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Abstract. We study a class of random transformations built over finitely

many intermittent maps sharing a common indifferent fixed point. Using a
Young-tower technique, we show that the map with the fastest relaxation rate

dominates the asymptotics. In particular, we prove that the rate of correlation

decay for the annealed dynamics of the random map is the same as the sharp
rate of correlation decay for the map with the fastest relaxation rate.
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1. introduction

General statistical properties of deterministic expanding maps of the interval with a
neutral fixed point are by now well understood. In [12] Pianigiani proved existence
of invariant densities of such maps. In [7, 8, 14] it was independently proved that
such maps exhibit a polynomial rate of correlation decay. Later Gouëzel [4] showed
the rate obtained in [14] is in fact sharp. The slow mixing behaviour of such
maps made them a useful testing ground for physical problems with intermittent
behaviour: systems whose orbits spend very long time in a certain small part of
the phase space.

In this paper we are interested in studying i.i.d. randomized compositions of two
intermittent maps sharing a common indifferent fixed point. It is intuitively clear
that the annealed1 dynamics of the random process will also have a polynomial
rate of correlation decay. However, we are interested in the following question:
How do the asymptotics of the random map relate to those of the original maps;
in particular, the rate of correlation decay?
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1Annealed dynamics refers to the randomized dynamics, averaged over the randomizing space,

see Subsection 2.2 and Theorem 2.3. This should be contrasted with the notion of quenched
dynamics, the behaviour of the system with one random choice of the randomizing sequence. The
term almost sure dynamics is also used to refer to quenched dynamics.
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2 Decay of correlation for random intermittent maps

We show that the map with the fast relaxation rate dominates the asymptotics (see
Theorem 2.3 for a precise statement). Interestingly, in our setting, the map with
slow relaxation rate is allowed to be of ‘boundary-type’, and consequently admit an
infinite (σ-finite) invariant measure, but the random system will always admit an
absolutely continuous invariant probability measure. We obtain our result by using
a version of the skew product representation2 studied in [2] and a Young-tower
technique [14].

In Section 2 we introduce our random system and its skew product representation.
The statement of our main result Theorem 2.3 is also in Section 2. In Section 3
we build a Young-tower for the skew product representation. Proofs, including the
proof of Theorem 2.3, are in Section 4.

2. Setup and Statement of the main result

2.1. A random dynamical system. Let (I,B(I),m) be the measure space, with
I = [0, 1],B(I) the Borel σ−algebra and m being Lebesgue measure. By a Liverani-
Saussol-Vaienti (LSV)-map we mean a member of the parameterized family of maps
on I given by

(2.1) Tα(x) =

{
x(1 + 2αxα) x ∈ [0, 1

2 ]

2x− 1 x ∈ ( 1
2 , 1]

.

Here the parameter α ∈ (0,∞). Each LSV map has a neutral fixed point at x = 0.
For 0 < α < 1, Tα admits a finite, absolutely continuous invariant measure while
for α ≥ 1 the absolutely continuous invariant measure is σ− finite. See [12] and
[13] for the some of the earliest results of this type.
Let 0 < α1 < α2 < · · · < αr ≤ 1. We consider a random map T which is given by:

(2.2) T (x) := {Tα1
(x), Tα2

(x), . . . Tαr (x); p1, p2, . . . pr},
where pi > 0 and

∑
pi = 1. Note that all the individual maps share a single

common neutral fixed point at x = 0.

Assumption 2.1. Since nothing we will do in the sequel depends on r, the number
of maps making up the random map, we will restrict the discussion to the case r = 2
and denote the parameters

0 < α < β ≤ 1.

At the same time, this will simplify our notation:

(2.3) T (x) := {Tα(x), Tβ(x); p1, p2}.
The random map T in (2.3) maybe viewed as a Markov process with transition
function

P(x,A) = p11A(Tα(x)) + p21A(Tβ(x))

of a point x ∈ I into a set A ∈ B(I). The transition function induces an operator,
ET , acting on measures; i.e., if µ is a measure on (I,B),

(ETµ)(A) = p1µ(T−1
α (A)) + p2µ(T−1

β (A)).

A measure µ is said to be T -invariant if

µ = ETµ,

2The skew product studied in this paper is also related to a skew product studied by Gouëzel
in [5]. See Remark 2.6 for more details.
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and µ is said to be an absolutely continuous invariant measure if dµ = f∗dm,∫
I
f∗dm = 1. To study absolutely continuous invariant measures, we introduce the

transfer operator (Perron-Frobenius) of the random map T :

(PT f)(x) = p1PTα (f) (x) + p2PTβ (f) (x),

where PTα , PTβ denote the transfer operators associated with the Tα, Tβ respec-
tively. Then it is a straight-forward computation to show that a measure µ = f∗ ·m
is absolutely continuous invariant measure if

PT f
∗ = f∗.

2.2. Skew product representation. By the annealed dynamics of the random
map we mean the statistics of the random dynamical system averaged over the
randomizing space (see [1] for a general treatment of annealed versus quenched
interpretation). Probabilistic aspects of T , in particular the correlation decay of
the annealed dynamics, are frequently studied by constructing a Young-tower for
the skew-product representation of T . For this purpose, we are going to use a
version3 of the skew product representation which was studied in [2]. Define the
skew product transformation S(x, ω) : I × I → I × I by

(2.4) S(x, ω) = (Tα(ω), ϕ(ω)),

where

(2.5) α(ω) =

{
α , ω ∈ [0, p1)

β , ω ∈ [p1, 1]
; ϕ(ω) =

{
ω
p1

, ω ∈ [0, p1)
ω−p1
p2

, ω ∈ [p1, 1]
.

We denote the transfer operator associated with S by LS : for g ∈ L1(I × I) and
measurable A ⊆ I × I,∫

S−1A

g d(m×m)(x, ω) =

∫
A

LSg d(m×m)(x, ω).

Then a measure ν, such that dν = g∗d(m × m) and
∫
I×I g

∗d(m × m) = 1, is an
absolutely continuous S-invariant measure if

LSg∗ = g∗.

In [2], Theorem 5.2 it is shown that if g ∈ L1(I × I) and LSg = λg with |λ| = 1,
then

g(x, ω) = f(x) · 1(ω)

and PT f = λf , that is, g depends only on the spatial coordinate x and as a function
of x only, is also an eigenfunction for PT . Setting λ = 1 we obtain LSg∗ = g∗ if
and only if g∗(x, ω) = f∗(x) with PT f

∗ = f∗. Consequently there is a one to
one correspondence between invariant densities for S and invariant densities for T .
Moreover, dynamical properties such as ergodicity, number of ergodic components
or weak-mixing, properties that are determined by peripheral eigenfunctions, can
be determined via either system.
On the other hand, properties like correlation decay (or even strong mixing) cannot
be established by peripheral spectrum alone.

3The results obtained in [2] are valid for any class of measurable non-singular maps on Rq ,
without any regularity assumptions. Moreover in [2], the probability distribution on the noise

space is allowed to be place-dependent.



4 Decay of correlation for random intermittent maps

Definition 2.2. Suppose τ : X → X preserves the measure µ on X. For f ∈
L∞(X,µ) and g ∈ L1(X,µ) denote by

Corn(f, g) = Corn,τ (f, g) :=

∫
X

f ◦ τn · g dµ−
∫
X

f dµ

∫
X

g dµ.

Normally we will simply write Corn(f, g) when the map being applied is understood.
Estimates on correlation decay are known in many dynamical settings. For example,
it was shown in [14] that for f ∈ L∞, g Hölder continuous on I and τ = Tα, 0 <

α < 1 an LSV-map, |Corn,Tα(f, g)| = O(n1− 1
α ). Gouëzel in [4] proved that this

rate is sharp.
Our main result, Theorem 2.3, establishes exactly the same rate of correlation decay
for the random map.

2.3. Statement of the main result.

Theorem 2.3. Let 0 < α < β ≤ 1 and S be as defined in Subsection 2.2. Then

(1) S admits a unique absolutely continuous invariant probability measure ν;
(2) (S, ν) is mixing;
(3) for φ ∈ L∞(I × I,m×m) and ψ a Hölder continuous function on I × I we

have
|Corn,S(φ, ψ)| = O(n1− 1

α );

Remark 2.4. Our main goal in Theorem 2.3 is not so much to show that S has
polynomial rate of correlation decay, but to discover how the correlation decay for
S relates to those of the original maps. Indeed, if 0 < α < β < 1, and without
any further conditions on α and β, one can easily obtain, by just using the rough
estimates contained in Lemma 4.4 and the Young tower construction detailed in the

next two sections, an upper bound on the rate of order O(n1− 1
β ); that is, the rate

of decay is at least as fast as the slowest escape rate map. What we have shown
in Theorem 2.3 is that the actual decay rate of the random map is completely
determined by the faster escape rate of the map Tα.

Remark 2.5. It is worth noting that in Theorem 2.3, β ≤ 1. The case when β = 1
is interesting on its own since in this case the map Tβ admits only an infinite
(σ-finite) absolutely continuous invariant measure, but Theorem 2.3 shows that
the skew product S, and hence the random map T , admits a unique absolutely
continuous invariant probability measure.

Remark 2.6. Limit theorems for the following related skew product were studied
by Gouëzel in [5]:

S(x, ω) = (Tα(ω), 4ω),

with ω ∈ S1 and Tα(ω) being a random choice of LSV-map from Equation 2.1. For
the randomizing process, it is further assumed that

(1) α(ω) is C2;
(2) 0 < αmin < αmax < 1;
(3) α(ω) takes the value αmin at a unique point ω0 ∈ S1, with α′′(ω0) > 0;
(4) αmax <

3
2αmin.

Under the above conditions, using a result of Pène [11] (see [5] Theorem B.1),
Gouëzel ([5], Theorem 4.1) obtained asymptotics that would lead to a correlation

decay rate of order O(
√

log n · n1− 1
αmin ).
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Gouëzel remarks in [5] that in his setting the conditions αmax < 1 and αmax <
3
2αmin

may be technical artifacts, arising from the method of proof.

Remark 2.7. In our i.i.d. setting, we rely on relatively simple (and classical) esti-
mates on large deviations for i.i.d. randomizers and show, for all 0 < α < β ≤ 1,
that the correlation decay rate of the annealed dynamics is exactly the same as
the correlation decay rate of the fastest mixing map Tα. Note that the constraint
β ≤ 1 still may be a technical artifact, a consequence of our use of the negative
Schwarzian derivative and Koebe Principle in Lemma 4.8, rather than some under-
laying obstruction. Indeed, the probabilistic analysis of our model (see Proposition
4.1) is valid for the full range of parameter values 0 < α < β < ∞, so it may be
possible to extend our results to the case of 0 < α < 1 < β for the (presumably)
finite invariant measure case or even 1 ≤ α < β < ∞, by following the techniques
of [10], where one expects the invariant measure to be only σ-finite.

3. A Young-tower for S

3.1. Notation. Set

Tnω (x) := Tα(ϕn−1ω) ◦ ... ◦ Tα(ϕω) ◦ Tα(ω)(x).

Then
Sn(x, ω) = (Tnω (x), ϕn(ω)).

Also, set
Pnω := pα(ϕn−1ω) × ...× pα(ϕω) × pα(ω),

where pα(ω) = p1, for α(ω) = α and pα(ω) = p2, for α(ω) = β. We define two
sequences of random points {xn(ω)} and {x′n(ω)} in [0, 1] which will be useful in
the construction of a suitable Young tower. The points xn(ω) lie in (0, 1/2]. Set

(3.1) x1(ω) ≡ 1

2
and xn(ω) = T−1

α(ω) |[0, 12 ] [xn−1(ϕω)], n ≥ 2.

Observe that with this notation,

S(xn(ω), ω) = (Tα(ω)(xn(ω)), ϕω) = (xn−1(ϕω), ϕω).

The points {x′n(ω)} lie in (1
2 , 1], defined by

(3.2) x′0(ω) ≡ 1, x′1(ω) ≡ 3

4
and x′n(ω) =

xn(ϕω) + 1

2
, n ≥ 2,

that is, {x′n(ω)} are preimages of {xn(ϕω)} in (1
2 , 1] under the right branch 2x− 1.

3.2. A tower for S. Let ∆0 = ( 1
2 , 1]× [0, 1). Let R : ∆0 → Z+ be the first return

time function and SR : ∆0 → ∆0 be the return map. ∆0 is referred to as the base
of the tower ∆ which is given by

∆ := {(z, n) : z ∈ ∆0 and n = 0, 1, ..., R(z)− 1}.
Let F : ∆→ ∆ be the map acting on the tower as follows:

F (z, l) =

{
(z, l + 1), if l < R(z)− 1,

(SR(z), 0), if l = R(z)− 1

We refer to ∆l := ∆ ∩ {n = l} as the lth level of the tower. For n ≥ 1, set
In(ω) := (xn+1(ω), xn(ω)] and Jn(ω) := (x′n(ω), x′n−1(ω)]. Observe that every
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point in Jn(ω) will return to ( 1
2 , 1] in n steps under the random iteration Tnω as

follows:

Jn(ω)→ In−1(ϕω)→ In−2(ϕ2ω)→ ...→ I1(ϕn−1ω)→ (
1

2
, 1].

Next we partition ∆0, into subsets ∆0,i, i = 1, 2, . . . where

∆0,i := {(x, ω) | x ∈ Ji(ω)}

and then further partition each ∆0,i into subsets ∆j
0,i, j = 1, 2, . . . 2i according to

the 2i possible values of the string α(ω), α(ϕω), . . . α(ϕi−1ω). Defined this way, Si

maps each subset ∆j
0,i bijectively to ∆0.

Figure 1. An example of the base of the tower when α = 0.5
β = 0.7, p1 = 0.6.
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For example, in the case i = 2, there are four sets ∆j
0,2 on which R = 2 and such

that SR maps each set bijectively to ∆0:

∆j
0,2 =


J2(ω)× [0, p2

1) , if j = 1,

J2(ω)× [p2
1, p1) , if j = 2,

J2(ω)× [p1, p1 + p1 · p2) , if j = 3,

J2(ω)× [p1 + p1 · p2, 1) , if j = 4.

To summarize,

∆0,i =

2i⋃
j=1

∆j
0,i.

and for the base,

∆0 =

∞⋃
i=1

2i⋃
j=1

∆j
0,i

where, for every i and j = 1, 2, ..., 2i,

R |∆j
0,i

= i.

Finally the tower ∆ is partitioned by

∆ =

∞⋃
i=1

i−1⋃
l=0

(

2i⋃
j=1

∆j
l,i).

An example of the partition of the base of the tower and a few images of the
partition elements under S is presented in Figure 1.

3.3. Using Young’s technique to prove Theorem 2.3. We say s(z1, z2) is a
separation time for z1, z2 ∈ ∆0 if s is the smallest n ≥ 0 such that (FR)n(z1) and

(FR)n(z2) lie in distinct ∆j
0,i. Also let R̂ : ∆→ Z be the function defined by

R̂(x, ω) = the smallest integer n ≥ 0 s.t. Fn(x, ω) ∈ ∆0.

In view of Theorems 1, 2 and 3 of Young [14], in order to prove Theorem 2.3 it
suffices to:

(A) Prove that
∫

[1/2,1]×I Rd(m ×m) < ∞, and establish the asymptotic esti-

mate (m×m){R̂ > n} = O(n1− 1
α ),

(B) Establish the bounded distortion conditions on the return map: there exists
0 < θ < 1 and C(F ) > 0 such that∣∣∣∣DFR(z1)

DFR(z2)
− 1

∣∣∣∣ ≤ C(F ) · θs(F
R(z1),FR(z2)),∀i = 1, 2, ...,∀j = 1, ..., 2i,∀z1, z2 ∈ ∆j

0,i,

(C) Confirm that the return times are aperiodic.

(A) is established by Proposition 4.1 in Subsection 4.1 while (B) is the content of
Proposition 4.10 in Subsection 4.2. Since we have all possible integer return times,
(C) is immediate. It is interesting to note that the upper bound constraint β ≤ 1
specified in our main result, Theorem 2.3, is only used in Proposition 4.10, so the
tower asymptotics detailed in (A) hold for all pairs 0 < α < β <∞.
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4. Proofs

4.1. Estimates on the return sets. Throughout this section we will adopt the
notation Eω(·) =

∫
I
·(ω)dω for expectation with respect to the randomizing vari-

able. Also, we write an ∼ bn if there is a constant C > 1 such that C−1bn ≤ an ≤
Cbn for all n.

Proposition 4.1. For all 0 < α < β <∞ we have

(1)

Eω(xn(ω)) ∼ n− 1
α ;

(2)

Eω(x′n(ω)− 1

2
) ∼ n− 1

α ;

(3)

m×m{R̂ > n} ∼ n1− 1
α .

Before proving this result, we gather some estimates in a sequence of lemmas.

Lemma 4.2. For all x ∈ [0, 1
2 ], Tα(x) ≥ Tβ(x) with strict inequality on the open

interval (0, 1
2 ).

Proof. This is a straightforward calculation. �

Corollary 4.3. For 0 ≤ x ≤ y ≤ 1
2 we have Tα(y) ≥ Tβ(x) with strict inequality

in either situation: 0 < x ≤ y < 1
2 or 0 ≤ x < y ≤ 1

2 .

We will estimate the position of xn(ω) by comparing to the sequence of non-random
backwards iterates constructed with only one map; either always choosing Tα|−1

[0, 12 ]
or

Tβ |−1
[0, 12 ]

in place of Tα(ω)|−1
[0, 12 ]

in Equation (3.1). Denote these non-random iterates

by xαn and xβn respectively. It is immediate from Lemma 4.2 that for every n, xαn ≤
xβn. Furthermore, it is well-known that xαn ∼ n−

1
α with similar estimates for the

parameter β. (See, for example, estimates at the beginning of Section 6.2 of [14].)
We begin with a very rough (but intuitively obvious) estimate on xn(ω).

Lemma 4.4. For all n ≥ 1 and for all ω

xαn ≤ xn(ω) ≤ xβn.

Proof. Suppose, to the contrary, xn(ω) < xαn for some n, ω. Note that if α(ϕk(ω)) =
α for all k then xn(ω) = xαn, contradicting our assumption. Let k ∈ {0, 1, . . . n− 1}
be the smallest integer such that α(ϕk(ω)) = β. Then xn−k(ϕk(ω)) < xαn−k since

T kα is increasing and therefore

xn−k−1(ϕk+1(ω)) = Tβ(xn−k(ϕk(ω))) < Tα(xαn−k) = xαn−k−1.

Here we have invoked Corollary 4.3. Iterating this argument for each index where
α(ϕj(ω)) = β gives

1

2
= x1(ϕn−1(ω)) < xα1 =

1

2

which is again a contradiction. A similar argument shows xn(ω) ≤ xβn for all
n, ω. �
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Lemma 4.5. Suppose n is given and K0 ∈ [0, n−1] is a fixed real number. Suppose
ω ∈ [0, 1] is such that

#{j ∈ {0, 1, . . . n− 1} | α(ϕj(ω)) = α} > K0.

Then xαn ≤ xn(ω) ≤ xαbK0c

Proof. The left-hand inequality is given by Lemma 4.4. For the upper bound,
suppose xn(ω) > xαbK0c; we will derive a contradiction. First, construct an auxiliary

sequence of points yn−j ∈ [0, 1/2] for j = 0, 1, . . . n− 1 as follows:

yn := xn(ω)

and for j = 1, 2, . . . n− 1, yn−j :=

{
Tα(yn−j+1) if α(ϕjω) = α,
yn−j+1 if α(ϕjω) = β.

A straightforward induction over the range of j, starting with equality when j = 0
shows that

yn−j ≤ xn−j(ϕjω), for all j = 0, 1, . . . n− 1.

Next, for each j = 1, . . . n define K(j) := #{i ∈ {0, 1, . . . j − 1} | α(ϕiω) = α}.
The function K is nondecreasing and, for example, K(1) = 0 or 1, K(j) ≤ j and
K(n) > bK0c by hypothesis.
We also see that, for j = 1, 2, . . . n, using our assumption on the position of xn(ω),
and provided K(j) ≤ bK0c − 1:

yn−j = TK(j)
α xn(ω) > TK(j)

α xαbK0c = xαbK0c−K(j).

Now simply pick j0 so that K(j0) = bK0c − 1. Note that j0 < n. Then

1

2
= xα1 = xαbK0c−(bK0c−1) < yn−j0 ≤ xn−j0(ϕj0ω)

which contradicts the hitting time of xn(ω) to the interval [ 1
2 , 1]. �

Pick any 0 < p0 < p1, fix n > 1 and let K0 := np0. There are many standard
large deviation estimates for i.i.d. random variables that will ensure that most ω
encounter at least K0 instances of α(ϕiω) = α in their first n iterates. As we are
aiming for exponential decay in the tail estimate, we invoke a classical result due to
Hoeffding [6] that works especially well for our case of Bernoulli random variables.
It is precisely at this point that we avoid generating an upper bound constraint
on β as was the case in Gouëzel [5]. If instead we were to use the more general
estimates from the well-known Berry-Esséen Theorem (e.g. Theorem 1, Section
XVI.5 in [3]), for example, we would obtain power law decay in the tail leading to
the requirement β < 3

2α in order to complete the proof.

Lemma 4.6. For every n ≥ 1

Pr{ω | #{j ∈ {0, 1, . . . n− 1} | α(ϕjω) = α} ≤ K0} ≤ exp[−2n(p1 − p0)2].

Proof. Let Sn count the number of times the value β occurs in the first n iterates.
Observe that

Pr{ω | #{j ∈ {0, 1, . . . n− 1} | α(ϕjω) = α} ≤ K0}
≤ Pr{ω | #{j ∈ {0, 1, . . . n− 1} | α(ϕjω) = β} ≥ n−K0}

(4.1)
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In Theorem 1 of [6] let µ = p2 and let t = p1 − p0 < p1 = 1− µ. Then the bottom
probability in equation (4.1) equals

Pr{Sn − µn ≥ (1− p0 − p2)n} = Pr{Sn
n
− µ ≥ t}.

The exponential estimate now follows from (2.3) in Theorem 1 of [6]. �

Proof. (Of Proposition 4.1)

(1) For fixed n, with p0 < p1 as above, let K0 = p0n. Set

Gn = {ω | {ω | #{j ∈ {0, 1, . . . n− 1} | α(ϕjω) = α} > K0}.

Lemma 4.6 estimates Pr(I \Gn) ≤ exp[−2n(p1 − p0)2].
Now

Eω(xn(ω)) =

∫
Gn

xn(ω) dω +

∫
I\Gn

xn(ω) dω ≤ xαbK0c +
1

2
Pr(I \Gn)

where we have used Lemma 4.5 for the first term and the fact that xn(ω) ≤
1
2 for the second term. Now xαbK0c ≤ C1(K

− 1
α

0 ) ≤ C2(n−
1
α ) when K0 = p0n.

On the other hand, the second term tends to zero exponentially fast. Since
xn(ω) ≥ xαn ≥ C3n

− 1
α by Lemma 4.4 and the fact that xαn ∼ n−

1
α we have

established the required estimate on the expectation.
(2) This follows from part (1) immediately, since both maps have the same

linear second branch.
(3) We have to get an estimate on

(m×m){R̂ > n} =
∑
l≥n+1

(m×m)(∆l) =
∑
l≥n+1

∑
i≥l+1

(m×m)(∆0,i).

First, observe that

(m×m)(∆0,i) =

2i∑
j=1

(m×m)(∆j
0,i) =

1∫
0

Ji(ω)dω

=

1∫
0

[x′i−1(ω)− x′i(ω)]dω

= E[x′i−1(ω)]− E[x′i(ω)]

=
1

2
[E(xi−1(ω))− E(xi(ω))].

(4.2)



W. Bahsoun, C. Bose, Y. Duan 11

Therefore, by equation (4.2) and part (1) of this proposition we have

(m×m){R̂ > n} =
1

2

∑
l≥n+1

∑
i≥l+1

[E(xi−1(ω))− E(xi(ω))]

=
1

2
· [(Exn+1(ω)− Exn+2(ω)) + 2(Exn+2(ω)− Exn+3(ω))

+ 3(Exn+3(ω)− Exn+4(ω)) + ...]

=
1

2
· [E(xn+1(ω)) + E(xn+2(ω)) + E(xn+3(ω)) + ...]

∼
∑
k>n

k−
1
α

∼ n1− 1
α .

�

4.2. Distortion.

Lemma 4.7. If (x, ·), (y, ·) ∈ ∆0 and s((x, ·), (y, ·)) = n, then |x− y| ≤ θn.

Proof. Set θ := 1
2 < 1 and observe that on ∆0, DT

R
ω ≥ 2 = θ−1. Thus, if (x, ·), (y, ·)

lie in a common atom ∆j
0,i such that x, y ∈ Ji(ω) ⊆ (TRω )−1( 1

2 , 1], then

minDTRω ≤
∣∣∣∣TRω x− TRω yx− y

∣∣∣∣ ≤ 1

|x− y|
.

Therefore, |x− y| ≤ θ and the result follows by induction on k ≤ n. �

Lemma 4.8. There exists a constant C > 0 such that for (x, ·), (y, ·) ∈ ∆j
0,i,

| log
DTRω (x)

DTRω (y)
| ≤ C|TRω (x)− TRω (y)| ≤ C.

Proof. It is trivial for Ji, i = 1 since Tα(ω)(x) = 2x − 1. We apply the Koebe
principle to prove the result for Ji, i ≥ 2.
Recall the Schwarzian derivative of a function f ∈ C3 is given by:

(Sf)(x) =
f ′′′(x)

f ′(x)
− 3

2
(
f ′′(x)

f ′(x)
)2.

It is also well known that the Schwarzian derivative of the composition of two
functions h, f ∈ C3 satisfies

S(h ◦ f)(x) = (Sh)(f(x))× (f ′(x))2 + (Sf)(x).

Consequently, Schwarzian derivative of the composition is negative if both functions
have negative Schwarzian derivatives. Let g denote the composition of the left
branches of Tα(ϕR−1ω), ..., Tα(ϕω) and the right branch of Tα(ω). Notice that on

Ji(ω), i ≥ 2, we have g(x) = TRω (x). Since 0 < α < β ≤ 1, we have for the left
branch T ′α(ω) > 0, T ′′α(ω) > 0 and T ′′′α(ω) ≤ 0; in particular, T ′′′α(ω) = 0 if and only if

α(ω) = β = 1. Thus, Sg < 0.

For each Ji(ω), i ≥ 2, let J = [x′i+1(ω), 2]. Note that g(x′i+1(ω)) < 1
2 . Set κ :=

1
2−supω g(x′i+1(ω)) > 0. Then Ji(ω) ⊂ J and g(Ji(ω)) = (1

2 , 1] ⊂ ( 1
2−κ, 2] ⊂ g(J).
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This means g(J) contains a κ-scaled neighborhood of g(Ji(ω)) with constant κ.
Therefore, by Koebe principle [9] there exists a constant C(κ) > 0 such that

| log
g′(x)

g′(y)
| ≤ C(κ)

|x− y|
|Ji(ω)|

≤ C(κ), ∀x, y ∈ Ji(ω),

and consequently,

|g
′(x)

g′(y)
| ≤ eC(κ).

It follows that
|x− y|
|Ji(ω)|

≤ eC(κ) · |g(x)− g(y)|
|g(Ji(ω))|

.

Hence, | log g′(x)
g′(y) | ≤ C(κ) · eC(κ) · |g(x)−g(y)|

|g(Ji(ω))| , which completes the proof. �

Remark 4.9. Note that for β > 1, (STβ(x)) > 0 for x ∈
(

0, 1
2

(
β−1

(1+β)(1+ β
2 )

)1/β
)

.

Proposition 4.10. There exists a constant C(F ) > 0 such that for z1, z2 ∈ ∆j
0,i,

|DF
R(z1)

DFR(z2)
− 1| ≤ C(F ) · θs(F

R(z1),FR(z2)).

Proof. Let z1 = (x1, ω1), z2 = (x2, ω2) ∈ ∆j
0,i. Then they have same realization

(α(ωl), α(ϕωl), ..., α(ϕR−1ωl)),

for j = 1, 2. Using this fact and FR(zl) = SR(zl), for zl ∈ ∆0,i, l = 1, 2, we have:

DFR(z1)

DFR(z2)
=
DSR(x1, ω1)

DSR(x2, ω2)

=

∣∣∣∣∣ DTRω1
(x1)

∂TRω
∂ω (z1)

0 DϕR(ω1)

∣∣∣∣∣∣∣∣∣∣ DTRω2
(x2)

∂TRω
∂ω (z2)

0 DϕR(ω2)

∣∣∣∣∣
=
DTRω1

(x1) · 1
PRω1

DTRω2
(x2) · 1

PRω2

=
DTRω1

(x1)

DTRω2
(x2)

=
DTRω (x1)

DTRω (x2)
,

for any ω ∈ ∆j
0,i. By using Lemma 4.7, Lemma 4.8 and the following inequality:

|x− 1| ≤ eC − 1

C
| log x|, if | log x| ≤ C,

we obtain

|DT
R
ω (x1)

DTRω (x2)
− 1| ≤ eC − 1

C
| log

DTRω (x1)

DTRω (x2)
|

≤ eC − 1

C
× C |TRω (x)− TRω (y)| ≤ C(F ) · θs(F

R(z1),FR(z2)).

�
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