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I. Introduction 

We study solutions of the Cauchy problem for strictly hyperbolic systems of 

conservation laws of the form 

(1.1) Ot U +  F(U)=0,  - ~ < x < ~ ,  t>0 .  

Here U=  U(x, t) takes on values in R" and F is a smooth nonlinear mapping 

from R" to R". The condition of strict hyperbolicity requires the Jacobian F' o f  

F to have n real and distinct eigenvalues 

~ ( u )  < ... < ,~ . (u ) .  

We shall suppose in addition that each characteristic field of the system (1.1) is 

either genuinely nonlinear in the sense of LAX [17], that is 

rj. V)q.0,  

or linearly degenerate in the sense of LAX [17], that is 

rj. V2j---0. 

Here rj = rj(U) denotes the right eigenvector of F' which corresponds to 2j. 

The existence of solutions to systems with the above structure has been 

established by GUMM [9]. The existence theory of Glimm treats the Cauchy 

problem with initial data having small total variation and constructs solutions 

as the limit of a sequence of difference approximations. The space of functions 

of bounded variation is a natural invariant space for the solution operator of a 

system of conservation laws. While the theory is developed in the context of 

genuinely non-linear systems [9], only very minor modifications are necessary 
for a generalization to systems which admit linearly degenerate characteristic 

fields. We refer the reader to [16] for an extension of Glimm's method to an even 
wider class of systems. 

In this paper we study the decay problem for the class K of systems which 
possess a generalized entropy in the sense of LAX [18]. As observed by FRIED- 

RICHS & LAX [8], most of the conservative systems of mathematical physics are 
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endowed with a generalized entropy. For convenience in describing our results 

we partition the class K into two subclasses. The first subclass K~ consists of 

systems which admit both genuinely nonlinear and linearly degenerate charac- 

teristic fields. The subclass K1 contains the equations of gas dynamics (n = 3) in 

both relativistic and nonrelativistic form and the Lundquist equations of mag- 

neto-fluid-dynamics (n = 7). The second subclass Kz consists of genuinely non- 

linear systems, i.e. systems all of whose characteristic fields are genuinely non- 

linear. The subclass K2 contains the isentropic equations of gas dynamics (n = 2) 

in both relativistic and nonrelativistic form, the equations of shallow water 

waves (n = 2) and the equations of finite amplitude plane elastic waves super- 

imposed on a constant state of strain (n-=6). It has been shown by JOHN [15] 

that for classical materials the latter system is genuinely nonlinear provided that 

the wave front does not contain a principle direction of strain. The subclass K 2 

also contains the class of systems of two equations introduced by SMOLLER & 

JOHNSON [24] and the class of genuinely nonlinear symmetric hyperbolic systems 

(n arbitrary). The aforementioned systems are recorded for reference in Section 2 
along with their associated generalized entropies. 

Throughout this paper we assume for simplicity that the equation of state 

which enters the above fluid systems is that of a polytropic gas with adiabatic 

exponent 7 satisfying 1 <7<5/3. This assumption guarantees the existence of 

solutions to the Riemann problem and the construction of the Glimm difference 

approximations. Section 2 also contains a brief sketch of Lhx's method of con- 

structing solutions to the Riemann problem [17] together with an outline of 

Glimm's difference scheme and associated functionals. 

The theory of decay for genuinely nonlinear systems of conservation laws 

has been developed by GLIMM & LAX [10]. The Glimm-Lax theory is developed 

in the context of systems of two conservation laws and treats the Cauchy problem 

with initial data having small oscillation. The following results were established 

in [10]. In the case of initial data with compact support all solutions decay to 

zero in the total variation norm, uniformly at the rate t-1/2: 

TVx U(x, t)<const, t -x/2. 

In the case of periodic initial data the total variation per period decays uniformly 

at the rate t -1. Furthermore, the Glimm-Lax theory demonstrates that the 

primary mechanisms of decay in genuinely nonlinear systems are the spreading 

of rarefaction waves and the interaction of shock waves and rarefaction waves 

of the same characteristic field. Since these mechanisms also prevail in a genuinely 

nonlinear system of n conservation laws we expect that the Glimm-Lax theory 
will generalize to such systems and will yield a uniform algebraic decay rate for 

solutions whose initial data have sufficiently small total variation. With regard 

to the theory of special solutions we refer the reader to GREENBERG [-12] for a 
decay analysis of a class of periodic solutions to the particular system (n=2) 

generated by the quasilinear wave equation and to GREE~BERG [13] for an 

analysis of a class of initial-boundary value problems for the same system. 
In terms of the large-time behavior of the solution, the principle feature which 

distinguishes a genuinely nonlinear system from a system which admits linearly 
degenerate characteristic fields is the existence of generalized contact disconti- 
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nuities. Generalized contact discontinuties constitute the elementary waves of 

the linearly degenerate fields while shock waves, rarefaction waves and com- 

pression waves constitute the elementary waves of the genuinely nonlinear fields. 

However, in contrast to genuinely nonlinear fields, neither the process of spreading 

of waves nor the process of interaction and cancellation of waves occurs in linearly 

degenerate fields. Consequently, only certain distinguished components of the 

solution decay to zero in a system of conservation laws which admits linearly 

degenerate characteristic fields. Simple examples can be constructed in which 

generalized contact discontinuities do not decay to zero with large time. We shall 
describe such examples below. 

The main purpose of this paper is to study the decay of solutions to systems 

of conservation laws which admit linearly degenerate fields. We treat the Cauchy 

problem with initial data having compact support and carry out our analysis 

for solutions constructed by the Glimm difference scheme. The initial data which 

we consider need not have small oscillation. We derive three main estimates 

which govern the decay of solutions, namely Lemmas 3.1, 4.2, and 5.2. The first 

estimate is based on the concept of generalized entropy introduced by LAX [18] 

and on a method of constructing "normalized" entropies given by DAFERMOS [3]. 

The first estimate establishes a relationship between the total entropy of the 

solution and the magnitudes of the individual shock waves in the solution. The 

second and third estimates are based on the geometry of the elementary waves 

of the solution and, respectively, establish relationships between the magnitudes 

of individual shock waves and the oscillation of the solution and between the 

oscillation of the solution and its total variation. The main tool used in the 

derivation of the second and third estimates is the theory of generalized charac- 
teristics developed by GLIMM & LAX [10]. 

For simplicity we shall first describe our results in the case of initial data 

having small total variation. Let U = U(x ,  t) be a solution of a system in class K1 

whose initial data are constant outside a bounded interval. Let the indices 
el . . . .  , % reference the linearly degenerate fields, i.e. 

rk" V~k~O, k = ~ l  . . . .  , am. 

Suppose ~b--q~(U) is a Riemann invariant for all of the linearly degenerate fields, 
so that 

rk" Vq~-O, k=~l . . . . .  am. 

If the total variation of the initial data is sufficiently small, then the solution U 
satisfies the decay law 

0.2) lim TV x ~{U(x, t)} =0. 

We recall that a Riemann invariant for a given linearly degenerate field is neces- 
sarily continuous across the generalized contact discontinuities which exist in 

that field. Consequently the function ~ recognizes only the elementary waves of 
the genuinely nonlinear fields, namely shock waves, rarefaction waves and com- 

pression waves, and the decay law (1.2) can be interpreted as the statement that 

the total strength of all elementary waves other than contact discontinuities 
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decays to zero with large time. It would be interesting to determine whether or 

not ~b actually decays at an algebraic rate. 

The decay law (1.2) applies to systems of fluid flow in class K1 in the following 

way. For the nonisentropic equations of fluid dynamics in both nonrelativistic 

and relativistic form, the first and third characteristic fields are genuinely non- 

linear while the second is linearly degenerate. The velocity and pressure of the 

fluid are precisely the fluid variables which qualify as Riemann invariants for 

the second field. As such they both decay to a constant state in the total variation 

norm. An example of a solution in which the remaining fluid variables do not 

decay can be constructed as follows. Consider a solution which consists of pre- 

cisely three constant states separated by two contact discontinuities propagating 

parallel to one another. In such a solution the velocity and pressure are identically 

constant, while the density, internal energy, etc. maintain constant values in the 

strip between the contact discontinuities which are in general distinct from their 

values outside the strip. 

In the case of magneto-fluid-dynamics the second, fourth and sixth charac- 

teristic fields are linearly degenerate. We recall that discontinuities in the second 

and fourth fields are Alfven waves and discontinuities in the fourth field are 

(classical) contacts. The x-components of the fluid (vector) velocity and the pres- 

sure are precisely the quantities which qualify as Riemann invariants for all of 

the linearly degenerate fields. As such they both decay to a constant state in the 

total variation norm. In a similar way solutions can be constructed in which all 

of the remaining fluid and magnetic variables fail to decay due to the presence of 

generalized constant discontinuities. 

The analysis used to establish the decay law (1.2) applies equally well to 

genuinely nonlinear systems of n conservation laws and yields the following 

theorem in that case. Let U be a solution to a system in class K2 whose initial 

data are constant outside a bounded interval. If the initial data have sufficiently 

small total variation then the solution U satisfies the decay law 

(1.3) lim T V  x U(x, t)=0. 
t ~ o O  

In this paper we also study the decay of solutions with large initial data. We 

recall that solutions of the Cauchy problem with initial data having only finite 

total variation can be constructed in a natural way by establishing a uniform 

bound on the total variation of the Glimm difference approximations Uh, for 

instance 

(1.4) TV~ Uh(x, t) < const., 

where the constant depends only on the total  variation of the initial data. It 

follows by a compactness argument based on Helly's theorem [9] that the ap- 
proximate solutions converge to an exact solution which assumes the given 

initial data. In the case of initial data having small total variation the uniform 

bound (1.4) was established by GLIMM with the aid of certain nonlinear functionals 
defined on the approximate solutions Uh. Using various modifications of the 
GLIMM functionals, the uniform bound (1.4) has been established for certain 
systems of conservation laws without the restriction of small data [1], [5], [20], 
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[21], [22]. In particular NISHIDA [15] proved the uniform bound (1.4) for the 

isothermal (model) equations of gas dynamics, 

~ t  u+  ~x-x p(v)=0, p(v)--const, v -1 

0~ v-~x-x u=O , 

with arbitrary initial data having finite total variation and in so doing gave the 

first example of a system of conservation laws for which the Cauchy problem 

can be solved with large data. For the isentropic equations of a polytropic gas, 

p(v)=const, v -v, 7 > 1, NISHIDA & SMOLLER [22] obtained the uniform bound 

(1.4) under the following condition on the initial data: 

(~ - 1) TVU(x,  0) < const. 

where the constant is independent of the adiabatic exponent V. Recently, LIu [20] 

has constructed solutions for the equations of a polytropic gas (n = 3) under the 

Nishida-Smoller condition with 1 < V < 5/3. As a corollary of a general theorem 

which we shall state below it can be shown that the aforementioned systems 

satisfy the above decay laws under the associated conditions on their initial 

data. Furthermore, it follows as a corollary of the Glimm-Lax theory that the 

solutions of the isothermal and isentropic equations of gas dynamics also decay 

at the algebraic rate t -1/2 in the case of large initial data. We expect (but do not 

show) that the decay rate for the latter equations is uniform, i.e. depends only on 
the total variation of the initial data. 

In addition to the systems above there exist two special classes of systems for 

which globally defined solutions have been constructed with arbitrary initial 

data having finite total variation [1], [5]. These special classes are motivated by 

but (apparently) do not contain physical equations. It would be interesting to 

determine whether or not their member systems possess a generalized entropy. 

The most general set of hypotheses under which we establish the decay laws 

(1.2) and (1.3) is the following (cf. Theorems 5.1 and 5.2). First, the initial data is 

constant outside a bounded interval and has finite total variation. Second, the 

total amount of wave interaction in the Glimm difference approximations U h is 

uniformly bounded in h. We note that this condition is only slightly stronger 

than the condition (1.4) that the total variation of difference approximations Uh 

be uniformly bounded (cf. Section 2). In the case of systems for which the small- 

ness condition on the variation has been relaxed the uniform bound can be 

established in a straightforward way. Third, the eigenvalues 2j are strictly separated 

on the range f2 of the sequence of Glimm difference approximations: 

(1.5) max {2j(U): U~f2} <min  {/~j+I(U): UEQ}, 

where 

f2~{Uh(x, t): h>0,  - ~ < x <  ~ ,  t>0}. 

We note that condition (1.5) automatically holds in the case of initial data with 
small total variation since the system is strictly hyperbolic. We also recall that 
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there exist a number of systems for which the eigenvalues 2j are strictly separated 

on an arbitrary compact set and consequently for which the third hypothesis is 

an immediate consequence of the second. In particular, condition (1.5) is satisfied 

by the Lagrangian form of the following systems: the isothermal and isentropic 

equations of gas dynamics (n=2), the equations of shallow water waves (n=2) 

and the general equations of gas dynamics (n=3). However, condition (1.5) 

represents a restriction on the oscillation of the solution for the equations of 

magneto-fluid-dynamics and the equations of finite amplitude plane elastic 

waves. 
Our analysis of decay is based on three main estimates each of which ex- 

presses one principle of decay governing the solution. The first estimate expresses 

the fact that a solution with uniformly bounded total entropy can not contain 

large shock waves at arbitrarily large times. More precisely, we show that the 

maximum strength of all shock waves which exist in the solution at a given time t 

decays to zero as t approaches infinity. This phenomenon is essentially a conse- 

quence of the boundedness of total entropy and the boundedness of the total 

amount of wave interaction (cf. Section 3). 

The second estimate expresses the fact that a solution cannot support at 

arbitrarily large times both large oscillations and weak shock waves. We show 

that the oscillation of the solution at a fixed time t = r is bounded by the sum of 

the following quantities: the maximum strength of all shock waves which exist 

for all times t > r  in the future, the total amount of wave interaction and can- 

cellation which occurs at all times in the future, and a quantity which measures 

the degree of coupling of the characteristic fields. In the case of a system of con- 

servation laws which admits linearly degenerate characteristic fields, the oscilla- 

tion of the solution is replaced in the second estimate by the oscillation of the 

distinguished components of the solution. The basis of the second principle is 

the following. Large oscillations of the solution in a given genuinely nonlinear 

field exist either as a consequence of one or more large shock waves or com- 

pression waves or as a consequence of a large number of weak shock waves. In 

the latter case the joint action of the waves is similar to a single compression wave 

which eventually breaks and produces a single large shock wave. The only 

mechanisms which may disturb this breaking process are those of wave inter- 

action and cancellation. It is essentially for this reason that interaction and can- 

cellation terms enter the second estimate. Using the first and second estimates it 

can be shown that the oscillation of solutions of systems in class K2 and the 

oscillation of the distinguished components of solutions of systems in class K1 

decay to zero with large time (cf. Section 4). 
The third estimate expresses the fact that a solution cannot support both 

large total variation and small oscillation at arbitrarily large times. The third 

estimates provides a bound on the total variation of the solution or its distin- 

guished components at time t = z  in terms of the following quantitites: the re- 

spective oscillations at time t = z, the total amount of wave interaction and can- 

cellation which occurs at all times t > z  in the future, and a quantity which 
measures the degree of coupling of the characteristic fields. The basis of the 

third principle is roughly the following. In a genuinely nonlinear field the only 

way a solution with small oscillation can achieve a large total variation is by 
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admitting a large number of weak shock waves and/or compression waves alter- 

nating with a nearly equal number of rarefaction waves. In a solution with this 

structure the waves must either interact or cancel. We establish the decay laws 

(1.2) and (1.3) using the third estimate and the decay of the oscillation (cf. Section 5). 

2. Preliminaries 

w I. The Glimm Difference Approximations 

Consider a system of conservation laws (1.1) each of whose characteristic 

fields is either genuinely nonlinear or linearly degenerate in the sense of LAX [7]. 

The Glimm difference scheme constructs solutions to the Cauchy problem as 

the limit of a sequence of approximate solutions each'of which consists locally 

of solutions of the Riemann problem. We recall that the Riemann problem is the 

Cauchy problem with initial data of the form 

{g~ x<O 
U(x, 0)= Ur x > 0 '  

where Uz and Ur are constant states. The Riemann problem for systems with the 

above structure has been solved by LAX [17] in the case where the initial data 

Uz and U, are sufficiently close. The Riemann problem with arbitrary initial data 

has been solved only for certain special systems of equations. We refer the reader 

to SMOLLER [23] for a study of a broad class of systems of two conservation laws 

which includes the isentropic equations of gas dynamics and the equations of 

shallow water waves, to Lxu [20] for a study of the general equations of gas 

dynamics and to GOGOSOV [11] for a study of the equations of magneto-fluid- 

dynamics. To the knowledge of this author, the Riemann problem with arbitrary 

data is presently open for the relativistic equations of gas dynamics and the 

equations of finite amplitude plane elastic waves. The aforementioned fluid 

dynamical systems are recorded for reference in Subsection 2. 

Before describing the Glimm difference approximations we shall recall the 

structure of the solution of the Riemann problem. The Riemann problem admits 

a self-similiar solution U= U(x/t) which consists in general of n elementary 

waves, one corresponding to each characteristic field and any two separated by 

a constant state. The solution takes on constant values Uo = Uz . . . .  , U~ . . . .  , UN = Ur 
in consecutive sectors of the form 

~2j= {(x, t): ajt<x<b~t}. 

If the jth characteristic field is genuinely nonlinear the sectors (2j_1 and (2j are 

separated by either a j-shock or a centered j-rarefaction wave, cf. [17]. If the jth 

field is linearly degenerate then Qj-1 and f2j are separated by a j-contact dis- 

continuity, i.e., a discontinuity whose speed of propagation coincides with the 
characteristic speed 2 i on both of its sides. Throughout this paper we shall assume 

that the initial data of all Riemann problems under consideration are such that 
there exists a solution U = U(x/t) with the above structure. 

The solution of the Riemann problem is constructed with the aid of a family 

of wave curves [17]. A collection of n curves is associated with each constant 
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state U0. The jth wave curve, 

c~= ci(~; to) 

v~(0, to)= Co, 

forms a one-parameter family of states Uj(e) which can be connected to U0 on 

the right by an elementary j-wave. If the fh field is genuinely nonlinear the curve 

Uy(e) consists of two smooth branches: positive values of the wave parameter 

yield states Uj(e) which can be connected to Uo through a j-rarefaction wave 

while negative values yield states Uj(e) which can be connected to Uo through a 

j-shock wave. The union of the two branches forms a C 2 curve passing through 

Uo. Indeed, the local geometry of the fh wave curve of a genuinely nonlinear 

field is given by 

Uj = rj(Uj) if e > 0  

(2.1) (Jj=rj(Uj)+o(e 2) if e<O 

Oj=(rj. V)rj(Uj) if e>_O 

/)~=(rj-V)rj(U~)+o(e) if e<O. 

In the equation (2.1) we have adopted the standard normalization of the right 

eigenvectors rj corresponding to the genuinely nonlinear fields, namely 

rj. V2j= 1. 

If the jth characteristic field is linearly degenerate the fh wave curve Uj = U~(e; Uo) 

is a smooth curve, 

vj(0, Vo)= Vo, 

passing through Uo that consists entirely of states which can be connected to Uo 

through a j-contact discontinuity. 

The solution of the Riemann problem is constructed by forming an n-fold 

composition of the j-wave curves, j =  1, 2 . . . . .  n. This composition yields an 

n-parameter family of states which can be connected to a fixed state (say) U t 
through a sequence of n elementary waves. The implicit function theorem guar- 

antees that a small neighborhood of zero in parameter space is mapped in a 

one-to-one fashion onto a neighborhood of U~; the Jacobian of the mapping is 

non-zero at the origin since the derivative with respect to the k th parameter is the 

eigenvector rk, cf. [17]. In the case of arbitrary Riemann data a global analysis 

of the geometry of the wave curves is required to show that the mapping is onto. 

Lastly we recall that the continuation of a j-rarefaction wave curve to negative 

values of the parameter e constitutes a one-parameter family of states which can 

be connected to Uo through a j-compression wave. Accordingly we shall refer to 

the curve Uj(e) defined by 

(2.2) /.Jj (~) = rj(Uj(e)), e -<_ 0 

~(0)= to, 

as the j-compression wave curve through Uo. 
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(n+2)s 
\ /// 

(m-2+~n+l)h ~ /  (m+~n+l)h 

( m - 2 )  h mh  

Fig. 1 

We shall now recall the structure of the Glimm difference approximations. 

An approximate solution Uh is an exact solution in strips S, of the form 

S ,=  {(x, t): ns<=t<(n+l)s} 

where s denotes the mesh-length in time. At time t =  ns, Uh is a piecewise constant 

function of x whose discontinuities are contained in the set {mh: m+n even}. 

The discontinuities of Uh(', n s) generate Riemann problems whose solutions con- 

stitute the continuation of Uh into S,. At time t=(n + 1)s the approximate solu- 

tion Uh is redefined as a piecewise constant function through the use of a random 

equidistributed parameter ~, ~(-1 ,  1); in the interval ( m - 1 ) h < x < ( m +  1)h, the 

approximate solution Uh is defined to be the constant state 

Uh {(m+%+1) h, (n + 1) s - 0 }  

(see figure 1). At time t = ( n + l ) s  the Riemann problems generated at x=mh,  

m + (n + 1) even, are solved with the initial data 

Ul = Uh{(m--2 +~.-1)h, (n+ 1) s - 0 }  

Ur = Uh{(m+%+a) h, (n+ 1) s -0} .  

The solutions of these Riemann problems extend the approximate solution Un 
into the strip S,+x. 

In order to establish the relative compactness of the family of approximate 

silutions it is sufficient to prove a uniform estimate on the total variation of Uh 
of the form 

(2.3) TV x Uh(X, t) < const., 

where the constant is independent of h and t. In the case of initial data with small 

total variation, the uniform bound (2.3) was establish by Glimm [-9] with the 
aid of certain approximate conservation laws which govern the magnitudes of 

interacting elementary waves. We shall recall these relations presently. The 
random mesh points 

a, . , .  = {(m + ~.) h, ns}, 
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N 
(n+l)s 

r l s  

(n-1)s 
S 

Fig. 2 

partition the half-plane t > 0 into a countable number of diamond-shaped domains 

A,,~ which are centered at the points (mh, ns) and which are defined by their 

vertices 
S = { ( m + ~ . _ O h , ( n - 1 ) s } ,  N = { ( m + ~ , + O h , ( n + l ) s }  

W = { ( m - l + ~ . ) h ,  ns}, E = { ( m + l + o Q h ,  ns} 

(see figure 2). The waves which are incoming with respect to the diamond A.,,, 

are those which originate at time t = ( n - 1 ) s  at x-coordinates ( m - 1 ) h  and 

(m + 1)h. The outgoing waves originate at time t = n s at x-coordinate m h. There 

are at most 2 n incoming waves and at most n outgoing waves. 

The conservation laws for waves relate the magnitude of the outgoing waves 

of an interaction to the magnitudes of the incoming waves. One of the standard 

measurements of wave magnitude is the wave parameter e: the elementary j-wave 

which connects the state Uo to the state Uj(e; Uo) is said to have magnitude e. For  

weak waves an equivalent measurement can be obtained by first selecting a func- 

tion w which satisfies 

(2.4) r i �9 Vw = 1 

and then defining the magnitude of an elementary j-wave as 

w{Uj(~)} - w { U 0 }  

Using (2.4) we can easily verify that 

w { uj(~)) - w { Uo} = ~ + o(~3). 

We note that in general one can only guarantee the existence of solutions to 

equation (2.4) in the neighborhood of a given state Uo. However, we observe that 

the eigenvalues 2 i provide globally defined solutions for those indices j which 

correspond to genuinely nonlinear characteristic fields. Furthermore, the Lax 

shock conditions imply that this measurement of j-waves is equivalent to the 

Euclidean distance in the sense that 

const. I1Ui(e) - Uo 11 < 12i { Uj(e)} - 2j(Uo)[ < const. I[ Uj (e) - Uo I[. 



Hyperbolic Systems of Conservation Laws 

g~ ~2 c3 

Fig. 3 

11 

The measurement of the magnitude of the elementary waves of a genuinely non- 

linear field through the corresponding eigenvalues proves to be useful in our 

analysis of the decay of solutions. 
We shall now state the conservation laws for waves. Let ej=~j(A) denote the 

magnitude of the outgoing j-wave in the diamond A and let ~j = 7j(A) and 6j= 6j(A) 
denote the magnitudes of the incoming j-waves (see Figure 3). Let Q(A) denote 

the total amount of wave interaction in the diamond A, that is 

(2.5) Q(A) = 2; {17i116j.l: Yi and 6 i approach}. 

Here the waves 7i and 6 i are said to approach if the following holds: either i>j 
and ~?~ lies to the left of 6j or i=j and not both ~?~ and 6j are rarefaction waves or 

contact discontinuities. 

The magnitudes of the elementary waves of a given characteristic field are 

conserved up to linear terms while the deviation from linearity is governed by 

an error term whose order is bounded by the total amount Q(A) of wave inter- 

action in A: 

(2.6) ej = yj = 6j + 0 {Q(A)}. 

The approximate conservation laws (2.6) were established by GLIMM I-9] for 

genuinely nonlinear systems. However, the proof also applies to systems with 

degenerate fields; the local geometry of the wave curves of a linearly degenerate 

field is identical with that of a genuinely nonlinear field up to third order terms 

in the wave parameter e (cf. (2.2) and (2.3)). The interaction term Q(A) does not 

contain either the product of magnitudes of contact discontinuities of the same 

field or the product of magnitudes of rarefaction waves of the same field be cause 

the magnitudes of such pairs of waves are additive under binary interactions. 

In the case of initial data with small total variation, the unform estimate (2.2) 

on the total variation of the approximate solutions Uh has been established by 

Glimm using certain nonlocal functionals of U h [-9]. The Glimm functionals are 

defined on a family of space-like polygonal arcs called /-curves. We recall that 

an / -curve  is a connected arc which consists of edges of diamond-shaped domains 

A and which has the property that the index m of the mesh points am,. on I increase 

monotonically with increasing values of x. The effect of wave interactions on the 
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total variation of the approximate solutions Uh can be studied by restricting Uh 

to the family of/-curves and then partially ordering the/-curves according to the 

following condition: J2 > J1 

if and only if Jz lies toward larger time. 

The total variation of the restriction Uh(', J) of the approximate solution Uh 

to an/-curve J is equivalent to the Glimm functional 

L(J)= X {[o~[: o~ crosses J}, 

i.e. the sum of the absolute values of the magnitudes of all elementary waves in 

Uh which cross J. It is easily verified that 

const. TVUh(', J) < L(J) <= const. TVUh(', J). 

The conservation laws for waves (2.6) were employed in  [9] to show that the 

functional L(J) can increase between two consecutive /-curves, J2 >J1, at most 

by an amount on the order of the total amount of wave interaction in the enclosed 

diamond A ; namely 

(2.7) L(J2) < L(J1) + const. Q(A). 

We recall that a pair of/-curves J1 and J2 are said to be consecutive with respect 

to a fixed diamond A if they coincide except on the boundary of A. In particular, 

if J2 > J1 then J2 contains the upper sides, W N  and NE, of A while J~ contains 

the lower sides, WS and SE. 

While the functional L(J) will generally increase between two consecutive 

/-curves as a consequence of wave interactions, the total potential for wave 

interaction necessarily decreases as a consequence of the recession of waves after 

interactions. The total potential for wave interaction is measured by the quadratic 

Glimm functional 

K(J )=  X {[~[ [fi[: ~, fl cross J and approach}. 

It follows directly from the conservation laws for waves that 

K(J2)_-< K(JI) + const. L(JO Q(A) - Q(A) 

if J2 >J~ are consecutive with respect to A. The presence of the term - Q ( A )  is 

due to the fact that, by definition, the incoming waves of A contribute to K(J~) 

but not to K(J2). Thus, if the total variation of the restriction of Uh to J~ is suffi- 

ciently small, the total potential for wave interaction decreases by an amount 

on the order of Q(A): 

(2.8) K (J2) < K (J~) - const. Q(A). 

It follows from an induction argument [9], using the estimates (2.7) and (2.8), 

that the functional 
F(J) = L(J) + const. K (J) 

is nonincreasing with respect to the family of/-curves provided that the initial 

data has sufficiently small total variation and provided that the constant coeffi- 

cient of K is chosen sufficient large. 
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Since the functional F is equivalent to the total variation norm, i.e. 

const. F(J)<= TVUh(. , J)< const. F(J), 

it follows that the total variation of the approximate solutions-is uniformly 

bounded by the total variation of the initial data: 

(2.9) TV~ Uh(X, t)<const. TV~ U(x, 0). 

The uniform bound (2.9) guarantees the existence of solutions. We note that the 

proof of estimate (2.9), [9], applies equally well to systems of conservation laws 

which admit linearly degenerate characteristic fields and thereby establishes 

existence of solutions to such systems in the case where the initial data have 

small total variation. Even more generally, in the case of initial data with small 

total variation, it has been shown [-11] that Glimm's method of construction and 

estimates carry over to systems of conservation laws without convexity or degen- 

eracy assumptions. 

From the point of view of the decay of the solution, one of the important 

corollaries of the decay of the quadratic functional K(J) is the uniform bound- 

edness of the total amount of wave interaction. Rewriting estimate (2.8) in the 

form 

Q(A)<const. {K(J1)-K(J2) } 

and summing over all diamonds yields the uniform bound 

(2.10) ~ Qh(A)<const. {TV~ U(x, 0)} 2. 
A 

The subscript h is introduced in (2.10) simply to recall the dependence of Q on 

the approximate solution Uh. 
In this paper we shall assume that the solution U is the limit of a sequence 

of approximate solutions Uh which satisfy approximate conservation laws in 

which the error term is uniformly summable with respect to h, i.e. 

where 

(2.11) 

gj(A) = 7j(Zl) q- at(A ) -+- errorj(A) 

I error t (A)I < const., 
A 

the constant being independent of the approximate solution Un. It is a straight- 
forward consequence of (2.11) that the approximate solutions Un satisfy (2.9) and 

that the total amount of wave interaction is uniformly bounded in h: 

(2.12) ~ Qh(A) < const. 
h 

Following GLIMM &; LAX [10] we shall now derive approximate conservation 
laws for waves of a given magnitude. Let Cj, h(A) denote the amount of cancel- 

lation which occurs between the incoming j-waves Yt and fit in the diamond A" 

Cj, h(A)=~ {lYjl-t-I~jl - IYj + ~jl}, 
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or, equivalently, 

Cj h(A)={min(loJl' 13j') if sgn ~j4:sgn 3j} 

' otherwise " 

With the aid of the cancellation t e r m  Cj, h(A ) the local conservation laws (2.11) 

Can be recast in the form 

L +, h(A) = E+h(A) - + O {ej, h(A)} 
(2.13) 

LS, h(A) = E;h(A) + C j, h(A) + O h(A)}. 

Here Ef, h and L~,h denote the total amount of j-wave of (_+) magnitude which 

enters and leaves the diamond A. The error term Pj, h(A) is taken to be nonnegative. 

It is uniformly summable in the sense that 

(2.14) Z PJ, h(A) < const., 

where the constant is independent of h. Summation of the local conservation laws 

(2.13) over an arbitrary union A of diamonds yields global laws of the form 

(2.15) L~, h(A) = E+h(A)- C j, h(A) + O {P~, h(A)} 

I_~, h(A) = E~,h(A) + C j, h(A) + O {Py, h(A)} 

where Ci, h and Pj, h, respectively, denote measures which assign a point mass of 

magnitude Cj, h(A) and Pj, h(A) to the center of each diamond A. 

We observe that the total variation of each of the families of measures Cj, h 
and Pj, h is uniformly bounded in h as a consequence of the estimate (2.14). Thus, 

after passing to a subsequence of approximate solutions, we may assume their 

convergence in the w* topology for measures. Let 

Cj = lim Cj h 
(2.16) h~O ' 

Pj = ~im0 Pj, h. 

The fact that the limits C~ and Pj are finite measures can be regarded as the state- 

ment that the solution U contains a finite amount of wave cancellation and inter- 

action. 
For the purpose of studying decay it is also convenient to introduce the 

measure Qh which assigns a point mass of magnitude Qh(A) to the center of each 

diamond A. Without loss of generality we may also assume that Qh converge in 

w*-topology to a measure which we shall denote by 

(2.17) Q = ~im o Oh. 

w 2. Generalized Characteristics 

The method of GLIMM & LAX [10] of constructing generalized characteristics 

for genuinely nonlinear systems of two conservation laws is also applicable to the 
construction of generalized characteristics for the genuinely nonlinear fields of 

general systems of n conservation laws. We recall that a generalized j-characteristic 
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Xj(t) exists as the limit of a sequence of approximate characteristics Xi, h(t) in the 

approximate solutions Uh. The approximate characteristics converge uniformly 

on bounded intervals of time. Their derivatives converge pointwise with the possible 

exception of a countable set of values of t: 

Xj(t) = lim 2j. h(t). 
j~0  

The one-sided equicontinuity of approximate solutions along approximate charac- 
teristics guarantees that the limit Xj(t) propagates at the correct speed in the follow- 
ing sense (cf. (5.20)). Let U • denote the one-side limits of U along the characteristic 

x;: 
U • = U{Xi(t)-I-O, t}. 

At points of continuity of the restriction, i.e. U § = U- ,  the characteristic Xj pro- 
pagates at characteristic speed: 

(2.18) Sj(t)  = ~.i{ U(Xj( t) ,  t)}. 

At points of discontinuity of the restriction, the characteristic Xj propagates at 
shock speed: 

(2.19) )~s(t) = aj{ U +, U-  }. 

In equation (2.19) the shock speed a~ is determined from the Rankine-Hugoniot 
relations, i.e. 

- a~[  U +  - U - ]  + [ F ( U  +) - F ( U - ) ]  = 0 .  

The proofs of the aforementioned results [10] carry over virtually without modi- 

fication to the genuinely nonlinear fields of a general systems of conservation laws. 
We do note, however, one minor modification which is needed for the construction 

of approximate chaacteristics in the more general situation. We recall that in 

general the diamon-shaped domains A contain two incoming j-waves and one 
outgoing j-wave. Thus, in general there exist eight possible configurations of j- 

waves in a typical diamond A. However, in the special case of systems of two 
conservation laws satisfying the Glimm-Lax shock interaction condition [10] 
only six combinations are permissible: if both of the incoming j-waves have 

magnitudes of the same sign the outgoing j-wave will necessarily have a magnitude 
of that same sign. Only the six dynamically permissible combinations are con- 
sidered by GLIMM • LAX in [10]. For general systems it is possible a priori for 
the interaction terms to dominate in the approximate conservation laws for waves, 
in the sense that 

~j=~,j+~j+O{Q(A)} 
while 

sign e~ = - sign y~ = - sign @ 

However, in this situation the outgoingj-wave is small in the sense that its magni- 

tude is bounded by the total amount of interaction in A : 
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and the continuation program for approximate j-characteristics is as follows. 

If an approximate j-characteristic enters a diamond in which both incoming j- 

waves are rarefaction waves while the outgoing j-wave is a shock, then the approxi- 

mate j-characteristic is continued (in the only way possible) as the outgoing j- 

shock. If an approximate j-characteristic enters a diamond in which both in- 

coming j-waves are shocks while the outgoing j-wave is a rarefaction wave, the 

approximate j-characteristic is continued as, say, the left edge of the outgoing 

j-rarefaction wave. The choice of either the left or right edge is permitted provided 

that it is done consistently. Approximate characteristics must be constructed in 

such a way that any two of the same field do not cross in the x - t plane. 

w 3. Generalized Entropy 

Consider a system of conservation laws of the form 

(2.20) Ut + F(U)x = O. 

A strictly convex function t/=r/(U) is called a generalized entropy for system 

(2.20) with entropy flux q = q ( U )  provided that all smooth solutions of (2.20) satisfy 

an additional conservation law of the form 

(2.21) q(U)t+q(U)x=O. 

It follows from the quasilinear form of (2.20) and (2.21), i.e. 

Ut+F'(U) Ux=O 

v,7 ~ + Vq U~=O, 

that the compatibility condition 

(2.22) Vtl F'= Vq 

is necessary for the existence of the pair (t/, q). For a broad class of systems of two 

conservation laws, LAx [16] has established the existence of a solution pair 

(q, q) where t/is strictly convex. Although the system of equations (2.22) is over- 

determined for n > 2, most of the conservative systems of mathematical physics 
are endowed with an additional conservation law (2.21) in which r/is strictly convex. 

In particular, we mention the following systems: the isentropic equations of gas 

dynamics in both nonrelativistic and relativistic form [2], [25], the equations of 

shallow water waves [2], the general equations of gas dynamics in both nonrelati- 

vistic and relativistic form [2], [25], the equations of magneto-fluid-dynamics 
[14] and the equations of finite amplitude plane elastic waves [15]. We also note 

that an arbitrary symmetric hyperbolic system, 

E + v ~ = 0  

~=~( t ; ) :  ~." --, F., 

possesses a strictly convex generalized entropy 

n ( t ; )  = �89 II vbl 2 �9 
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First, we shall record the aforementioned systems of mathematical physics 

along with their generalized entropies. For the equations of gas dynamics the 

density of negative (classical) entropy serves as the function r/. In Lagrange coordi- 

nates the nonrelativistic equations of gas dynamics assume the form (2.20) with 

[il [p l (2.23) U =  and F(U)=  . 

up 

Here z denotes the specific volume of the fluid, u the velocity, p the pressure and E 

the total energy, i.e. the sum of the kinetic energy �89 2 and the specific internal 

energy e, 
E----�89 +,g. 

The additional conservation law (2.21) assumes the form 

( - S)t = 0 ,  

where S denotes the specific entropy. For a polytropic gas a striaghtforward 

calculation shows that 
- S = - S ( z ,  u ,  E )  

is a strictly convex function of the state variables z, u and E. Specifically, 

S(z, ~)= log e+(y - 1) log z, 

where the adiabatic constant y is greater than one. Therefore, 

r/(U) = -S (z ,  u, E )=  - l o g  ( E - � 8 9  - 1) log e. 

More generally, it has been shown by FRIEDRICHS & LAX [8] that the convexity 

of - S  as a function of the state variables z, u and E is equivalent to the convexity 

of total energy E as a function of z, u and S: 

E=�89 +e(z,S). 

Thus, it is sufficient to postulate the convexity of specific internal energy as a func- 

tion of z and S. 

The isentropic equations of gas dynamics in Lagrange coordinates can be 

derived by setting S equal to a constant, say So. The isentropic equations assume 

the form (2.20) With 

where p=p(z ,  So). The energy equation is retained as the additional conservation 

law: 

E(~,  u, So)t + (u p(~, So))x = 0 .  

In this situation the convexity of q(U)=E(z, u, So) is a direct consequence of the 

convexity of E as a function of the three arguments z, u and S. 
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In Eulerian coordinates the equations of gas dynamics assume the form (2.20) 
with [ml 
(2.24) U =  and F(U)= m2/p+p . 

m E/p + m p/p 

Here p - 1 / z  denotes the mass per unit volume, m - p u  the momentum per unit 

volume and E the total energy per unit volume, 

E=�89 +pe. 

The additional conservation law assumes the form 

(-pS)t+(-mS)x=O. 

In particular, for a polytropic gas 

m 2 

= log (E S / - y log p, 

and a straightforward calculation shows that 

~I(U) = - p S =  - p l o g  [E-  mE ] -Tp logp  
\ 2p] 

is a strictly convex function of the state variables p, m and E. More generally, one 

may again simply postulate the convexity of 

pc(p, S) 

as a function of p and S or equivalently the convexity of total energy 

m 2 

E=�89 +pe(p,S) 
P 

as a function p, m and S. The isentropic equations in Eulerian coordinates can be 

derived by setting S = So in (2.24) and retaining the energy equation as the additional 

conservation law. The above remarks also apply to the equations of shallow 

waves [2] since their form is identical to that of the isentropic equations of gas 

dynamics for a polytropic gas with adiabatic exponent ~ = 2. 

The relativistic equations of gas dynamics assume the form (2.20) which in 

component form becomes 

~ uj+~-x fj=0, 

where 
o 

u2={p+c-Z(Pe+P)} l_uZ/c 2 

u3={pc2+pe+P} ~ 
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and 
u 

u 2 

f2--{p+c2(pe+P)}{I__-~2/C2}--P 

Here p denotes the rest density, p the pressure, u the velocity and ~ the internal 

energy per unit rest mass. The additional conservation law assumes the form 

o f  - s  ) ~ f -puS ) 

where S denotes the specific rest entropy. We refer the reader to TAUB [26] for 

a derivation of the relativistic equations of gas dynamics and to FRIEDRICHS [7], 

Sections 5 and 7, for a verification of the convexity condition. In particular, it is 

shown in [7], Section 7, that if the internal energy per unit rest volume, 

pe(p,S) 

is a convex function of p and S then the generalized entropy 

- p S  

~-l/i_u2/c 2 

becomes a convex function when expressed in terms of the variables u i. We refer 

the reader to [7], Section 3, for a more general formulation of the convexity which 

is invariant under arbitrary coordinates changes of the dependent variables. The 

relativistic equations of isentropic gas dynamics can be derived in the same manner 

as in the non-relativistic case. 

The Lundquist equations of magneto-fluid-dynamics in Lagrange coordinates 

assume the form (2.20) with 

w 

U= E 

_ ~ 

and -F(U)= 

u 

p* 

# Hi H3/4  It 

- u p + v . H  

nlv 

H,w 

Here v = (u, v, w) denotes the fluid velocity vector, H = (//1,//2, H3) the magnetic 

field vector, p* the total pressure, i.e. the sum of the fluid pressure p and the 

magnetic pressure p,,, 
p* = p + p,, 
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E the total energy, 

and 
E=�89  llvll2 + e + Z pm, 

1212 = Z H 2 

~ I  3 -~- Z H 3 

where z denotes the specific volume. We note that the x-component of the magnetic 

field vector, H~, is constant. As in the case of gas dynamics the additional conserva- 

tion law assumes the form 
( -  S), = 0. 

For a polytropic gas 

- S =  - l o g  e+log  z r-~ 

and the generalized entropy takes the form 

In analogy with gas dynamics, one may simply postulate the convexity of internal 

energy e as a function of z and S or, equivalently, the convexity of total energy 

E =  1 IPvl[ 2 +e('r, S)+zp., 

as a function of the state variables z, u, v, w, H2, H3 and S. The situation in Eulerian 

coordinates is similar. 

Lastly we recall the structure of the equations of finite amplitude plane elastic 

waves (cf. [15], Section 4). These equations assume the form (2.20) with 

,225  and - u ,  

where 

lull i 11 ~--- U 2 and v= v2 �9 

[_U3] L/)3J 

Here we consider a hyperelastic material with strain energy function ~b= 

qS(vl, v2, v3). The additional conservation law expresses the conservation of total 

mechanical energy: 
{�89 2 +u  2 +u2) + q~(v)},+ {u. Vq~}x=0 

A straightforward calculation shows that the strict convexity of q~ is guaranteed by 

the strict hyperbolicity of the system (2.25). 
Next, we recall certain basic facts concerning the role of generalized entropy 

in the admissibility of solutions. These will be used later in this subsection to 
derive one of the main estimates which we need in Section 3 to establish the decay of 
shock waves. As noted already, we shall consider solutions U constructed by the 

Glimm difference scheme. It is known [18] that such solutions satisfy the entropy 

inequality of LAX, i.e. 

(2.26) ~7 q (U)+-~-  q(U)< 0 
G X  
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in the sense of distributions. The entropy inequality (2.26) can also be expressed 
in an equivalent pointwise form [18]. Consider, for simplicity, a solution U of a 

Riemann problem which consists precisely of two constant states Ut and Ur 

connected by a line of discontinuity x/t = s. It can be shown in a straightforward 

way that U satisfies the entropy inequality (2.26) if and only if 

(2.27) s[r/]- [q] < 0  

Here the square bracket denotes the jump in the enclosed quantity from right to 

left across the discontinuity, e.g. 

[~] =~(U3-~(U,). 

The pointwise inequality (2.27) can be derived in a manner similar to that of the 

Rankine-Hugoniot relations 
s[V]-[F]=O, 

(cf. [19]). The equivalence of (2.26) and (2.27) can also be established within the 

class of piecewise smooth solutions. In the latter context the speed of propagation 

s o f a  shock wave x=x(t) is given by 
dx 

S =  

dt 

and the corresponding jumps in q and q by 

= { v ( x ( t )  - 0, t)} - .  { v(x(t) + o, t)} 

[q] : q{ U(x(t)-O, t ) } -  t/{ U(x(t)+ O, t)}. 

For our present purposes it is not necessary to provide a pointwise interpretation 

of the entropy inequality (2.26) in a setting more general than that of piecewise 

smooth solutions. A pointwise interpretation of (2.26) for functions of bounded 
variation is given in Section 5, Proposition 5.2. 

The entropy inequality has a simple physical interpretation in the case of the 
equations of gas dynamics in both nonrelativistic and relativistic form and in the 
case of the equations of magneto-fluid-dynamics. For a shock wave, condition 

(2.27) is equivalent to the condition that classical specific entropy increase from 
front to back across the shock, [2], [14], [26]. The conditions under which this 

equivalence has been established include the case of a polytropic gas. In general, 
it has been shown by LAx [18] that strict inequality holds in (2.27) for sufficiently 

weak shocks and furthermore that the quantity s I t / ] - [ q ]  is third order in the 
magnitude e of the shock: 

(2.28) s [~/]- [q] = 0( /33) .  

The third order property (2.28) generalizes the classical result in gas dynamics 

that the change in (classical) specific entropy is third order in the magnitude of 

the shock. 
In contrast to discontinuities corresponding to genuinely nonlinear fields, 

all generalized contact discontinuities are admissible. If Ut and Ur are connected 

by a generalized contact discontinuity then 

(2.29) s I t / ]-  [q] = 0. 
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The equality (2.29) can be established by considering the restriction of the left 

hand side of (2.29) to a j-wave curve corresponding to a linearly degenerate field, 

i.e. 
s {q(Uj(0)- q(Uj(0))} - {q(Uj(e))- q(Uj(0))} =0 ,  

and differentiating with respect to e. The result of this operation together with the 

compatibility condition (2.22) yields (2.29). 

In this paper we shall assume for simplicity that strict inequality holds in (2.27) 

for j-shocks of arbitrary magnitude. As we remarked above this condition is 

satisfied by the equations of fluid flow since the specific entropy necessarily in- 

creases from the front to the back of the shock. In general this assumption guaran- 

tees an estimate of the form 

(2.30) s [q] - [q] < - const. [el 3, 

where the constant is positive and uniformly bounded away from zero provided 

that the states U~ and U, on the left and right sides of the shock lie in a given com- 

pact set. We note that in the case of equations of fluid dynamics the latter restric- 

tion implies that the density of the fluid on both sides of the shock is strictly positive. 

Depending on the choice of wave magnitude, estimate (2.30) may or may not be 

uniform at arbitrarily low densities. 

One of the main consequences of the entropy inequality (2.26) is the bounded- 

ness of total entropy. Fix a constant f_7. It has been observed by Dafermos [3] 

that 
& 

X 
i = l  

is a positive strictly convex generalized entropy, i.e. 

F/(U)>0 if U + U .  

The associated entropy flux is given by 

- -  n ~ - -  I 

~t(U) = q(U) - q ( U ) -  ~. ~ tl(U) {f(U) - f ( U ) } .  
i = l  OUi 

Consider a solution U whose initial data U(x, 0) are equal to a constant {7 outside 

a bounded interval. It follows from a result of DAFERMOS [4] that the rate of decay 

of total entropy at a given time t is proportional to the sum of the cubes of the 
magnitudes of all shocks which exist in the solution at time t. Expressed in terms 

of the pair (~/, [1) this result reads 

d o~ 
(2.31) ~-[_Irl{U(X,oo t)}dx= ~ {s[~/]-[Y/]}(t). 

s h o c k s  

Integrating (2.31) from zero to Tyields 

oo 7 '  oo 

(2.32) Srl{U(x,t)}dx-~ Z {+s[T/]- [ / / ] }dt= S~{U(x,O)}dx. 
- -  oo 0 s h o c k s  - -  co 



Hyperbolic Systems of Conservation Laws 23 

It follows from (2.32) that the total entropy of the solution, as measured by ~, is 

uniformly bounded in time, 

oo 

(2.33) S ~ { U(x, t)} dx < const., 
- o o  

and therefore that the total entropy of the solution, as measured by an arbitrary 

convex entropy ~/, is uniformly bounded in time: 

dx (2.34) ~ [~/(U(x, t ) ) -  ~/(/.7)] <const.  
- o o  

Furthermore, it follows from the third order property (2.28) that 

T 

(2.35) ~ ~ I[U]13(t)dt<const. 
0 s h o c k s  

The estimates (2.32)-(2.35) can also be established for admissible solutions which 

are only assumed to be functions of bounded variation in the sense of CESARI [26]. 

However, in this paper we shall only need these estimates in the case of piecewise 

smooth functions. 

3. Decay of Shock Waves 

In this section we shall restrict our attention to systems of conservation laws 

which possess a strictly convex entropy. Consider a sequence of approximate 

solutions Uh and let O(t) denote the set of magnitudes of those shock waves in 

Uh which intersect {(x, z): ==t}. Let 

Vh(t) = 27 {1613 : 6~(2(t)}. 

The total cubic variation of shock waves dominates the maximum norm of shock 

waves, i.e. 

Mh(t) = max {161: 6~O(t)}, 

in the sense that 

(3.1) M s (t) __< Vh(t). 

The uniform decay of shock waves in a sequence of approximate solutions is a 

consequence of two facts: the uniform boundedness of total entropy and the uni- 

form boundedness of total wave interaction. The former bound implies that the 

function Vh is "nearly" integrable and the latter bound that Vh is "nearly" uni- 

formly continuous. 

Let 
Vh[q, t2] =sup  {Vh(t): tl <t<t2}  

Mh[q, t2] = sup {Mh(t): q <t<t2}  

Lemma 3.1. For every e >0 there exists a constant T = T(e) such that for each 

fixed S > 0  we have 

(3.2) lira Vh[T, T+ 8] <e.  
h ~ 0  
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It is an immediate corollary of (3.2) that the maximum limiting strength of 
shock waves contained in bounded intervals of time approaches zero with large 

time uniformly in the length of the interval: 

(3.3) lim M h [T, T + S] < e ~/3. 
h~oo 

Thus, in particular 
lira lim Mh(t)=0. 
t ~  h~O 

Proof of Lemma 3.1. Fix an approximate solution Uh and consider two I- 

curves J2 => J~ which are consecutive with respect to a diamond A. The conservation 
laws for waves (2.13) imply that the strength of the outgoing j-shock is less than or 

equal to the sum of the strengths of the incoming j-shocks plus an error term 

IC I < IT; I + I6; I + Pzh(A). 

Thus the cubic magnitudes satisfy 

]e~- 13 < [y~- 13 +16;i 3 + c o n s t .  {Pj, h (A) + Qh (A)}. 

Therefore the cubic variation V~(J) of the restriction of the approximate solution 

Vh to the/-curve J satisfies 

vh(J2)_- < V~( JO + ~tj, h(A), 
where 

def 
U j, h(A) = const. {~, h(A) + Qh(A)}. 

Summing over all diamonds A in the strip 

~O~ t2 ]  = {(X, t ) :  t I ~_~ t ~  t2} , 

we obtain 

(3.4) Vk(t 2) -<_ Vh(tl) +/Zj. h(~[t l ,  t2]). 

For simplicity in writing we shall denote the strip 6 f by I-q, t2]. 

Applying estimate (2.32) to the approximate solution Uh yields 

7' [ oo Uh(x, n s -- 0)} dx Vh(t)dt<=const.+const. ~ S t/{Uh(x, ns)} -r /{ 
0 n s < = T  [ - ~  

The contributions from the interfaces between the layers at times t =  ns are uni- 

formly of order h (cf. [9]), thus 

o~ n s - O ) } ] d x  <- [r/{ Uh(x, ns)} --rl { Ch(X, O(h) T V U  (x, 0). 
- -  ct3 

Therefore, h-' 
Vh(t)dt ~ q ,  

o 

where the constant cl is independent of h. 
Fix c and S. Let/~ denote the w*-limit of the sequence of measures/~h. We 

recall that both Pj, h and Qh converge in the w*-topology. Choose a constant c2 
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such that 

~h{[0, oo)1 <c2 

and let c 3 = Cl + c2. Choose a constant r > 1 so large that 

~ { [ t ,  oo)} < ~ ,  

and define T= T(8) by 

T(e) = C 3 %'/C.. 

It follows from the w*-convergence of the measures/~h that there exists a constant 

H1 =//1 (e, S) such that 
#h{[Z, T+S ]}  <2 e  

if h__< HI. Let 
H(e., S)= min {Ha, ( r +  S)-1}. 

Integration of inequality (3.4) with respect to t, from zero to a fixed value t > r 

yields 
1 ~ 1 t 

(3.5) Vh(o<_l-i~(s)ds+#~oPh{[S,t]}ds+~!ph{[S,t]}ds._to 
Consider values of t and h such that T(~) < t < T(e) + S and h < H. The first term 

in (3.5) is less than q/t ,  which in turn satisfies 

ci/t<=cl/T <=cl c,/c3 z <e.. 

Since the total variation of #h is bounded by c z the second term in (3.5) is less 

than 

"cc2/t<=zc2/T <~,. 

The third term is also less than 2~ since the integrand satisfies 

Pa{Es, t]} _-</~a {[r, T +S]} <2~.  

We conclude that 
Vh(t)__<4e 

if h<=H(e, S). This completes the proof of the lemma. 

4. D e c a y  of  the Osc i l la t ion  

Consider a sequence of approximate solutions Uh. Fix an index j and let 

Qj, h(a, b, z) denote the set of magnitudes of those j-waves in Uh which intersect 

{(x, t): a<=x<b,t=r}.  

The large-time asymptotic behavior of waves of a fixed characteristic field can be 

conveniently studied in terms of the following measures: 

~O~,h[a, b)=Z{6" 6~f2~,h, 6>0} 

(4.1) r b)=N{lbl: b~f~j,h, ~<0} 

c% h = o)7,h + ~i ,h 

Oj, h[a, b)=Z{lb[3: 6~f2j, h, 6<0} .  
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The dependence on r has been suppressed for simplicity in printing. Since the total 

variation of the measures (4.1) is uniformly bounded in h there exists a subsequence 

of approximate solutions such that the following limits exist at all rational times 
z in the w*-topology for measures: 

e)~- = ~im ~ O)~h co)- = lim e)f, h 
h ~ O  ' 

0.= lim 0. h- 
J h ~ 0  J '  

We shall say that the eigenvalues/lj are strictly separated on the range of the 

approximate solutions Uh if there exists a compact set B such that 

B~{Uh(x,t): h>0,  - ~ < x < o o ,  t>0} 

and such that 

sup {2j_ 1 (U): Ue B} < inf {2i(U): Ue B}. 

As we remarked in the introduction the eigenvalues of the equations of gas 

dynamics in Lagrange coordinates are strictly separated on an arbitrary compact 

set. In general, the strict separation of the eigenvalues together with the decay of 

shock waves as expressed by (3.3) implies that the speed of propagation of the 

elementary waves of distinct characteristic fields are strictly separated at large 

times. More precisely, let a j, h(t) and flj, h(t) denote the minimum and maximum 

speed of propagation of j-waves in Uh at time t. Choose 6 > 0 along with non-zero 

constants pj such that 

Pi-1 +6<inf{Aj(U): UeB} <sup {2j(U): UeB} < p i - 6 .  

It follows from Lemma 3.1 that there exists a time T such that 

(4.2) Pi- 1 + 6 < l ima j, h(t) ~ lim fir, h(t) <= IAJ -- (~ 

if t >- T. Furthermore the limits in (4.2) are taken on uniformly in h ift lies in bounded 

intervals of time. 

The following lemma may be regarded as the statement that the total variation 

of the solution restricted to the cone 

Kj = {(x, t):/~j_ 1 < x/t </~j} 

is asymptotically supported by j-waves only. The decay of k-waves, k ~ej, is a 
consequence of the conservation laws for waves (2.13) and the strict separation of 

the eigenvalues. Let Kj(t) denote the cross-section 

Kj(t)=Kjc~ {(x, z): z=t}.  

Lemma 4.1. Suppose that the eigenvalues are strictly separated. Then for each 
index j 

lira ~ o~,{K~(t)} =0 ,  
t ~ o o  k ~:j  

where the limit is taken through rational values oft. 
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It is an immediate corollary of Lemma 4.1 that the same sequence of approxi- 
mate solutions satisfies 

lim lim ~ Ok, h {Kj(t)} = 0 
t~oo h ~ O k # j  

for all values of t. 

Sketch of proof of Lemma 4.1. Fix an index j. For concreteness we shall con- 
sider waves of the (j + 1) st characteristic field and show that 

lim oj+~ {Kj(t)} =0 .  

Without loss of generality we may assume that /~j-1 >0. Let 11 and 12 denote 

straight lines which pass through the left and right end points of the crosssection 

Ki(t ) and which propagate at the speeds/~i+z and/~j+x +6/2, respectively. If the 
support of the initial data is contained in an interval of the form [ -  N, N-J then the 
support of all of the Glimm difference approximations is contained in a region F 
of the form 

F =  {(X, t): IxI<N+Mt, t>0} .  

Since the x-coordinates of the end points of Kj(t) are given by 

P j - i t  and pj t  

there exists a time r=O(t )  such that the x-interval I(z) which lies between l~ and 
12 at time z is contained in the complement of F. 

Consider the quadrilateral region R=R(t) bounded by the segments Kj(t) 
and I(z) and by the restrictions of the lines l~ and 12 to the interval [r, t]. In the 
limit as h approaches zero the speed of propagation of all elementary (j + 1)-waves 
is strictly less than the speed of propagation of the left edge 11 of the region R 

and is strictly greater than the speed of propagation of the right edge 12. Thus, 
in the limit the total strength of all (j + 1)-waves entering the region R equals zero 
while the total strength of all (j + 1)-waves leaving the region equals 

o9i+ , {Kj(t)}. 

It follows from the conservation laws for waves that 

(4.3) o~+1 {Kj(t)}__< Pj{R(t)}. 

Since the measure Pj is finite the limit of the right hand side of (4.3) approaches zero 
as t approaches infinity (through rational values). This completes the proof of 
the lemma. 

The oscillation of the solution in cones Kj corresponding to the genuinely non- 
linear fields is essentially determined by the balance between j-shock waves and 
j-rarefaction waves. At large times the influence of k-waves, k#j, is arbitrarily 

small due to the asymptotic uncoupling of the cahracteristic fields. The quantity 

o'J(t)= sup { • COk{Kj(z)}: z>t} 
k * j  

serves as an upper bound for the total influence of k-waves, k #:j, in the truncated 
cone 

K~[t, oo)=Kic~ {(x, z): z>t}. 
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We shall show that in each fixed subinterval of K~(t) the total amount of j-shock 

wave and j-compression wave may not exceed the total amount of j-rarefaction 

wave by more than the sum of the following four quantities: ed(t); the total amount 

of wave interaction and cancellation in the truncated cone Ki[t, Go), i.e. 

Pj(t)=P{Kj[t,  oo)} and Ci(t)=C{K~[t, oo)}; 

and the maximum limiting strength of shock waves in Ki[t, oo), i.e. 

Mj(t) = sup {Jim Mj, h(Z): Z >= t}, 

where Mi, h(Z ) denotes the maximum strength of those shock waves in Uh which 

intersect K~(z). 
Consider a solution U which exists as the limit of a sequence of Glimm differ- 

ence approximations. In the following lemma we do not assume the strict separation 

of the eigenvalues. 

Lemma 4.2. Let j denote the index of a genuinely nonlinear field. Suppose that 

(x, t) and (y, t) lie in the cross-section K~(t) and that x < y. Then 

(4 .4)  21{U(x, t)} -21{U(y,  t)} -< const. {Pj(t) + Cj(t)+Mi(t)+o.fl(t)}, 

where the constant depends only on the L~176 of U. 

It is convenient from the point of view of decay of solutions to measure the 

magnitudes of the elementary waves of a genuinely nonlinear field by the corre- 

sponding eigenvalue. In this case we shall denote the measures ~Of, h and their 

w*-limits a~ + by 2+h and 2 + respectively. With the aid of the measures 2f  the main 

idea in the proof of Lemma 4.2 can be expressed as follows. We may assume with- 

out loss of generality that the approximate solutions Uh converge pointwise in x 

for each rational t. Therefore, for each rational t 

'~i{ U(x, t)} - 2i{ u(y,  t)} = 2 2 Ix, y] - 2 ;  Ix, y] 

with the possible exception of countably many points x and y at which 2 + admit 

point masses. Now, if the total amount of j-shock and compression wave as 

measured by 2 i, i.e. 2}- [x, y], exceeds the total amount of j-rarefaction wave, i.e. 

2~. [x, y], by more than 

const. {Pj(t) + Ci(t) + Mi(t) + ~oi(t)} 

then the j-characteristics passing through (x, t) and (y, t) will coalesce in a finite 

time and produce a j-shock wave. This phenomenon is similar to the breaking of 

a compression wave and is a consequence of the condition of genuine nonlinearity. 

The conservation laws for waves then imply that 2f [x, y] is bounded by the strength 
of the j-shock so produced plus the total amount of wave interaction and cancel- 

lation which occurs in the region bounded by the characteristics issuing from (x, t) 
and (y, t). In general the geometry of j-characteristics is influenced by wave inter- 

actions; it is for this reason that the term ~t~(t) enters the estimate (4.4). 
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Proof of Lemma 4.2. It is sufficient to prove (4.4) for rational values of t since 

the solution is/J-continuous in time [93 : 

oO 

[U(x, t l ) -  U(x, ta)ldx~const.  [t I -- tEl.  
--o0 

Fix (x, z) and (y, z) and let Xh and Yh denote the approximate characteristics in Uh 

which pass through these points. We shall define the total amount of k-wave be- 

tween Xh and Yh at time t by #k,h(t): 

#k, n(t) -- cou, h { [-Xh(t), Yh(t)] }, k * j  

#+~(t) = 2fh { EXh(t), Yh(t)] }. 
(4.5) 

Let 

(4.6) str Xh(t) and str Yh(t) 

denote the strengths of the approximate characteristics Xh and Yh at time t. We 
recall that the strength of a segment of an approximate characteristic is defined to be 

zero unless the segment is a shock wave in which case the strength is defined to be 

the absolute value of the magnitude of the shock. After passing to a subsequence 

of approximate solutions, the limits 

X(t) = lim Xh(t), 

str X(t)=l im str Xh(t), 

#k(t) = lira #k, h(t), 

Y(t) = lim Yh(t) 

str Y(t)= lim str Yh(t) 

#+ (t) = lim #+h(t) 

exist with the possible exception of countably many values of t [10]. All of the 

limits are functions of bounded variation. The convergence of the approximate 

characteristics Xh and Yh is uniform on bounded intervals of time and the limiting 

characteristics X and Y are Lipschitz continuous. 
We shall estimate the rate of convergence of X and Y in terms of the above 

quantities. The propagation speed of a j-shock differs from the value of 2j on 

either side by a quantity of the order of the shock strength. Hence, we have 

Xh(t) = 2j{ Uh(Xh(t ) + 0 ,  t)} ___ O(1) str  Xh(t ) 

and a similar expression for Yh(t). Subtracting and passing to the limit yields 

(4.7) ~ ' ( t ) -X( t )=#+( t ) -# ; ( t )+O(1){s t rX( t )+s t r  Y( t )}+O(1)~#k(t  ). 
k~: j  

The left hand side of (4.7) can be estimated as follows. Consider the region 

R [z, t] = {(x, s): X(s) < x < Y(s), z < s < t}. 

It follows from the conservation laws for waves that the balance of j-waves 
between X and Y at time z and t differ by no more that the total amount of wave 

interaction in the region R It, t] plus the total amount of cancellation on the 

lateral boundaries. Therefore, 

(4.8) #~- (t) - p+ (t) > #}- (z)-/~- (r) - P {R [z, t] } - Cj {X [~, t] } - Cj { Y[r, t] }. 
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The cancellation of j-waves in the interior of R occurs (by definition) simultane- 

ously between j-shocks and j-rarefaction waves and thus does not affect the 
balance of j-waves. However j-shock waves which lie on the lateral boundaries 

xEz, t] = {(x(s), s): z < s < t }  

Y[z, t] = {(Y(s), s): z__<s=< t}. 

can be cancelled by interactions with j-rarefaction waves which lie in the com- 
plement of R. The latter effect is reflected in the fourth and fifth term of (4.8). 

With the possible exception of countably many values of x and y we have 

(4.9) 2j{U(x, z)}--2j{U(y, z)}=I~/(r)--p+(z)+O(1) ~pk(Z). 
k * j  

Using (4.8) and (4.9), we obtain from (4.7) that 

x(t)____ u(y, z)} u(x, + c r{x [z, t]} 

(4.10) + Cj{ Y[r, t]} + P {R[z, t]} 

+ 0(1) ~, Pk(t) + 0(1) {str X(t) + str Y(t)}. 
k* j  

It follows from (4.10) that 

Y (t) - X (t) < 2j { U (y, r)} • 2j { U (x, z)} + cH (z), 
where 

H(z) ~f P~(z) + Cr(z ) + Mj(z ) + d ( z )  

and where c is a constant depending on the L~ of the solution. 

In order to establish the estimate (4.4) we need only consider the case where 

/4(~) = ~ {,~AV(y, z ) ) -  :~j(V(x, z))}, 

or equivalently the case where 

(4.11) Y(t)-X(t)<�89 z))-2j(U(x,  z))}, t>z.  

Furthermore we may assume that the right-hand side of (4.11) is negative. Under 
these circumstances the characteristics X and Y coalesce in a finite time and it 
follows from the conservation laws for waves that 

/xj- (z) -/*~- (z)_-< const. {Pj(z) + Cr(z ) + Mr(z)}. 

This inequality together with (4.9) yields 

2j { U(x, z)} - 2j { U(y, z)} __< const. {P~(z) + Ca(z ) + Mr(t ) + r 

This completes the proof of the lemma. 

The oscillation of a solution in a cone Kj corresponding to a genuinely non- 
linear field is essentially determined by the balance of j-waves in the sense given 
by the following lemma. We shall denote the oscillation of an arbitray function 
f on an interval [x, y] by 

osc f [x, y] = sup { [ f (a ) - f (b )  [ : a, b ~ Ix, y] }, 



Hyperbolic Systems of Conservation Laws 31 

and the oscillation of a measure/~ by 

osc/~ Ix, y] = sup {I/~ { [a, b] }1" a, b ~ Ix, y] }. 

Lemma 4.3. Let j denote the index of a genuinely nonlinear field. Then 

(4.10) osc Uh[x, y] < const. {osc (CO+h -- CO~,h) IX, y] + Oj, h IX, y] + ~" COk, h IX, y]} 
k * j  

where the constant depends only in the L~ of  Uh. 

This result is an immediate corollary of 

Lemma 4.4. Let j denote the index of a genuinely nonlinear field. Then 

]Uh(X, t ) -  Uh(y, t)l 
(4.11) 

< con st. {I CO;h IX, y] --09f, h IX, Y]I+ 0j, h IX, y] + ~. COk, h IX, y]}, 
k* j  

where the constant depends only on the L~176 of Uh. 

The proof of Lemma 4.4 is based on the following observation. Consider a 

finite sequence of constant states Uo, Ux . . . . .  U, such that any two consecutive 

states are connected by either a j-rarefaction wave or a j-compression wave. 

Since all of the states Uh lie on the curve 

du 
de =rj(U) 

it is clear that 
tl 

(4.12) I Uo-  U,I <const.  k~=lek , 

where ek denotes the magnitude of the k-th wave in the sequence. If two con- 

secutive states are allowed to be connected by a j-shock wave, it is necessary to 

augment the right-hand side of (4.12) by the sum of the cubes of the magnitudes 

of all j-shock waves in the sequence. If, in addition, two consecutive states are 

allowed to be connected by an arbitrary wave, we crudely estimate their con- 
tribution by the total variation norm of all k-waves, k 4:j. 

Proof of Lemma 4.4. Consider an arbitrary sequence of constant states 

U0 . . . .  , U,. If two consecutive states Uz and Uz+ 1 are connected by a j-wave we 

shall associate the magnitude of that wave with the pair (U~, Ut+0. Otherwise, 
we shall associate with (Ut, Ul+l) the Euclidean distance I Ut -  U~+I I- The sequence 

is arbitrary in the sense that consecutive states need not be connected by an 

elementary wave. 

The proof proceeds by induction on n. We shall assume that 

(4.13) IUo-U.l<c~ Z ~Jl + Z I~jl3+~ylUt-U~+~l} 
j-waves j-shocks 

for all sequences which consist of at most n states. The first summation on the 
right hand side of (4.13) consists of the magnitudes of all j-waves in the sequence. 

The second summation consists of the magnitude of j-shock waves only. The 

third summation is taken over all of the remaining pairs, i.e. pairs which are not 
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connected by a j-wave. In the special case where the states Ut and Ut+l are con- 

nected by a k-wave, the Euclidean distance is dominated by the wave magnitude: 

[Ul-  Ul+ll < const, lek[. 

The case n = 1 is immediate. The inductive step is a consequence of the fol- 

lowing two propositions. The constant ha (4.13) for n >  1 is selected as the maxi- 

mum of the constant in (4.13) in the case n =  1 

below in (4.14) and (4.15). 

Proposition 1. Consider three constant states 

nected to F2 by a j-wave of magnitude 81 and F2 

and the constants which appear 

I1"1, V 2 and V 3 such that V1 is con- 

is connected to V3 by a j-wave of 

magnitude 8 z. Then there exists a constant state V~ such that 111 can be connected 

to V4 by a j-wave with magnitude 81 + 82 and such that 

(4.14) I V~ - 1/4[ < const. 2 {[Sj[ 3" 8 i < 0}. 

Proof. If neither 81 nor  82 is a shock wave choose V4 = V3. If neither 81 nor 82 

is a rarefaction wave choose V4 to be that particular state on the compression 

wave curve through V~ which has magnitude 81 + 82. In both cases the estimate 

(4.14) is easily verified. Finally, suppose that 81 is a shock and 82 is a rarefaction 

wave. If 81 +82_->0 then choose 1/4 to be the state on the rarefaction wave curve 

through V1 with magnitude 81 + 8  2 . If 81-I-82 <0  choose V4 to be the state on the 

compression wave curve through V~ with magnitude 61 + 82. The subcase where 

81 is a rarefaction wave and 82 a shock is handled similarly. 

Proposition Z Consider three constant states 1/1, I"2, V3 where 1/1 is arbitrary 

and where V 2 and V3 are connected by a j-wave of magnitude e. Then there exists a 

constant state V4 such that 1/1 and 1/4 are connected by a j-wave of magnitude e and 

such that 

(4.15) IV4- V31 ~ const. [V~ - V2I. 

Proof. Choose 1/4 to be that particular constant state which lies on the j-wave 

curve through V1 and which has magnitude ~. If, for example, Vz and 1/3 are con- 

nected by a j-compression wave the state I/4 is chosen to lie on the j-compression 

wave curve through V~. This completes the proof of the proposition and the 

lemma. 

We observe that the estimates (4.10) and (4.11) also hold in the general case 

where the magnitude 8 of an elementary j-wave is measured by any smooth 

function z with the following property. The function z decreases from left to 

right across j-shocks and compression waves and increases from left to right 

across j-rarefaction waves; i.e. 

6=z{~(e)}  - z { E ( 0 ) }  

satisfies 

sign 8 = sign 8. 

Fixing the coordinate function z, it can be further shown that any smooth function 

w which decreases from left to right across j-shocks and compression waves and 

which increases from left to right across j-rarefaction waves satisfies the following 
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two estimates: 

w { Uh(X, t)} -- W { Uh(y, t)} < const. {max (~07, h I-x, y] -- tnf, h Ix, y], 0) 
(4.16) 

+ 0 ,hrx, y] + Z  Ok, h Ex, y]} 
k:4:j 

w { Uh(Y, t)} -- W { Uh(X, t)} < const. {max (~O+h IX, y] -- COl. h [-X, y], 0) 

(4.17) +Oj, h[X' Y] + Z ~Ok, h[X, y]}. 
k4-j 

Roughly speaking, the balance between j-waves of positive and negative magni- 

tude as measured by any two functions with the same first order behavior is 

equivalent up to third order terms in j-shocks modulo the influence of k-waves, 

k+j.  

We are now prepared to establish the decay of the oscillation of the solution. 

We shall consider solutions U constructed as the limit of a sequence of Glimm 

difference approximations U h which satisfy local conservation laws for waves in 

which the error term is uniformly summable with respect to h (cf. (2.11)). We 

further assume that the eigenvalues 2j are strictly separated on the range of the 

sequence of approximate solutions Uh. 

Lemma 4.5. Consider a system of conservation laws in class K 1 and let ~l . . . . .  ~,~ 

reference the linearly degenerate characteristic fields: 

r k �9 V ) L k = O ,  k = ~  1 . . . . .  am. 

Suppose (a is a Riemann invariant for all of the linearly degenerate fields: 

r k �9 V~b = 0, k = al . . . . .  a,,- 

Then c~ { U (x, t)} satisfies the decay law 

lim osc q$ {U(', t)} =0.  
t ~ o o  

Remarks. 1. Let (2 denote the domain of definition of the nonlinear term F in 

system (1.1). If Y24:R" we must also assume that the range of the approximate 

solutions Uh is contained in a fixed compact subset of f2. In particular, for the 

equations of fluid flow it is necessary to assume that the density P(Uh) is bounded 

from below by a positive constant independent of h. We note that the former 

condition is guaranteed by the general theory provided the total variation of the 

initial data is chosen sufficiently small. 

2. If the system (1.1) is strictly hyperbolic only on some open subset ( 9 ~ ,  

it is necessary to assume that the range of the approximate solutions is con- 

tained in a fixed compact subset of (9. In particular, for the equation of magneto- 

fluid dynamics it is necessary to assume that the transverse component of the 

magnetic field never vanishes in the sense that 

2 2 h=>Const. > 0, HZ,h+H3, 

where the constant is independent of h. We note that the former condition is 

guaranteed by the general theory provided the initial data have sufficiently small 
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total variation. If H 2 = H 3 =0 the equations of magneto-fluid-dynamics formally 

reduce to the equations of gas dynamics. 
In the proof of Lemma 4.5 we shall assume for simplicity that there exists a 

function ~b which qualifies as a Riemann invariant for all of the linearly degenerate 

fields, i.e. 
r k -V~=0 ,  k=~l  . . . . .  ~m, 

and which decreases from left to right across all j-shock waves and increases from 

left to right across all j-rarefaction waves. The advantage of this structure is that 

the increasing and decreasing variations of r are partitioned equally between 

j-shock waves and j-compression waves since ~{U(x, t)} has compact support 

in x for each fixed t. We note that the equations of gas dynamics in both relativistic 

and nonrelativistic form as well as the equations of magneto-fluid-dynamics 

possess such a function ft. For the former systems the fluid velocity serves as the 

function ~p. For the latter system the x-component of the fluid (vector) velocity 

serves as the function ~O. 
For a genuinely nonlinear system of conservation laws it is easy to construct 

a function, ~, which decreases from left to right across shock waves and increases 

from left to right across rarefaction waves, at least in the case of solutions with 

small oscillation. Indeed, it is sufficient to choose ~ as an appropriate linear 

combination of the components of U which satisfies 

rj.v~>0 

in some neighborhood of U-space which contains the range of the solution. 

Proof of Lemma 4.5. Fix t and let (x, t) and (y, t) lie in the cross-section Kj(t) 
of a cone Kj corresponding to a genuinely nonlinear field. Lemma 4.2 guarantees 

that 

(4.18) 2r{U(x, t)} -2r{U(y, t)} < const. {Pj(t) + Cj(t)+Mi(t)+off(t)}. 

Passing to the limit in (4.16) implies that 

(4.19) ~O(x, t) - ~k(y, t) < const. {max [2j(x, t) - 2j(y, t), 0] + Or[x, y] + ~ ~OR[X, y]} 
kt-j 

with the possible exception of countably many values of x and y. For simplicity 

we have adopted the abbreviations 

~k(x, t)= @{U(x, t)}, 2j(x, t)=2j{U(x, t)}. 

Thus if (x, t) and (y, t) lie in Kj(t) we obtain from (4.18) and (4.19) 

(x, t) - @(y, t) < const. {Pj(t) + Cj(t) + M j(t ) + off(t) + Oj [x, y] }. 

Hence, for arbitrary x and y 

~O (x, t) - ~O(y, t) =< const. {ZPj(t) + Z Cj(t) + ZMj(t) + Z off(t)}. 

Here we have used the fact that 

O j[x, y] <= const. M j(t ) 

if (x, t) and (y, t) lie in Kj(t). 



Hyperbolic Systems of Conservation Laws 35 

Since the function ~b has compact support for each fixed t it follows that 

osc ~b(., t) < const. {ZPj(t) + Z Cj(t) + S M j(t) + S, c0~(t)}. 

We conclude from Lemmas 3.1 and 4.1 that 

lim osc ~(',  t) = 0. 
t ~ o o  

If q~ is an arbitrary Riemann invariant for all of the linearly degenerate fields, 
inequalities (4.16) and (4.17) imply that 

osc ~b(-, t) < const, osc {~b(., t) + XMj(t) + X ~v(t)} 

and therefore that ~b also decays in the oscillation norm. This completes the proof 
of Lemma 4.5. 

The case of genuinely nonlinear systems can be treated in virtually the same 

fashion. Consider a solution U which exists as the limit of a sequence of Glimm 

difference approximations that satisfy local conservation laws in which the error 

term is uniformly summable in h. If the eigenvalues 2j are strictly separated on 

the range of the sequence of approximate solutions we obtain the following decay 
result. 

Lemma 4.6. Consider a system of conservation laws in class K 2 . Then all 

components of the solution decay to zero in the total variation norm: 

lim TV~ U(x, t)= O. 
t ~  oO 

The remarks following Lemma 4.5 also apply to Lemma 4.6. 

5. Decay of the Total Variation 

For genuinely nonlinear systems of conservation laws, the decay of the total 

variation of the solution is essentially a consequence of two facts: the decay of 

the oscillation and the asymptotic uncoupling of the characteristic fields. For 

systems which admit linearly degenerate fields we shall establish a corresponding 

result that applies to functions which qualify as Riemann invariants for all the 

degenerate fields. In general the total variation of the solution or its distinguished 

components can be estimated in terms of the total variation of the eigenvalues 

2j. In this regard we recall that ~2j, h(a, b, z) denotes the set of magnitudes of those 

j-waves in U h which intersect 

(5.1) {(x, t): a < x < b ,  t=z}, 

and that the family of measures 2~, h = )-j, h(z) is defined by the equation 

,~j,h[a, b)=Z{6: fiSf2i, h}. 

The dependence on z is suppressed for simplicity in printing. For a fixed value 
of z, the measure 2j, h(Z) is generated by the function 

Ii, h(x) = i j, h(X, ~) = ,~j, ~(-- ~ ,  x). 
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Since the total variation of the family of functions )~j, h( ~ ~') is uniformly bounded 

in h, we may assume, after passing to a subsequence, that ;-~.h(', Z) converge 

pointwise in x for any given countable set of values of z. Let 

 j(x) =  j(x, = 

Our analysis of the decay of the total variation norm is based on the following 

lemma. Fix an interval of the form (5.1) and let X and Ydenote a pair of generalized 

j-characteristics which pass through (a, ~) and (b, v), respectively. Let ~ denote 

the forward strip 
roe= {(x, t): X (t) < x < Y(t), t ~ z}. 

For a fixed value of z let TV~.j[a, b] denote the total variation of the function 

~(. ,  ~) restricted to the interval I-a, b]. 

Lemma 5.1. Let j denote the index of a genuinely nonlinear characteristic field. 

There exists a constant T > 0  such that the interval IT, oo) contains a countable 

dense set of points z such that for all a and b, 

(5.2)  TV2j[a, b] < const. Osc {2~[a, b] + Y. (Ok[a, b] + P(rQ + C(rtr 
k4:j 

where the constant depends only on the L~176 of the solution U. 

Estimate (5.2) can be interpreted in the following way. Let j denote the index 

of a genuinely nonlinear field and fix the time t = z. Suppose that the restriction 

of the solution U(-, r) to its elementary j-waves has small oscillation. Equivalently, 

suppose that a time t =  ~ the j-shock waves and j-rarefaction waves are nearly 

equidistributed throughout every given interval in space. In a solution with this 

structure the total variation of the restriction of the solution to j-waves is bounded 

by the total amount of wave interaction and cancellation plus the total strength 

of all k-waves k eej. This phenomenon is a consequence of the geometry of shock 

waves and rarefaction waves in the x - t  plane. The condition of genuine non- 

linearity forces adjacent shock waves and rarefaction waves of the same field to 

collide and produce an amount of wave interaction and/or cancellation which 

increases as the total variation of the solution increases. 
The main idea of the proof of Lemma 5.1 is the following. The interval I-a, b] x 

{t=~} is partitioned into a finite number of disjoint intervals which alternately 

contain mainly j-shock waves or mainly j-rarefaction waves; the values of ~.j at 

the end points of any two adjacent intervals are approximately equal. Then we 
show that a given pair of adjacent subintervals will contain in general some 
subinterval in which the total amount of j-shock wave exceeds twice the total 

amount of j-rarefaction wave. The latter fact together with the condition of 

genuine nonlinearity guarantees that the j-characteristics issuing from the end 

points of the subinterval will coalesce in a finite time. The conservation laws for 
waves then imply that the total amount of j-rarefaction wave contained in the 

subinterval is bounded by the total amount of wave interaction and cancellation 
which occurs in the domain bounded by the j-characteristics issuing from its end 
points. We recall that generalized j-characteristics are constructed in such a way 
that they do not cross j-rarefaction waves. Thus, in a domain with the above 
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structure the total strength of all j-rarefaction waves entering the domain must 

be balanced by the total amount of wave cancellation which occurs in the j-charac- 

teristic field modulo the total amount of wave interaction. 

In the above construction it is essential that the total amount of j-shock wave 

strictly exceed twice the total amount of j-rarefaction wave. It is possible for 

j-shock waves to leave the interior of a domain bounded by a pair of j-char- 

acteristics by entering the one of the characteristics. This process may reduce 

the rate of spreading of the j-characteristics by approximately one-half the strength 

of the entering shock. The reduction follows from the fact that the speed of pro- 

pagation of a generalized j-characteristic is approximately equal to the average 

value of the characteristic speeds 2j on both sides of the characteristic [17]. 

Before providing the details of the proof of Lemma 5.1 we shall state and 

prove our main results on decay in the total variation norm. Consider a solution 

U constructed as the limit of a sequence of Glimm difference approximations Uh 
that satisfy local conservation laws for waves in which the error term is uniformly 

summable with respect to h cf.((2.11)). Suppose further that the eigenvalues 2j 

are strictly separated on the range of the sequence of approximate solutions Uh. 

Theorem 5.1. Consider a system of conservation laws in class K1 and suppose 
4) is a Riemann invariant for all of the linearly degenerate characteristic fields. 
Then 4){ U (x, t)} satisfies the decay law 

(5.3) lim TV~ 4){U(x, t)} =0. 
l ~ o O  

Theorem 5.2. Consider a system of conservation laws in class K 2. The solution 
U (x, t) satisfies the decay law 

(5.4) lim TVx U(x, t)= O. 
t ~ o O  

Remark. The remarks following Lemma 4.5 also apply to Theorems 5.1 and 
5.2. 

Proof of Theorem 5.1. We need only estimate the total variation of 4) at a 

dense set of times since the solution is/2-continuous in time [9]: 

S IU(x, t l )  - -  U(x, t 2 )  ] dx < const. [q - t 2 1 .  
- o o  

Fix an index j corresponding to a genuinely nonlinear field. Estimates (4.16) and 
(4.17) imply that 

14){Uh(X, t)} --4){Uh(y, t)}l =< const. {I,~j, h(X, t)--Yq, h(y, t)l + 0~,h[X, y] + ~ mk, h[X, Y]}- 
k~:j 

Passing to the limit we obtain 

14) {U(x, t)} - 4){U(y, t)} I =< const. {f~.j(x, t)-,~i(y, t)l +Oi[x, y] + ~ O~k[X, y]} 
k*j 

for almost all x and y. Thus, 

TV4) [a, b] < const. {TV2j [a, b] + O~ [a, b] + ~ O)k [a, b]} 
k4:j 
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at rational values of t. Estimate (5.2) then yields 

(5.5) TVdp [a, b] < const. {Osc ~j [a, b] + P(zr) + C(z) + 0j [a, b] + ~ o k [a, b]}. 
k * j  

The first four terms on the right-hand side of inequality (5.5) approach zero as t 

approaches infinity for arbitrary values of a and b. If a and b are restricted to lie 
in the cross-section Ki(t ) of the cone Kj then the fifth term also approaches zero 

by Lemma 4.1. We conclude that the total variation of ~b restricted to the cross- 
section Kj(t) decays to zero with large time. 

Since ~b is continuous across k-contact discontinuities the total variation of 
its restriction to cones Kk corresponding to linearly degenerate fields is of the 

order 

to, {Kk(t)} 

and thus decays to zero with large time by Lemma 4.1. Here ~= {al . . . . .  am} 
denotes the set of indices of the linearly degenerate fields. This completes the 
proof of Theorem 5.1. 

The proof of Theorem 5.2 is similar and follows from the estimate 

IF(x, t ) -  U (y, t)l < const. {l~.)(x, t ) -  ).j(y, t)l + Oj[x, y] + ~ Ok[X , y]} 
k * j  

We omit the details. 
We shall partition the proof of Lemma 5.1 into three propositions. Let f=f (x )  

be a function of bounded variation which is defined on the interval [a, b). Let f • 
denote the positive and negative variation measures associated with f :  

f ( x ) = f  § {[a, x)} - f -  {[a, x)}. 

Proposition 5.1. Suppose that the positive variation measure f+ does not contain 

any point masses. Fix a constant M> 1. Then for every e > 0  there exists a finite 

collection of disjoint subintervals f2j of [a, b) such that 

(5.6) ~ I f -  {f2~} - M f  + {f2j} I < e 
J 

(5.7) f +  {[a, b ) -  U f2j} < const. [ f +  {U Oj} + osc f + e ] ,  

where the constant depends only on M. 

The application of Proposition 5.1 to the function ).~(-, z) yields the existence 
of a collection of subintervals on which the total strength of all j-waves of negative 
magnitude exceeds three times the total strength of all j-waves of positive magni- 
tude. The choice M = 3 can be replaced by any constant greater than two. The 
union of the intervals f2) accounts for a uniform fraction of the total variation 
off, modulo a quantity of the order of the oscillation o f f  (cf. (5.7)). 

Proof of Proposition 5.1. Since the measures f+  and f -  are mutually singular, 
there exists a finite collection of subintervals I~, = [Ck, dk) having disjoint closures 
such that 

(5.8) f +  {U I~,} + f -  { I -  U I~,} <~. 
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We may assume without loss of generality t h a t / = [ C o ,  c.): for example, if a<co 

then (5.8) implies that 

f -  {[a, Co)} <e. 

Thus, we may assume that I is partitioned into 2 n disjoint intervals: 

I =  Ulk  
where the intervals I k have the form 

I2 k = [dk- 1, Ck), k = 1, 2, .. . ,  n 

I2 k+ 1 = I-Ok, dk), k = 0, 1, .. . ,  n - 1. 

We observe that the measure f -  is essentially concentrated on the intervals with 

even index and f -  on the intervals with odd index: 

S,f~k+ 1 + S, f~ <~, 
where fs + = f  + (Is)" 

Next we define by induction a certain collection of intervals Jk" The required 

intervals f2 k will be defined as certain subintervals of Jk. Let 

2p 

J l = U  Ik 
1 

where 2p is the smallest even index such that 

2p--!  2p 

(5.9) E f~+l  < M E f ~ k ;  
1 2 

here the summation on the left is taken over all odd indices between 1 and 2 p -  1 

and the summation on the right is taken over all even indices between 2 and 2p. 

If no such index 2p exists we define J1 = I. Assuming that the intervals Jg have 

been defined for k < m - 1  and that each is the union of an even number of inter- 

vals lk, we define Jr" as follows. Let 21 be the unique index such that 

m-1 21 

U 
We define 1 1 

2q 

(5.10) Jr. = U Ik 
21+1 

where 2q is the smallest even index greater than 21 such that 

2 q - 1  2q 

(5.11) ~, fEk+x < M ~f2k .  
2l+1  21 

If no such index 2q exist we define 
2n 

(5.12) Jm = U Ik 
2/+1 

Without loss of generality we may assume the following two conditions. First, 

the interval J1 does not equal I. Otherwise 

(5.13) Z f~ + fk- < const. { o s c f + e } ,  
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where the summations are taken over all indices k and where the constant depends 

only on M. Estimate (5.13) can be established as follows. If J1 =1 then 

2n 1 2n-1 

2 ~ f 2 + k < M  Ef2k+l'l 
and we see from (5.8) that 

(5.14) 

Since 

it follows from (5.14) that 

< l z f k -  +2e.  
Zfk+ = M  

[fU- - Z f k l -  -< oscf,  

X fk+ l x  fk+ 1 + ~ o s c f + 2 e  

and therefore that 

(5.15) X fs < 1 2 e M  
= M -  1 o s c f + ~ _ ~ .  

The estimate (5.13) follows from (5.15). For similar reasons we may also assume 

that our inductive construction yields a collection of intervals Jk, k = 1, 2, ... r, 

where Jr has the form 
2n 

z=Xi  
2s+1 

and 
2n-1 2n 

Z f Z k + ' < M X f ; k  " 
25+1 2s 

Fix an interval 
2t 

4 = E I k  �9 
2s+1 

Since f+  does not contain any point masses it follows from the definition of Jj 

that there exists a point Yi such that 

2t-1 f Z t - 2  } 

f-(I2k+l)=M~ ~ f+(I2k)+f+(Tl2,) 
2s+1 t 2 s +2  

where 

i2 ,=I2,{x:  x<yj} .  

We note that the right hand side will contain only the term f +  (i2,) in the case 

where 2 t - 2 < 2 s + 2. We define 

a j =  Js c~ {x: x__<yj}. 

The estimate (5.7) follows from the facts that 

ISf  + {f2j} + X f + {Jj - f2j} - X f -  {J~}[ _-< o s c / +  e 
and 

f -  {Jj} = M f  + {f2j} + ej 

where g e~ < g. This completes the proof of the proposition. 
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Proposition 5.2. Let j denote the index of a genuinely nonlinear characteristic 

field. There exists an interval IT, co) almost all of whose points r have the following 

property. I f  for a given subsequence h k, the limit 

~j(X, "C) def lim 2~ h~(X, z) 
h k ~ O  " 

exists for almost all x, then the positive variation measure associated with the function 

qSj(-, z) does not contain any point masses. 

Sketch of proof. Let F denote the set of jump points of U considered as a function 

of bounded variation in the sense of Cesari [6], [26]. Evaluating the measure 

on an arbitrary measurable subset of F implies that the Rankine-Hugoniot 

relations are satisfied at almost all points P of F with respect to one-dimensional 

Hausdorff measure: 

vt{l,~ U -  1_,, U} + vx{F(l,, U ) -  F(I_,. U)} =0 .  

Here v=(vx, vt) denotes the normal to F and l+v U = I_=_,~ U(P) denote the approxi- 

mate limits of U with respect to the complementary half-planes through P de- 

fined by v [-26]. Evaluating the measure 

0 
~t rl(U) + ~xx q(U) 

on an arbitrary measurable subset of F implies that 

v, {~/(lv U) - r/(l_ v U)} + v x {q(t~ U ) -  q(l_~ U)} __< 0 

at almost all points of F. Thus, if l+_~ U are sufficiently close, the Lax shock condi- 

tions 
}~k {lv U} < -- vt/Vx <}~k {l_ v U} 

are satisfied for a unique index k. Here we have normalized the direction of v 

by assuming v x < 0. 

Now, for almost all values of z in the sense of Lebesque measure, the points 

of discontinuity of the restriction of U to t = z are jump points at which the one- 

sided limits of the restriction U(-, z) equal the corresponding approximate limits: 

U(x + 0, ~)= I+~ U(x, ~). 

Thus, each point of discontinuity of the restriction U( ' ,  r) satisfies 

(5.16) 2k { g (x + 0, z)} < - vt/v x < 2k { g (x -- 0, 0} 

for a unique index k. 

Suppose, on the contrary, that ~b+(.,z) has a point mass at the point x o. 

Then there exists a constant ~ >0  with the following property. For all sufficiently 

small 6 > 0 there exists a constant H(6) such that 

ij+, h~ {[Xo- ~, Xo + ~]} _->iSh~ [Xo-~, Xo +~]} +~ 
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provided hk<=H(t~ ). Since the interaction measure Q has at most countably many 
point masses, we may assume without loss of generality that the line t = z does not 

contain any point masses of Q. Thus, in the limit a s  h k approaches zero, the total 
strength of all k-waves, k+j, in Uh which cross [Xo- f ,  Xo+6] at time t=z  is 

arbitrarily small. From this fact we conclude that 

(5.17) ~bj(Xo ___ 0, z) = 2j{ U(xo + O, z)}. 

Since ~bf is assumed to have a point mass at Xo it follows from (5.17) that 

(5.18) , j{V(Xo +0, tr(Xo-0, 

But (5.18) is a contradiction to the Lax shock conditions. Indeed, if z is choosen 
sufficiently large the oscillation of q~j can be made arbitrarily small and it follows 

that U(xo +0, z) lies on the j-shock wave through U(xo-0 ,  z), i.e. inequality (5.16) 
holds with k ~j. This completes the proof of the proposition. 

Propositions 5.1 and 5.2 together with Proposition 5.3 below constitute the 

proof of Lemma 5.1. Before stating the third proposition we recall certain facts 

concerning generalized characteristics. Let j denote the index of a genuinely non- 
linear field. Consider the family of approximate solutions Uh. By passing to a sub- 

sequence we may assume that a generalized j-characteristic X j=  Xi(t; P) passes 
through each point P with rational coordinates and furthermore that Xj exists as 

the limit of approximate j-characteristics Xj, h in Uh. We recall from [10] that the 
approximate solutions Uh are uniformly equicontinuous along approximate j- 

characteristics in the following sense. Each sequence of approximate characteristics 
contains a subsequence, say Xj, k, with the following property. For every e>0  

there exists a constant 6(e) such that 

(5.19) IUk {Xj, k(Z) + O, Z} -- Uk { Xj.k(Z) + 6, z}l <e 

(5.20) I Uk{Xj, T/-  Uk 

with the possible exception of an at most countable set of values of z provided 
6<6(e). Thus, for the aforementioned family of j-characteristics through rational 
points P, we may assume that estimates (5.19) and (5.20) are violated at most at a 

countable set of values of z. This fact together with Proposition 5.2 guarantees 
the existence of an interval [z*, oo) which contains a countable dense subset C 
of points z with the following two properties. First, the sequence of functions 

~j, k(X, Z) converges pointwise in x to functions 

(5.21) ~(x, r)= ~im ~j., h(X, ~) 

whose positive variation measures do not admit any point masses. Second, at 
time t = r  the approximate solutions Uh are uniformly equicontinuous along the 

corresponding famlies of approximate characteristics Xj.h(t; P). 

Proposition 5.3. Let j denote the index of a genuinely nonlinear characteristic 
field. I f  z is sufficiently large the functions ~( ' ,  z) defined by (5.21) have the property 

that if 
,~; [a, b] >= 3 2~ [a, b] 
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(5.26) 

where 

then 
2f  [a, b] ____ const. {P(rQ + C(n~)}, 

where ~, denotes the forward strip bounded by a pair of j-characteristics X and Y 

passing through (a, z) and (b, O, respectively: 

n~= {(x, t): X(t )<x< Y(t), t>z}.  

Proof. We may assume without loss of generality that a and b lie in a countable 

dense subset of the real numbers. The rate of spreading of the characteristics X 

and Y is given by 

Y(t)-  X(t)= 2j{U(Y(t) +0, t)} - 2j{U(X(t)-  0, t)} 

(5.22) + {�89 + 0 (e)} {str X(t) + str Y(t)}, 

where e denotes the maximum strength of characteristics X and Y. Let pk, h(t) 
denote the total amount of k-wave, k #j ,  which is contained in Uh between the 

approximate characteristics Xh and Yh at time t: 

(5.23) ]2k, h(t)=(-Ok, h{[Xh(t), Yh(t)] }, k #j .  

Let #~h(t) denote the corresponding quantities for j-waves as measured by the 

positive and negative variation measures of ),j, h: 

(5.24) p~,h(t) = 2~,h {[Xh(t), Yh(t)]} �9 

Using (5.23) and (5.24) we may rewrite equation (5.22) in the form 

Y(t) - X(t) = #2 (t) - / i f  (t) + {�89 + O(e)} {str X(t) + str Y(t)} + 0 { ~/.tk(t)}, 
k * j  

where 

(5.25) #k(t)=~im ~ #k,h(t), /l?(t)=~im 2~,~(t). 

The limits (5.25) are known to exist with the possible exception of at most countably 
many values of t [10]. 

Furthermore, it has been shown by GLIMM & LAX [10] that the distance 
between characteristics, 

O(t) = Y( t ) -  X(t) 

satisfies an integral inequality of the form 

t 

D(t) < F(t) + ~ D(s)dm(s), 
tl 

t 

F(t) = const. D(h ) + S f2(Odt 
tl  

f2(t) = p f  (t) - p f  (t) + {�89 + 0(~)} {str X(t) + str Y(T)} 

and where the monotone function re(s) denotes the total strength of all k-waves, 
k#j ,  which cross the characteristics X and Y in the time interval [-t, s] plus the 

quantity 
P[{(x, t): X(t )<x< r(t): t I ~_t<~s}]. 
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The proof of (5.26) is given in [10] for genuinely nonlinear systems of two conser- 

vation laws but applies with only very minor modifications to the genuinely 

nonlinear fields of an arbitrary systems of n conservation laws. We omit the 
details. 

Using the fact that D(t) is bounded from above by the solution of the corre- 

sponding integral equation, we obtain the estimate 

D (t) <= e re(t) F(t 1) + i era(t)- m(tl) d F d t. 
tl dt 

Therefore, 
t 

(5.27) D(t) < const. D(q ) + S e"(t)- re(tO ~(t)d t. 
tl  

By estimating the integrand in the right hand side of (5.27) we shall show that the 

characteristic X and Y will coalesce in general after a finite time. In this regard we 

may restrict our attention to values of t in a countable dense subset since the func- 

tion fl(t) is a function of bounded variation. Now, if t~ C we have 

(5.28) f2( t )=i t{Y(t )+O, t} - i j { X ( t ) - O  , t} + {1 + O(e)} {strX(t)+ str Y(t)} 

and 
str X(t) = i t {X(t)-  0, t} - i j  {X(t) + 0, t} 

str Y(t) = it{ Y(r) - 0, t} - i t { Y(t) + O, t}, 

as a consequence of the equicontinuity of the approximate solutions along the 

approximate characteristics Xh and Yh. Equation (5.28) can also be written in the 

form 

(5.29) f2(t) = i + [X(t), Y(t)] - i f  IX(t), Y(t)] + {�89 + O (e)} {str X(t)  + str Y(t)}. 

From equation (5.29) we obtain the crude estimate 

(5.30) ~(t)__<,~.t Ix(t), r(t)] - {�89 + 0(~)} i ;  [x(t), Y(0]. 

The quantities on the right hand side of (5.30) can be related back to the corre- 
sponding values at time t = ~ with the aid of the conservation laws for waves. By 

considering the approximate conservation laws for waves as applied to strips 
bounded by approximate j-characteristics and by passing to the limit one can 

establish the following estimates in a straightforward way: 

i]- IX(t), Y(t)] = i f  [a, b] + O { C(~z'~)+ P(Tf~)} 

i~- [x(t), Y(t)] __> 5;  [a, b] + O { C(rO + P(rc'0}, 

(5.31) 

(5.32) 

where 

~'~= {(x, s): X(s)<=x<__ r(s); r<=s<=t}. 

The estimate (5.31) is simply the statement that the total strength of j-rarefaction 

waves (as measured by 5 +) is conserved up to terms of the order of the total amount 
of wave interaction and cancellation. The inequality in (5.32) is due to the fact 
that j-shock waves may enter the strip ~'~ from the outside and become part of its 
lateral boundary. 
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Combining estimates (5.30)-(5.32), we obtain 

O ( t ) < _ i j [ a , b ]  1 "~- t t t _ { c ( ~ 0 + e ( ~ 3 , ,  - {~+O(~)} zj [a, b] +K 

where K is an appropriate constant. Now let us suppose that 

ij- [a, b] > 3 1 ;  [a, b]. 

This hypothesis implies that 

(5.33) Q(t) < { - �89 + O (0} i2  [a, b] + K { C(G) + P(z~)} �9 

In estimate (5.33) we have used the fact that rrt~ c G. Clearly we may assume that 

i + [a, b] > 0. In this situation we see that either 
~ 

2 + [a, b] <=2K'{C(G)+P(G)} 
o r  

O(t)__< - 2 ;  [a, b] <0,  
where 

K'~fK/(�89 +O(~)). 

In the former case the proof of the proposition is complete. In the latter case the 

j-characteristics X and Y necessarily intersect after a finite time. We may thus 

conclude in this case from the conservation laws for j-rarefaction waves that 

2 + [a, b] < const. {C(G ) + P(G)} - 

This completes the proof of the proposition. 

Note. This research was supported in part by NSF grant MPS75-06999. 
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