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In this paper the viscous decay of dipolar vortex structures in a linearly stratified fluid is investigated 
experimentally, and a comparison of the experimental results with simple theoretical models is 
made. The dipoles are generated by a pulsed horizontal injection of fluid. In a related experimental 
study by F16r and van Heijst [J. Fluid Mech. 279, 101 (1994)], it was shown that, after the 
emergence of the pancake-shaped vortex structure, the flow is quasi-two-dimensional and decays 
due to the vertical diffusion of vorticity and entrainment of ambient irrotational fluid. This results in 
an expansion of the vortex structure. TWO decay models with the horizontal flow based on the 
viscously decaying Lamb-Chaplygin dipole, are presented. In a first model, the thickness and radius 
of the dipole are assumed constant, and in a second model also the increasing thickness of the vortex 
structure is taken into account. The models are compared with experimental data obtained from flow 
visualizations and from digital analysis of particle-streak photographs. Although both models 
neglect entrainment and the decay is modeled by diffusion only, a reasonable agreement with the 
experiments is obtained. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Since the advent of satellite imagery, coherent vortex 
structures have been found to be common features of many 
geophysical flows. Frequently dipolar vortex structures are 
observed at the ocean surface (Refs. 1 and 2), as well as- in 
the atmosphere, better known as atmospheric blockings 
(Refs. 3 and 4). In these geophysical flows, the motion is, to 
first approximation, two dimensional due to background ro- 
tation and density stratification. In the laboratory, the emer- 
gence of dipolar structures, and their stability has been dem- 
onstrated in various kinds of experiments in two-dimensional 
flows, such as in a thin soap film,5 in magnetohydrodynamic 
flows,’ in rigidly rotating homogeneous tlow~,~ and in strati- 
tied rotating flow~.~ 

referred to as FvH, found that the theoretical Lamb- 
Chaplygin dipole model (Refs. 13-15) generally gives a 
good description of the midplane flow field of such dipoles 
in a stratified fluid. In that paper, also a scaling analysis of 
the vertical flow is presented, similar to that used by Riley 
et al.,16 from which it was found that the flow is quasi-two- 
dimensional and decays principally due to viscous diffusion 
in the vertical direction. 

The present study deals with the viscous decay of planar 
dipolar vortex structures in a nonrotating linearly stratified 
fluid. The dipolar vortex structures are generated by a short 
horizontal injection of fluid. By such an injection, an isolated 
turbulent region is formed that collapses under gravity. In the 
emerging quasi-two-dimensional flow eddies interact and 
merge, eventually leading to the dipole formation (Ref. 9). 
The formation process of dipoles in a stratified fluid, and 
their dynamics have been investigated in independent studies 
by the present authors (Refs. 10 and 11) and by Voropayev 
et aZ.” The latter authors, who considered, in particular, 
laminar injections of fluid, determined the horizontal entrain- 
ment rate experimentally, and by applying the principle of 
conservation of momentum they derived an expression for 
the dipole’s decay for the inviscid case. 

For the purely two-dimensional case, the viscous decay 
of the Lamb-Chaplygin vortex dipole has been investigated 
in an asymptotic expansion theory by Swaters,17 who 
showed that, under adiabatic constraints for the dipole radius 
and the linear streamfunction-vorficity relation, the dipole 
retains to leading order its basic properties and decays expo- 
nentially in time. Viscous effects on the stationarity of 
Lamb-Chaplygin dipoles have been investigated in an 
analytical-numerical study by Kida et al.,r8 and it was shown 
that symmetry breaking may occur under certain conditions. 

Ln a different approach, the decay of the final stage of 
turbulence in a stratified fluid was studied by Pearson and 
Linden,” and by using linear theory they found an exponen- 
tial decay of the most persistent wave numbers correspond- 
ing with horizontal quasi-two-dimensional motions. 

In the present study, the viscous decay during the evolu- 
tion of the flow process is investigated experimentally. In 
addition, two dipole decay models, both being based on a 
viscous decaying Lamb-Chaplygin vortex, as described by 
Swaters,17 are presented and compared with experimental re- 
sults. 

In their detailed study, Flor and van Heijst,r’ henceforth 
The paper is ordered as follows: The experimental setup, 

the visualization methods, and the method to obtain quanti- 
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tative information about the structure are presented in Sec. II. 
The observational analysis is discussed in Sec. III. After a 
short description of the principal equations of motion in a 
stratified fluid, a brief outline of the Lamb-Chaplygin 
model, and its viscous decaying variant are given, followed 
by a description of the decay models for a dipolar vortex. 
Subsequently, in Sec. V, the experimental results are com- 
pared with the models. A summary of the results is given in 
Sec. VI. 

II. EXPERIMENTAL ARRANGEMENT 

The majority of the experiments reported in this paper 
were performed in a Plexiglas tank of dimensions 30X 100 
Xl00 cm (heightxwidthxlength). The tank was filled with a 
linearly stratified salt solution, the stratification being estab- 
lished by the well-known two-tank method (see Ref. 20). 
The stratification was varied between N= 1.2 and 3 radls, 
where N is the buoyancy frequency defined by 
N=( -g/5 dp/d~)~” (with g the gravitational constant, 5 
the mean density, and dpldz the density gradient with the 
vertical). 

Dipolar vortices were created by a horizontal, pulsed 
injection of a small amount of fluid, which exactly matched 
the density of the ambient fluid at the plane of injection. The 
use of a computer-controlled injection mechanism allowed 
us to change the injection parameters (volume and speed). 
The Reynolds number of the injection Re=lJd/u, based on 
the injection velocity U, the nozzle diameter d=2 mm, and 
the kinematic viscosity V, was varied between 360 and 
11500. As described in detail in FvH, the injected turbulent 
region quickly collapses under gravity, and a flat dipolar vor- 
tex structure emerges. The evolution of such flow structures 
was studied both by dye visualization and by streak photog- 
raphy of small tracer particles. The change in the dipole’s 
translation velocity could be obtained from sequences of 
photographs taken at specific times. 

In order to measure the evolution of the flow in a hori- 
zontal plane, small polystyrene particles of density 1.07 
g/cm3 were added to the fluid and their motion was recorded 
by taking long exposure plan-view photographs. The tracer 
particles usually floated in a thin horizontal layer (typically 
0.5 cm thick) at the level at which the injection also oc- 
curred. Before being injected, the injection fluid was si- 
phoned from the layer containing the particles, to ensure that 
the injection fluid is of matching density. In this manner, the 
particles visualize the motion at the horizontal symmetry 
plane of the dipolar structure. Streak lengths were measured 
from an enlarged projection of the photograph by digitizing 
the ends of each streak. Dividing the path lengths by the 
exposure time yielded the local velocities. Subsequently, the 
velocity field was calculated on a rectangular grid of 30X30 
grid points by numerical interpolation, using an algorithm 
described in some detail by NguyenDuc and Sommeria.6 
From the thus obtained regular velocity field, the values of 
the vorticity w and the streamfunction + of the planar flow 
field were calculated in each grid point. The mean extreme 
vorticity of the dipolar flow field was defined by 
u&, = $0 --o,,,~~), while the mean circulation !Z was calcu- 
lated bymtzking the summation of the vorticity values Wi,j 

over all the grid points (i, j) according to 
r=@i,j]oi,j[Ax Ay, where Ax Ay is the surface of one 
mesh of the grid. For the calculation of the circulation r, a 
threshold value of 0.05 o, was built in to filter the noise in 
the vorticity near w=O. 

Information about the vertical distribution of the hori- 
zontal velocity and about the vertical growth of the dipole 
region was obtained in additional experiments carried out in 
a smaller tank (of dimensions 35X50X80 cm, heightxwidth 
Xlength), by creating a vertical dye line in the middle of the 
tank after the dipole was formed. The dye lines were created 
with a thin solder wire of diameter 0.5 mm by the precipita- 
tion method (see Ref. 21), and could be produced at any 
desirable moment. Having a light grey color, their displace- 
ment due to the translating dipolar structure was clearly vis- 
ible against a black background, and was recorded from the 
side by a photocamera. Although in a number of experiments 
asymmetric dipoles were formed (in such cases some amount 
of vorticity was partly left behind in the wake of the dipole), 
care was taken that in all cases discussed in the pl’esent paper 
the dipoles were symmetric and exactly aligned with the ver- 
tical electrode wire. Some of the recorded dye-lines distor- 
tions were digitized by hand in order to obtain quantitative 
information about the vertical distribution of the horizontal 
velocity field. In a number of experiments, dye was also 
added to the injected fluid, so that the dipolar vortex region 
and the displacement profile were visible simultaneously. 
Then, the dipole thickness was measured from the displace- 
ment profile at the position exactly between the vortex cen- 
ters. 

Ill. QUALITATIVE OBSERVATIONS AND ANALYSIS 

After the pulsed injection, an isolated turbulent region 
forms, which collapses under gravity to a thin pancake- 
shaped region, after which a quasi-two-dimensiona flow is 
established. In this quasi-two-dimensional flow. horizontal 
eddies interact and merge, a process that leads to the even- 
tual formation of a dipolar structure (see Ref. 11 and FvH). 
Internal waves, generated by the initial pulsed injection and 
the subsequent gravitational collapse of the turbulent patch, 
are observed to vanish quickly, in particular after having 
been reflected at the tank walls. Once the dipolar vortex has 
been formed, these internal waves have a very small ampli- 
tude and appear to have a negligible effect on the dipolar 
vortex structure, which translates quasisteadily along a 
straight trajectory. 

Figure 1 shows a combined top and side view of the 
eventual dipolar vortex structure, visualized by fluorescein 
dye. A mirror was placed under an angle of 45” along the 
sidewall of the tank, so that plan view and side view could be 
recorded simultaneously by a single camera. The photograph 
in Fig. 1 clearly reveals the pancake-like shape of the visu- 
alized vortex region: the horizontal scale is much larger than 
the vertical length scale. In view of this shape one may de- 
fine two different Reynolds numbers: a horizontal Reynolds 
number Re,,= lJoD Jv, based on the translation velocity U0 
of the dipole and its diameter D, and a vertical Reynolds 
number Re, = 2crUdv, with 2~ a measure for the dipole 
thickness. Soon after the dipole formation is completed, the 
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FIG. 1. Photograph showing the top view and side view (lower and upper 
part of the picture, respectivelyj of the dye-visualized dipolar flow. Experi- 
mental parameters: Q=2 ml/s, &=1.5 s, and N=1.7 rad/s. 

Reynolds numbers have typical values Reh= 1000 and 
Re,=300. During the course of an experiment, these values 
decrease rapidly to lower values of O(100) and CJ(lO), re- 
spectively, indicating that viscous effects associated with 
vertical diffusion of vorticity are most significant. Due to this 
vertical diffusion and the horizontal entrainment of ambient 
irrotational fluid, the structure grows in size, which leads to a 
gradually decreasing translation velocity. 

Plan-view dye visualizations reveal spiraled-shaped dye 
patterns due to the entrainment of ambient uncolored fluid. 
Since vorticity filaments have large vorticity gradients and 
consequentIy diffuse, a continuous vorticity distribution 
forms rapidly. Because of the high Schmidt number, the dye 
displays a different behavior, and represents moie t6e history 
of the flow. However, it is assumed that at the dipole’s edge, 
where vorticity gradients are relatively small, the dye region 
represents in good approximation the horizontal size of the 
structure. 

In order to examine the vertical growth of the dipole and 
the vertical distribution of the horizontal motion due to the 
moving dipole, a vertical dye line was generated on the hori- 
zontal symmetry axis of the structure. While the vertical size 
of the dipole increases by diffusion of vorticity, the dye line 
is horizontally advected over an increasing vertical distance. 
In this way information is obtained about the dipole’s verti- 
cal expansion. As shown in Figs. 2(a)-2(c), the vertical scale 
of this displacement profile increases by almost a factor of 2 
during the period from t=47 s to t=107 s. In separate ex- 
periments, the horizontal size D of the dye distribution (de- 
fined as the maximum dipole width perpendicular to the 

FIG. 2. Sequence of photographs showing the deformation of a vertical dye 
line due to a horizontally moving dipole with a radius of approximately 10 
cm; the photographs are taken at (a) t=47 s, (b) t=hl s, and (c) at t=107 s, 
after injection at t=O s. The dye line is created with the precipitation 
method. Experimental parameters: Q =2.5 ml/s, &=0.6 s, N=l.S rad/s, and 
nozzle diameter d=l.l mm. The top-bottom distance in each picture rep- 
resents the scale, and is 18.3 cm. 

translation direction) was measured from dye visualizations. 
Typical graphs of the measured expansion of the vortex re- 
gion in horizontal and vertical direction are shown in Figs. 
3(a) and 3(b), respectively. Apparently, the rate of vertical 
expansion by diffusion is much larger than the horizontal 
expansion rate, which is mainly an effect of entrainment. 
Therefore, pne may expect that, apart frqm the effect of en- 
trainment, vertical diffusion of vorticity determines the decay 
of this pancake-like vortex structure. 

According to the side view part of Fig. 1, the dyed fluid 
is confined in a thin layer, suggesting a considerable shear at 
the top and bottom edges of the structure. However, the dye- 
lines of Figs. 2(a)-2(c) reveal a very smooth Gaussian-like 
profile, indicating that overturning motions by the shear as 
well as vertical motions by internal waves are insignificant. 
For this flow, one can define the bulk Richardson number, 
which is the ratio of the restoring buoyancy forces and the 
inertial forces, as ECi=N2/(dU/dz)“. With typically N=1.5 
rad/s, U0=0.5 cm/s and a typical thickness 2-5 cm, this 
number is Ri-0 (loo), indicating a buoyancy-dominated 
flow. With a decreasing velocity U0 and an increasing layer 
thickness 2a; the Ri number rapidly increases in time, so that 
no overturning motions are to be expected in the further 
dipole evolution. The deformations of the dye line in the two 
subsequent pictures [Figs. 2(b) and 2(cj] are digitized by 
hand, and both are fitted (by eye) with a Gaussian curve of 
the form exp(-z2/2a”), where z is the vertical coordinate 
with z=O at the midplane, and (T is a measure for the dipole 
thickness, respectively. The results are shown in Fig. 4. The 
displacement profiles appear to be self-similar in time. By 
subtracting two digitized profiles, a similar Gaussian-like 
distribution for the horizontal velocity was found. 

It was argued in FvH that vortex lines are locally per- 
pendicular to the midplane z=O; at higher levels the vortex 
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FIG. 3. Graphs showing typical evolutions of (a) the dipole diameter D and (bj the dipole thickness 20: Experimental parameters: (a) see Table I, experiment 
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lines are tilted by the shear, but the motion remains planar 
and vertical motions are negligible. 

IV. MODELS OF DECAYING DIPOLAR VORTICES 

As a first approximation in the modeling of the decay of 
a planar dipolar vortex, it is assumed that the motion is con- 
fined mainly in a thin (disk-shaped) region around the mid- 
plane, where the vorticity vectors are directed vertically, and 
the vortex tilting by the shear is negligible. Since the mid- 

-5 

2 (cm) 

0 

5 

IO Liil ( . I ‘. 

-5 0 5 10 15 20 

x 0-N 

FIG. 4. Typical vertical displacement profiles digitized from pictures, as 
shown in Fig. 2, at t=40 s, and t=80 s after injection at t=O s, denoted by 
the symbols D and 0, respectively. Both profiles are fitted by hand with a 
Gaussian curve of the form U= lJa exp(-z?22), with 2a the typical thick- 
ness of the dipole. 

plane is a maximum of a smooth Gaussian-like velocity pro- 
file with growing thickness, this is a reasonable approxima- 
tion for the flow in a thin layer around z=O. 

For the dipolar vortex, the horizontal Aow at the mid- 
plane is described quite well by the Lamb-Chaplygin dipole 
model (see FvH), so that for the present decaying flow the 
viscous decaying Lamb-Chaplygin dipole, as described by 
Swaters,r7 can be used. The dipole radius is assumed con- 
stant, neglecting the effects of entrainment and implying a 
purely viscous decay. In view of the displacement profiles 
observed in the experiments, the vertical distribution of the 
horizontal velocity is taken to be Gaussian. The dipole’s 
translation velocity at the midplane is a measure for the am- 
plitude of the translation velocity of the dipole, and accord- 
ing to the Lamb-Chaplygin dipole model also for the ampli- 
tude of characteristic properties such as the vorticity and the 
circulation for each dipole half. As a first step a model dipole 
with a constant thickness is presented. Next, a more refined 
model is presented, which allows for a growing dipole thick- 
ness due to the vertical diffusion of vorticity. 

A. Viscous decay in buoyancy-dominated flows 

By using a scaling analysis, similar to that given by Ref. 
16, it was shown in FvH that the vertical vorticity of buoy- 
ancy dominated flows is to first order governed by 

(1) 

with the streamfunction r,!~ defined by nh= -kXV& 
V2rt/, -0, and J the Jacobian defined by J(w, 1+4) = (do/ 
&)( d$/,ldy ) - (&4E~y)(&jr/&c). The constant ff is the aspect 
ratio between horizontal and vertical length scales and is 
here of the order O(O.l). For the present observations the 
horizontal Reynolds number Reh is much larger than the ver- 
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tical Reynolds number Re, (Re, = CY Re,), indicating that the 
viscous decay is mainly due to vertical diffusion. The invis- 
cid part of Eq. (1) is identical to the vorticity equation of 
purely two-dimensional flow. On the short advective time 
scales, one can define stationary (inviscid) solutions by a 
relation w=F($), with F an integrable function. Assuming 
that such a relationship exists, the nonlinear term in the vor- 
ticity equation vanishes, and (1) reduces to leading order to 

d% 1 d20, 
--=-‘z, 
at (Y Re, dz 

which describes diffusive decay. Because horizontal vortex~ 
motions are to lowest-order decoupled from vertical motions 
and internal waves-with consequently their radiation of 
energy-the vertical vorticity W, decays mainly due to this 
vertical diffusion. Although in the present stratified flow the 
vertical diffusion term is much larger than the horizontal 
diffusion term, both will be kept in the further analysis; on 
very large time scales the ratio a Re,/Reh = (P/D)~ increases, 
so that then the horizontal diffusion term might become sig- 
nificant. The vorticity equation then yields (in dimensional 
units) 

where the indices z have been dropped. 

B. The viscously decaying Lamb-Chaplygin dipole 

The Lamb-Chaplygin dipole model (Refs. 13 and 14) 
assumes a linear relation w=k”z+b (with k a constant) within 
an isolated circular region with radius Y = a, and a potential 
flow o=O in the exterior region (~>a). The solution in 
terms of the streamfunction of the flow, relative to a comov- 
ing frame with velocity Ue, is 

2lJ, 
t,b= - kJo(ka) Jr(kr)sin 13, for T~U, 

where J, is the first-order Bessel function of the first kind. 
Continuity of the velocity at r=a requires 

ka=3.8317, (5) 

which represents the first zero of J,. According to this 
model, the dipole is characterized by two quantities: its 
radius-r alternatively by k according to relation (5)-and 
its translation velocity lJ,-,. A few characteristics, to be re- 
ferred to later in this paper, are the magnitude of the maxi- 
mum vorticity om, the maximum velocity U,,, relative to a 
comoving frame of reference, and the circulation I contained 
in each dipole half. These values can be expressed in terms 
of Us and k: 

o,=2.89klJ0, 

u max=2.49Uo, 

r=26.17Uolk. 

(6) 

The viscous decay of a purely two-dimensional vortex is 
governed by Q), with the last term being zero. In the par- 
ticular case of a linear relationship o=k”fi, one obtains an 
exponential decay, 

o=wo(x,Y)exp(-t/rZd), (7) 

with oe(x,y) the vorticity according to the Lamb-Chaplygin 
solution, and the decay time defined as (see Refs. 14 and 15) 

Tzd=(Z’k2)-‘. 03) 

In a perturbation approach (valid for small time scales), 
Swaters17 studied the two-dimensional effects of viscosity, 
and, under the constraints that to leading order the dispersion 
relationship (5) and the relation w=k”$ are maintained, he 
found that the radius of the Lamb-Chaplygin dipole kept its 
initial value. The diffusion of the kink in the vorticity on the 
circle r = a only leads to small effects, as was shown by Kida 
et aLI8 The latter authors estimated this deviation from the 
Lamb-Chaplygin dipole in terms of the dipole radius and 
circulation r, and showed that on a time scale t-a’/!? 
[-O(1 s)], a front-back asymmetry occurs in a thin band 

with thickness = O(a&X) (-0.1 cm) at this circular 
boundary, while for tv=a2/v, the viscous layer spreads out 
over the whole structure. However, as long as tet, this ef- 
fect is negligible, so that the dipole may be considered as a 
stationary structure for which the Jacobian is approximately 
zero. In this paper, the smallest dipole had a radius a-5 cm, 
implying t,=‘2500 s, while for all experiments t<400 s, so 
that this condition is satisfied. 

C. The constant-thickness model 

Although the viscous Lamb-Chaplygin model describes 
a two-dimensional flow, with vorticity diffusing in the hori- 
zontal plane, the experimental observations reveal a flat di- 
polar vortex structure with an increasing thickness, and ver- 
tical vorticity diffusing in vertical direction. As a first step in 
the description of this vortex structure the flow is modeled 
by a Lamb-Chaplygin dipole with a constant thickness o, 
and some prescribed vertical variation in its “amplitude” 
U,. This model is referred to as the “constant thickness 
model.” As shown in Fig. 4, the vertical displacement profile 
of the dipole can be approximated quite well by a Gaussian 
fit, and the vertical distribution of the horizontal velocity is 
described by a similar profile, i.e., Ue-exp(-z’/2&. The 
vertical scale (+ of this profile is assumed constant in time. 
Because of the symmetry of the dipolar structure about the 
midplane the characteristic dipole thickness is then 2g. For 
the present buoyancy-dominated Row, where vertical mo- 
tions are to leading order decoupled from the horizontal mo- 
tions, we assume that in each horizontal plane the motion is 
that of a decaying Lamb-Chaplygin dipole, with a transla- 
tion velocity of amplitude -U, exp(-x2/22). This assump- 
tion is valid in the region Z/W<& where (since &J&-O) 
the vorticity vector is directed approximately vertically. The 
vorticity distribution is then 

w(x,y,z,t)=wo(x,y)exp(-z’/2~‘)h(t), (9) 

where wa(x,y) represents the horizontal distribution of the 
vertical vorticity component according to the Lamb- 
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Chaplygin solution, and h(t) is a time-dependent amplitude 
function. When (9) is substituted in Eq. (3), the Jacobian 
term is found to vanish, implying a diffusive decay according 
to 

ati 

-=4 at , 
(10) 

where e-z/a: For ~41, or more precisely &(l +c?k2)l”, 
one obtains 

oix,y,z,t)=~,(x,y jexp( $)exp( 2) -O( $), 

(11) 

with 

rct=jvx2)-1, (12) 

the decay time, and h’=k”+ l/g. For t+o%d, the last term 
in (11) can be neglected. In the experiments K400 s, imply- 
ing that for a minimal thickness o=l cm, Eq. (11) may be 
used in the region where Iz~~LI-/~. The vorticity amplitude 
decays exponentially with a decay time (12), which is, for 
the present experiments, primarily determined by the thick- 
ness of the dipolar structure. The decay time 7ct is short 
compared to the time scale rzd given by (8). 

D. Vertical diffusion model 

A more accurate model is obtained when the vertical 
diffusion of (vertical) vorticity is allowed to result in a ver- 
tical growth of the dipolar structure like observed in the ex- 
periments (see Fig. 2j. For this diffusion model it is only 
assumed that the horizontal planar flow is represented by the 
Lamb-Chaplygin dipole model. As above, the model will be 
only valid in a thin region around the midplane level, where 
a u,Jaz=O. This yields 

~=~o@,Y)YWj, (13) 

where oe(x,y) is again the horizontal vorticity distribution 
according to the Lamb-Chaplygin dipole, and y (z, t) is an 
amplitude function. Substitution of (13) in (3) yields 

04) 

By the transformation y=Q(z,t)exp(-vk”t) one obtains a 
diffusion equation for @(z, t): 

aa a% 
dt=v-$F (15) 

It is assumed that initially the vorticity is confined to a thin 
region, according to @(t = 0) = @e&z), with S the Dirac 
delta function. The associated source solution is then given 

by 

1 / - J\ 
cP= j; exp[-&-1. 06) 

Although the flow at t=O is still three-dimensional turbulent 
and the actual w distribution is strictly not described by this 
particular delta-like initial condition, one may assume that 

r- - 

FIG. 5. Typical nonlinear w,$ scatter plot measured for a dipolar structure, 
fitted with a least-square linear tit in order to determine the value k’. 

the details of the initial vorticity distribution are lost at larger 
t values when the dipolar structure has been formed and that 
(16) then still gives a reasonable description. 

The solution for the vorticity w(X,y,z,t) thus found is 

w=00b7r) -$ exp( z)exp( g)7 (17) 

where 

rdif= ( vk’) - ‘. (18) 

This time scale is identical to the value Tad; see (8). Integra- 
tion of (17) in the z direction yields again the expression for 
diffusion in a two-dimensional flow, given by Eq. (7). As in 
other diffusion problems, the thickness of the diffusing re- 

gion grows according to a(t) - fi. The factor 4vt in (17) 
is directly associated with the factor 22 of the Gaussian 
profile as described by (9) and represents the vertical growth 
of the vertical region. It should be noted that with Eq. (6a) a 
similar expression for the decay of the velocity U. can be 
obtained. 

V. COMPARISON WITH THE EXPERIMENTAL 
RESULTS 

In order to compare the two models with the experimen- 
tal decay values, the decay times for the maximum vorticity 
and the circulation are measured from the interpolated veloc- 
ity field. 

The translation velocity U,, of the dipole was determined 
directly from streakline pictures by measuring the longest 
particle path on the symmetry axis, since, according to the 
Lamb-Chaplygin model, U,,=3.49 Uo. In the experiments 
reported by FvH, it was shown that this provides a good 
approximation of the translation velocity. By processing a 
sequence of streak pictures the decay of o, , I, and U,, could 
be displayed as a function of time, and the experimental 
decay times 7ct and 7dif for the parameters velocity U,, cir- 
culation r, and maximum vorticity o, could be determined. 
Separately, the wave number k was measured from w,$ scat- 
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TABLE I. The experimental parameters (columns 2-4) and the exponential decay times obtained from these experiments, calculated according to the 

constant-thickness model. The decay of the velocity Ue, maximum vorticity om, and circulation I? are presented in a log-linear plot in Figs. 7(a)-7(c), 
respectively. The decay time (vA’)-‘=(vk2+ v/c?)-~ is obtained from the radius of the dipole, or scatter plots as shown in Fig. 5, and the thickness D (see the 
text). In addition, the decay values @,,,/a and T/a, which are corrected for the radial growth, are presented. The experiments where the decay in circulation 
and vorticity are given, concern those experiments where information is obtained from streak pictures, while the other four experiments concern the color 
visualizations. 

Exp. No. 

01 
02 
03 

04 
05 

06 
07 
08 

09 

Q at N Td(Ud 
ml/s s rad/s S 

0.6 25.0 3.0 802 6 
11.2 0.7 2.2 177225 
11.2 0.3 2.2 181?13 

8.7 0.26 2.3 1752 9 
16.8 0.2 2.1 1.71+12 

9.2 0.4 1.7 1961’15 
6.1 0.6 1.7 172212 
9.2 0.4 1.4 176”- 6 

12.2 0.2 1.2 22522.5 

43 T,,(rla) act Tcl(ama) 
S S 5 S 

882 6 782 8 802 4 912 4 
189?25 148243 139230 208Z40 
208?13 161f 8 112+ 6 130*10 

196kl5 169220 1172 8 133111 
221224 1722 9 1182 4 137-c_ 6 

(AZ)-’ 
s 

74218 
297+88 
255+73 

246t78 
278271 

2371’68 
722263 
232+70 

306282 

ter plots, such as shown in Fig. 5 (note that according to the 
Lamb-Chaplygin dipole, the slope of the linear w,Q relation- 
ship is, by definition, equal to k’), which yields the value of 
the decay time r2d. Although both linear and nonlinear w,$ 
relations have been found (see FvH), a least-square linear fit 
was used to obtain the value of k2. The value k2 obtained by 
this method was found to agree quite well with that predicted 
by the Lamb-Chaplygin model, for the linear as well as for 
the nonlinear w,$ dipoles. Because the radius of the dipole 
slightly increases during the decay process-and therewith 
k2 decreases-the average of k2 values of one sequence of 
streak pictures is used to calculate a mean value of rZd for 
the experiment, while the variation in k2 determines the stan- 
dard deviation in rZd. 

In additional dye-visualization experiments, the velocity 
of the dipole was measured from the displacement of the dye 
pattern, and the decay time scales ret and 7dif were deter- 
mined from the decay of this translation velocity. Then, the 
corresponding wave number k was derived from the mean 
radius of the dipole by using relation (5), yielding the value 
of rZd, while the standard deviation of rZd is again given by 
the variation in this radius. The experimental parameters of 
the experiments that have been analyzed are presented in 
Table I, with the derived decay times according to the 
constant-thickness model; the decay times according to the 
vertical diffusion model are presented in Table II. 

tion of fluid, so that a very thin vortex region was formed 
with a thickness typically of 2u=2+1 cm; in experiment 09 
a weak stratification was used in combination with a very 
intense turbulent injection, resulting in a dipolar structure 
with a relatively large thickness of typically 521 cm. The 
measured decay times r&UO) are of the same order as the 
“theoretical” decay time (VA”)-‘. The deviations are due to 
the rough estimation of the thickness cr and the error in the k2 

value, which was determined by averaging k2 in time. 
Although the values for the decay time of the maximum 

vorticity wm vary from those of the velocity U0 (see Table I), 
they show a similar trend. From the expressions for o and I’ 
as given by (6), it is obvious that a growth in radius a- l/k 
induces a slow decay in I’ and a fast decay in o,,, . In order to 
obtain comparable decay times as for the velocity U,, the 
decay of w,a and r/a are calculated and listed in Table I as 
rJw,a) and rct(Tla), where a is now the time-dependent 
radius. The decay time r&la) is generally in better agree- 
ment with the decay time obtained for the translation veloc- 
ity. However, the decay time r&w&) is, on average, still 
smaller than rct(U,,) and TJ!Y/a), thus implying a faster 
decay of vorticity in the vortex centers than elsewhere in the 
dipole. An explanation for this effect lies in the fact that the 

A. Comparison with the constant thickness model 

Figures 6(a)-6(c) show the behavior of the measured 
quantities UO, 0, , and r (at z=O), respectively, as a func- 
tion of time, within each graph the ordinate axis taken loga- 
rithmic, so that an exponential decay is displayed by a 
straight line. Apparently all quantities appear to have an ap- 
proximately exponential decay. The data of each experimen- 
tal run were least-square fitted with an exponential curve and 
provided a value for Q-~~. Independently, the value 
vX2= vk2+ v/g was determined. As mentioned, an average 
k2 value was obtained from the scatter plots. From the labo- 
ratory observations (experiments 06, 07, and 08), the thick- 
ness 2~ was estimated roughly by eye as 4% 1 cm for most of 
the experiments. Experiment 01 concerned a laminar injec- 

TMLE TI. As in Table I, but now the decay times rti according to the 

diffusive damping model, where U - l/G exp( - t/Td$), are compared 
with the decay times 7Zd These decay times are obtained from tits as shown 

in Figs. 8(a) and 8(b), with the curve l/G exp( - t/Tdif). Because for these 
approximations long runs were needed, some of the experimental mns pre- 
sented in Table I are omitted here. 

Exp. No. 

01 
03 
04 
05 
06 

07 
08 
09 

d”) 
S 

3122 30 
540+154 
666? 44 

1111+247 
4832 47 

417c 17 
454& 41 

559% 47 

7dif(%) 7d&rna i 
S S 

141k-14 294240 
243224 345+36 
263f21 345259 
2S6t13 352t-25 

(vk’)-’ 
S 

2882 22 

6762114 
6431’123 
911% 46 
583? 79 
550+ 60 
5522 92 

600+ 60 
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FIG. 6. Graphical display of the temporal evolution of (a) the translation 
velocity, (b) the maximum vorticity o, , and (c) the mean circulation I? of 

the dipole. The experimental parameters are presented in Table I. 

observed dipoles in the experiments generally have a nonlin- 
ear w,@ relation, while a linear relation is assumed. Nonlin- 
ear dipoles have a higher vorticity in the vortex centers, with 
sharper gradients in the vorticity than expected according to 

7 

6 

2a cm 

5 

4 

3 

2 c 

40 100 200 300 400 

t (s) 

FIG. 7. Graph showing the data of Fig. 3jbj, fitted by the curve 2cr 
= 4 \IvtlP, according to the vertical diffusion model. 

the linear w,$ relation. Then, the spreading of vorticity over 
a larger area has a larger effect on the maximum vorticity 
than on the total circulation. For comparison, a dipole with a 
linear w,$ relation, such as in experiment 06, shows approxi- 
mately the same decay times for W, and Vu. 

In conclusion, the experimental results show that the de- 
cay of the translation velocity of the dipole is in reasonable 
agreement with the constant thickness model. Differences in 
decay with the measurements become of importance only on 
large time scales, for which the approximation of a constant 
thickness is not valid anymore. 

B. Comparison with the vertical diffusion model 

Figure 7 shows the typical growth in total thickness (2~) 
of the dipolar structure plotted in a logarithmic graph, com- 

pared with a least-square fit of the curve 2cr = 4&@, 
where p is a free parameter. According to the diffusion 
model (17), the parameter p= 1, while for the constant thick- 
ness model this parameter was taken equal to 2 [see the 
z-dependent factor ‘exponential factor in (ll)]. However, the 
fit made in Fig. 7 yields the /I value /?=1.47+0.04, which 
implies that the dipole thickness grows slower than accord- 
ing to the diffusion model. This is due to the shear not being 
incorporated in this model. Apparently, the thickness corre- 
sponds with the region where the velocity amplitude exceeds 
the value exp(-1//3)Uo~exp(-~)U0=0.5U0, with Ua the 
maximum velocity at z=O. This layer thickness is slightly 
larger than the thickness determined by the levels with maxi- 
mum shear, i.e., at z=a, with exp(-i)U0+=0.6U,; which 
suggests that the dipole thickness is defined by these levels. 

Figures 8(a) and 8(b) present the temporal evolution of 
the translation velocity U,(t) and the maximum vorticity 
wm(t), respectively, for three different experiments, with a 
comparable decay time rad. In both graphs the data of one of 
the experiments are fitted by Eq. (17) of the vertical diffusion 
model (for z=O), and both show a very good agreement. 
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FIG. 8. Graphs showing the measured evolution of the dipole translation velocity U for the three different experiments (06, 07, and 08) in which the dipole 
had approximately the same radius, and (b) the measured evolution of the extreme vorticity om for the experiments 02, 04, and 05 (values of the experimental 
parameters are given in Table I). The curves represent Eq. (17) and have been least-square fitted to experiment 07 (a) and 03 (b). 

The decay values r&o,) and 7diXUo) obtained from fits 
as shown in Figs. 8(a) and 8(b) are listed in Table II. The 
decay times .rdif(Uo) are, generally, in very good agreement 
with the decay times rad(k2) obtained by measuring the ra- 
dius of the dipole. Also in this model, it appears that CO, 
decays faster than the translation velocity U,, while a cor- 
rection for the increasing radius yields similar results as for 
the constant-thickness model. 

the diffusion of momentum in vertical and horizontal direr 
tions. The predicted decay and thickness values are in rea- 
sonable agreement with the experimental data, although for 
large times the neglected vertical growth becomes of impor- 
tance, and the validity of the model becomes doubtful. 

The data for the circulation r contained too much scatter 
to make a proper fit, and was therefore not used for further 
calculations. This scatter is probably due to small three- 
dimensional effects. In conclusion, the diffusion model de- 
scribes the decay of the dipolar vortex quite well. The effect 
of the vertical growth of the dipole is included, and the va- 
lidity of the model holds for a much longer time. In view of 
the large data runs needed for a reasonable fit for the diffu- 
sion model, on short time scales the constant thickness gives 
a useful approximation. 

The diffusion model, according to which vertical diffu- 
sion of vorticity induces an increasing thickness, shows a 
very good agreement also for large times. The vertical ex- 
pansion of the dipole shows the same tendency as predicted 
by the model, and is - fi. The difference in the theoretical 
proportionality constant and that measured in the experi- 
ments is due to the neglected effects of horizontal advection 
of vorticity, which cause a slower growth. 

In Fig. 9 the decay in vorticity for both models is plotted 

VI. CONCLUSIONS AND DlSCUSSlON 

The aim of this study was to investigate the decay of 
planar dipolar vortex structures in a stratified fluid. Qualita- 
tive and quantitative information was obtained from flow 
visualization techniques, as well as from particle-streak pho- 
tography. The observed dipolar structure can be character- 
ized as a laminar coherent vortex motion, confined in a thin 
layer of fluid. By diffusion of vorticity, the volume of the 
structure grows both vertically and horizontally, whereby its 
horizontal velocity field is characterized by an approximately 
Gaussian distribution -exp(-za/22) in the vertical direc- 
tion. The dipole thickness is defined by the levels of maxi- 
mum shear. 

-  _(~ --~-^ . . . I  -  -  

200 400 600 800 s 1000 

For the near-midplane horizontal flow region, where the 
shear is negligible, two decay models have been formulated, 
based on the viscously decaying Lamb-Chaplygin dipole 
(Swaters17). A constant-thickness model is developed, with 

FIG. 9. Graphical representation of the decay in vorticity according to rela- 
tion (11) and relation (17) of the constant-thickness model (dashed line) and 
the diffusion model (drawn line), respectively. The amplitudes in both rela- 
tions are matched by hand for r==lSO s. 
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as a function of time for the case T2d= ll(vk’) =500 s. 

From the relation CT= fi, an average value of a’ was de- 
termined for the range O~t~400 s, thus providing a value 
for rCt=(vk”+ 21/2)-~. Figure 9 shows that, in the range 
between t-100 and 800 s, the slope according to the 
constant-thickness model matches reasonably well with that 
according to the diffusion model; the deviation is less than 
approximately 16%. For times t>800 s deviations are larger 
and the constant-thickness model appears to be not valid 
anymore. 

In both models, the constant thickness model and the 
diffusion model, the radial growth by entrainment is ne- 
glected, and slightly better results are expected when a cor- 
rection for this growth is included. Therefore, an improve- 
ment of the present model would be one in which, of course, 
both the growth due to vertical diffusion and horizontal en- 
trainment of ambient fluid are taken into account. 

Nevertheless, one of the main conclusions that can be 
drawn from the present study is that the decay of planar 
dipolar vortex structures in a linearly stratified fluid is to a 
large extent governed by the diffusion of vertical vorticity. 
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