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In [1, Sect. 4.3, pp. 1029–1033], the construction of a global Poincarémapwith suitable prop-
erties, for a flow containing a singular hyperbolic attractor, was presented and summarized
in [1, Theorem 5] as follows:

Theorem 1 [1, Theorem 5, Sect. 4, p. 1021] For an open and dense subset of C2 vector
fields X having a singular hyperbolic attractor� on a 3-manifold, there exists a finite family
� of cross sections and a global (n-th return) Poincaré map R : �0 → �, R(x) = Xτ(x)(x)
such that

(1) the domain�0 = �\� is the entire cross sections with a family� of finitely many smooth
arcs removed, and τ : �0 → [τ0,+∞) is a smooth function bounded away from zero
by some uniform constant τ0 > 0.

The online version of the original article can be found under doi:10.1007/s00209-013-1231-0.
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(2) We can choose coordinates on � so that the map R can be written as F : Q̃ → Q,
F(x, y) = (T (x),G(x, y)), where Q = I×I, I = [0, 1], and Q̃ = Q\�0 with�0 = C×I

and C = {c1, . . . , cn} ⊂ I a finite set of points.
(3) The map T : I\C → I is C1+α piecewise monotonic with n + 1 branches defined on

the connected components of I\C and has a finite set of a.c.i.m., μi
T . Also inf |T ′| > 1

where it is defined, 1/|T ′| has universal bounded p-variation, and then dμi
T /dm has

bounded p-variation.
(4) Themap G : Q̃ → I preserves and uniformly contracts the vertical foliationF = {{x}×

I}x∈I of Q: There exists 0 < λ < 1 such that dist(G(x, y1),G(x, y2)) ≤ λ · |y1− y2| for
each y1, y2 ∈ I. In addition, the map G satisfies a type of bounded variation regularity
condition; see [1, Sect. 3].

(5) The map F admits a finite family of physical probability measuresμi
F which are induced

by μi
T in a standard way. The Poincaré time τ is integrable both with respect to each

μi
F and with respect to the two-dimensional Lebesgue area measure of Q.

(6) Moreover if, for all singularities σ ∈ �, we have the eigenvalue relation −λ2(σ ) >

λ1(σ ), then the second coordinate map G of F has a bounded partial derivative with
respect to the first coordinate, i.e., there exists C > 0 such that |∂xG(x, y)| < C for all
(x, y) ∈ (I\{c1, . . . , cn}) × I.

This construction was a modification of a similar construction in [2]. The modification
was done to provide injectivity. Injectivity of the global Poincaré map is important for the
arguments in [1] where the physical measure is shown to be exact dimensional.

As pointed to the authors by Fan Yang, the construction presented in the paper has a
problem: Although the resulting global Poincaré map R is injective, the smoothness domains
of this global Poincaré map might not be strips, that is, union of stable leaves crossing the
cross section. This is needed for the rest of the arguments in the section, which rely on
quotienting the dynamics of R over the stable leaves to obtain a one-dimensional piecewise
expanding map of class C1+α , for some α > 0.

The problem does not affect the first part of the paper, namely [1, TheoremA] on the decay
of correlations of maps preserving a contracting foliation, but some changes are necessary
for the application to singular hyperbolic flows in [1, Corollaries 1 & 2, p. 1006].

Corollary 1 There exists an open dense setA of vector fields (satisfying a nonresonance con-
dition) in SH2(M3) such that, for each X ∈ A, we can find a finite family� of cross sections
to the flow Xt of X such that an iterate of the Poincaré first returnmap F : dom(F) ⊂ � → �

has a finite set of SRB measures μi
F , each of them has exponential decay of correlations with

respect to Lipschitz observables: There are C,� ∈ R
+, � < 1 satisfying for every pair

f, g : � → R of Lipschitz functions
∣
∣
∣
∣

∫

f · (g ◦ Fn) dμi
F −

∫

g dμi
F

∫

f dμi
F

∣
∣
∣
∣
≤ C�n ||g||Lip|| f ||Lip, n ≥ 1.

Corollary 2 If Xt is a flow over a singular hyperbolic attractor in the setting of Corollary 1
and if, in addition, the eigenvalues of every equilibrium point σ of X in � satisfy λ1(σ ) +
λ2(σ ) < 0 (which includes the classical Lorenz system of ODEs), then for each regular point
x0 ∈ � such that dμX (x0) exists, we have

lim
r→0

log τ
Xt
r (x, x0)

− log r
= dμX (x0) − 1

for μX -almost each x ∈ �.
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Decay of correlations for maps 617

In this note, we explain how the construction of the global Poincarémap R can be adjusted,
in a similar way to the one originally presented in [2], to obtain [1, Corollary 1] (where the
n-th return map F considered in the statement is replaced by the map R defined here) and
[1, Corollary 2], which are the main results of the second part of [1].

1 Adjusting the construction of the global Poincaré map and recovering
Corollary 1

To adjust the construction of the global Poincaré map, we keep Steps 1–3 in [1, Sect. 4.3],
where we obtained a family �0 of adapted cross sections to the flow with flow-boxes giving
an open cover of the attractor so that the Poincaré first return time between elements of �0 is
bigger than some uniform positive constant. Consequently, we also have the properties stated
in [1, Remark 12, p. 1031].

Now we change [1, Definition 7, p. 1032] of the global Poincaré map to be the same as in
[2]:

R(z) = Xτ0(XT (z))(XT (z)), z ∈ �, (1.1)

where τ0(x) is the first hitting time of x to a cross section of �, and T > 0 is a large
threshold time (defined in the same Sect. 4.3 of [1]) ensuring Poincaré maps after this time
are hyperbolic (more precisely, Proposition 7 and Lemma 6 from [1] simultaneously hold
for R). The function

τ(z) = τ0(XT (z)) + T

is the global Poincaré time replacing the definitions in equation (4.19) of [1, p. 1032].
In this way, as shown in [2, Sect. 5], the global Poincaré map R satisfies all the properties

in [1, Theorem 5] with the exception of R being a n-th return map, which is enough to prove
[1, Corollary 1] using [1, Theorem A], as already written there.

2 Recovering Corollary 2

However, this adjustment does not guarantee that R is injective in general, since the orbit
segment [z, XT (z)] can intersect several cross sections of �, and this is the only way for
injectivity to fail.

If injectivity does not hold, then the Steinberger relation from [1, Theorem 9, p. 1043]
cannot be applied. Consequently, the proof of exact dimensionality of the singular hyperbolic
flows presented in [1, Sect. 6, pp. 1042–1043] would not hold.

Moreover, the application to the results given in [1, Sect. 7] has the following problem:
The almost everywhere existence of local dimension for the invariant measure might fail. We
note, however, that [1, Corollary 2] deals only with target points x0 where the local dimension
exists.

We now show how to change [1, Sect. 7] adapting it to the return map which is considered
here, in a way that [1, Corollary 2] is proved in the same form as it is stated.

The first step of the strategy implemented in [1, Sect. 7, p. 1043] is to obtain the logarithm
law for the global first return map P of the cross section from the logarithm law of the (long)
return map R.
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618 V. Araujo et al.

We know that this latter logarithm law holds by applying [1, Proposition 11] since R
has superpolynomial decay of correlations. We recall the statement of this result which is a
general criteria to obtain the Logarithm law. In what follows, let τR(x, Br (x0)) be the number
of R iterations needed for the orbit of x to enter in the target Br (x0).

Proposition 1 [1, Proposition 11, p. 1044] For each x0

lim sup
r→0

log τR(x, Br (x0))

− log r
≥ dμR (x0) , lim inf

r→0

log τR(x, Br (x0))

− log r
≥ dμR

(x0) (2.1)

hold for μR-almost every x.
Moreover, if the system has superpolynomial decay of correlations under Lipschitz observ-

ables and dμ(x0) exists, then for μ-almost every x, it holds

lim
r→0

log τR(x, Br (x0))

− log r
= dμR (x0). (2.2)

This first step was done in [1, Remark 17, p. 1044], where the properties of the long return
map are important.We separate our corrections into three parts, which apply for the definition
of R here presented in (1.1) and lead to the same goal of the above-mentioned Remark 17 in
[1].

2.1 Invariant measures associated with the first return map P and to R

Let � = ∪i	i be the global cross section and P : � → � be the its first return map.
Consider the suspension flow SP

t over the cross section � with roof function τ0 (first
return time function) and base transformation P with invariant measure μP such that the
measure μ̃P = (μP ×Leb)/μP (τ0) on the suspension is conjugated to the physical measure
μ of the original flow Xt .

More precisely, in the space � × [0,+∞) with the distance given by the maximum of
the distances in � (induced by the Riemannian distance from M) and in R (the Euclidean
distance), we consider the relation (x, τ0(x)) ∼P (P(x), 0), extend it to be symmetric
and transitive, and on the quotient space, we define SP

t (x, s) = (x, s + t), t ∈ R. Now,

P : � × [0,+∞)/ ∼P→ M, (x, s) �→ Xs(x) is a diffeomorphism with its image such
that 
P (SP

t (x, s)) = Xt (
P (x, s)). If μX is the physical measure for the flow, then we
define μ̃P = (
−1

P )∗μX which is an SP
t -invariant and ergodic probability measure. This

measure induces a P-invariant ergodic probability μP such that μ̃P = (μP ×Leb)/μP (τ0).
Consider also the suspension flow SR

t over the same space � with roof function τ and
associated return map R as base transformation with the physical invariant measure μR . On
this suspension, the measure μ̃R = (μR × Leb)/μR(τ ) is semiconjugated to the physical
measureμX of the flow Xt , that is,μX = (
R)∗μ̃R . Indeed,
R(SR

t (x, s)) = Xt (
R(x, s))
where 
R : � × [0,+∞)/ ∼R→ M has the same expression as before, the only difference
being the equivalence relation (x, τ (x)) ∼R (R(x), 0), which identifies (R(x1), 0) ∼R

(R(x2), 0) ∼R (x1, τ (x1)) ∼R (x2, τ (x2)) for x1, x2 in different cross sections with R(x1) =
R(x2). Hence, 
R is in general not injective: Points may have finitely many pre-images, as
observed before.

From [1, Remark 12, item (2)], we know that � can be constructed in a way that there
exists ε1 > 0 such that

τ = inf{t > 0 : Xt (x) ∈ �, x ∈ �} ≥ ε1.

that is, the minimum time needed to go from one cross section 	i ∈ � to another 	 j ∈ �

by the flow is bounded away from zero. Consequently, 0 < ε0 < inf τ0 < τ0 < τ .
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Decay of correlations for maps 619

Hence, fixing 0 < t < ε0 and a measurable subset A ⊂ �, the set A × [0, t] satisfies
μ̃P (A × [0, t]) = μX

(


P (A × [0, t])) = μX
(

X[0,t](A)
)

= μ̃R

(


−1
R

(

X[0,t](A)
)) ≥ μ̃R

(

A × [0, t])

and the inequality above is due to the lack of injectivity of R (and consequently of 
R). This
means that

μP (A) · t
μP (τ0)

≥ μR(A) · t
μR(τ )

thus μP (A) ≥ μR(A)
μP (τ0)

μR(τ )
.

Because A was arbitrary, we see that μP ≥ κ · μR for some constant κ > 0.

2.2 Consequences for local dimension

From this, a P-invariant subset with full μR-measure must have full μP -measure. Indeed,
let A ⊂ � be P-invariant such that μR(A) = 1 . Then, μP (A) > 0 and μP (A) = 1 since
μP is P-ergodic. Also, from the inequality obtained in the last remark, we have that for all
sufficiently small δ > 0

log(μR(Bδ(x)))

log δ
≥ log(μP (Bδ(x))/κ)

log δ

and so dμR (x) ≥ dμP (x) and dμR
(x) ≥ dμP

(x) for all x ∈ �.

2.2.1 Local dimensions of μX , μP and μR

Let x0 ∈ M be such that dμX (x0) = limr→0
logμX (Br (x0))

log r be well defined, and let (x, s) ∈
� × [0,+∞)/ ∼P be such that 
P (x, s) = x0 with 0 ≤ s < τ0(x). Since both dμX and
dμX

are Xt -invariant, then the points where dμX exists form another invariant subset. Hence,
we can assume without loss that s > 0.

Lemma 1 If dμX exists at some point x0 for the flow, then both dμR and dμP exist at some
point x0 in the intersection of the orbit of x0 with � and are equal to dμX (x0) − 1.

Proof Since locally the distance in � × [0,+∞)/ ∼P is the maximum of the distances in
� and in R, then we get Bδ(x, s) = Bδ(x) × (s − δ, s + δ) and

μ̃P (Bδ(x, s)) = 1

μP (τ0)
· (2δ) · μP (Bδ(x)).

Note that the distance in � is induced by the distance in the manifold. Moreover,
μX (Br (x)) = μ̃P

(


−1
P (Br (x))

)

and 
P is injective and locally a diffeomorphism. Hence,
we can find κ > 0 such that

Br/κ (x, s) ⊂ 
−1
P (Br (x)) ⊂ Bκr (x, s)

for all small enough r > 0 (we can take κ = ‖D
P (x, s)‖ + ‖D
P (
P (x, s))−1‖). This
ensures that

dμX (x0) ≥ lim sup
r→0

log
(

(2κr) · μP (Bκr (x))/μP (τ0)
)

log r
≥ 1 + dμP (x);
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620 V. Araujo et al.

and also

dμX (x0) ≤ lim inf
r→0

log
(

(2r/κ) · μP (Br/κ (x))/μP (τ0)
)

log r
≤ 1 + dμP

(x).

Hence, dμP (x) = dμX (x0) − 1 where x is the first hit of x0 to � in negative time.
Therefore, if dμX (x0) exists, then dμP (x) exists with the value dμX (x0) − 1 for all points

x ∈ � in the same orbit of x0.
Now for μR : since 
R : � × [0,+∞)/ ∼R→ M is a finite-to-one local diffeomorphism

almost everywhere, there are i = i(x0) ∈ Z
+, (x j , s j ) ∈ � × (0,+∞)/ ∼ /R such that


R(x j , s j ) = x and 0 < s j < τ(x j ); j = 1, . . . , i .
Hence, we can find κ ′ > 0 such that we obtain the disjoint unions

∪i
j=1Br/κ ′(x1, t j ) ⊂ 
−1

R (Br (x)) ⊂ ∪i
j=1Bκ ′r (x1, t j )

for all small enough r > 0 (wecan takeκ ′ = ∑i
j=1 ‖D
R(x j , s j )‖+‖D
R(
R(x j , s j ))−1‖)

implying the inequality

dμX (x0) ≥ lim sup
r→0

log
( ∑i

j=1(2κ
′r) · μR(Bκ ′r (x j ))/μR(τ )

)

log r
≥ 1 + min

1≤ j≤i
dμR (x j ).

But, as already observed, we also have dμR (x j ) ≥ dμP (x j ) and dμR
(x j ) ≥ dμP

(x j ) for
all j = 1, . . . , i . Hence, there exists 1 ≤ h ≤ i such that

dμR (xh) = min
1≤ j≤i

dμR (x j ) ≤ dμR
(xh)

allowing us to conclude dμR (xh) = dμP (xh) = dμR
(xh) = dμP

(xh). ��
2.3 The logarithm law for the first return map

We will now prove a logarithm law for the first return map P for an exact dimensional target
point.

2.3.1 The logarithm law for R implies the logarithm law for P

Let us suppose that x0 is a point as in the statement of Lemma 1 at the previous Sect. 2.2,
for which the local dimension of the measures μR and μP coincides. Applying [1, Proposi-
tion 11], we know that there exists a full (μR and μP )-measure subset A ⊂ � such that

lim sup
r→0

log(τR(x, Br (x0))

− log r
≤ dμR (x0), x ∈ A.

Let also τP (x, Br (x0)) be the number of P iterations needed for the orbit of x to enter in

the target Br (x0). Note that if y = Rn(x), then y = Pm(x)withm ≤ n
⌈
T
τ

⌉

(one iteration of

R corresponds at most to
⌈
T
τ

⌉

iterations of P , where �z� is the least integer equal or greater
than z ∈ R). Then,

τP (x, Br (x0)) ≤
⌈
T

τ

⌉

τR(x, Br (x0)) and lim sup
r→0

log(τP (x, Br (x0))

− log r
≤ dμR (x0).

By Sect. 2.1, this holds forμP -almost each x , and by the choice of x0, we have dμR (x0) =
dμP (x0). Then, the logarithm law also holds for P .
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Decay of correlations for maps 621

2.4 The logarithm law for the flow

After the changes described in the previous Sects. 2.1, 2.2 and 2.3 of this erratum, we can
continue the construction as in [1, Sect. 7, p. 1044]: By applying [1, Proposition 12] and [1,
Proposition 13], we get the logarithm law for the flow for each target point where the local
dimension exists, leading to [1, Corollary 2].
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