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Decay of Positive Waves in
Nonlinear Systems of Conservation Laws

ALBERTO BRESSAN - RINALDO M. COLOMBO*

1. - Introduction

This paper is concerned with B V solutions to a system of conservation
laws in one space dimension:

Here f : Q 1---* R" is a smooth function defined on an open set Q C R". We
assume that the system is strictly hyperbolic, and that each characteristic field
is either linearly degenerate or genuinely nonlinear [12], [15]. Our aim is to

derive certain a priori bounds on the strength of positive waves of genuinely
nonlinear families, which extend the classical decay estimates of Oleinik [13].

We recall that, in the scalar case, the assumption /~(M) &#x3E; K &#x3E; 0 for all
u E R implies

Regarding (1.2) as a first order equation for the gradient ux and integrating
along characteristics, one obtains the pointwise estimate

valid for a sufficiently regular solution defined on the strip [0, T ] x R. More
generally [13], [15], any bounded entropic solution of (1.1) satisfies

* The author thanks the 3rd Faculty of Sciences in Varese for having partially supported this work.
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We will prove an estimate similar to (1.3), valid for general n x n systems.
Namely

where is the distributional space derivative of u (t, .) along the i -th charac-
teristic family, Q is the interaction potential, K and C are suitable constants.
For a more precise statement, some more notations are required.

Let A (u ) = D f (u ) be the Jacobian matrix of f at u. Smooth solutions
of ( 1.1 ) thus satisfy the equivalent quasilinear system

Call À1 (u)  ...  the eigenvalues of A (u ) . In that follows, ~ denotes
an upper bound for all characteristic speeds, while 0~, is a lower bound on
the differences between speeds of waves belonging to different characteristic
families:

For the matrix A (u), choose right and left eigenvectors
normalized so that

for every i E { 1, ... , n } I and all u in the domain of f. The assumption on the
genuine nonlinearity of the i -th characteristic family can be written as

For a given state u E Q and i = 1,..., n, we denote by

respectively the i -shock and the i -rarefaction curve through u, parametrized by
arc-length. Moreover, we consider the curve

if

if

Following [14] and [7], the definition of the Glimm interaction functional
can be extended to general B V functions as follows. Let u : R « R" have

bounded variation. Then the distributional derivative /t = Du is a vector

measure. Let x 1, x2 , ... be the points where u has a jump, say =
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the wages generated by the corresponding
Riemann problem at xa . With the notation (1.9), this means

For i = 1,..., n we can now define Ai as the signed measure such that, for
every open interval J,

where

if u is continuous at x ,

if u has a jump at x - a .

Observing that

in the second case of ( 1.11 ) we can assume that, for some constant C

Call the positive and negative parts of the signed. measure so that

The total strenght of waves in u is defined as

Let N be the set of those indices i E { 1, ... , n) such that the i -th characteristic
family is genuinely nonlinear. The interaction potential of waves in u is then
defined as

Throughout this paper we deal with solutions of ( 1.1 ) satisfying the uniform
bounds
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for some small positive For such solutions, the classical interaction estimates
of Glimm [ 11 ] state that, for some constant Co, one has

In the following, the positive and negative part of a number s are written

Isfl + L max{s, 0}, Isfl _ L max{-s, 01.
Consider a smooth solution u = u(t, x) of (1.1) defined for t E [0, T]. In

the vector-valued case, introduce the gradient components

Differentiating (1.5) one finds

where the coefficients Gijk are determined in terms of the Lie brackets of the
vector fields rj, rk. If Gijk _ 0 for all j, k, then the gradient component
ux would satisfy the same estimate (1.3) as in the scalar case, for suitable
constant K. In general, (1.3) may fail because of the last term on the right
hand side of (1.19). Observe that this summation essentially depends on the
(instantaneous) amount of wave interaction. This suggests that the amount by
which (1.3) fails, measured by

can be estimated in terms of the total amount of interaction taking place during
the interval [0, T]. This quantity, in turn, can be bounded by Q (u (0)) - Q (u (t ) ),
i.e. by the decay in the wave interaction potential. In the following, the measure

is defined as the i -th component of the distributional derivative of u (t, .), as
in (1.10). For simplicity, we shall often write Q (t) = Q (u (t)). The Lebesgue
measure of a set J is meas (J).

THEOREM 1. Let the system ( 1.1 ) be strictly hyperbolic and let the i -th charac-
teristic fzeld be genuinely nonlinear. The there exist constants C1, K &#x3E; 0 such that,
for every Borel set J C R and every solution u with small total variation obtained
as limit of wave-front tracking approximations, one has

REMARK 1. It was recently proved in [4] that the solutions of ( 1.1 ) obtained
as limits of wave-front tracking approximations are precisely the same as those
generated by the Glimm scheme. Indeed, they are the trajectories of the unique
Standard Riemann Semigroup generated by ( 1.1 ). For the definition and main

properties of SRS we refer to [4], [5]. The reason for stating Theorem 1 only
for solutions generated by the wave-front tracking algorithm is that, in this

way, we can provide a self-contained proof, entirely independent of the results
in [6], [8].
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COROLLARY 1. Under the same assumption of Theorem 1, for every piecewise
Lipschitz solution of ( 1.1 ) and every 17 &#x3E; 1 /K T one has

Indeed, calling one has

Hence, by (1.20),

This yields (1.21).

REMARK 2. If the shock and rarefaction curves of the i -th family coin-
cide [16], one can redefine the interaction potential Q in (1.15), omitting the
term Ai - x y}) from the second summation. In other words,
one can regard two i -waves as never approaching, regardless of their sign. All
results then remain yalid. In particular, in the scalar case one can take Q == 0,
so that (1.21) is equivalent to the Oleinik estimate (1.3), except for a possibly
worse constant K.

In Sections 2 and 3 we review the wave-front tracking algorithm [2], [3]
and establish a technical result, showing that the local interaction potential of
approximate solutions decays quickly, in a forward neighborhood of any point
in the (t, x)-plane. This result, besides its application in the present paper,
plays a major role in the construction of s-approximate semigroups for n x n
systems [8]. Theorem 1 is then proved in Section 4.

2. - Wave-front tracking approximations

We recall below the algorithm of wave-front tracking [3]. Let an initial

data
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be given, with small total variation. A sequence of piecewise constant ap-
proximate solutions u, = is then constructed as follows. Start with a

piecewise constant function .) close to u. This initial condition is chosen
so that, as v ~ oo, one has

At each point of jump in uv(0, .), one approximately solves the corresponding
Riemann problem within the class of piecewise constant functions. This yields
an approximate solution defined up to the first time t1 where a wave-front
interaction takes place. The new Riemann problem is then solved again within
the class of piecewise constant functions, prolonging the solution up to some
time t2 where the second set of interactions takes place, etc. In order to

keep finite the total number of wave-fronts, two distinct procedure are used

for solving a Riemann problem: an accurate method, which possibly introduces
several new fronts, and a simplified method, which minimizes the number of
new wave-fronts. For a given integer v &#x3E; 1, these are described below.

ACCURATE RIEMANN SOLVER. Consider a Riemann problem with data u-,
u+, say generated by the interaction of an i -wave with a j -wave. Let No =

u-, WI, ... , = u+ be the constant states present in the exact solution of the
Riemann problem. The piecewise constant approximation uv is the obtained

by replacing each rarefaction wave of a characteristic with

a rarefaction fan. This is done by dividing the jump (Wk-1, (0k) into v equal
jumps, inserting the intermediate states

Each small jump (Ok,f) will travel with speed i.e. with the
characteristic speed of its right state. When k = i or k = j, a rarefaction
wave of the same family of an incoming front is not further partitioned: it is

propagated as a single wave-front, travelling with the characteristic speed À (Wk)
of its right state. It is understood that, at the initial time t = 0, there are no
incoming fronts and hence every centered rarefaction wave is partitioned into
v equal jumps.

SIMPLIFIED RIEMANN SOLVER. Assume that the Riemann problem is deter-
mined by the interaction of two waves of distinct families, say i  j, with
sizes Call ul, u’~, ur the left, middle and right states before the interac-
tion. With the notation introduced in (1.9) we thus have urn = and

ur = We then solve the Riemann problem in terms of two outgoing
wave-fronts of the same families, still with sizes ai, aj. The solution will thus
involve a middle state um = and a new right state ur = 
In general, ¡;¡r =1= ur. The jump (ur, u’) is then propagated along a "non-physical
wave-front", travelling with the fixed speed ~ in (1.6), greater than all char-

acteristic speeds. In the case where both incoming wave-fronts belong to the
same i -th family and have sizes cr’, cr", the Riemann problem is solved by a
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single outgoing wave of size cr’ -~- o-" together with a non-physical wave-front
connecting the states Wi (a’ + a") (ul) and ur, travelling with speed À. Finally,
if a non-physical front meets an i -wave of size ai, then the Riemann problem
is solved in terms of an i -wave, still of size ai, and an outgoing non-physical
front, always travelling with speed À.

To complete the description of the algorithm, it remains to specify which
Riemann solvers is used at any given interaction. For this purpose, to each wave-
front we attach a positive integer, keeping track of how many interactions were
needed to generate that particular front. Waves originating from the Riemann
problems at time t = 0 are assigned order 1. To the newly bom waves, generated
by the interaction of fronts of orders p 1, p2, we assign order ~2}. In
the construction of the v-th approximation uv, the Riemann problems generated
by the interaction of two fronts of order pi, p2  v are solved accurately. On
the other hand, if one of the incoming fronts has order &#x3E; v, then the Simplified
Riemann solvers is used. In the above, we tacitly assumed that only two wave-
fronts interact at any given time. This can always be achieved by an arbitrarily
small decrease in the speed of one of the interacting fronts.

Given any initial data u with sufficiently small total variation, using the
above algorithm we obtain a sequence i of piecewise constant approximate
solutions, with Uv (0) -~ u in L1. Each uv is defined for all t E [0, oo[ [ and
has a finite number of lines of discontinuity in the (t, x)-plane. At any fixed

time T, jumps in can be of two different types.

1. Physical wave-front, of order  v. At any such point of jump by
construction we have

for some E R and ka E { 1, ... , n }, with T as in (1.9). In this case we say
that Mp(r) has a wave-front of strength laal ( at of the ka -th family.

2. Non-physical wave-fronts, of order v + 1. At any such point Xa, we
define the strength of the jump as

For notational convenience, in this case we set ka = n + 1.
A priori bounds on the functions u, are obtained as in [2], introducing

suitable functionals measuring the total strength of waves and the interaction
potential:

where ,,4 denotes the set of all couples of approaching wave-fronts. More

precisely, two wave-fronts, located at xa  xf3 are said to be approaching if

either ka &#x3E; kp, or else if the two fronts belong to the same genuinely nonlinear
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family k0153 = kp e { 1, ... , n } I and at least one of them is a shock. Following [2]
one then proves tat, as v --~ oo,

(i) The total variation of uv(t, .) remains uniformly small,
(ii) The maximum size of rarefaction fronts in Uv approaches zero,
(iii) the total strength pf all non-physical waves approaches zero.

By (i), Helly’s theorem guarantees the existence of a subsequence strongly
convergent in By (ii) and (iii), this limit provides a weak solution to (1.1).
See [3] for details.

The next proposition establishes the local decay of the interaction potential,
for wave-front tracking approximations. In analogy with (1.14), (1.15), the total
strength of waves in u inside a set J C R is written

while Q (u; J) denotes the interaction potential of u restricted to couples of
approaching waves both contained inside J. As in (1.6), À is an upper bound
for all wave speeds. Observe that, for every point (t, ~) in the (t, x)-plane,
since u ( T, .) has bounded variation there exists p &#x3E; 0 such that Q (u ( i ) ; [E -
p, E + p])  E. In turn, this implies

where J (t) is the interval of dependence

A similar estimate holds for approximate solutions uv, uniformly w. r. t. v.

PROPOSITION 1. Assume that the system ( 1.1 ) is genuinely nonlinear, so that (1.8)
holds for every i = 1 ... , n. Let (u v), &#x3E; 1 be a sequence of approximate solutions
of ( 1.1 ) generated by the above wave-front tracking algorithm. Let a point (T, ç)
and s &#x3E; 0 be given. Then, there exists p &#x3E; 0 such that, letting J (t) be as in (2.6),
by possibility taking a subsequence one has

The proof is deferred to Section 3.

REMARK 3. While waves of different families cross each other very quickly,
positive and negative wave-fronts of the same family could, in principle, travel
for a long time with almost the same speed and not interact with each other.
Proposition 1 states that, in the genuinely nonlinear case, such a situation cannot
happen. The validity of the result is essentially due to a specific provision
made in our algorithm: the speed of every rarefaction front is set to be equal
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to the characteristic speed of the state at the right of the front. With other
definitions, (2.7) may fail.

EXAMPLE 1. For the following Cauchy problem for the Byrgers’ 
‘ 

equation

consider the sequence of approximate solutions

where

Observe that contains v + 1 positive and v negative fronts, all with

strenght 2v. In this case, there is no cancellation between positive and negative
wave-fronts. Indeed, taking (-r, ~) = (0, 0), for any p &#x3E; 0 we have

for all t E [0, p[.. Of course, this is in contrast with the conclusion of Propo-
sition 1. Observe that one key assumption is here violated. Namely, every
rarefaction front in uv travels with speed 0 = v-1 - v-i equal to the average
between the left and right characteristic speed. Instead, our algorithm would
assign the speed v-1 to rarefactions and the speed 0 to shock fronts, thus de-
termining a substantial amount of cancellation between positive and negative
waves within a very short time.

For future reference, we introduce here some notations in connection with
a piecewise constant approximate solution u = u (t, x) obtained by wave-front
tracking. Consider two incoming fronts, with sizes a, cr’ in the characteristic
families j, j’ respectively, which interact at a point (t, x). The instantaneous
amounts of interaction and cancellation are then defined as

if and

otherwise.

Recalling (2.5), consider the quantity
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By (1.17), T is non-increasing. More precisely, if the total variation of u
remains sufficiently small, the amounts of interaction and cancellation are both
controlled in terms of the decrease in ’r . Indeed, using

one obtains

The next two lemmas refer to a piecewise constant solution generated by
wave-front tracking. Throughout this paper, by C or c we denote (large or
small) strictly positive constants, depending only on the system ( 1.1 ) and not
on 8 or on the particular solution u. In a chain of inequalities the particular
value of these constants may change from one term to the next.

LEMMA 1. Fort t E [T, T’], let x = y (t) be the position of a shock front, with
size a (t). Then for some constant C the following estimates hold.

(i) If la (t) I  lg (T) I, then

(ii) Let Smin - t E [T, t’] be the minimum strenght of the shock.
Then

PROOF. To establish (i), observe that

Let be the size of the wave-front interacting with our shock at time s.

In the case where ~’ belongs to a different family, or to the same family as or,

we respectively have

Together, (2.18) and (2.19) imply (2.15).
The estimates (2.16)-(2.17) follow respectively from
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LEMMA 2. For some constant c &#x3E; 0 the following holds. Assume that at some
time T all shock have strength laa (T) I  E3. If at a later time t’ &#x3E; T some shock of
strength &#x3E; 2c3 has formed, then

PROOF. Assume that some shock at time T~ has strength &#x3E; 283. Let x = y (t)
be the polygonal line obtained by following the shock backwards, starting from
the terminal time T~. At a time S E [t, T~] where two shocks of the same
family merge together, we continue backward along the one of larger strength.
At every time S E [T, -r] where an interaction occurs, this choice implies a
bound of the form

for some constant c &#x3E; 0. In turn, this yields

possibly with different constants c. Therefore,

This establishes (2.20).
We conclude this section by stating two lemmas, for future use. The first

is concerned with the lower semicontinuity of the interaction functional Q. For
a proof, see [ 1 ] .

LEMMA 3. Consider a sequence of functions u,: R ~-+ JRn with sufficiently
small total variation. If u v --* u in L1, then

The last result is concerned with the behaviour of the measures v’ in (I. 10),
w. r. t. pointwise convergence of the corresponding functions u v .

LEMMA 4. Let be a sequence of functions with small total variation,
converging pointwise to a function u. Call the corresponding measures,
defined as in ( 1.10). Moreover, let be the total variation measure of u ", and
assume the weak convergence I Du v I - i;c, for some positive Radon measure 
Then we have the estimate

valid for every compact interval J = [a, b] and some constant C depending only
on the system ( 1.1 ).
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PROOF. Set li ’ li(u(a)). By the definition (1.10) we have

From (1.13), the pointwise convergence u, -~ u and the weak convergence
it follows

3. - Proof of Proposition 1

Let 1 be a sequence of piecewise constant approximate solutions

generated by the wavefront tracking algorithm. Let (r, ~) and E &#x3E; 0 be given.
For i = 1,..., n, call t 

the purely atomic measure such that t ( { ya } ) = aa
if and only if uv(t,.) has an i -wave at Ya, of size Observe that this is
consistent with the previous definitions ( 1.10)-( 1.11 ), taking u = uv(t, .). Due
to the uniform bounds on the total variation (1.16) and on the propagation
speed (1.6), by possibility taking a subsequence we can assume the existence
of two non-increasing functions Q, ’Y’ and n positive measures ~~;c.1, ... , 9 n such
that, as v - oo,

weakly,
for each

where is the interaction potential as in (2.5), and
as in (2.13).
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Now let an arbitrarily small 8 &#x3E; 0 be given. It is not restrictive to assume
s « 1, so that C 8  1, Elc  1 for all the various constants C, c appearing in
our future estimates. Choose p &#x3E; 0 and then t* &#x3E; i such that

By (3.3), (3.5), there exist two decreasing sequences and with
such that

for all v sufficiently large. Define

By (3.4), C J (t) for all t E [T, t*], where J is the interval at (2.6).
From (3.6) we deduce an estimate of the form

To prove Proposition 1, it thus suffices to show that

for all v sufficiently large.
The interaction potential (3.10) is the sum of a part related to approaching

waves of different families and a part related to approaching waves of the same
family. We first consider the contribution of waves belonging families.

Fix any two indices i  j. Consider the triangular domain

where
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Because of strict hyperbolicity, by possibily letting u vary in a smaller domain,
we can assume that Consider the interaction potential of couples
of i, j-waves contained in i.e.

Here is the set of all couples (a, fl) such that uv(t) contains an i -wave
at yp and a j-wave at ya, with ya  yp and ya, yp E Iv&#x3E; (t).

From the definition of the triangular set Dv it follows that no j-wave can
exit through the left boundary. Similarly, no i -wave can exit through the right
boundary. Therefore, the quantity Q v can decrease only at a time t where one
of the following cases occurs:

- two i -waves (or two j-waves) collide with each other,
- an i -wave interacts with a j-wave,
- an i -wave (or a j-wave) collides with some other h-wave, with h # i, j.

At every such interaction time, the decrease in Q v is bounded by the decrease
of Tv. More precisely, for some constant C &#x3E; 0 we have

We now observe that, if v is sufficiently large, then the interval I’j (t*) in (3.12)
is empty, because 8v - 0 and Hence = 0. By (3.15),
(2.13) and (3.7) we thus obtain

for every couple of indices i  j. This provides a bound on the interaction
potential due to waves of different families. ,

We claim that, at time rv, the waves in u" (t") contained in the interval
are almost separated, i.e. there exist n subintervals Iv such that
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Indeed, to construct the intervals Ii we set and choose points
av = Pv  ...  pv = bv such that

for all

for all

Such points pv exist because of (3.16). Setting Iv = [ pv 1, we obtain (3.17).
Next, we estimate the interaction potential corresponding to all pairsv

of i -waves in both contained inside Iv(Tv). Calling 6’ v the interaction
potential of pairs of i -waves in Uv(Tv) both contained in the subinterval I", by
(3.17) we have

Therefore, it will suffice to derive an estimate on (~. In the following, we
write JLi+, JLi- for the positive and negative parts of it’, as in (1.9). We shall
consider three cases.

In this case we simply have

2. The function uv(Tv) contains at least one i-shock of strength 83,
located at some point y e 7~.

In this case, we claim that the total amount of all other i -waves contained
in /~ satisfies

hence

To prove (3.20), we will show that in the opposite case the large shock
would attract an amount &#x3E; c~4 of i -waves, for some constant c &#x3E; 0. This

would produce an amount of interaction and cancellation &#x3E; 8 3 .CE4 within the
interval [rv, t*], in contrast with (3.7).

A more detailed proof goes as follows. Let y(t) be the position of the
shock at time t E [Tv, t*], and let  0 be its size. By Lemma 1, the

bounds (3.5)-(3.6) on the amounts of interaction and cancellation imply that
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Consider the triangular domain

where

We now introduce a functional which roughly measures the speed at which i -

waves approach the shock:

The above summations refer to i -waves in u"(t), located at Ya with strength
la,, 1. ~ By the above definition, it is clear that-41 does not change whenever an
i -wave leaves r, crossing one of the lines y , y+. Therefore,

Assume that the total amount of i - waves inside Iv is &#x3E; 84. Since, for v large,

the assumption of genuine nonlinearity implies

for some constant c &#x3E; 0. Observing = 0 because
from (3.24), (3.25) it follows

a contradiction with (3.7). This establishes (3.20), and hence (3.21).

3. We are now left with the case where (Iv) &#x3E; 82 , and all the i -waves
inside Iv have strength /a I  E3. Our aim is to show that this case cannot

happen, because it would cause a large amount of interaction and cancellation,
in contrast with (3.7). Recalling that Iv - in (3.17), consider the
domain



149

Fig. 1.

where

Consider all shock lines x = ya (t) of the solution uv, which are defined on the
whole time interval [i", t*] (fig.1 ).

By assumption (3.7) on the total amount of interaction and cancellation,
for every t E [rv, t*] the total strength of all shocks in located on these
lines is

Moreover, since the initial strength of any i -shock is  ~3, by (3.7) and Lemma 2
it follows that all shocks remain small

for all

Call  ... YN(t*) the positions of those i -shocks in u(t*) which can be
continued backward on the whole interval t*], reaching a point inside I¿ at
time T. For each a = 1,..., N, let x be the location of the maximal

among these backward continuations. Moreover, call x = xa (t) be the minimal
backward characteristic through the point (t*, (fig. 1). By construction,
the intervals are mutually disjoint, for every t E [-rv, t*]. For

a = 2,..., N, these intervals are also contained inside ivi I and hence inside
Iv (rv), defined at (3.8). Therefore

for all v sufficiently large. Using the genuine nonlinearity and the fact that in
our algorithm all rarefaction fronts travel with their right-characteristic speed,
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we compute

for some constants C, c &#x3E; 0. The three terms on the right hand side of (3.31 )
will now be estimated one at a time. Call the set of times at which an
interaction takes place inside the domain

Since no i -shock can exit from Va, for s t* [ one has

Similarly, rarefaction waves cannot exit from Va. Observing that all positive
waves contained inside Da are cancelled within time t*, we obtain

Concerning the third integral on the right hand side of (3.31 ), observing that
Da C Dj for all a = 2,..., N, we have

Using (3.33)-(3.35) inside (3.31) we obtain

Thanks to the estimates (3.30), (3.17) and (3.7), from (3.36) it follows
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This provides an estimate concerning the amount of negative waves inside all
intervals ya with a a 2. Concerning the first interval, observe that the final
time t * all i -waves contained inside D 1 collapse to the single shock located at
y 1 (t * ) . By assumption, at the initial time Tv every shock has strength la I  83.
Since the total amount of interaction and cancellation is  811, this implies

Together, (3.37) and (3.38) show that this third case cannot occur, completing
the proof of Proposition 1.

4. - Proof of Theorem 1

Let 1 be a sequence of piecewise constant approximate solutions

generated by the wave-front tracking algorithm described in Section 2. For
each v, consider the measure i.c", t given by the distributional derivative of

uv(t, .), with components defined as in Section 1.

1. In the first part of the proof, we analyse the behavior of rarefaction
fronts in one particular approximate solution u".

Fix a point (-r, ~) e]0, +cxJ[ xR and some i E f 1, ... , n }, assuming that the
i -th family is genuinely nonlinear. By t h-~ y’(t; -r, ~) we denote the minimal
backward i-characteristic through (t, ~ ), that is, the minimal solution to the

Cauchy problem

Since the above differential equation has discontinuous right hand side, solutions
are here interpreted in the generalized sense, according to Filippov [10]. For
the basic theory of generalized characteristics we refer to [9]. Observe that, for
our piecewise constant approximate solution u v, the i -characteristics run into an
i -shock from both sides. On the other hand, i -characteristics move away from
an i -rarefaction front from the left, and run parallel to it on the right.

Now fix a time t &#x3E; 0 and let I = [~’, ~ "] be any compact interval. For

t E [0, i ] define

Call T(I, t ) the set of all times at which an interaction occurs within the region

and
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We seek an estimate on the amount of positive i -waves in the approximate
solution contained in the interval I. For a fixed t, the sizes and the
locations of the j-waves in uv(t,.) are denoted respectively by af (t), 
t = 1,... Nj. For notational convenience, we assume that the indices are
assigned so that

for some Define

and call

the sum of the (signed) i -waves in contained in I (t) . The sum of the
cubes of the strengths of the i -shocks inside I (t) will be denoted by

Finally, the total strength of all the j -waves, contained in I (t) is
written

Observe that, at the endpoints x - a (t), b (t), the function u" (t, ~ ) either is
continuous or else it has a rarefaction front. Since all rarefaction fronts have

strenght  C/v, the assumption of genuine nonlinearity (1.8) yields

for some constant C depending only on the system ( 1.1 ), and all but finitely
many t E [0, -r]. The changes and of the functions M and B at

an interaction time t E T(/, t ) can be bounded by
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I

Fig. 2. In P the collision between an i -rarefaction and an i -shock leads to the formation of an i -

rarefaction. In P’ two j-waves interact forming three i -rarefactions. In P" an i -rarefaction
front leaves r.

Two additional cases need to be considered, when an i -wave enters or exits
across the right boundary of r (fig. 2).

At a point P where an i -rarefaction interacts with a small i -shock and an
i -rarefaction front emerges, we have

At a point P" where an i -rarefaction front leaves r and no interaction occurs,
the estimates (4.11) still hold.

To estimate the contribution of the term A (t ) in (4.9), we introduce the
function

where

if

if

if

or

if

if

if

in the cases j  i or j &#x3E; i, respectively. Throughout this computation we are
assuming that m(t) &#x3E; 0. Observe that is piecewise Lipschitz with a finite
number of discontinuities occuring at interaction times, where
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Outside the interaction times, the function 4$i is non-decreasing. Indeed

for some constant co &#x3E; 0. This yields the bound

valid for all but finitely many times t. Inserting the estimate (4.15) in (4.9) we
obtain 

, _ , "

Using (4.10) and (4.11) to estimate M(t), B(t) in terms of M(-r), B(T), this

yields

possibly with a different constant C. We now observe that m is a continuous,
piecewise linear function of t. Moreover, by (4.13) and (4.14), the total variation
of 4$i i is bounded, say

for some constant K depending only on the total variation of Uv and on the
system (1.1). From the bounds (4.16)-(4.17) we now obtain
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for suitable constants C3, Ki &#x3E; 0, depending only on the system ( 1.1 ) and on
the total variation of the initial data.

2. We shall need a more general version of (4.18), valid for the union
of finitely many compact intervals. Fix t &#x3E; 0 and let /1,... , Ik be disjoint
compact intervals. For each k = 1,..., k and t E [0, t ], define the intervals

Ik (t ) - [ak (t ) , bk (t ) ] as in (4.2). Let Mk, Bk be as in (4.6), (4.7), with I (t)
replaced by Ik (t ) . Define

and call Tk the set of times when an interaction occurs within the region

Observe that each point (t, x) can lie at most inside two regions rk. Applying
the estimate (4.18) to each interval Ik and summing over k we thus obtain

3. We now consider an exact solution u = lim uv of ( 1.1 ), and establish
the bound

for some constant C4 and every finite set of points p 1, ... , pr. This estimate

should be intuitively clear: assume that

This means that, for the solution u = u(t, x), the point (T, Pk) is the center of

an i -rarefaction wave with strength Such a wave can only be produced by
an interaction occurring exactly at time t . Summing over k, we thus expect
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A rigorous proof of (4.20) will now be given, based on Proposition 1. It

is clearly not restrictive to assume that (4.21) holds. As in (1.6), i will denote
an upper bound for all characteristic speeds.

Define 
- -

By Proposition 1, we can find a strictly decreasing sequence t" -~ T such that,
calling Ik(Tv) = [ak,v, bk,v], for k = 1, ..., k one has

Let the quantities be defined as in (4.6)-(4.7), with t replaced
by t" and I(t) replaced by Using (4.19) with i replaced by t" we thus
obtain

As v 2013~ oo, (4.22)-(4.23) imply

Letting v ~ oo in (4.24) and using (4.25) we obtain

Observe that --* u(-c) in L 1. The lower semicontinuity of the func-
tional Q, stated in Lemma 3, together with the assumption (2.2) now yields

This gives (4.20), with C4 = 

4. We now show that (1.20) is true for all Borel sets if and only if it is

true for every finite union of compact intervals:
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Indeed, assume that (1.20) fails for some Borel set j, say

for some 8 &#x3E; 0. Choose an open set J’ :) i with  meas(j) + s.
Write J’ = Uhla, as a disjoint union of countably many open intervals.
By choosing

with h sufficiently large, from (4.29) we thus obtain

Defining [ah, [ah + p, bh - p] and choosing p &#x3E; 0 sufficiently small,
by (4.30) the corresponding set J in (4.28) satisfies

This proves our claim.

5. In the remainder of the proof, we shall thus assume that J is a compact
set of the form, (4.28). Call IDuv(T)1 the total variation measure of u,(-r, .).
By possibly taking a subsequence, we can assume the weak convergence

for some positive Radon measure ft. Let s &#x3E; 0 be given. The set J can be

decomposed as a finite union of disjoint open intervals and points:

with

Choose compact subintervals such that
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Applying (4.19) to the union of the intervals for every v &#x3E; 1

we obtain

Recall that B~ (t) is the sum of cubes of the strengths of i-shocks in

.) contained in the interval By (4.33), as the maximum

strenght of these shocks is O (~). Hence

Lemma 3 and the assumption (2.2) now imply

Moreover, by Lemma 4,

Letting v ~ oo in (4.35) and using (4.36)-(4.38) we thus obtain

Hence
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Putting together (4.27) and (4.39) and recalling (4.32), (4.34), we finally obtain

Since s &#x3E; 0 was arbitrary, 94.40) implies (1.20), for suitable constants Ci , K.
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