constant in
the central part, and decreases linearly back to zero at the end of the channel. The
time at which the grid crosses the centre of the channel, where the measurements
are performed, defines the origin t = 0. Because of the evaporation, a temperature
difference may be present between the ambient air and the water, resulting in residual
convection cells of maximum velocity of order 1 mm s−1 in the absence of forcing and
rotation. However, the mixing induced by the grid translation homogenizes the fluid
temperature and breaks these residual convective motions, therefore thermal effects
could be safely neglected during most of the decay.

The initial conditions of an experiment are characterized by the grid Reynolds and
Rossby numbers based on the grid velocity and grid mesh,

Reg =
VgM

ν
, Rog =

Vg

2ΩM
, (2.1)

where ν is the water kinematic viscosity. The grid Reynolds number is constant for
all the experiments, Reg = 4.20 × 104, while the grid Rossby number lies in the range
5.1–20.4 (table 1). The Rossby number based on the bar width ranges between 24
and 96, so the turbulent energy production in the near wake of the grid is expected
to be weakly affected by the rotation (Khaledi, Barri & Andersson 2009).

2.2. Particle image velocimetry

A high-resolution PIV system, based on a 14 bits 2048 × 2048 pixels camera
(PCO.2000), was used in these experiments. Water was seeded by Chemigum P83
particles, 250 µm in diameter, carefully selected to match the water density to better
than 10−3. The corresponding settling velocity, of 0.03 mm s−1, is much smaller than
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the typical fluid velocity. The flow was illuminated by a laser sheet of thickness 1 cm,
generated by a 6 W Argon laser beam and an oscillating mirror. Two fields of view
have been used as follows.

(a) A centred square area of 1.3 m × 1.3 m in the horizontal plane (ex, ey) at mid-
height (z = 0.5m). The camera is located 4 m above the horizontal laser sheet (C1 in
figure 1), and the area is imaged through the free surface.

(b) A 1.1 m × 1 m area in the vertical plane (ex, ez) in the middle of the channel.
The plane is imaged through a window in the lateral wall (C2 in figure 1), so that the
measurements are not affected by free surface disturbances.

Spatial calibration was achieved by imaging a reference plate at the location of the
laser sheet. For the horizontal measurements, the surface elevation of the parabolic
surface is less than 2 mm on the imaged area, so the optical distortion could be safely
neglected.

Up to six decay experiments of 1 h (7700 grid time scales M/Vg) have been carried
out for each rotation rate and, for each decay, 400 image pairs are recorded. Since the
characteristic velocity decreases in time, the delay between the two successive images
of a pair is made to gradually increase during the acquisition sequence, from 125 ms
to 2 s, so that the typical particles displacement remains approximately constant
throughout the decay. The time delay between image pairs is also gradually increased
during the decay, from 2 to 20 s. The results are ensemble averaged over Nr = 6
realizations in the horizontal plane and Nr = 4 in the vertical plane. Although this is
enough to achieve statistical convergence at small times, when the correlation length
is significantly smaller than the imaged area, the convergence becomes questionable
at large times, when the imaged area contains on average one large-scale structure or
less.

The PIV computations have been performed using the software Davis (LaVision),
and the statistical analysis of the velocity fields using the PIVMat toolbox under
Matlab. Interrogation windows of size 32 × 32 pixels, with an overlap of 16 pixels,
were used. For this window size, the corresponding particle displacement resolution
is better than 0.1 pixel (Raffel et al. 2007), yielding a velocity signal-to-noise ratio of
50. The final velocity fields are defined on a 128 × 128 grid, with a spatial resolution
�x =10 mm.

Due to this moderate spatial resolution, the velocity field inside the Ekman
boundary layer, of thickness δE =(ν/Ω)1/2 ≃ 2.2–4.4mm (see table 1), cannot be
resolved. Assuming isotropy in the bulk of the flow, which is valid only in the non-
rotating case or at small time, the smallest turbulent scale can be estimated by the
Kolmogorov scale η =(ν3/ǫ)1/4, where the dissipation rate ǫ can be computed from
the energy decay, ǫ ≃ −(3/2)∂(u′

x)
2/∂t (energy decays are detailed in § 3). The scale η is

of order of 0.4 mm ≃ �x/25 at t ≃ 20M/Vg , for all rotation rates, so that the smallest
scales are not resolved at the beginning of the decay. Accordingly, the measured
velocity gradients at scale �x underestimate the actual ones (Lavoie et al. 2007).
Velocity gradients can be considered as well resolved when �x < 3η (see e.g. Jimenez
1994), which is satisfied for t > 350M/Vg only. At the end of the decay, η is of the
order of 8 mm for Ω = 0, in which case the gradients can be accurately computed
from the PIV measurements.

Finally, we note that when the flow is imaged from above, an additional source
of noise is the refraction through the disturbed free surface, originating either
from the wake of the grid or from residual vibrations of the rotating platform.
These perturbations generate an additional apparent particle displacement, δxFS =
(1 − 1/nw) (h/2) ∇h, where nw is the water refraction index, ∇h is the surface gradient
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and h/2 is the path length of the refracted light rays (see, e.g. Moisy, Rabaud &
Salsac 2009), and hence a velocity contamination of order |δxFS |/δt , with δt the inter-
frame time. This velocity contamination has been estimated by imaging a set of fixed
particles stuck on a rigid plate and imaged under the same experimental conditions.
It was found that the measurements were significantly altered by this contamination
during the first 10 s (≃ 20M/Vg) after the grid translation, but were reliable at larger
time.

2.3. Flow visualizations

First insight into the influence of the background rotation on the turbulence decay
may be obtained by comparing the horizontal and vertical vorticity fields shown in
figure 2, in the non-rotating case (a,c) and in an experiment rotating at Ω = 0.10 rad s−1

(b,d ). These snapshots are obtained 360 s after the grid translation (770M/Vg). At this
time, the turbulent Reynolds number is 400 and 700 for the non-rotating and rotating
cases, respectively, and the macro-Rossby number for the rotating case is 0.06 (these
numbers are defined in § 3.4).

While the vorticity fields ωz and ωy for the non-rotating cases are similar in the two
measurement planes, as expected for approximately isotropic turbulence, they strongly
differ in the rotating case. Supplementary movies 2 and 3 of ωz and ωy clearly show
the two essential features of the turbulence decay in the rotating frame, namely the
anisotropy growth in the vertical plane and the cyclone–anticyclone asymmetry in the
horizontal plane.

The vertical vorticity, ωz, shows strong large-scale vortices, mostly cyclonic (in red),
surrounded by shear layers. In the vertical plane, the spanwise vorticity, ωy , shows
vertically elongated structures of alternating sign, originating from layers of ascending
and descending fluid. The dominant contribution of ωy comes from the vertical shear,
∂uz/∂x, except near the top and bottom boundary layers where the horizontal shear
∂ux/∂z is dominant.

2.4. Large-scale flows and Reynolds decomposition

Translating a grid in a closed volume is ideally designed to produce homogeneous
turbulence with zero mean flow. However, reproducible flow features are found over
successive realizations (Dalziel 1992), therefore a careful separation between the
ensemble average and the turbulent component is necessary. From the time series of
the spatially averaged velocity components shown in figure 3, three large-scale flows
can be identified:

(i) Large-scale circulation (LSC): The grid translation generates a slight mean flow
along x > 0 in the centre of the channel, of initial amplitude ≃ 2 × 10−2Vg , which
recirculates along the lateral walls (out of the measurement area). Moreover, because
of the boundary condition asymmetry between the solid boundary at z = 0 and the
free surface at z =h, this streamwise flow has a significant residual shear ∂〈Ux〉/∂z > 0,
of initial amplitude ≃ 0.03Vg/h ≃ 10−2 s−1.

(ii) Gravity wave (GW): As the grid is translated along the channel, it pushes a
significant amount of water near the endwall, which initiates a fast longitudinal GW
(sloshing mode). Its wavelength, λ, is twice the channel length, and its period, TGW , is
7.3 s.

(iii) Inertial wave (IW): When rotation is present, the mean horizontal shear induced
by the grid excites an IW, with a period which is half of the rotation period of the
tank, TIW = T/2. This IW essentially consists of the oscillating shearing motion of
two horizontal layers of thickness h/2, compatible with a mode of vertical wavevector
(Dalziel 1992; Maas 2003). In the horizontal plane, the signature of this IW is a
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Figure 2. Horizontal and vertical snapshots of the velocity fields taken at t = 360 s ≃ 770M/Vg

after the grid translation, without rotation (a,c) and with rotation at Ω = 0.10 rad s−1 (b, d). For
the rotating cases, this time corresponds to six tank rotations. The imaged area is 1 m × 1 m.
The colour shows the vorticity normal to the plane, ωz(x, y) and ωy(x, z), ranging from −0.1 to

0.1 rad s−1. Note the presence of a mean flow in the direction of the grid motion (along ex), with
a marked mean shear ∂〈Ux〉/∂z, which is of constant sign for Ω = 0 (c), but oscillating for
Ω 
=0 (d ).

uniform anticyclonic oscillation, visible by the phase shift of π/2 between the mean
velocity components 〈Ux〉 and 〈Uy〉. Its amplitude is of the order of UIW ≃ 10−2Vg

(respectively, 5 × 10−4Vg) at the beginning (respectively, end) of the decay.
In the non-rotating case, the mean residual shear persists over large times. Although

very weak, it becomes unstable and eventually acts as a source of turbulence. On
the other hand, when rotation is present, the oscillation of this large-scale shear is
found to have a stabilizing effect. This stabilization is probably due to the fact that
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Figure 3. Time evolution of the ensemble and spatially averaged streamwise (—) and spanwise
(- -) velocity components, for Ω = 0.1 rad s−1 (rotation period T = 60 s). The fast oscillation, of
period TGW ≃ 7.3 s, is a longitudinal GW and the slow oscillation, of period TIW = T/2=30 s,
is an anticyclonic IW.

the growth time for the shear instability, of the order of (∂〈Ux〉/∂z)−1, is typically
100 times larger than the oscillation period, π/Ω . As a consequence, at each half
period of oscillation, the growth of the shear instability is inhibited (Poulin, Flierl &
Pedlosky 2003), resulting in a reduction of the turbulence production.

The measured velocity field U can be written as the sum of the three large-
scale flows ULSC , UGW and UIW described above and the turbulent field of interest
u. Keeping only the dominant spatial dependences of these contributions, one
has

U
(n)(x, y, z, t) ≃ ULSC (z, t)ex + UGW (t) cos

(

2πt

TGW

)

ex

+ UIW (z, t)

[

cos

(

2πt

TIW

)

ex + sin

(

2πt

TIW

)

ey

]

+ u
(n)(x, y, z, t), (2.2)

where n is the realization number (the phase origin of the GW and IW flows
are not written for simplicity). Since the three large-scale flows are essentially
uniform translations, they can be readily subtracted from the measured velocity
fields, providing that the turbulent scale is significantly smaller than the field of view.
For the measurements in the horizontal plane, one has

u(n)
α (x, y, t) = U (n)

α (x, y, t) − 〈U (n)
α (x, y, t)〉x,y,e, (2.3)

with α = x, y. The subscripts indicate the type of average: 〈·〉x,y for the spatial average
over the x- and y-directions and 〈·〉e for the ensemble average over the independent
realizations. Similarly, for the measurements in the vertical plane, the average 〈·〉x,z,e

is computed. In order to reduce the statistical noise due to the limited number of
realizations, a temporal smoothing is also performed. The window size of the temporal
smoothing is chosen equal to 5 % of the elapsed time, t , corresponding to a number
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Figure 4. Total and turbulent kinetic energy (streamwise variance). (a) Ω = 0, (b) Ω =
0.10 rad s−1 (T = 60 s). The oscillations in the rotating case correspond to IW flow, of period
TIW = T/2=30 s.

of consecutive velocity fields of Nt = 1 at the beginning (i.e. no average) up to Nt = 20
at the end of the decay.

The statistics in the following combine the spatial average over the 1282 PIV
grid points, the ensemble average over the Nr = 4 or 6 realizations (for the vertical
and horizontal measurements, respectively) and the temporal smoothing over Nt = 1
to 20 consecutive fields. The resulting number of samples ranges between 8 × 104

and 1.6 × 106. When there is no ambiguity, single brackets 〈·〉 denote the three
types of averages, and the root mean square (r.m.s.) is denoted as A′ = 〈A2〉1/2. The
convergence of the averages is determined by computing the standard deviation
between the realizations. The standard deviation for the velocity statistics grows from
5 to 30 % during the decay (a wrong separation between the mean flow and turbulence
increases the uncertainty when the scale of motion becomes larger than the field of
view). The standard deviation for the velocity-gradient statistics is approximately
15 % throughout the decay, indicating that small-scale quantities are less affected by
the mean-fluctuation decomposition of the flow.

3. Energy and integral scales

3.1. Energy decay

The time evolution of the streamwise velocity variance for the total flow, 〈U 2
x 〉, and

the turbulent flow, 〈u2
x〉 = 〈(Ux − 〈Ux〉)2〉, are shown in figure 4. In the absence of

rotation (figure 4a), the energy of the mean flow clearly dominates the total energy,
by a factor up to 10 for t ≃ 1000M/Vg . On the other hand, when rotation is present
(figure 4b), the turbulence energy is very close to the total energy, confirming that the
mean flow is significantly reduced in the presence of rotation.

In the non-rotating case, once the mean flow is subtracted, the turbulent energy
decays as t−n up to t ≃ 400M/Vg , with n ≃ 1.22 ± 0.05. This decay exponent turns out
to be very close to the Saffman (1967) prediction n= 6/5 for unbounded turbulence
(in the early stage of decay, the vertical confinement may indeed be neglected, as
shown in § 3.3). The streamwise variance, 〈u2

x〉, is approximately 1.4 times larger than
the two spanwise variances 〈u2

y〉 and 〈u2
z〉, reflecting the usual residual anisotropy of

grid turbulence (Comte-Bellot & Corrsin 1966). For t > 400M/Vg , the shallower decay
probably originates from the turbulence production by the mean residual shear. This
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Figure 5. Time evolution of the variance of the three velocity components. The variances
〈u2

x〉 and 〈u2
y〉 are computed from the horizontal PIV fields (camera C1) and 〈u2

z〉 from the
vertical PIV fields (camera C2), for non-simultaneous experiments. (a) Ω = 0. The arrow at
tshear indicates the time after which the turbulent energy production by the residual mean shear
becomes significant. (b) Ω = 0.05 rad s−1. The arrow at t∗ indicates the transition between the
t−6/5 isotropic decay and the t−3/5 decay affected by the rotation.

transition time, denoted tshear in figure 5(a), is indeed of the order of the shear time
scale, (∂Ux/∂z)−1 ≃ 250 s. The ordering of the three velocity variances for t ≫ tshear ,
〈u2

x〉 > 〈u2
y〉 > 〈u2

z〉, actually confirms the shear-dominated nature of the turbulence in
the non-rotating case at large times (Tavoularis & Karnik 1989).

In non-dimensional form, the decay law of the streamwise variance for isotropic
turbulence is written (neglecting possible time origin shift)

〈u2
x〉

V 2
g

≃ A

(

tVg

M

)−6/5

. (3.1)

A best fit for t < tshear yields a decay coefficient A ≃ 0.045 ± 0.005, a value in good
agreement with the literature for grid turbulence (Mohamed & LaRue 1990). This
indicates that, in spite of the residual mean shear generated by the forcing, the decay
of the turbulent kinetic energy is close to that of classical grid turbulence for t < tshear ,
suggesting a negligible coupling between the mean flow and the small-scale turbulence
at small time.

The time evolution of the three velocity variances in the rotating case is shown
in figure 5(b) for Ω = 0.05 rad s−1. At early time, the three curves are very close to
the reference case Ω = 0 (figure 5a), confirming that the rotation has no measurable
effect at large Rossby numbers. After a crossover time t∗ ≃ 100M/Vg , the decay of the
two horizontal variances 〈u2

x〉 and 〈u2
y〉 becomes shallower, showing a clear reduction

of the energy decay by the rotation. On the other hand, the vertical variance 〈u2
z〉

first follows the horizontal variance for a short time after the crossover time t∗,
but sharply decreases soon after, reflecting a growth of anisotropy. Since here the
turbulence production by the mean shear is essentially suppressed by the background
rotation, this departure from the t−6/5 decay and the resulting anisotropy growth can
now be interpreted as a pure effect of the rotation.

3.2. Crossover between the two decay regimes

In order to characterize the influence of the rotation on the transition time t∗, the
decays of the streamwise velocity variance 〈u2

x〉 are compared in figure 6 for the four
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Figure 6. Time evolution of the streamwise velocity variance 〈u2
x〉, for the non-rotating and

the three rotating experiments. The solid line shows A(tVg/M)−6/5 and the dashed lines show

AΩRo
−3/5
g (tVg/M)−3/5. The transition between the non-rotating (t−6/5) and rotating (t−3/5)

decay laws occurs at t∗, indicated by the three vertical arrows for each rotation rate. For
t > tshear the turbulent energy production by the residual mean shear becomes significant in
the non-rotating case.

sets of experiments. The crossover time t∗ decreases from 100M/Vg to approximately
30M/Vg as Ω is increased, which turns out to be approximately 0.4 tank rotation.
The small value of t∗ found for the highest rotation rate indicates that the turbulent
energy production in the wake of the grid may be indeed already affected by the
background rotation in this specific case. The decay curve in this case is indeed
particular, showing unexpected large fluctuations.

In the limit of large rotation rate, the energy decay can be modelled by assuming
that the energy transfer rate scales as the linear time scale Ω−1. Based on this
argument, Squires et al. (1994) proposed, using dimensional analysis, the following
asymptotic decay law:

〈u2
x〉

V 2
g

≃ AΩRo−3/5
g

(

tVg

M

)−3/5

, (3.2)

with AΩ being a non-dimensional constant. Although the elapsed time is moderate
here, the decay curves in figure 6 are actually compatible with this shallower decay
(3.2). Fitting the data for Ω = 0.05 and 0.10 rad s−1 yields AΩ ≃ 0.020 ± 0.005 (the
data at Ω = 0.20 rad s−1 being excluded for the reason given before). Accordingly, the
crossover time t∗ between the non-rotating and the rotating decay laws is obtained
by equating (3.1) and (3.2),

t∗Vg

M
≃

(

A

AΩ

)5/3

Rog ≃ (5 ± 1)Rog, (3.3)

yielding the values 100, 50 and 25 for the three rotation rates, which reproduce
correctly the observed t∗ (see the arrows in figure 6). Expressing this crossover



Decay laws, anisotropy and cyclone–anticyclone asymmetry 17

time (3.3) in terms of the rotation rate is consistent with a transition occurring at
fixed fraction of tank rotation,

Ωt∗

2π
≃ (5 ± 1)/4π ≃ 0.4 ± 0.1. (3.4)

It is remarkable that the transition between the two regimes t−6/5 and t−3/5 is
sufficiently sharp, so that the analysis of Squires et al. (1994) can be recovered to
a correct degree of accuracy. A similar transition in the form t−10/7 → t−5/7, with
again a factor 2 between the non-rotating and the rotating decay exponents, has
been observed in the recent simulation of van Bokhaven et al. (2008), the discrepancy
with the present exponents being probably associated with different energy content
at small wavenumber.

3.3. Integral scales

We now turn to the time evolution of the integral scales in the horizontal plane,
defined as

Lαα,β(t) =

∫ r∗

0

Cαα,β(r, t) dr, (3.5)

from the two-point correlation function of the α velocity component along the
β-direction

Cαα,β(r, t) =
〈uα(x, t)uα(x + reβ, t)〉

〈u2
α〉 . (3.6)

The truncation scale r∗ in (3.5) is defined such that Cαα,β(r
∗) = 0.2. This truncation

is introduced because of the poor convergence of the correlation for separations r

approaching the image size. Although this definition systematically under-estimates
the true integral scales (defined as r∗ → ∞), the trends observed from the truncated
integral scales are expected to represent the evolution of the true ones. We first focus
here on the horizontal scales, which is useful for the definition of the instantaneous
Reynolds and Rossby numbers, and we describe the vertical scales in § 4.3.

The time evolution of the longitudinal integral scale, averaged over the two
horizontal directions x and y (denoted here 1 and 2 by convention), Lf = (L11,1 +
L22,2)/2, is plotted in figure 7. This integral scale shows little influence of the
background rotation, in agreement with the observations of Jacquin et al. (1990),
with Lf (t) ≃ t0.35 ± 0.05 for t < 1000M/Vg , for all rotation rates. The scatter at larger
time is probably a consequence of the inadequate subtraction of the mean flow, which
may occur when the size of the largest vortices becomes comparable to the imaged
area.

Dimensional analysis actually predicts different growth laws for Lf in the non-
rotating and rotating cases (Squires et al. 1994),

Lf

M
≃ B

(

tVg

M

)2/5

(t ≪ t∗),

Lf

M
≃ BΩRo1/5

g

(

tVg

M

)1/5

(t ≫ t∗),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.7)

with B and BΩ non-dimensional constants. Surprisingly, although the t−6/5 → t−3/5

transition at t = t∗ is evident in the energy decay curves (figure 6), there is no evidence
for the equivalent t2/5 → t1/5 transition for Lf in figure 7. Within the experimental
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uncertainty, a single power law t2/5 actually provides a reasonable description for the
growth of Lf both in the non-rotating and in the rotating cases.

3.4. Instantaneous Reynolds and Rossby numbers

The instantaneous Reynolds number, and the macro- and micro-Rossby numbers
(Jacquin et al. 1990), are finally defined as

Re(t) =
u′

x Lf

ν
, Ro(t) =

u′
x

2Ω Lf

, Roω(t) =
ω′

z

2Ω
. (3.8)
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The time evolution of these numbers is plotted in figure 8(a,b). After a short period
of sharp decay similar to the non-rotating case, the Reynolds number in the rotating
cases shows a very weak decay in the range t∗ < t < 3000M/Vg , ranging from 500 to
1300 as the rotation rate is increased. Also shown in this figure are the decay laws
expected from (3.1), (3.2) and (3.7),

Re(t) ∝ Reg

(

tVg

M

)−1/5

(t ≪ t∗),

Re(t) ∝ RegRo−1/10
g

(

tVg

M

)−1/10

(t ≫ t∗).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.9)

The micro-Rossby number, Roω, shown in figure 8(b), takes values about 10 times
larger than Ro throughout the decay (note that Roω may be underestimated at small
times because of the limited PIV resolution). This moderate ratio indicates that the
range between the large scales dominated by the rotation and the small scales is
indeed limited for the Reynolds number of the present experiments.

The joint decay and growth laws for the velocity and integral scale actually lead to
a remarkably simple decay law for the macro-Rossby number Ro(t). Combining again
(3.1), (3.2) and (3.7) shows that, for t < t∗, the nonlinear time scale τnl = Lf (t)/u′

x(t)
is simply proportional to the elapsed time, t , without dependence on the initial grid
time scale M/Vg . As a consequence, the Rossby number Ro = (2Ωτnl)

−1 is simply a
function of the number of tank rotations,

Ro(t) ∝ Rog

(

tVg

M

)−1

∝ (2Ωt)−1 (t ≪ t∗),

Ro(t) ∝ Ro1/2
g

(

tVg

M

)−1/2

∝ (2Ωt)−1/2 (t ≫ t∗).

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3.10)

At the transition t = t∗, which is reached after a fixed number of rotations, the Rossby
number is indeed found approximately constant, Ro(t∗) ≃ 0.25 (see the vertical ticks
at t∗ in figure 8b). This value is in correct agreement with the transitional Rossby
numbers reported by Hopfinger et al. (1982) and Staplehurst et al. (2008).

It is also of interest to characterize this transition in terms of the micro-Rossby
number, Roω(t), which is often used in the literature. For t ≪ t∗, assuming again
isotropic turbulence, the decay law of Roω can be inferred from the relation between
the vorticity r.m.s., the velocity r.m.s. and the dissipation rate,

ǫ = −1

2

∂u
′2

∂t
= −3

2

∂u′2
x

∂t
= νω

′2 = 3νω′2
z . (3.11)

Combining the isotropic decay law (3.1) with (3.11) gives

Roω(t) =

√

3

5
A1/2Re1/2

g Rog

(

tVg

M

)−11/10

(t ≪ t∗), (3.12)

yielding a scaling exponent very close to that of Ro(t). Evaluating Roω at the transition
t ≃ t∗, using (3.3), finally yields

Roω(t∗) ≃
√

3

5
(5 ± 1)−11/10A1/2Re1/2

g Ro−1/10
g . (3.13)

Accordingly, no strictly constant micro-Rossby number is expected at the transition,
although the dependence on the rotation rate, as Ω1/10, is very weak (Ω is varied
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by a factor of 4 only in the present experiment). As shown by the vertical ticks in
figure 8(b), Roω takes values which actually turn out to be approximately constant at
the transition, Roω(t∗) ≃ 1.8. Interestingly, this value is close to the empirical threshold
reported by Morize et al. (2005), below which the energy spectrum and the velocity
derivative skewness were found to depart from the classical Kolmogorov predictions.
Although the macro-Rossby number is probably a more relevant parameter to describe
this transition, the similar Reynolds number of the two experiments explains the
similar values of Roω found at the transition.

4. Dynamics of the anisotropy

4.1. Visualization of the vertical layers

We now focus on the growth of anisotropy in the vertical plane (x, z). Figure 9
shows a sequence of six snapshots of the velocity field and spanwise vorticity, ωy ,
after the transition t > t∗, for Ω = 0.20 rad s−1 (see also supplementary movie 3).
The anisotropy can be visually detected from the first snapshot, and the presence
of vertical layers of ascending or descending fluid becomes evident after eight tank
rotations (figure 9c). Lower rotation rates show similar layers (see also figure 2d ),
although thicker and less intense than for Ω = 0.20 rad s−1. These layers are difficult
to infer from the velocity field itself, because of the superimposed strong horizontal
flow, but they clearly appear through the surrounding layers of nearly constant ωy

of alternate sign. These layers of vertical velocity are consistent with a trend towards
a three-component two-dimensional (3C2D) flow, with vanishing vertical variations
of the velocity field, but non-zero vertical velocity uz. Although compatible with the
Taylor–Proudman theorem in an unbounded domain, this 3C2D flow organization
is surprising here, because of the boundary layer conditions which should select a
two-component two-dimensional flow (with uz = 0). The persistence of these layers
with non-zero uz is discussed in § 4.4.

As time proceeds, the vertical layers become thinner and more vertically coherent
(note that since only the intersection of the layers with the measurement plane can
be visualized, the apparent thickness may overestimate the actual one). At large time
(figure 9e,f ), although these layers are nearly coherent from the bottom wall up to the
free surface, they are not strictly vertical, but rather show wavy disturbances. These
disturbances have amplitude and characteristic vertical size of the order of the layer
thickness, suggesting the occurrence of a shear instability (discussed in § 4.5). We will
examine in § 5 the consequence of this instability on the dynamics and statistics of
the vertical vorticity field.

4.2. Decay of the vertical velocity and anisotropy growth

The time evolution of the vertical velocity variance, u′2
z = 〈u2

z〉x,z,e, and the isotropy
ratio, u′

z/u
′
x , plotted in figure 10(a,b), show a complex behaviour. Here, the spatial

average is computed only in the core of the flow, excluding layers of thickness 0.1h

near the bottom wall and the free surface. Similarly to the horizontal variance (see
figure 6), the vertical variance for the rotating cases first departs from the reference
curve t−6/5 of the non-rotating case, and follows a shallower decay which is compatible
again with a t−3/5 law, at least during an intermediate range. Although the t−6/5 → t−3/5

transition is not as sharp as for the horizontal variance, perhaps because of the limited
statistics achieved for the measurements in the vertical plane, the transition time is
compatible with the one determined for 〈u2

x〉, corresponding to Ωt∗/2π ≃ 0.4 tank
rotation. After Ωt/2π ≃ 2, the vertical variance follows a significantly faster decay,
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(a)   t = 60 s = 2 T (b)   t = 120 s = 4 T

(c)   t = 240 s = 8 T (d)   t = 480 s = 16 T

(e)   t = 960 s = 32 T ( f )   t = 1920 s = 64 T

 

0–2 +2

ωy /ω′
y

Figure 9. Sequence of six snapshots of the velocity and spanwise vorticity, ωy , in the vertical

plane (x, z) for Ω = 0.20 rad s−1. The imaged area is 1 m × 1 m. The grid is translated from
left to right, and the time origin t = 0 is defined as the grid goes through the centre of the
imaged area. The colour range is normalized by the r.m.s. ω′

y computed for each time.
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Figure 10. (a) Time evolution of the vertical velocity variance 〈u2
z〉, for the non-rotating and

the three rotating experiments. (b) Isotropy factor u′
z/u

′
x for the three rotating experiments, as

a function of number of tank rotations. The vertical arrow indicates the transition between
the t−6/5 and the t−3/5 decay regimes at Ωt∗/2π ≃ 0.4.

whereas the horizontal variance still decays as t−3/5, yielding a growing anisotropy
in the vertical plane. Although the formation of vertical structures is evident in the
spanwise vorticity field ωy (figure 9), the anisotropy remains moderate when expressed
in terms of the ratio of velocity variances. This ratio reaches a weak minimum between
0.6 ± 0.2 and 0.4 ± 0.15 only, after 10–30 tank rotations, depending on the rotation
rate. This confirms that the velocity field remains significantly three-component,
although the dynamics of the large scales becomes nearly two-dimensional (i.e. z-
invariant). Interestingly, the ratio u′

z/u
′
x for the different rotation rates collapses in the

anisotropy growth regime when plotted as a function of the number of tank rotations
Ωt/2π.

An intriguing feature of figure 10(b) is the reverse trend u′
z/u

′
x → 1 observed at large

time. This apparent return to isotropy is associated with the flattening of the decay
of 〈u2

z〉 at large time, visible in figure 10(a). A similar behaviour is obtained for the
Reynolds stress anisotropy in the numerical simulations of Morinishi, Nakabayashi &
Ren (2001). It is in apparent contradiction with the clear anisotropy visible in
figure 9(e,f ), confirming that the ratio of velocity variances is not an appropriate
indicator of anisotropy.

4.3. Integral scales in the vertical plane

In order to relate the evolution of the vertical velocity variance to the formation,
thinning and instability of the vertical layers, we now focus on the statistical geometry
of these layers. For this, we have computed the three integral scales L11,3, L33,1 and
L33,3, using definitions (3.5) and (3.6) with α, β = 1, 3. L11,3 characterizes the trends
towards two-dimensionality, L33,3 the vertical coherence of the layers and L33,1 the
thickness of the layers. No reliable measurement of L11,1 could be obtained from the
vertical fields, because of the ambiguity of the subtraction of the horizontal LSC flow
at large time: large-scale vortices having their axis out of the measurement plane
produce strong horizontal velocity which, if subtracted, yield an unphysical decrease
of L11,1. Here again, in (3.6), the depth-average excludes lower and upper layers
over a thickness of h/10, in order to avoid boundary effects. In the extreme case of
an unbounded z-invariant 2D flow, the vertical correlations would be Cαα,3(r) = 1,
yielding Lαα,3 = ∞.
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Figure 11. Time evolution of the normalized integral scales Lαα,β/M computed in the vertical

plane, for Ω = 0.10 rad s−1. For tVg/M > 400, L11,3 is no longer defined, because the correlation
C11,3 does not decrease sufficiently for large vertical separations.

The time evolution of the three integral scales is shown in figure 11, in the case
Ω = 0.10 rad s−1. At short time, the longitudinal integral scale L33,3 is, as expected,
larger than the two transverse ones (one has L33,3 = 2L11,3 =2L33,1 for isotropic
turbulence). The most spectacular effect is the rapid growth of L11,3, characterizing
the vertical correlation of the horizontal velocity, which is a clear signature of the two-
dimensionalization of the large scales of the flow. However, this integral scale could
not be computed for tVg/M > 400 because the correlation C11,3(r) does not decrease
below the chosen threshold 0.2. Although the limited range of rotation rate prevents
a clear check of the scaling of this divergence time, we can note that it occurs roughly
at a constant number of tank rotations. Assuming that energy is contained at scale
L11,1 ≃ M at early time, and that eddies grow vertically by wave propagation, L11,3 is
expected to increase by an amount of L11,1 at each tank rotation. Accordingly, the
divergence of L11,3 is expected after a number of tank rotations of order of h/M ≃ 7,
where h is the channel depth, in qualitative agreement with the present observations.
After the divergence of L11,3, the vertical correlation of the vertical velocity remains
constant until the end of the experiment, with L33,3 ≃ 2M , indicating a significant,
although finite, vertical coherence of the ascending and descending layers. Note that,
however, even strictly coherent thin layers of constant velocity would lead to finite
integral scale L33,3, because the tilting of the layers by the oscillating shear of the IW
flow strongly reduces the vertical correlation as the layers become thinner.

A remarkable feature of figure 11 is the sharp decrease of the horizontal correlation
of the vertical velocity, described by L33,1, for tVg/M > 2000 (corresponding to
Ωt/2π ≃ 16–24 tank rotations), and its subsequent saturation to the very low value
L33,1 ≃ 0.2M ≃ 30 mm at large time. In the final stage of the decay, the strong
anisotropy is characterized by the following non-trivial ordering (see figures 7
and 11):

L33,1 ≪ L33,3 ≃ L11,1 ≪ L11,3. (4.1)

The low asymptotic value of L33,1 suggests that, in the final regime, the vertical-
velocity fluctuations have a well-defined characteristic scale in the horizontal direction,
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Figure 12. Time evolution of the Ekman ratio, ρE , (4.2), showing that the vertical velocity
variance is significantly larger than the expected Ekman-pumping velocity.

i.e. there is no global vertical motion at scales larger than the thickness of the layers.
This final value of L33,1, which provides an estimate for the average thickness of
the layers, is found to slightly decrease, from 0.23M to 0.17M , as Ω is increased,
suggesting that the thinning of the layers induced by the horizontal straining motion
due to the large-scale vortices is stronger at higher rotation rate.

4.4. Origin of the vertical layers

Figure 10 raises the issue of the origin of the non-negligible vertical-velocity
fluctuations found at large time. Although the Taylor–Proudman theorem predicts a
3C2D flow in the limit of low Rossby numbers, boundary conditions at z = 0 and
h should actually select a 2D2C flow with zero vertical velocity at large time, apart
from weak Ekman-pumping effects.

We can first note that the measured vertical velocity variance, even at large time,
remains comfortably larger than the one expected for the Ekman pumping induced by
the horizontal flow. According to the linear-Ekman-pumping theory, a quasi-2D field
of vertical vorticity r.m.s., ω′

z, should lead to a characteristic vertical-velocity r.m.s. of

u′E
z = δEω′

z/2 for z ≃ δE (Greenspan 1968), where δE is the Ekman-layer thickness (see

§ 2.2). The discrepancy between the actual u′
z and the Ekman-pumping estimate, u′E

z ,
may be therefore measured by the ratio

ρE =
2u′

z

δEω′
z

. (4.2)

In figure 12, this ratio starts from about 10 at small time, and slightly increases up to
about 20 at larger time, confirming that the Ekman pumping can be neglected in the
present experiments.

Another possibility for this vertical velocity is the onset of a residual thermal
convection motion at large time. Although the mixing induced by the grid translation
homogenizes the flow temperature, a slight cooling of an upper layer of water may be
induced by the evaporation, triggering convection cells in the depth of the channel.
Although this effect cannot be ruled out in the present experiments, we note that
such convection cells are not visually detected at the end of the decay for Ω = 0, so
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we believe that, if present, thermal convection should not play a significant role for
Ω 
= 0.

A remaining possibility for the vertical velocity found at large time is the initial
vertical fluctuations induced by the grid. The 2D2C selection by the boundary
conditions should be at work only after a sufficient time for the boundary conditions
to influence the interior of the flow, and this time is apparently not reached in
our experiments. Three relevant time scales may be considered for this problem:
the vertical advection time, τh = h/u′

z, the viscous time across the layer thickness,
τv = L2

33,1/ν, and the recirculation time in the Ekman boundary layers (Ekman time),

τE = h/(νΩ)1/2. In our experiment, at large times (tVg/M > 2000), all the three time
scales are found of the same order: τh ≃ 2000 s (from figure 10a), τv ≃ 1000 s (from
figure 12) and τE ≃ 2000–4000 s (see table 1). Since the three time scales are of the
order of the experiment duration itself (3600 s), it is conceivable that the boundary
conditions are only marginally felt by the vertical velocity in the shear layers.
Accordingly, these layers may be seen as a vestige of early vertical fluctuations induced
by the grid and advected by the horizontal large-scale flow, suggesting that even longer
experiments would be necessary to observe the selection of a pure 2D2C flow.

4.5. Stability of the vertical layers

Although the strong anisotropy of the flow in the final stage is well characterized by
the ordering of the the integral scales (4.1), the ratio of the velocity variances remains
close to 1 (figure 10b). More surprisingly, the quasi-isotropy of the velocity also holds
at small scales, as shown by the following two velocity gradient isotropy factors:

ω′
y

ω′
z

and
√

5
γ ′

z

ω′
z

, (4.3)

where γ ′
z = 〈(∂uz/∂z)2〉1/2 is the r.m.s. of the vertical strain rate. The vertical strain rate

plays an important role, as it is responsible for the stretching of the absolute vertical
vorticity. In isotropic turbulence, both quantities are equal to 1 (the second equality
follows from the classical isotropic relation ǫ = 15νγ ′2

z = νω
′2 = 3νω′2

z , where ǫ is the
dissipation rate). For a 2D flow with arbitrary vertical velocity, one has γz =0, whereas
ωy =0 is true only for a two-dimensional two-component flow. As a consequence,
the two isotropy factors may be considered as signatures of the dimensionality and
componentality of the small scales, respectively (Cambon, Mansour & Godeferd 1997).

Figure 13 shows that the two velocity gradient isotropy factors first slowly decrease
according to the linear time scale Ω−1, reaching a moderate minimum of about 0.5
at the largest rotation rate. The time of maximum anisotropy for these quantities is
close to that for u′

z/u
′
x , and here again the collapse of the curves with respect to the

linear time scale no longer applies during the increase at large time. This plot shows
that, in the final stage, the small scales are both 3D and 3C, although not necessarily
isotropic.

Assuming that the vertical velocity, uz, behaves as a scalar field passively advected
by the large-scale horizontal flow, provides a qualitative explanation for the increase
of ω′

y/ω
′
z at large time. As shown in figure 14(a), a layer of ascending fluid uz > 0

in a horizontal strain field, for instance in the vicinity of a large vortex, is elongated
along one direction and compressed along the other one, so it becomes thinner. In
this process, uz is approximately conserved, but its horizontal gradient ∇huz increases,
producing horizontal vorticity ωx and ωy which may reach, and even exceed, the
vertical vorticity, ωz.
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Figure 14. Sketch showing the thinning and instability of the vertical layers of vertical velocity
advected by the horizontal flow. (a) Nearly vertical layer of ascending fluid, uz > 0, strained
in the vicinity of a large cyclone ωz > 0. (b) The layer becomes unstable, producing horizontal
vortices. (c) These horizontal vortices produce random horizontal motion, and hence vertical
vorticity of arbitrary sign.

The increase in γ ′
z , on the other hand, may be a consequence of the instability

of these vertical layers. If the inertial time scale of the jets, (∇huz)
−1 ≃ L33,1/u

′
z,

remains smaller than the dissipation time scale, L2
33,1/ν, the jets may undergo shear

instabilities, producing horizontal vortices (sketched in figure 14b), as suggested by
the visualizations in figure 9(e, f ). This condition is actually satisfied: the Reynolds
number, Rel , based on these layers, defined as the ratio of the two time scales, is
written

Rel =
L33,1u

′
z

ν
=

L33,1

Lf

u′
z

u′
x

Re, (4.4)

where Re is the instantaneous Reynolds number defined in (3.8). With L33,1/Lf ≃ 0.1,
u′

z/u
′
x ≃ 0.5, and Re ranging between 300 and 1300 in the final period of the decay
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(see figure 8), one has Rel ≃ 10–102, which is actually sufficient for a shear instability
to develop. Little influence of the background rotation is expected on this shear
instability, since the vertical velocity is unaffected by the Coriolis force (the resulting
instability pattern, involving horizontal velocity, may, however, be affected by the
rotation). The resulting wavy layers break the vertical invariance of uz, thus producing
vertical strain γ ′

z of the order of the vorticity ω′
y , in agreement with figure 13.

All these results suggest that the flow structure at large time is fully three-
dimensional and three-component, with isotropy factors (4.3) close to that of 3D
isotropic turbulence, although the large scales are highly anisotropic, as described by
the ordering of the integral scales (4.1).

5. Cyclone–anticyclone asymmetry

5.1. Dynamics of the cyclones and anticyclones

We finally turn to the structure of the vertical vorticity field in the rotating case,
focusing on the issue of the cyclone–anticyclone asymmetry. The dynamics of the
horizontal flow is illustrated by six snapshots in figure 15 for t > t∗ (see also the
supplementary movie 2). At the beginning of the decay, the vorticity field consists
of small-scale disordered fluctuations (figure 15a,b), which gradually evolve into
a complex set of tangled vortex sheets and vortices (figure 15c). A set of well
defined, nearly circular, cyclones gradually emerges and separates from the turbulent
background (figure 15d ). Anticyclones are also encountered, but they are weaker and
less compact than the cyclones. Once formed, visual inspections of the movies indicate
that the anticyclones are not specifically unstable compared to the cyclones. This
observation suggests that the cyclone–anticyclone asymmetry originates essentially
from an enhanced vortex stretching of the cyclonic vorticity operating at early time,
and not from a preferential instability of the anticyclones at large time.

At large time, the size of the cyclones grows, and merging of cyclones is frequently
encountered, as illustrated in figure 15(e). No event of anticyclone merging is observed,
probably because of their too small density. At the same time, a background of small-
scale-vorticity fluctuations of random sign appears (figure 15e, f ) and, at the end
of decay, the flow essentially consists of these small-scale symmetric fluctuations
advected by the large scale, mostly cyclonic, vortices.

5.2. Growth of vorticity skewness

The gradual structuring of the vorticity field is described by the vorticity skewness
and flatness factors,

Sω =
〈ω3

z〉
〈ω2

z〉3/2
, Fω =

〈ω4
z〉

〈ω2
z〉2

(5.1)

(where the brackets denote horizontal and ensemble average), which are plotted in
figure 16. Both Sω and Fω show a non-monotonic behaviour, with a collapse in the
growth regime when plotted as a function of the number of tank rotations Ωt/2π.
Note that the residual oscillations visible at small times are associated with the
large-scale IW flow (see § 2.4), of period Ωt/2π =1/2. As for the isotropy factors, the
re-scaling with Ω−1 no longer holds during the decrease of Sω and Fω at large time.

For t < t∗, the vorticity skewness, Sω, is essentially zero, within an uncertainty of
±10−1. For t > t∗, it grows according to the power law

Sω ≃ 0.45

(

Ωt

2π

)0.7

, (5.2)
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(a)   t = 60 s = 2 T (b)   t = 120 s = 4 T 

(c)   t = 240 s = 8 T (d )   t = 480 s = 16 T 

(e)   t = 960 s = 32 T ( f )   t = 1920 s = 64 T 

 

0–2 +2

ωz/ω′
z

Figure 15. Sequence of six snapshots of the velocity and vertical vorticity fields, ωz, measured
in a horizontal plane (x, y) at mid-height for Ω = 0.20 rad s−1. The imaged area is 1.3 m ×
1.3 m, representing 4.6 % of the tank section. The tank rotation is anticlockwise. Positive and
negative vorticity indicate cyclones (in red) and anticyclones (in blue), respectively. The colour
range is normalized by the r.m.s. ω′

z computed for each time.
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Figure 16. Vorticity skewness, Sω , and (b) vorticity flatness, Fω , as a function of the number
of tank rotation Ωt/2π. In (a), the dashed line shows the fit 0.45(Ωt/2π)0.7. In (b), the dashed
line indicates the value Fω = 3 corresponding to a Gaussian field.

which is in remarkable agreement with the one reported by Morize et al. (2005), both
concerning the exponent and the numerical pre-factor. Although in both experiments
turbulence is generated by the translation of a grid, the details of the geometry differ
in a number of respects: here the grid velocity is normal to the rotation axis and the
aspect ratio is significantly lower (h/Ly = 0.25 instead of 1.3). The collapse of Sω for
the two experiments is a clear indication of a generic behaviour of this quantity in
decaying rotating turbulence (Morize et al. 2006b).

The peak values of Sω, between 1.5 and 3 for increasing Ω , are significantly
larger than those obtained in the experiments of Morize et al. (2005) and Staplehurst
et al. (2008), and in the direct numerical simulation of van Bokhoven et al. (2008). The
corresponding peaks of Fω, between 8 and 18, are much larger than usually measured
in non-rotating turbulence at similar Reynolds number (see e.g. Sreenivasan &
Antonia 1997), an indication of the strong concentration of vorticity in the core
of the cyclones.

5.3. The decay of vorticity skewness at large time

For larger times, when the flow consists mostly of isolated large-scale cyclones, Sω

starts decreasing back to zero, while Fω recovers values around four, similar to the
beginning of the decay. The important scatter in the decay is due to the limited
sampling: at large times, the number of strong vortices per unit of imaged area is
of order of 1, so the statistics become very sensitive to events of vortices entering or
leaving the field of view.

There is no general agreement concerning the decrease of Sω at large time. It was
attributed to confinement effects by Morize et al. (2005), namely the diffusion induced
by the Ekman pumping on the cyclonic vortices. This suggestion was motivated by the
fact that the time tmax of maximum Sω was approximately following the Ekman time
scale, tmax ≃ 0.1h(νΩ)−1/2. Fitting the times of maximum skewness for the present
data would actually give similar values, although the spread of the maximum of
Sω and the limited range of Ω prevent a clear check of the Ω−1/2 scaling here.
However, the fact that the Ekman pumping is shown to have no significant effect
in the present experiment (see § 4.4) makes this interpretation questionable. The role
of the confinement in the decay of Sω is also questioned by the numerical data
of van Bokhoven et al. (2008), who have reported a decrease of Sω at large times
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Figure 17. Time evolution of the horizontal integral scale of vertical vorticity, Lω.

in a homogeneous turbulence with periodic boundary conditions, and hence without
Ekman pumping. Note that no decrease in Sω was reported in the numerical simulation
of Bourouiba & Bartello (2007) and in the experiment of Staplehurst et al. (2008),
perhaps because of their limited temporal range. The measurements of the latter were
restricted to three tank rotations, whereas the decrease of Sω starts typically after 10
rotations here and in Morize et al. (2005).

Apart from diffusion effects, another possible contribution for the decrease in Sω

is based on the fact that vorticity is a small-scale quantity, whereas the cyclone–
anticyclone asymmetry is defined by structures of increasing size as time proceeds.
In particular, it is observed that the flow outside the cyclones is not smooth, but is
made of small scale, approximately symmetric, vorticity fluctuations. These vorticity
fluctuations could originate from the instabilities of the vertical shear layers strained
by the horizontal large-scale flow, as described in § 4.5. The horizontal vortices
resulting from this instability induce a horizontal straining flow (figure 14b), which
may itself be unstable and produce vertical vorticity of random sign at small scale
(figure 14c). Accordingly, there is a possibility for the vorticity skewness to return to
zero at large time, although the large-scale field remains dominated by a set of large
cyclones.

The characteristic size of the vortical structures may be estimated from the
horizontal integral scale of the vertical vorticity, Lω = (Lω

33,1 + Lω
33,2)/2. Here the

integral scales for the vorticity are defined similarly to those for the velocity, by
modifying (3.5) as

Lω
33,β =

∫ r∗

0

〈ωz(x, t)ωz(x + reβ, t)〉
〈ω2

z〉 dr (5.3)

(note that the truncation scale r∗ is not essential here, because the vorticity correlation
decreases sufficiently rapidly). Figure 17 shows the characteristic increase and decrease
of Lω when rotation is present, whereas it monotonically increases in the absence
of rotation. The decrease occurs at tVg/M ≃ 2000 for all rotation rates, which
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coincides with the sharp decrease in L33,1 (figure 11) and the isotropy factors
(figure 13), and Lω reaches values of order 0.2M ≃ 30 mm, similar to those found
for L33,1. This suggests that the vertical vorticity field is dominated, at large time,
by the small-scale fluctuations induced by the instabilities of the vertical shear
layers.

The role of the symmetric small-scale vorticity fluctuation in the decrease in Sω must
be addressed carefully, because the vorticity field computed from the PIV is affected
by measurement noise. If we assume that the PIV noise can be simply described
as an additive symmetric noise, it should imply a trivial reduction of Sω. This is a
delicate issue, because the scale Lω of these vorticity fluctuations is only slightly larger
than the PIV resolution (§ 2.2). However, the temporal coherence of these small-scale
fluctuations advected by the large scales is evident at the end of the supplementary
movie 2, whereas PIV noise would generate vorticity patterns essentially uncorrelated
in time. The temporal coherence of the fluctuations may also be inferred from the
four snapshots shown in figure 18, where sets of arbitrary chosen vorticity patterns
(marked in dashed ellipses) can be easily tracked in time, confirming that they are
essentially advected by the large-scale motions.

5.4. Skewness of the filtered vorticity field

In order to characterize more precisely the influence of the measurement noise on
the vorticity statistics, we have computed Sω from the filtered velocity ũ obtained by
convolution of u with a Gaussian kernel of size rf ,

ũ(x, y, t; rf ) =

∫∫

u(x ′, y ′, t)
1

2πr2
f

e−((x−x′)2+(y−y′)2)/2r2
f dx ′ dy ′. (5.4)

In practice, the integral is restricted to a square of size 6rf .
The time evolution of the skewness of the filtered vorticity, Sω̃, is shown in

figure 19(a) for various filter sizes rf , in the case Ω = 0.20 rad s−1. In the growth
regime, increasing the filter size leads to a decrease in Sω, showing that the vorticity
asymmetry is essentially contained at the smallest scales. In this situation, although
the measured Sω may underestimate the actual one because of the finite resolution
of the PIV measurement, the vorticity skewness truly reflects the cyclone–anticyclone
asymmetry at the smallest scales. On the other hand, after the peak of Sω, the
ordering of the curves is reversed, so that filtering the vorticity field now increases
the skewness, showing that now the asymmetry is carried by vortices at larger scales.
This is consistent with figure 18, where a large cyclone containing small-scale vorticity
fluctuations is shown (white circle). However, it must be noted that although the peak
of Sω is shifted to larger times, a decrease in Sω is still observed. The effect of the
filtering is further illustrated in figure 19(b), where Sω̃ monotonically decreases as
rf is increased at t =8T , whereas it shows a non-monotonic behaviour at t = 90T .
Interestingly, in this latter case, the filter size for which Sω̃ is maximum at a given
time provides a rough estimate of the size of the vortices responsible for the cyclone–
anticyclone asymmetry.

One may conclude that, although Sω provides a suitable description of the vorticity
asymmetry during the growth regime, when the characteristic size of the vortices
corresponds to the diffusive scale (the ‘Kolmogorov scale’ modified by the rotation),
it is no longer appropriate as the vortex size grows at larger time, and in that case Sω

is strongly reduced by the small-scale symmetric vorticity fluctuations. This does not
imply, however, that filtering at even larger scales would totally inhibit the decrease
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(a)  t = 50.0 T (b)  t = 50.3 T

(c)  t = 50.7 T (d)  t = 51.0 T

–0.05

0.05

ωz (s
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Figure 18. Sequence of four ωz-snapshots in the horizontal plane (x, y) at large time, showing
the advection of the small-scale symmetric vorticity by the large-scale horizontal motion
(Ω = 0.10 rad s−1, t ≃ 64M/Vg). Each image is separated by 20 s = T/3, and the field of view
is 1.3 m × 1.3 m. The two ellipses track some arbitrary vorticity pattern in time. The angular
velocity of the cyclonic structure in (c) (white circle) is Ωc ≃ 0.009 rad s−1, corresponding to a
local Rossby number of Ωc/Ω =0.09.
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Figure 19. (a) Time evolution of the skewness of the filtered vorticity field, Sω̃ , for different
filter size, rf , for Ω = 0.20 rad s−1. (b) Vorticity skewness as a function of the filter size, at
times t = 8T (before the peak of Sω) and t = 90T (after the peak).
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of Sω, since dissipation (either bulk viscous dissipation or through Ekman pumping)
may be also responsible for the reduction in Sω.

A more suitable statistical quantity, based for instance on the transverse velocity
increments, should provide a better description of the cyclone–anticyclone asymmetry
at large time. A vortex census approach, such as introduced in 2D turbulence
(McWilliams 1990) would also help to decide which contribution dominates the de-
crease in Sω. This approach is, however, difficult with the present data, because at large
time the average number of vortices per field of view is of the order of or less than one.

6. Conclusion

The present experiment aims to focus on the transition at Rossby number Ro ≃ O(1)
which occurs in the course of the decay of grid turbulence, initially approximately
homogeneous and isotropic, in a rotating frame. Emphasis is on the energy decay,
anisotropy growth and asymmetry between cyclonic and anticyclonic vorticity. The
different steps of the decay can be summarized as follows.

(a) During the first 0.4 tank rotation (between 25M/Vg and 100M/Vg), the
instantaneous Rossby number, Ro, is larger than 0.25 and turbulence is essentially
unaffected by the background rotation. Once the large-scale mean flow and inertial
oscillations are subtracted, the turbulent energy decays similarly to the classical t−6/5

law of isotropic unbounded turbulence.
(b) After 0.4 tank rotation, Ro < 0.25, and the first effects of the rotation are

triggered. Provided the grid Rossby number is large enough, the energy decay in
this regime is found to be compatible with the Ω3/5t−3/5 law proposed by Squires
et al. (1994). Both the large-scale isotropy factor u′

z/u
′
x and the small-scale ones ω′

y/ω
′
z

and γ ′
z/ω

′
z depart from their isotropic value, although reaching only a moderate value

of about 0.5. On the other hand, the integral scales become strongly anisotropic,
with a marked vertical correlation of the horizontal velocity. A cyclone–anticyclone
asymmetry develops by preferential vortex stretching of the cyclonic vorticity, and
is well described by a power-law growth of the vorticity skewness as Sω ∝ (Ωt)0.7,
consistent with the previous findings of Morize et al. (2005).

(c) Finally, a last regime is observed for t > 2000M/Vg (corresponding to 10–30 tank
rotations), in which the spanwise vorticity field is dominated by thin layers, which are
prone to shear instabilities. These instabilities produce small-scale spanwise vorticity,
resulting in an apparent return to isotropy for the ratio of the velocity or vorticity
components. However, the flow structure remains strongly anisotropic, as revealed
by the characteristic ordering of the integral scales. A remarkable consequence of
the instability of these vertical shear layers is that it re-injects horizontal velocity
disturbances, and hence vertical vorticity with random sign, at small scales.

The mechanism of re-injection of symmetric vorticity fluctuations in the last regime
is found to contribute significantly to the reduction of the vorticity skewness, Sω,
although the large-scale vortices still remain preferentially cyclonic. These results
suggest that the 2D versus 3D nature of the initial conditions have a critical
importance in the asymptotic state of decaying rotating turbulence. For initial isotropic
turbulence, as is approximately produced in the wake of a grid, the initial vertical
fluctuations, which represent 1/3 of the initial turbulent kinetic energy, are temporarily
stored by the horizontal quasi-2D motions and play no role in its dynamics at
intermediate time. However, the energy of these vertical fluctuations may be released
directly at small scale via the shear instability mechanism of the vertical layers at
large time, resulting in a shortcut of the energy cascade. A rather different situation is
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expected for decaying rotating turbulence starting from strictly 2D initial conditions,
as in the experiments of Longhetto et al. (2002) and Praud et al. (2006), in which
no vertical velocity is produced by the translation of a rake instead of a grid. In
this situation, the vorticity skewness should reach even larger values, emphasizing the
importance of the initial conditions in the nature of the decaying rotating turbulence.
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