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lattices increases a few degrees below T~. Critical
superparamagnetism cannot therefore be the cause of
the P=~ exponent found near T~ in magnetization mea-
surements.
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In this paper we derive a general expression describing the evolution of the transverse

nuclear-spin magnetization for the Ostroff —Waugh multiple-spin-echo experiment in dipolar

solids. Our approach consists of expressing the formula for the magnetization at even echoes

in a form resembling an ordinary time-correlation function, and then evaluating this quantity

by means of Zwanzig's projection-operator technique. For long times, we show that under

certain conditions the echo envelope decays exponentially, in agreement with experiment. A

general expression is obtained for the time constant T* associated with the decay. This re-
sult may be used to generate an expansion of 1/T* in powers of the cycle time t~, but there

are experimental indications that this expansion is not legitimate and that more complicated

t~ dependences can arise. In the case when higher-order correlations decay much more rap-

idly than lower-order ones, our result reduces to 1/T*=A t~4v~ (t,), where A is a quantity re-
lated to the sixth moment of the magnetization and v~ (t~) is a characteristic correlation time

associated with decay of the lowest-order correlation function which enters the problem. The

t,. dependence of T* is then determined by the behavior of v, (t~), and is in general more corn-

plex than the proportionality between 1/T~ and ts found previously. This previous result

emerges in the case when v~0 (t,) =tc. Available experimental results suggest that 1/T* is in

general a nonanalytic function of t„as indicated by the observed proportionality between

1/T* and t, for Teflon and KAsF6. Further experimental results are needed to clarify the

nature of this nonanalytic behavior.

I. ImRODUnION

It was reported'~ that a periodic train of 90' rf

pulses can greatly prolong the decay of transverse

nuclear spin magnetization in dipolar solids. The

effect is observed as a train of multiple spin echoes

analogous to (but quite different in character

from) the familiar "classical" spin echoes first ob-

served by Hahn. A detailed analysis of this ef-

fect, including the dependence of the decay time T*

for the echo envelope upon the pulse spacing, was

given by Waugh and Wang. The pulse sequence

which gives rise to the effect may be represented

symbolically as P„, r, P„, (2r, P,)„, where.

P„(n =x, y) denotes a 90' pulse along the n axis

of a reference frame rotating at the Larmor fre-

quency &uo (=yHO). The first pulse P„serves mere-

ly to establish a suitable initial condition for the

remainder of the sequence. This pulse is followed,

after a time r, by a train of n P„pulses (n -10s)

spaced apart by a time 2v.

The free induction decay following a single P„
pulse in a dipolar solid decays nonexponentially

to zero on a time scale Ts (Ts is the normal trans-

verse relaxation time). However, the echo train

induced by the action of the subsequent P, pulses

persists for times several orders of magnitude

longer than Ta.~'3'4 In fact, by reducing the pulse
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spacing the time constant T* characterizing the

decay of the echo envelope can be made to approach

T», the spin-lattice relaxation time in the rotating
frame. '

As mentioned above, the multiple spin echoes
under consideration here are of a completely dif-
ferent character from the ordinary spin echoes
used to recover decay caused by static inhomo-

geneous interactions. These ordinary spin echoes
are normally observed in liquids, and depend for
their occurrence upon a distribution in Larmor
frequencies due to such causes as magnetic field

inhomogeneities, quadrupole coupling, dipolar

coupling to nonresonant spins, and so on. In con-

trast, the multiple spin echoes induced in dipolar
solids by a train of 90' pulses are more complex
in nature, being governed by the manner in which

the N-body magnetic-dipole-dipole interactions
(and other terms in the spin Hamiltonian) trans-
form under the action of the pulses.

By exploiting the symmetry which the dipolar
Hamiltonian exhibits unde J' the influence of two

successive 90' pulses, Waugh hand Wang mere

able to show that for short times (i.e. , nv = T2) the

decay of the echo envelope is proportional to n~.

However, at long times (i.e. , nr»T2) the echo

envelope is observed to decay exponentially in a
va, riety of samples. ' ' It is therefore clear that
the longer-time behavior cannot properly be ac-
counted for by a naive projection of the short-time
behavior, for such a projection would imply a
Gaussian rather than an exponential decay. Recog-
nizing this difficulty, Waugh and Wang attempted

to calculate the long-time behavior of the echo

envelope by combining the calculated decay of the

magnetization after one cycle (n = 2) with an Ansafz

(similar in spirit to the familiar SfosszaMansatz of

Boltzmann) concerning the manner in which this

decay accumulates at long times. According to
this argument, the time constant T* which charac-
terizes the exponential decay of the echo envelope

should be proportional to 7 '. It is of interest to
note that in at least two samples (CaFz and K28iF6)
T* is observed to have precisely this ~ depen-

dence. The agreement between theory and experi-
ment in the case of CaF2 was subsequently con-
firmed even more strongly by Mansfield and

Ware. 6

However, the proportionality of T* to v
5 for

this experiment is by no means universal. Ex-
perimental data for Teflon and KAsF6 indicate a
proportionality between T* and v '.' In other sam-
ples stiB different dependences of T* upon 7 are
observed. We mention in particular the recent
work of Mansfield, Richards, and Ware7 (MRW)

on solid samples containing more than one spin
species. MR% report that their experimental data
cannot be explained on the basis of the simple ad

hoc argument used by Waugh and Wang. In order
to account for their experimental results, MRW

present a modification of Anderson's theory of

spectral-line narroming in solids. Although they

are able to fit their observations into the frame-

work of this theory, their work does not appear to

clarify substantially the manner in which differ-

ent dependences of T* upon 7 might manifest them-

selves in different circumstances.
The purpose of the present paper is to derive a

general expression for the decay time T*. In

principle, this expression contains the full depen-

dence of T* upon 7. In this paper we shall re-
strict attention to the case in which only a single

spin species is present. The generalization to

several spin species will be considered in a sub-

sequent publication. Our method of approach is to

cast the problem into a form which resembles an

ordinary time-correlation-function calculation,

and then to evaluate the resulting expression using

the projection-operator technique. developed by

Zwanzig. Our results indicate that T* may ex-

hibit a variety of different 7 dependences depending

upon the circumstances. One possibility is that

1/T* may be expanded in powers of v. The coef-

ficients in this expansion may easily be generated

from our basic result for T*. Unfortunately, how-

ever, there are experimental indications that such
an expansion is frequently not legitimate. The

reason for this is unclear; it may be that experi-

mentally accessible values of 7 are not "small

enough" in the required sense, or it may be due to

some inherent nonanalyticity in the problem. In

any event, if the expansion of 1/T* in powers of v

is not legitimate, then the manner in which W de-

pends upon v- is critically dependent upon the prop-
erties of the correlation function which appears in

the expression for T* [see Eq. (34)]. This corre-
lation function is of course too complicated to per-
mit a direct evaluation; the best that can be done

is to consider several possible forms for it and

examine the ~ dependence to which each gives rise.
We do this in connection mith our discussions of

experimental data, and indicate how the original

7
' dependence, as well as other 7 dependences,

may arise.
Although our main concern in this paper is with

the P„, 7, P„, (27, P,)„pulse. sequence, our meth-

od may equally weD be applied to analyze the de-

cay times for other pulse sequences. It mill be
remembered that the principal significance of the

prolonged decay time in the Ostroff-Waugh experi-
ment' was the line narrowing mhich it implied in

frequency space. Motivated by the possibility this

suggested for accomplishing "high-resolution"

NMR in solids, Waugh and co-workers' ~' soon

discovered that the decay of the magnetization in.
a wide class of multiple-pulse experiments could
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be simply understood by introducing the concept
of an "average Hamiltonian" which is determined

by the symmetry properties of the true Hamiltonian

under the pulse transformations. Once this con-

cept became clearly understood, it became possi-
ble to design pulse sequences specifically to sup-

press the dipole-dipole interactions, enabling the

structure associated with more interesting interac-
tions (such as chemical shit'ts) to be resolved. A

number of experiments of this type were quickly

proposed and successfully performed. ""
Although the line-narrowing capabilities of such

experiments can be analyzed in terms of the aver-

age Hamiltonian and its higher-order correction
terms, we feel that the approach of this paper
may have some complementary usefulness in this
regard. In fact, our work may be regarded as a
natural extension of that of Waugh and co-workers.
They have considered in great detail the form of

the average Hamiltonian and its low-order correc-
tion terms for a variety of multiple-pulse experi-
ments. Our approach goes one step further and

considers explicitly the corresponding time decay
of the echo envelope. In order that our work may

be applicable to a variety of multiple-pulse experi-
ments, we present the basic theory in a form which

is independent of the particular pulse sequence un-

der consideration (so long as it is cyclic). We

then specialize our results to the case of particu-
lar interest in this paper.

II. THEORY

1. Evolution of the transverse spin magnetiea

tion under the action of a train of rf Pulses. We

consider the evolution of a system under the in-

fluence of a time-dependent Hamiltonian X(t). This

evolution is most compactly described in terms

of the density operator p(t), which satisfies the

von Neumann-Liouville equation

In the rotating-coordinate frame, the time depen-

dence of X(t) is due to a cyclic train of rf pulses

applied in the plane normal to the static magnetic

field. (Nonsecular terms oscillating at multiples

of the Larmor frequency also arise when the trans-
formation to the rotating frame is made, but their

effects are unimportant for our purposes so these

terms are neglected. ) Also contained in R(t) is a
time-independent internal Hamiltonian X„,. In

this paper we shall neglect spin-lattice relaxation

and consider the lattice to be rigid. In this case,

X„,is a time-independent function of spin vari-
ables. It also depends, of course, on lattice vari-
ables (such as the distance r„between spins i and

j), but these are present only as constant param-

eters. Typical contributions to 3C„, for solids in-

elude dipole-dipole interactions, scalar couplings,
chemical shifts, and so on. In conventional NMR

experiments in solids, the dipole-dipole interac-
tions give rise to a broad, featureless spectrum,
making it impossible to extract information con-

cerning the other interactions. Multiple-pulse ex-
periments are of interest because they make possi-
ble the suppression of the dipole-dipole interac-
tions, thereby allowing the resolution of spectral
details associated with the other interactions.

In general, the solution to Eg. (1) involves a
time-ordering operator, "which is necessary to
make proper allowance for the interference be-
tween the internal Hamiltonian and the specific
rf pulse sequence used in the experiment. We

shall consider the situation in which the rf pulse

field, when present, is much greater than the in-

ternal dipolar field. This situation is readily

achieved in multiple-pulse experiments. In this

case the effect of a pulse is essentially that of a
5 function; the pulse may then be represented by

a rotation operator in the rotating frame. Our

specific concern in this paper is with 90' pulses;
the corresponding rotation operator simply effects
a 90' rotation of the spin operators along a prede-
termined direction in the rotating frame.

Experimentally, of course, the pulses are not

really 5 functions, and in some cases the effects
of finite pulse width become important. Haeberlen

and Waugh' have showed how to all. ow for these ef-
fects.

Before the application of the rf pulses, the spin

system is at equilibrium and is described by the

density operator p,~= Z exp[- P(K, +3C„,)], where

X, is the Zeeman Hamiltonian and Z is the parti-
tion function. In the high-temperature approxima-

tion, p,~ can be written

p„=(Trl„) ' [1„-P(X,+X„,)]

(2)

where ~0 =yIIO is the Larmor frequency. The in-

ternal Hamiltonian may be neglected in the high-

temperature approximation because its contribu-

tion is thousands of times smaller than the Zee-

man term in the experiments considered here.
Now Trl„= (2I+1) is simply a constant, and the

unit operator on the right-hand side of Eg. (2)

makes no contribution to the magnetization (since

angular momentum operators are traceless).
Therefore, the useful or significant part of the

equilibrium density operator before the rf pulsing

is simply proportional to I,.
In all multiple-pulse experiments, the first 90'

pulse P„serves to prepare a state with nonzero

transverse magnetization. After this initial 90'

pulse the density operator therefore becomes pro-

portional to I,. For the purpose of calculating the
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p(r) =n(r)i, n '(v),

where

(3)

transverse magnetization after the ensuing coher-
ent set of pulses, it is convenient to consider I, as
an initial condition: p(0)=I,. The subsequent evo-

lution of p(0) is then governed by the internal

Hamiltonian and the remainder of the rf pulses.
Thus, the density operator which describes the

free induction decay at a time v after the first
pulse P„ is

The one-cycle propagator L(t,) defined in Eq.
(9) can be rewritten in the form'0

L(t,) = [n(~„)n„(7„,) n„, ,(v „,)
&&n . -~, ~ ~ ~, i( 0}]( -g'''P P), (11)

where

n, , ...(r) = exp[- i~(P,P, K„, r, 'P, ')] . .

(12)
Things become simpler if we now restrict atten-

tion to cycles such that

n(7) =exp(-iK„,r) . (4) P„P„,~ ~ ~ P2P~f(I) =e'~ f(I), (13)

In Eq. (4) we have adopted the convention of writing

X„,in units of angular frequency, which is equiva-

lent to setting 5= 1. This convention will be ob-

served throughout the remainder of this paper.
But instead of observing the free induction decay,

we apply another pulse P& at a time 7 = 7p We then

let the system evolve freely for a time 7&, and

then apply another pulse P2. We continue in this
manner until a sequence of N pulses lP,P2 P~}I
has been applied, the spacing between successive
pulses P& and P&,& being denoted by v&. At a time

~„after the pulse P& the density operator has be-
come

L(t.)=n(~ )n (~ g)
.n, g, ... , (~0) ~ (14)

where Q is some real number and f(I) is any func-

tion of spin variables. Equation (13) is clearly

sufficient to guarantee that Eq. (7) is satisfied; it
is also necessary if Eq. (7) is to be satisfied for

arbitrary X„„since any operator which com-

mutes with every other operator must be propor-
tional to the unit operator. Now if Eq. (13) is
satisfied, then the pulse operators (P„P„.j P,P,)

in Eq. (11) cancel out when this equation is sub-

stituted into either Eq. (8}or (10). For the pur-
pose of calculating (I,(nt, )), therefore, Eq. (11)
may be replaced by

p~ = KI~R"

where

(5)
It is convenient to define a t;dependent effective

Hamiltonian K,(t,) by the equation

K=n(TE)PNn(TN l)PN 1 P1n(TO) (6) L(t,) =exp[- it, K, (t,)] . (15)

p (N =nm) = L"(t,)I,L "(t,), (8)

where the one-cycle propagator L(t,) is given by

L(t,) =n(~„)P„n(.„.,) ~ ~ ~ P, n(~, ) . (9)

The y component (in the rotating frame) of the

transverse magnetization at the end of the nth pulse

cycle is then proportional to

(I,(nt, ) ) = Tr[I,L,"(t,)I,L, "(t,)] . (10)

There exists no simple way of calculating p„ for
an arbitrary rf pulse sequence with random pulse

spacings. However, a considerable simplification

results if (a) the pulse sequence is designed in such

a way that a set of m successive pulses (m «N) re-
covers the original Hamiltonian, i.e. ,

"j.
~ ~ ~Pj +e ' P/+1intPf+1 Pg+m +int i

(b) the pulse spacings are so adjusted that the pulse

sequence becomes periodic in time, each period

t, containing m pulses. Pulse sequences satisfying

these conditions are said to be cyclic '; the

period t, is called the cycle time, and is equal to

To+ 7'y+ ' ' + %me

If the pulse sequence is cyclic and if N is an in-

tegral multiple of m (say N=nm), then Eq. (5) re-
duces to

K,(t,) =K++K '"'(t,),
k=1

(16)

together with a prescription for determining the

quantities R and K'"(t,). The quantity K is called

the average Hamiltonian; as indicated by our no-

tation it is independent of t,. If the pulse spacings
are fixed fractions of t, then K' '(t,}= t+~, where

I'k is a Hermitian operator independent of t,. The

expansion in Eq. (16) is therefore simply a power

series in t,. The quantities Ek can be determined

either by the Magnus prescription or simply by

expanding both Eqs. (14) and (15) in powers of t,
and equating coefficients.

We see from Eqs. (15) and (16) that in the limit

t, /T3-0, n-~, and nt, =const L"(t,) approaches
exp(- intoK) exactly. Historically, '0 this fact was

realized before it became clear how to introduce

correction terms which allow for finite t,. These

correction terms are important, however, since
the mathematical limit t, /Ta is of course not real-
ized in practice. In the present context, these
corrections are of vital importance to the calcula-
tion of the decay of (I,(nt, )), since if they were

Since L(t,) is unitary, K,(t,) must be Hermitian. It

may be evaluated in series form by means of the

Magnus expansion, ' ' ' which yields
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G(t) -=Tr(I, exp[- itK, (t,)]I,exp[itK, (t,)])
= Tr(IQ~(t)j=—(I,I,(t) & . (IS)

We then proceed to calculate the evolution of G(t)

as t is varied continuously. At the end of the cal-
culation, we can regain (I,(nt, )) by setting t=nt,
in G(t), i.e. , (I,(nt, ) ) = G(nt, ). In this manner we

can obtain rigorous information about the spin mag-

netization at integral multiples of the cycle time

t„even though G(t) does not correspond to the

magnetization at other times.
It is, of course, understood that G(t) depends

parametrically upon t, as well as upon t, even

though the former dependence has been suppresse
for notational convenience. Since we shall cal-
culate G(t} by varying only t, t, remains constant

throughout our development and we need not wor-

ry about it.
We first differentiate I,(t) with respect to t, ob-

taining

', =i[K,(t,), I„(t)]=-is(t.)i,(t), (19)

with the initial condition I,(0) =I,. Equation (19) is
formally identical to the Heisenberg equation of
motion for the operator I„ in a system whose time-
independent Hamiltonian is equal to K,(t,). We

have introduced, in Eq. (19), the I iouville opera-

omitted there would be no decay of the magnetiza-

tion. '

The above development is essentially a capsule

summary of what has become known as average
Hamiltonian theory. We have included it both in

order to make our presentation self-contained and

to avoid notational inconsistencies. Since it is
probably too condensed to serve as an introduction

to the subject, the reader desiring further details
is referred to the original sources 4, ~0-~5

2. Exact integral equation for the transverse
magnetization. According to Eq. (15),the n-cycle
propagator which develops the system for a time

nt, is simply equal to exp[- int, K,(t,)]. Equation

(10}therefore becomes

(I,(nt, ) ) = Tr (I, exp[- int, K,(t,)]I„exp[int,K,(t,)]) .
(17)

Equation (1 t) now appears in a form resembling

an ordinary time-correlation function. Having put

(I,(nt, ) ) into this form, we are now in a position

to evaluate it using the projection-operator tech-
nique introduced into statistical mechanics by

Zwanzig. At first there appears to be a problem,
because Eq. (IV) is valid only for integral values
of n; that is, only for times which are an integral
multiple of the cycle time t,. In order to avoid

the problems associated with a discrete variable,
we simply define a continuous function G(t) of the

continuous variable t by

tor Z(t, ) corresponding to the effective Hamiltonian

K,(t,). 2(t,) is a superoperator, which yields the
commutator [K,(t,), A] when it operates on any

operator A.
We are not really interested in the complete

solution to Eq. (19};we want only the component
of I,(t) which is necessary to calculate G(t). Fol-
lowing Zwanzig, we call this component the rele-
vant part of I„(t) and denote it by I,(t). This com-

ponent can be separated out by the use of a projec-
tion operator d defined as follows:

O'A =(IP& (I,) I, , (20)

(I-s') i&(t.) Ii(t')], (23)

where the fact that (1 -6 ) I,(0) = 0 has been used to
eliminate a term which would otherwise appear.

Now notice that

s Z(t, ) I,(t) =s Z(t, ) I„(I„')'G(t)

= Tr (i„[K (te)N, I„]](I„& G(t) I„,
which vanishes because the trace is invariant to
cyclic permutation. Thus the first term on the
right-hand side of Eq. (23) is zero. If we now

multiply both sides of Eq. (23) by I„and take the
trace, we obtain

t

dt (I ) (I„Z(t,)
0

xexp[(t —t') (1 —6') gg(t, )]g(t, ) I, ) G(t'), (24)

which is an exact integro-differential equation for
G(t). If this equation can be solved, formally or
otherwise, then an exact equation for (I,(nt, ) ) can
be obtained immediately by setting t = nt, . Thus,
Eq. (24) completely determines the evolution of the
transverse magnetization at the end of the nth-
pulse cycle.

III. APPLICATION TO OSTROFF-WAUGH EXPERIMENT

In this section we shall apply the preceding re-
sults to analyze the Ostroff-Waugh experiment' for

where A is any quantum-mechanical operator. It
is easy to show from this definition that 6' is idem-

potent, i.e. , 0 =6'. We therefore write

I,(t) =a I,(t) =&I,I,(t)&&I', & 'I, . (21)

The other part of I,(t) (i.e. , the irrelevant compo-
nent) will be called I,(t), so that

I,(t) =a I,(t)+(1 —a )I,(t) =I,(t)+I,(t) . (22)

As shown by Zwanzig, the above equations imply in

a straightforward manner that I,(t) satisfies the

following integro-differential equation:

t

=s ia(t,)(i,(t)+ «exp[(t-t )(I-a )i&(t.)]
0
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For simplicity, we consider the case in which the

internal Hamiltonian contains only dipole-dipole

interactions, but scalar couplings can be trivially
included if desired; nothing essential is changed.

Since the one-cycle propagator given in Eq. (25)
is symmetrical [i. e., Lt(t, ) = L(- i,)], all the odd-

order correction terms in Eq. (16) vanish (see Ap-

pendix). Therefore,

L (t,) = exp[ —it, 3C,(t,)] ,
where

Z, (i,) =X+K i", P„=R+ V(i,) -.

(2V)

(28)

The first two nonvanishing terms in Eq. (28) in-
volve the quantities 3C and E3, which are given by

2=-,' iL, =-,'(X,+X,),

P, = (i/4') [I., -(1/3! ) Ls,],
where L~ is the coefficient of 7 in a power-series
expansion of L(4v) [Eq. (27)].

So far we have not questioned the convergence of
the Magnus expansion in Eqs. (16) and (28). The
expansion is certainly expected to converge rapidly
if t, is small enough, but in practice this may not

always be the case. In any event, we shall consid-
er V(t,) to be defined by R,(t,) -K, whether or not

the expansion in Eq. (28) is convergent.
We next note that [3C, I„]= 0, which in turn imme-

diately implies that 6 [R, A] =0 for any operator A.
Making use of these facts and Eq. (28), we finally

production of multiple dipolar echoes in solids con-

taining only a single spin species. '6 Further ap-
plications to the case of several spin species and

to other pulse sequences designed to accomplish

high-resolution NMB in solids will be discussed in

a subsequent publication. For the case considered

here, we will rederive the short-time result of

Waugh and Wang from Eq. (24), and will show as
well that under certain conditions this equation

simplifies to imply an exponential decay of the

magnetization at long times. When this is the

case, an explicit but formal expression for the

decay time 7.'* is automatically obtained. The re-
sulting dependence of T* upon f, (or ~) can be quite

varied depending upon the circumstances; we dis-
cuss briefly the manner in which different ~ de-
pendences may arise.

1. SPecialization io the P„r, P, , (2r, P,)„
pulse cycle. The one-cycle propagator corre-
sponding to the Ostroff-Waugh pulse sequence is'

L(t,) = exp(-i Z7) exp(- 2i Z,7) exp(- i Xp),
(25)

where t, =47, 3C~=P„3C„P,', and 3C~ is the truncated

dipolar Hamiltonian appropriate to solids:

Z~= Z y Kr&&~Pz(cos8&&) (I& ~ I&
—3I«I&,) . (26)

obtain

i T [Ig
—(1/3!) Lg]+ 0(7'), (31)

and. we obtain for short times and small 7, from

Eq. (30),

Z(i'
~
i,) = i', (I„[P„[P„I,]]}(I„') '+ O(i', )

or
Ic(i'~7)=(i''/4') 7'(I, [L„[L„I„]]}(I,') '.

In terms of the brace notation of Waugh and Wang,
'

this equation becomes

I~(i'I ) =(i''/4') "[L,

'&i!tlat

. (32)

Substituting Eq. (32) into Eq. (29), solving for G(i)
to lowest order in t, and setting t = nt, = 4n~, we ob-
tain

(I„(ni,) ) = (I,(4n7') ) = (1+ z n r Ls+ ~ ~ II, (33)

which is identical to Eq. (41) of Waugh and Wang.
"

Behavior at long times. We now wish to ex-
amine the implications of our basic equations (29) and

(30) for long times, i. e., for nt, » Tz. To do so,
we observe that while the decay function G(i) de-

cays slowly to zero on a time scale T&„ the kernel

where

It (t'~ i,) = (I„')-'(I,g'(i, )

x exp[iso i'+i(1 -p) g'(i, )i'] g'(I, ) I,}, (30)

ZOA-=[K, A], and 2 (t,)A= [V(t,-), A] for any op-
erator A. Equations (29) and (30) completely de-

termine the evolution of the magnetization, and are
valid for both short and long times. These equa-

tions are closely analogous to Terwiel and Mazur's

expressions for the spin-spin relaxation function.

The quantities 3C and V(t,) of the present case play,

respectively, the roles of secular and nonsecular

Hamiltonians. Of course, the nonsecular perturba-
tion in the present case is introduced by the fact
that the characteristic repetition period t, is finite.
jtf t, «T~, the nonsecular effects become negligibly

small and the motion of the system can be described

in terms of the average Hamiltonian 3C. In this

case the magnetization will be locked along the y
direction of the rotating frame; i. e., there will

be no decay of the echo envelope. This situation is
of course similar to the familiar "motional nar-
rowing" effect, as has been discussed by Haeberlen

and Waugh. "
Behavior at short times. We wish here to

show that the above results reduce for short times

to the results of Waugh and Wang. For small ~

we have, from Eq. (28),

V(i,) = i', P, + O(i'.)
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E(t It,) [which consists essentially of the time

autocorrelation function of the quantity 2 (t,)I„
with a modified propagator] is expected to decay

rapidly to zero in a time of the order of T&. If
this is the case, then for T&«nt, «T&„one may

approximate Eq. (29) by setting the upper integra-

tion limit equal to ~ and replacing G(t —t ) by G(t).
When this approximation is made, the function G(t)
(and hence the magnetization) assumes an expo-
nential decay, which in fact is what is observed ex-
perimentally at long times. The time constant T*
associated with the decay is then given by

1
d

I ([Z (t,)I,]exp[iZ~t +i(1 —5)2 (t,) t ][2 (t,)I]&
(34)

0 C

where, in spite of the minus sign, 1/T must of course be positive. It is perhaps more revealing to write
1/T* as

where the characteristic correlation time w, (t,) associated with the decay of the kernel is given by

(36)

Equation (34) [or Eqs. (35) and (36)] must contain

the full dependence of T~ upon t, „although the

precise nature of this dependence has yet to be ex-
tracted from the formalism. Let us therefore go

on to consider particular circumstances and the t,
dependence which arises in each.

In the limit of small t, (t, «T2), it is reasonable
to suppose that Eq. (34) reduces to

I/T~ = —t ', (I„'&-'J,
"

dt' ([Z„I ] exp(i&, t') [~„I ] &
.

(37)
We emphasize, however, that in order to obtain

Eq. (37) from Eq. (34) in the limit t,/T~ 0 it is
necessary to interchange limiting operations in a
manner which has not been mathematically justi-
fied. ~ Equation (37) bears an obvious resemblance
to the well-known expressions for the ordinary
spin-lattice and spin-spin relaxation times T& and

T~. Note that according to Eq. (37) 1/T" should

be proportional to t4 (or v ) for small t, . This re-
sult is in disagreement with experimental results
for CaF2, which show a proportionality between T*

and t, , although it may account for the departure
from this relationship in the case of K&SiF6 at
small t, .

In practice, however, the mathematical limit

t,/T3-0 is never achieved, and we must consider
the question of how to include correction terms in

Eq. (37) arising from the fact that t, is finite. The

simplest way to do this is to assume that it is legi-
timate to express 1/T* as a power series in t, .
This expansion can be generated in a straightfor-
ward manner from the basic expression (34) for
I/W. One first expands the exponential operator
in powers of 2 (t,), allowing, of course, for the
fact that the operators in the exponent do not nec-

1/T* = aq t,+ a2 t, + as t, + ~ ~ ~, (38)

where a& is of course just the negative of the inte-
gral appearing in Eq. (37).

But there is a serious difficulty with this power-
series approach, for experimentally it is found in
several cases that 1/T* is proportional to t', . Ac-
cording to Eq. (38), 1/T* should start out propor-
tional to t „and even if the t, term should happen

to be zero, the next term would be proportional to

t, rather than t ', . One possible explanation for
this disagreement is the following. Suppose it
turns out that, although the t4 and t 6 terms in Eq.
(38) are important, all higher-order terms are
negligible in the range of t, considered. Then Eq.
(38) may be rewritten in the form

I/T" = t, (aq/t +ac& t,) . (39)

If we suppose further that aq=aqt, in the range of

t, considered, then we see from Eq. (39) that it is
possible for the combination of a t, term and a t,
term to simulate the behavior of t, over a reason-
ably wide range of t, . Of course, this argument is
purely conjectural; it rests upon the above suppo-
sitions concerning the relative magnitudes of the
coefficients a~ in Eq. (38). In order to justify this
interpretation, it would be necessary to evaluate

essarily commute. One then expands 2'(t, ), wher
ever it appears, in powers of t„since 2'(t, )A
= [V(tc), A], this expansion is essentially the same
as that in Eq. (28). But since only even powers of

t, appear in Eq. (28), it is clear that only even

powers can appear in 1/T* as well That. is, if
1/T* may be expanded in powers of t„ then the ex-
pansion begins with a term of order t4„and only

even powers of t, appear:
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0-

KpSiF6, 30 MHz (Ref. 4)

COFz, Ref. 2

Teflon, 40MHz (Ref. 4)

truncate the expansion at any low order. If we now

expand 2 (t,) in powers of t, eeeryvchere except in

the exponentia/, Eq. (34) becomes

1 4 ( g (MsE(t I t,)Ma)
0 (f2)

-5,0 -4,8 -4.6

log, P

FIG. 1. Dependence of the decay time T* on pulse

spacing v (v. =t,/4; t, is the cycle time) in KvSiF&, CaF2,

KAsF6, and Teflon. These data were obtained from

Figs. 2 and 3 of Bef. 4. Note that T*ccv for CaF2

and K2SiF6, while T*cc~ for KAsF6 and Teflon.

-4.4 -4.2

the quantities a~; this is unfortunately a prohibi-
tive task. Besides, even if this explanation is cor-
rect for CaFp and KpSlF6 its applicability is in no

sense general, for there are several other com-
pounds which show other dependences of T* upon

t, (see Fig. 1). In particular, for Teflon and KAsFs
one finds a proportionality between 1/T* and t„
there is no apparent way to reconcile these ob-
servations with Eq. (38).

The above difficulties suggest that it simply may

not be permissible to express 1/T* as a power

series in t„at least in the experimentally acces-
sible range of t, . This may occur because experi-
mentally t, is not made small enough for the series
to converge rapidly or at all, or it may be due to
some inherent nonanalyticity in the problem. That
is to say, 1/T* may simply not be an analytic func-

tion of t, over an interval containing t, = 0. But if
the power-series expansion of 1/T* is not legiti-
mate, then it becomes apparent that 1/T* may ex-
hibit practically any t, dependence that one can im-

agine. In particular, the proportionality between

I/T~ and t,' which is observed for CaFa and KaSiFa

may arise in the following manner. Let us first
suppose that t, is small enough for the Magnus ex-
pansion (28) to converge, which is almost certainly
the case. However, the fact that experimentally

t, ~ T2 (instead of the more favorable condition t,
«T, ) means that we cannot expect to be able to

,, m, s t'It, m, +m, E t'I t, m,
C (I,')

(40)

where M„=—[E~, I„] and E(t I t, ) = exp—[inc t + i(1 -g )

xZ'(t, ) t ]. In obtaining Eq. (40) from Eq. (34) we

have effectively assumed that the difficulty in ex-
pressing 1/T* as a power series in t, is associated
with the exponential operator rather than the rest
of the expression.

As mentioned, we cannot expect to be able to
truncate Eq. (40) at any low order on the basis of

the smallness of t, . However, it is reasonable

physically to assume that the progressively higher-

order correlation functions which occur in suc-
ceeding terms of Eq. (40) decay to zero with in-

creasing rapidity. If this is the case, then we

can truncate the expansion in Eq. (40) on this basis
regardless of the fact that t, & Ta. We then obtain

I/T+ = —((M', )/(I,')) t', v', (t,), (41)

where r, (t,) is given by

e t I (Ma E(t It,) Ma)
(42)

and is presumed not to be expressible as a power
series in t, . We see from Eq. (41) that if 1/T* is
to be proportional to t,' then (vt,e) must simply be

proportional to t, . This will occur if the integrand

of Eq. (42) [which is the time autocorrelation func-

tion of the operator M~, taken with the modified

propagator E(t I t,) and normalized to unity at t'=0]
is flat up to a time t = nt, (where n is a constant),

beyond which it assumes a very rapid decay. (Ac-

tually, all that is necessary is that the area be

equal to nt„but this is perhaps less easily im-

agined. ) Then va(t, ) = nt, and one obtains

1/T* = —n ((M a)/(I„)) t ', . (43)

If a is set equal to unity, we obtain the earlier re-
sult of Waugh and Wang, obtained by use of a Stos-
szaMans ate.

The proportionality between 1/T* and t, which is
observed for Teflon and KAsF6 may be interpreted
in the same manner. In order for Eq. (41) to imply

that I/T~ is proportional to t„ it is necessary for
v', (t,) to be proportional to t ~. The corresponding
behavior of the correlation function in the inte-
grand of Eq. (42) may readily be imagined. a'

If,

for example, this correlation function decays ex-
ponentially with a time constant proportional to

t, then v, (t,) is, of course, proportional to t, .
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This is a sufficient condition but certainly not a
necessary one.

IV. CONCLUSION

mental investigations of the dependence of T~ upon

the pulse spacing.

ACKNOWLEDGMENT

We have seen that a theory of the decay of trans-
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with experiment, the correlation function which de-
termines T* [see Eq. (34}]must apparently mani-
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R,(t,) =R+ K f', E, ,
g=a

where the fact that R'~'(f, ) = f,E» has been used.
Since L(t,) is a unitary operator, it follows that

I.'(t,) = I '(f,) = exp[it, X,(t,)] . (A

If I.(t,) is symmetrical as well, that is, if

I.'(f,) = 1.(- t,),
then one also has

exp[it, X,(t,)]= exp[it, R,(- t, )] .

Therefore,

x,(f,) =x.(-f,)

or, from Eq. (A2),

(A5)

(As)

Therefore, I', must be equal to zero if k is odd.
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APPENDIX

For convenience we rewrite here Eqs. (I5) and

(l6):

L (f,)= exp[- it, K, (f,)],
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Proton-spin-lattice relaxation times (T&) were measured by us in antiferromagnetic
NiC12 6820 (T&= 5.34'K), CoC12'6H20 (T~=2.29'K), and MnBr2 4H20 (Tz—-2.13'K) in the
temperature range 4. 18 —1.12 'K. Spin-echo experiments were also carried out over the same
temperature range to determine the homogeneous transverse relaxation time T2 in NiC12 6H2O
and the extent of the inhomogeneous broadening in CoC12" 6H20. Samples of various impurities
and shapes were investigated. The spin-lattice relaxation time T& was found to be strongly
temperature dependent for the first two crystals. The T& data from the CoC12 6H20 crystals
could be fit to a power law (T&~T ), but the T& data from the NiCl; 6H&G crystals could not.
The temperature dependence of T& for MnBr2 4H&O was not determined because of the short
temperature range over which we were able to make measurements. The temperature depen-
dence of T& for the first two crystals along with the experimental results for CuClp'2H20 (T~
.=4.3 K) have been explained through a first-order two-magnon process plus a second-order
three-magnon process. The second-order three-magnon process arises from the four-magnon
exchange interaction which has been shown by Beeman and Pincus to completely supersede the
first-order three-magnon process when T & TAz. The impurity levels, the sample shape,
and the orientation of an external magnetic field Ho had no effect on the temperature dependence
of T~. In NiC12 6H2O the value of T2 measured from a 90 -90'-pulse-sequence experiment in-
creased from a value of about 28 psec at 4.18 'K to a value of about 65 psec at 2. 3 'K and then
at 2. 1'K dropped to about 30 psec and stayed at this value down to 1.12'K. In CoC12 6H2O the
inhomogeneous broadening was dependent on the orientation of IIO and the sample shape. An rf
enhancement was found in CoC12 6H&O for IIo along the anisotropy axis (c axis).

I. mTROnUnIOW

The first experimental measurements of the

spin-lattice relaxation time T& for protons in anti-
ferromagnetic materials were made by Hardeman
ef, a/. ' Moriya and Van Kranendonk and Bloom'
tried to explain the dependence of T& on the absolute

temperature T using a relaxation process due to
the Baman scattering of magnons. Their results
were of the right order of magnitude, but the tem-
perature dependence was slower than the T de-
pendence found experimentally. Pincus and %in-
ter then proposed a theory which gave the T
temperature dependence but required T«T»,
wherek~T»= Sv~ and@+~ is the magnon energy

gap. They assumed that the Inagnetostrictive

terms in the Hamiltonian produced a magnon com-

ponent in the thermal phonon spectrum allowing the

phonons to participate directly in the relaxation

processes. The T 7 temperature dependence in

CuC1, ~ 2H, O (T» -1.4 'K) covers the range —T
& T„~ as well as the range T& T». Other crystals,
CoC1~ 6HsO (T„s=2 K) and KMnFs (T„s=0.3'K),
that have also exhibited this temperature depen-

dence for T, have Blso included the range T & T&&,

In fact for KMnF3 the middle of the temperature

range is on the order of 100 times T». Also, as
is reported in Sec. DT, the temperature dependence

of T, in ¹iCl~~ 6H~O cannot be fitted by a power

law. Additional arguments and evidence against




