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By E. van Groesen 1, F. P. H. van Beckum ~ and T. P. Valkering 2, 

University of Twente, NL7500 AE Enschede, The Netherlands 

1. Introduction 

The specific example to be considered here are 1D wave equations that 

can be written as a Hamilton (or Poisson) system with Hamiltonian H. 

Then travelling wave solutions can often be found if the system is transla- 

tionally invariant. This invariance under the (continuous) translation group 

leads to the existence of an integral, C say, and the profiles of travelling 

waves are found by looking for critical points of H on level sets of the 

integral C: 

crit{H(u) l f ( u  ) = y}. (1) 

In this way often a two-parameter family of travelling waves is found: 

{U(y, ~o) 17, ~o}, (2) 

where ~0 is a variable accounting for translation. This 2D manifold in the 

state space is called the travelling wave surface (TWS) and is an example of 

a manifold consisting of relative equilibria of a Poisson system, as shall be 

shown in the following. 

When dissipation is added to the system, these travelling waves are no 

longer exact solutions. Nevertheless, it is often observed (experimentally 

and numerically) that there are dissipative motions which at each instant of 

time look like a travelling wave of the non-dissipative system. 

[In fact, the popular quotation of Scott Russel from his "Report on 

Waves", [Rus1844], which description is usually considered as a first 

observation of a solitary wave, should actually be interpreted in the sense 

described above. Indeed, the presence of dissipation was well-observed in 

this description: "I followed it on horseback , . . .  Its height gradually dimin- 

ished, and after a chase of one or two miles I lost it in the windings of the 

channel."] 
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This effect of dissipation is investigated by looking for solutions in 

a neighbourhood of the travelling wave surface, i.e. for solutions of the 
form 

u(t) = U(7(t), q~(t)) + ~/(t), (3) 

where ~/is "small". 

Equations for the evolution of the parameters ~ and q~ are derived. 

These equations provide a two-dimensional approximate description of the 

system: u(t) is approximated by a dissipative trajectory in the two-dimen- 
sional travelling wave surface (2). 

Results of numerical simulations are presented that show how well the 

two-dimensional model approximates the full equations, at least in the 

standard example of the Korteweg-de Vries equation, supplemented with 

viscosity (the KdV-Burgers equation), or friction (uniform damping). 

With the general method described above, other problems have already 

been considered. In [Gro88] the self-organisation process of the 2D Navier- 

Stokes equations is described as a projection of the dissipative motion on 

the manifold of relative equilibria of the Euler equations, and describes the 

results of Foias & Saut [FS84] in that setting. The evolution of a confined 

vortex-region along these lines is described in [EG89]. For finite dimen- 

sional systems of particle chains, the results in [VDG89] are comparable to 

those obtained here; see also [BV90] and, for systems with periodic forcing 

[OV89]. 

Compared to other work in the literature, the present work combines 

two different methods that are well-known. First, for completely integrable 

systems, the use of integrals to construct special solutions can already be 

found in the first papers on the KdV-equation by Lax [Lax68, 75], and for 

the Toda chain by Ferguson, Flaschka & McLaughlin [FFM82], as well as 

in many other papers. In all these papers the special solutions are character- 

ised variationally for the system under consideration, but the effect of 

dissipation or forcing is not considered there. 
Secondly, many methods have been used to perform a perturbation 

analysis around the special solutions of the conservative part. Many of these 

methods use other quantities than the defining integrals as perturbation 
variables. We refer to Ostrovsky [Ost83] and [GO81, 83] as typical exam- 
pies. Our approach in this paper is closely related to methods used by 

McLaughlin, see e.g. [MS78] and [KM77]. Furthermore, the use of the 
Hamiltonian flows of the integrals to reduce the dynamics of Poisson 

systems is known in general terms (see e.g. JAM78] and [Arn76]), but in the 
presence of perturbations the equations for the evolution of the integral (the 
"action") and of the variable describing the contribution of the Hamilto- 
nian flow of that integral (the "angle"-variable), are not straightforward to 

derive. 
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For specific systems the approach used in this paper based on Manifolds 

of Relative Equilibria, may be related with the theory of  Inertial Manifolds 

(see [Tern88] for a recent review), and with the theory of  Center Manifolds. 

We will return to such relations in future papers. 

2. Factorisation of the Hamiltonian flow 

In this section the translation group related to the second constant of  

motion is used to "factorise" the Hamiltonian flow. 

The equation to be considered for u -- u(x, t) is of  the following general 

form: 

O,u = t?x 6H(u) -- vS(u). (4) 

When v = 0, the system is conservative and admits exact travelling waves, 

while if v r 0 the quantity S(u) will account for dissipative effects. 

First consider the conservative case, v = 0: 

~, u = Ox 6H(u) =: Xz-/(u). (5) 

Here H is the Hamilton&n, a functional of  u, aH denotes the variational 

derivative of H with respect to u (i.e. the Euler-Lagrange expression for H), 

and X/~ is the Hamiltonian vectorfield of the functional/-/ .  

This equation is a Poisson system: the Poisson bracket for functionals F 

and G is defined by 

{F, 6}(u) = (6F(u), t?x 6G(u)> (6) 

if the set of  functions is appropriate. For  definiteness, equation (5) will be 

considered on the linear space 

M,= {u(x) ]u is 27r-periodic, f u dx = O}. 

(On M, the spatial derivative t?x is invertible and the system is in fact a 

Hamiltonian system with a constant symplectic two-form co given by 

co(u,, u2) = (u, ,  a ; ' u 2 ) . )  
Translations of  functions will be denoted by T~o: 

T~u(x) = u(x + ~o) (T~ : M ~ M).  

The Hamiltonian H(u), a functional on M, is assumed to be translationally 

invariant: 

H(T~,u) = H(u) for all ~0, (7) 

which will be the case if the density does not  depend explicitly on x. 
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Differentiating the identity (7) with respect to q~ there results 

(6H(u) ,  O,:u) = O. 

Introducing the functional C by 

C(u) = f �89 2 ax, (8) 

this can be written like 

{C, H} = 0, (9) 

which shows that C is an integral of the system (5) in involution with H. In 

the following it is assumed that H is not a multiple of C, i.e. that C and H 

are linearly independent. 

Since C and H Poisson-commute, the corresponding Hamiltonian flows 

commute (see e.g. [Arn76], or [AM78]). 

It is to be noted that the Hamiltonian C-flow is nothing but the 

translation group, described by T~, i.e. ~3~T~ou = t3, 6C(T~u) = Xc(T~u) .  

Using the translation group T~ we can formally factorise the Hamilto- 

nian flow. We describe this factorisation procedure in some detail. The 

intuitive idea is to write the complete evolution u(t) as a (time-dependent) 

translation T~o(,) applied to a function v(t) that describes the evolution 

modulo such translations: 

u(t) = T (ov(t) (10) 

(see Figure 1.a). 
Without specifying the function q~ at the moment, substituting the 

expression (10) for u(t) in (5) leads to the following equation for v(t): 

c3,v = dx[tH(v) -- ~p' tiC(v)] = XH(V) -- q)'Xc(V). (11) 

(For notational convenience, ~0' denotes the time derivative of ~o). To 

arrive at this result one uses the commutativity property 

T_~, ~ x T, p = C3x 

and the equivariance of t i l l  and tiC for the Hamiltonian C-flow: 

t i l l(TAr)) = T.  till(v) and tiC(T, (v)) = tiC(v). 

Since C is an integral, it holds that for each ~0 the vectorfield X H -  ~0'Xc 
belongs to the tangent space at the levelset of C through v. This tangent 
space is denoted by TMc(v )  and has codimension 1 in the tangent space 

TM(v)  at v, and is given by 

T M c ( v )  = {r I (r tiC(v)> = 0}. (12) 



Vol. 41, 1991) Decay of travelling waves 505 

Figure 1.A 
Reduction of the dynamics for u(t) on C-~(7) to the dynamcis (18) for v(t) on a Poisson submanifold 
(codimension 2) by projecting back along the Hamiltonian C-flow according to (10). 

In the following T*M(v) will denote the cotangent space at v. (TM(v) 

can be identified with M itself at each point v, and T*M(v) with the dual 

space M*,  but it is helpful in the following to write the point under 

consideration explicitly.) 

To give meaning to the idea that v describes the evolution modulo 

translations, we choose ~0' in such a way that the right-hand-side of (11) has 

no component  along the Hamiltonian C-flow. To specify this, let n*(v) be 

an element from the dual space T*M(v) such that: 

( ~  6C(v), n*(v)) = - 1. (13) 

(For  v 4: 0, Ox 6C(v) r 0 andn*(v)  exists. See the next remark for a special 

choice of n*(v), but any n*(v) depending smoothly on v will do.) 

Then q~' is chosen such that 

i.e. 

(Ox [rH(v) - (p" 6C(v)], n*(v) ) = O, 

qg" = --<Ox 6H(v), n*(v)>. (14) 

With this choice, d,v satisfies 

<a,v, n*(v)> = 0. (15) 

This can be formulated in another significant way. From (13) it follows that 

(rC(v), n(v)) = 1, with n(v) = Oxn*(v), (16) 

and so n(v) can be viewed as a normal vector to the tangentspace TMc(v). 
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In the same way, 6C(v) is a normal to the cotangentspace T*Mc(v): 

T*Mc(v) = {~* I <r n(v)> = 0}. 

The variational derivative 6H(v) in T*M(v) can be uniquely decomposed as 

6H(v) = h* + # 6C(v) 

and # the number 

# = (6H(v), n(v)). 

with h* ~ T*Mc(v) 

(17) 

Hence h * =  6H(v) - ( 6 H ( v ) ,  n(v))6C(v), and h* can be interpreted as the 

variational derivative of the restriction /~ of H to the levelset of C, and 

denoted accordingly by 6/-)(v): 

6Iq(v) = 6H(v) - <6H(v), n(v) > 6C(v). 

With this notation, the evolution equation (11) for v can be written like 

~,v = ~x6B(v) (18) 

and the equation for q~ by 

q~' = (6H(v), n(v) ), (19) 

In order to illuminate the reduction procedure described above, introduce 

the vectors 

el = n(v) and e2 = Xc (v) = Ox 6C(v). (20) 

As stated before, viewing e] and e2 as elements from the tangent space 

TM(v), el is normal to the levelset C - ] ( 7 ) : ( 6 C ( v ) , e t ) =  1 (e~ is in the 

n {,w) g 6  (~) 

i f 

" / kl W/ 
,, :/ / .4 " / ~Y* 

Figure 1.B 
The tangent space T M ( v )  and the cotangent space T * M ( v )  with the distinguished base vectors e~ = n(v), 
e 2 = X c ( v ) ,  e*  = 6 C ( v )  and e~ = - n * ( v ) ,  according to (20) and (21). The mapping ~3 x satisfies (25) and 

maps  these base vectors into each other. 
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gradient direction of C), while e2 is the direction vector tangent to C-~(7) 

in the direction of the Hamiltonian C-flow in C-1(7) (see Figure 1.b). 

Dual vectors e* and e* that are related to e~ and e2 by the symplectic 

operator 0~- ~ like 

e *  = c3~ -1 e2 and e *  = ~-~ el ( 2 1 . a )  

are given by 

e* = 6C(v) and e* = -n*(v), (21.b) 

and satisfy 

(e*,  e j )  = 6k,, (duality) (22) 

and so in particular 

(e ?, 0x e*)  = 1. 

The tangent space can be completed with a codimension two space Y 

orthogonal to e* and e* and analogously for the cotangent space: 

TM(v) = [e~, e2] + Y, and TM*(v) = [e*, e*] + Y*, (23) 

with 

(e~, Y) = 0, ( Y*, ej) = 0. (24) 

The decomposition of the tangent and cotangent space described here is 

'natural' with respect to the action of the mapping c~x. Indeed, it is readily 
verified that 

e~ ~ e2, 

c3x "TM*(v)->TM(v) with c3x" e * ~ e j ,  (25) 

Y * ~  Y. 

With this notation, equation (19) for q9 is seen to be the projection of the 

original equation (11) along e2, while the remaining equation (18) is the 

projection of the equation in Y. The vanishing of the projection along e~ 
gives 

(~,v, 6C(v)) = 0, (26) 

which expresses the constancy of C along an evolution: 

~, c ( v )  = o. 

This is a clear analytical constraint showing that v is from a set of codimen- 

sion 1. However there is another restriction to v which shows that v is 

actually from a codimension 2 set. To see that, note that the choice of q~' 
implies that dry satisfies 

(O,v, n*(v)) = 0. (27) 
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Unlike (26), however, this constraint on the derivative of v is usually not 

easily expressible as an analytical constraint for v (akin to non-holonomic 

constraints in Classical Mechanics). 

Remark. In special cases, including the problem under consideration, it 

is possible to choose n*(v) in such a way that (27) can be written as the time 

derivative of a specific functional. This is the case if there exists a functional 

Z that is canonically conjugate to C, by which we mean that 

{C, Z} = 1. (28) 

Such a functional Z measures the value of q~ for translations along the 

C-flow: 

Z(  T~v) = Z(v) - q~, (29) 

and can be defined by this property. Then, taking for n* and n 

n*(v) = 6Z(v) and n(v) = 8x 6Z(v), (30) 

the required properties (13) and (16) are satisfied. With this choice, the 

equation for ~o reads 

~0'= {/-/, Z}, (31) 

and the property (27) for dry: 

(O,v, n*(v) > = - (Otv ,  6Z(v) ) = O, 

can be written like 

8,Z(v) = O. ( 3 2 )  

This shows that v in (18) is also constrained to a levelset of Z. Since C and 

Z are linearly independent (since they do not Poisson commute) this makes 

the reduction of v to a set of codimension 2 explicit. 

Clearly, in this case, the integral C and an integral like Z can be 

interpreted as a pair of "action-angle" variables, with C the action and Z 

the angle. 
In the case under consideration, a functional Z canonically conjugate to 

C can be written down formally. It is in fact the centre-of-gravity of the 

density of C: 

f (x - Z(v))v 2 dx = 0. (33.a) 

With an integration over the whole real line, this would be the correct 
expression, uniquely defined, for waves decaying sufficiently fast at infinity. 

For periodic waves under consideration, integrating over a period usually 
produces undesired contributions at the boundary. These boundary effects 
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vanish if as interval of  integration is taken a 21t interval for which the 

endpoints are zero's of  u. (Each function from M has zero mean, and has 

therefore at least one zero in each period.) Specifically, if ~(v) denotes a zero 

of v then Z(v) is defined by 

f ]+ (x - Z(v))v 2 dx = 0. (33.b) 

2~ 

(If  v has more zero's, the actual value of  Z(v) depends on the choice of the 

specific choice of the zero. If then v evolves in a continuous way, the 

evolution of Z should be determined by integrating over the interval 

translated with the motion of the zero's that have been chosen.) 

Indeed, a direct calculation shows that this functional has the desired 

property: if ~(v) is a zero of  v, then ~(v) - ~0 is a zero of  T~,v, and so 

(x 2 dx (x "- - = - Z ( T ,  ov))v  ( x  + q,) g x  

,) r --  r d ~ -- rp 

f 
~+ 2re 

= ( y  - -  [ Z ( T e v )  + q~l)v2(y)  d y ,  

from which it follows that Z(Tq, v) + ~o = Z(v). 
So, in this case, the evolution of ~ describes the evolution of  the 

centre-of-gravity and q)' is the centro-velocity (see also GM89a,b). 

The dynamics (18) for v is called the reduced dynamics (Figure 1.a). An 

element U is called a relative equilibrium for (5) if it is an equilibrium of  the 

reduced dynamics (18), i.e. if &H(U) = 0. 

In the next section it is shown that these relative equilibria correspond 

to the travelling waves of the system (5). 

3. The travelling wave surface as a manifold of  relative equilibria 

A 'permanent '  wave can by definition be written in the form (10) with 

a function v that is independent of time. Consequently, an equilibrium 

solution v = U of  (18) leads to a solution of  the original equation (5) which 

is a travelling wave solution that propagates with constant phase velocity 

#(U) and has U as its 'profile': Tu~c,), U. Conversely, any travelling wave is 

necessarily of  this form. Since equilibrium solutions of (18) are known as 

relative equilibria of the original Poisson system, this shows that travelling 

waves are precisely the relative equilibria. 

For U to be a time independent solution of (18), it should hold that 

M-}(U) = ~, for some constant ~. Finding functions U that satisfy this 

equation, can also be viewed in the following way. 
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Consider for ~ > 0 the constrained critical point problem: 

crit{H(u) lu ~ M, C(u) = 7} = crit{H I C-1(~)}- (34) 

It is assumed that this critical point problem does have solutions. This 

requires some conditions on the functional H. General conditions can be 

formulated for H that assure that H is bounded from below or above and 

attains a global extremum (For instance, to guarantee the existence of a 

minimiser, it suffices that H is weakly lower-semi-continuous and coercive 

on C-1(~) with respect to a topology for which C-1(7) is weakly compact. 

See e.g. [Ber77].) 

Assuming the existence, the following results show that the solutions of 

this variational problem are the travelling wave profiles of the system and in 

fact that there is a whole family (parameterized by 7) of such solutions. 

Moreover, the translation invariance of the system makes it possible to 

recognize in a natural way a second parameter q~ in the solutions of (34), 

which is nothing but a phase shift. 

Proposition. 
1]. If U is a critical point of (34) then U satisfies for some multiplier 2 (and 

~) the equation: 

fill(U) = 2 6C(U) + ~ = 2U + a. (35) 

2]. For each q~, T~o U is also a critical point, with the same multipliers 2 and 

Proof. Equation (35) for U is a direct consequence of the multiplier rule: 

2 is the multiplier from the constraint C(u) = 7, and ~ that from the mean 

zero constraint. Since both H and C are invariant for translations, part 2]. 

follows. 
A consequence of this proposition is that for fixed ? there is a one- 

parameter family q~ ---, T~0 U. Assuming that the existence is guaranteed of a 

solution U(y) of (34) for all 7 in some interval, a two-parameter family of 

relative equilibria is found: 

{ U(~, q~) = T~ U(7) I q~, 7 }" 

As a two-dimensional subset of the state space M this manifold of relative 

equilibria consists of travelling wave profiles and will therefore be called the 

travelling wave surface. A specific travelling wave of the Poisson system (5) 

takes place for a fixed value of 7 and is a uniform translation with phase 

velocity 2 along the (closed) one-parameter curve {U(7, q~) = T~ U(7)]q~}. 
In order to find in the following approximate equations for trajectories 

near the travelling wave surface in an efficient way, we need some more 
information about this variational formulation. This is summarised in the 
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next Lemma, where for definiteness the critical point problem (34) is 

assumed to be a minimisation problem. 

Lemma. Assume that for each value of 7 in some interval the con- 
strained minimisation problem 

min{H] C- ' (7) )  

has a solution U( j .  

i]. The value-function h ( j  of the minimisation problem is well defined by 

h(7) = H(U(J),  with U(J  (any) solution of rain{HI C-1(7)}. (36) 

Assuming that this function is differentiable, the multiplier 2 in (35), 

which in general depends on ], : 2(],), equals the derivative of h at ],: 

ii]. Define Q = Q(U) to be the linear map: 

Q(U) = 62H(U) - 2 62C(U), 

(37) 

(38) 

(note that <Q(U)~, ~> is the second variation of/-)  in a direction ~ of 
the tangent space TMc(U)). Then it holds that: 

Q(U)Ux = 0, (39) 

and 

O(U)U s = gu, where Q = ~2(7) = c32h(j. (40) 

Moreover, on the tangent space to the levelset, the second variation is 
sign definite: 

(Q(U)r ~> >- 0 for all ~ e TMc(U), i.e. for ~ satisfying 

(~, 6C(U)> = 0. (41) 

Proof. To prove (37), assume for simplicity that there exists a family of 
solutions U(],) that depends in a differentiable way on ],. Then 

dsh(7) = OsH(U(J) = (6H(U(7)), U s > 

where U s = ~3 s U(J.  Inserting the equation (35) satisfied by a critical point, 
and using the fact that 

~C(V(],)) = <6C(V(],)), Ur> = l, and 0y .IV(I,) = (Ur, l> = 0 

the result follows: 

dsh(y) = (aH(U(J) ,  Us> = 2<6C(U(7)), Vr> = 2. 
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The results (39) and (40) follow by differentiation of (35) with respect to x 

and ? respectively. The non-negativity result (41) is standard for constrained 

minimisation problems. This completes the proof of the Lemma. 

Remark. Concerning the assumption in the Lemma about the differen- 

tiability of h, the value function of a constrained minimisation problem is 

under mild conditions Lipschitz continuous and differentiable in a gener- 

alised sense (see [Cla83]). Differentiability is assured when, for instance, h 

is a convex function (see [Gro80]). Instead of proving such a property 

directly from the abstract minimisation problem, often a more simple way 

is to prove (the stronger result of) the existence of a family of minimisers 

U(7) depending smoothly on 7 by applying the implicit function theorem 

to the equation (35). 

Example. Probably the best known example of an equation of the 

form (5) is the Korteweg-de Vries equation. It is obtained for the Hamilto- 

nian 

f[ Ux u 3]dx H(u) = 12  (42) 

for which 

6H(u) = - Uxx - 3u 2, 

and the equation reads: 

~u + Uxxx + 6UUx = O. (43) 

In this case the constrained critical point problem (34) is a minimisation 

problem: for each ~, > 0 the constrained minimisation problem 

{ f [ ~ u ~ - u 3 ] d x [ f  I d x = v ,  f u d x = O , ] u i s 2 n - p e r i o d i c }  h(7) = Min i 2 u 2 

(44) 

has solutions. These are the well-known cnoidal-wave profiles with funda- 
mental wavelength 2n. (Other critical points, being saddle points, are 

cnoidal waves with non-fundamental period 2n/k, for some integer k > 1.) 

If desired, these waves can be written down explicitly in terms of elliptic 
functions (see. e.g., [Whi74]). The value function is differentiable, and 

its graph is given in a socalled 'integral-diagram' in Figure 2. This graph 
can be interpreted as a projection of the TWS on the two-dimensional 
space spanned by the integrals H and C. This integral-diagram will play a 
key role in the interpretation of the results for perturbed dynamics later 

o n .  
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Figure 2 
The value-function h(?) of (44): the TW-curve (a ID 
representation of the TWS). Each point of this curve 
corresponds to a cnoidal wave with different values of 
~. From the minimisation characterisation (44), no 
periodic functions with mean value zero can lie below 
this curve. The tangent to the curve determines the 
propagation speed of the cnoidal wave, see (37). The 
tangent at the origin is indicated by the dotted line, 
and corresponds to the propagation speed of the solu- 
tion of the linearised system, i.e. of small amplitude 
waves. Note that in the non linear regime there is a 
value of ? for which the velocity changes sign. 

o . z w  

4. Trajectories of the dissipative equation near the travelling wave surface 

Using the factorisation (10) we derive equations near the travelling wave 

surface for perturbed equations. The two parameters describing this surface 

become the basic variables in the transformation of the equations. 

Consider the complete equation with v :~ 0: 

Otu = Ox &H(u) - vS(u). (4) 

For solutions close to the travelling wave surface write 

u(t) = T~(t)[U(7(t)) + ~(t)]. (45) 

Compared to (3) this means that the perturbation is considered in a frame 
of reference moving with r 

t ~  

Suppose, in order to guarantee that ~ u dx = 0 for all time for solutions 
i /  

of (4), that the perturbation S satisfies f S(u) dx = 0 for all u e M. 
i /  

Inserting (45) into equation (4) leads to the equation 

? ' .  U~ + t3,~ = cg~[6H(U + 4) - tp ' .  &C(U + r - v S ( U  + ~). (46) 

(Again, a prime denotes differentiation with respect to time.) The expression 
in square brackets can be written like 

&H(U + r - q9' . &C(U + ~) 

= 6H(U) - 2 6C(U)  + [62H(U) - ). &2C(U)]r 

- - 6 c ( v  + r  + 

= ~  + Q(U)~ - (o?" - 2) 6C(U)  - (q~" - 2) 62C(U)~ + 0(~2), 
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where Q is the operator defined in (38). The equation becomes 

~)t . U7 .q_ (q)t _ ,~) ~x t i C ( U )  -q- ~t~ 

= ~x[O(U)~ - ( r  2) 62C(U)~ + o(~2)] - v~(~0, u + 4). (47) 

Here, and in the following, ~(~o, v) is defined for notational convenience as 

g(~p, v):= T_~(oS(T,p(ov ). 

There are several ways to project this equation to the travelling wave 

surface. This is related to the fact that the function r can be chosen from 

different spaces of codimension 2. A projection based on the symplectic 

decomposition of the tangent and cotangent space as described in section 2 

seems to be the most appropriate in view of the property (25). However, 

instead of using the base vectors at the point U(7) + ~, we use the base 

vectors of the nearby point U(V) on the TWS. 

Therefore, consider the vectors 

e l = U  s and e 2 = U ~ = 0 x t i C ( U )  (=U, ) .  (48) 

which are the tangent vectors to the travelling wave surface (see figure 3). 

Dual vectors e* and e* defined as in (21), are given by 

e* = d~-i U~ - U, and e* = ~-1 U7" (49) 

With spaces Y and Y* as in (23), (24) the decomposition is not only 

natural with respect to the actions of the mapping ~ (i.e. satisfies (25)), but 

also with respect to the operator Q(U) that defines the second variation. 

Indeed, from the Lemma it follows that 

e 1 - - + e ~  

Q(U) �9 TM(U) -~ TM*(U) with Q(U) " e2 ~ 0  (50) 
y ~  y* 

In view of these properties it is natural to choose ~ e Y. Specifically this 

means that ~ has to satisfy for all time 

( ~ , e * ) = ( ~ , U ) = 0  and (4, e * ) = ( 4 ,  t3x ~Us)=0-  (51) 

Figure 3 
Direction vectors of  the Hamil tonian C-flow (transla- 
tion) and of  the gradient C-flow as the tangent vectors to 

the travelling wave surface. 
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Since that is needed further on, differentiation with respect to time leads to 

<~,~, u )  + ~'<~, us)  = 0 (52) 

and 

<~,r ~x '  u,> + ~,'<r 02 '  uss> = o. (53) 

To investigate the components of equation (47) ( - E q )  along the 

travelling wave surface, we project this equation along the base vectors el 
and e 2 and along the remaining set Y: 

E q = { E q ,  e*>e~+{Eq, e*>e2+y, with y = P r ( E q )  e Y .  (54) 

Satisfying the equation Eq = 0 requires in the first place the vanishing of the 

components in the e~ and e2 direction: (Eq, e*> = 0 and (Eq, e*> = 0 leads 

to (using (25, 50, 52): 

~' + <~,~, u> - <[1 - < ~ ,  us> l 

= - ( , p '  - ~)<~x,  u >  - v<~(~0, s + ~), u > ,  (55)  

<~,~, ~x '  Us > + (q,' - ,~) = (q,' - ~)<~, s ,> - v<~(q,, s + ~), ~2'  us > 

The second equation implies that q~' - 2 = 0(~) + O(v), so that we obtain: 

a,~ = -, ,<g(q,,  u),  u> + o(~ 2) + o(v~), (57) 

a,q, = ,~(~,) - v<,~(q~, u),  a2 '  us> + 0(~. 2) + O(v~). (58) 

It is to be noted that these equations, apart from the higher order terms, 

are completely determined from knowledge of the travelling waves. 

In an important case, the equation (57) for ~ does not depend on q~. 
This holds if the perturbation S is translationally equivariant (does not 

depend explicitly on x): T~oS(v) = S(T~ov). Then S(q~, U) = S(U), and, up to 

higher order terms, equation (57) is a first order differential equation for V(t) 

only. Solving it, the function ~o(t) then follows from (58) upon integrating. 

With the higher order terms neglected, these evolution equations for 7 and 

q~ describe the projection of  the dynamics (4) onto the T W S  and can be 

interpreted as the motion of  a damped (nonlinear) oscillator. 

Making use of c3xQ(U)~ ~ Y, c.f. (25, 50), the remaining equation for 
reads: 

Pr(O,~) = ?xQ(U)~ - (q)' - 2)Pr(~x) - Pr(vg(~o, U + ~)), 

i.e. 

Pr(~?,~) = ~?xQ(U)~ - vPrS(q), U) + 0(42) + O(v~). (59) 

We will now present some preliminary observations that may indicate when 
the perturbation ~ remains "small". 



516 E. van Groesen et al. ZAMP 

First note the expected result that a solution with ~ = 0 is possible if and 

only if the dissipation S has only components tangent to the travelling wave 

surface, i.e. if 

Pr~q(~o, U) = 0 for all U = U(~, ~o). (60) 

This requires ~q(q~, U) to be a linear combination of e~ and e2: 

S(qg, U) = aU~, + flUx, (61) 

where ~ and fl may be functionals of U. Of course, this needs to hold on the 

travelling wave surface only. As such it does not provide an easy condition 

on the kind of dissipation functions S with this property. Nevertheless, as 

should be expected, it emphasizes the fact that a good approximation of a 

solution of the complete system by a trajectory consisting of travelling 

waves is only possible if the dissipation satisfies certain stringent conditions 

that are related to the specific travelling waves under consideration. 

[It is interesting to remark that in an analogous situation for incom- 

pressible 2D Navier-Stokes equations, the viscous dissipation does satisfy 

(61), with fl = 0, exactly for functions U that are eigenfunctions of the 

Laplace operator on the fluid domain. These special solutions (which are 

relative equilibria in this case) determine for viscous fluids the asymptotic 

behaviour and describe the 'self-organization process' of such fluids; see 

[Gro88] and references therein.] 

Another way to investigate the l-equation is to look for a priori 

estimates that guarantee that ~ remains small for all time when that is the 

case initially. As it stands, the equation for r is a forced linear equation. For 

boundedness of the solution it must be shown that resonances cannot occur 

as a result of the primary forcing Prg(q~, U). Even more elementary is the 

requirement that the trivial solution r = 0 of the unforced problem (i.e. 

v = 0) should be stable. Of course, this last requirement states that the 

travelling waves of the conservative system should be (linearly) stable, 

which is related to the definiteness of the second variation Q(U) on the 

subspace Y. 

The next argumentation shows how this last requirement can be ex- 

ploited to find statements about the small time behaviour of r 
To that end observe that, since Q~ ~ Y* for ~ e Y, taking the inner- 

product of the equation with Q~ there results: 

(Q~, ~,~) = (Q~, vS(U) ) + O(v~ 2) = O(vr (62) 

With 

(Qr 0,r  = O,�89162 r  - (Q,~, 4)  

and the fact that Qt = 0(7') = O(v) (since the evolution for y is preliminary 
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driven by dissipation of order v), it follows that 

O,�89 ~) = v(O~, ~(q~, U) ) + O(v~ 2) = O(v~). (63) 

Consequently, if the constrained critical point problem for U is in fact 

an extremal problem, in which case (Q~, 4) is a norm, the perturbation 
grows at most with v, depending on the component of Q~(go, u)  in Y*. 

In that case, starting initially with ~ = 0, the equations for the trajectory 
in the travelling wave surface are correct for times satisfying vt ~ 1: 

~,7 = -v(S(q9,  U), U) + O(vt), (64) 

~,q, = ;.(~,) - v(~(~o, u) ,  a ; ' u ~ )  + O(vt).  

5. Numerical computations 

For the KdV equation (43), two types of dissipation were considered: 
the uniformly damped KdV with friction S(u) = u: 

u, + Uxxx + 6uux = -tru, 

and the KdV-Burgers equation, 

S ( u )  = - Uxx : 

u, + uxxx + 6uux = VUxx. 

with viscous 

(65) 

dissipation given by 

In both cases, an exact travelling wave of KdV was taken as initial 

condition and the (perturbed) dynamical equation was integrated numeri- 
cally. For various quantities the results were compared with the approxi- 
mated dynamics on the TWS. Omitting the higher order terms in (57, 58), 
and observing that both perturbations are translationally equivariant, these 
approximate equations read: 

at7 = - v ( S ( U ) ,  U),  
(67) 

,~,~o = ;~(~) - v ( S ( U ) ,  , ~ ; ~ u ~ ) .  

For the specific problems at hand, a special symmetry in the equations 
simplifies the approximations even further: since each waveprofile is sym- 
metric, the expression S(U) .  3;~U~, is anti-symmetric and vanishes upon 
integration. Hence the equations on the TWS simply become: 

~,~ = - v ( S ( W ) ,  w ) ,  

t),(o = 2(~). (68) 

The qualitative and quantitative comparison with the exact dynamical 
equations is presented in the following Figures 4-8  for the two cases: A. the 
KdV-equation with friction (65), and B. the KdV-Burgers-equation (66). 

(66) 
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Figure 4.A 

Numerical  results for the uniformly damped KdV- 

equation (65), with tr = 1 and a = 10, - - t h e  lower 

and upper solid curve respectively. The dotted 

curve is the TW-curve; for tr = 0.1 the evolution is 

graphically indistinguishable from this TW-curve. 

For all calculations as initial value was taken the 

point at the TW-curve with C = 3n/4. 

O.Z~ 

I 

C ~ 

Figure 4.B 

As Fig. 4.A. but  now for the KdV-Burgers  equa- 

tion, for v = 1 and v = 10. Again, for v = 0 . 1  the 

evolution practically coincides with the TW-curve. 

F _  
t k - 7="  0.~ 

Jc=lO 

0 .1 ,  "~ 

' I 

t l  "9=0.1 A,X 

L /  

, 

t 1 A , ~  

~ L ~ I ~ ~ 1  0 I I I) I I ' ~ | t 0  

Figure 5 

(A) (B) 

For various values of  the dissipation parameters are displayed the value of  the velocity of  the cnoidal 
wave 2(y) and of  the dissipation rate quotient A(u), (70), for the calculated solution, and the value of  the 

position o f  the top of  the calculated solution X~o p (found by inspection), and the value of  q~rws as it 
follows from the projected dynamics (68). In figure A for the uniformly damped KdV, and in B for the 
KdV-Burgers equation. For a =0.1  and r = 1, and for v = 0 . 1  and v =  l these curves practically 
coincide. See Figures 6 and 7 for more detailed information. 
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A. 

o.o~ 
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o .o~ 

0 

1o 
B. 

0.04 

0 

0.04 

0 

Y = 0 . 1  

~ J  

L I I I..~ I I 
o ~ to 

Figure 6 
Difference of quantities appearing in Figure 5: xto p - ~Orw s. In figure A for the uniformly damped KdV, 
and in B for the KdV-Burgers equation. 

In Figure 4 the trajectories in the H - C  diagram are displayed for the 

evolution according to the perturbed equations. Note that for the unper- 

turbed KdV-equation each solution would correspond to a f ixed point in 

this diagram, since H and C are integrals. This is no longer the case in the 

presence of friction or viscosity, and the values of the functionals H and C 

will change in the course of time. Figure 4 shows the evolution of these 

functionals as calculated from the complete equations. By comparison, the 

projected dynamics (68) leads to a trajectory that is given by the TW-curve 

of KdV in this diagram. In order to interpret the evolution, two quantities 

are of special interest: the integral-quotient Q and the dissipation-rate 

quotient A, defined for solutions of the perturbed equations as 

Q(u) = H(u)/C(u), (69) 

and 

A(u) = O,H(u)/t~t C(u), (70) 

which quantities are the direction-vector and the tangent-vector to the 

trajectory in the integral-diagram respectively. Note that on the TW-curve, 

d(u) coincides with the value of the multiplier 2 at that point, and hence 

denotes the velocity of the wave. Also from the expression (70) it may look 

as if d(u) can be interpreted as a kind of wave-velocity. The next figures 
indicate in more detail the differences between the exact solution and the 
approximation. In Figures 5, 6 and 7, the horizontal axis is the time. 
Vertically the value d(u) of the exact dynamics is compared with the value 
of the corresponding approximant 2(U); also the value of the position of 

the 'top' of the numerically calculated solution (found by  inspection) is 
compared with the value of q~ as determined by the approximation (68). In 



520 E. van Groesen et al. ZAMP 

A. 

O'Oq F 0" = 0,1 

O.ORI // / ~ r - A  0- = '1 

0 ~ \ v / ~  ~ " ~  

OI I I I I t0P 
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O,  O t /  

0 

O.oq 

o 

I I I I 

a. z - * "  "E It)  

Figure 7 
Difference of quantities appearing in Figure 5: A - 2. In figure A for the uniformly damped KdV, and 

in B for the KdV-Burgers equation. 

Figure 8 the shape of the 'asymptotic' waveprofile is plotted (normalised by 

sqrt C and for a typical time t >> 1). It is seen, and confirmed by the 

numerical results presented in Figure 9, that in the viscous case for KdV-B 

a 'self-organisation' process has taken place: all Fourier modes decay faster 

than the lowest one, and consequently only the longest wavelength is 

present for large time. This time-asymptotics can easily be verified analyti- 

cally, e.g. as in the case of 2D Navier-Stokes equation, see [Gro88]. For 

the uniformly damped equation (65) this self-organisation does not happen, 

and in fact the 'asymptotic' waveprofile depends somewhat on the choice of 

the initial condition. As a quantity to measure this difference the relative 

A. 

t 

I I ~1 / I I 

B. 

Figure 8 
The 'asymptotic' profile for large values of time (solid), presented as a function of x in a normalized way 
as u(x, t)/~/C, compared with the initial profile (dotted). In figure A for the uniformly damped KdV, 
and in B for the KdV-Burgers equation. 
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contribution of the lowest Fourier modes has been displayed: if the solution 

is represented as 

u(x)= ~ am exp(imx) (71) 
m =  - - n  

then for k < n this relative contribution reads: 

k ~ 2 

a ~ /  ~ am (72) 
r n  = - - k  m = - - n  

Remark. The numerical integration of the complete equations (65) and 

(66) were performed using a very accurate discretisation scheme. The 

scheme consists of a structure-consistent spatial discretisation followed by a 

fourth-order Runge Kutta time integration. The spatial discretisation is 

such that it has inherited the Poisson structure when dissipation is ignored. 

In particular, the integrals H and C have discretisations that are conserved 

exactly for the space discretised system. Consequently, exact solutions that 

correspond to the travelling waves, do exist in this discretisation. Computer 

O. S" 

0 

L. = ,.r 6 - ' :  0 . t  ~ V = 0 . ' /  

/r L /~=-L  

0.S" "', O.S" 

I I I 

J c : / 4  

k .=3  ~  | " 9 : f O  
"f ~ : z .  4 

k r . ~  

O ~  

0 p = i 0 i . . . . . . . . .  * . . . .  , I q 
0 ~=-0.~ 0 Ic :O.  ~. 

(A) (B) 

Figure 9 

The relative weight of the lowest order Fourier modes as a function of time for the numerical solution 
of the complete dynamics. For various values of k the quotient (72) is shown. In figure A for the 
uniformly damped KdV, and in B for the KdV-Burgers equation. The dotted curve represents the decay 
of C, indicating the decay of the solution. 
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runs showed that in the absence of dissipation, these waves propagated 

without change of form or change of phase over time intervals that are large 

compared to the typical times as required for the calculations presented here 

in the presence of dissipation. See for details of this discretisation procedure 

[BG87,90]. 
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Abstract 

In many finite and infinite dimensional systems low-dimensional behaviour is often observed. That 
is to say, the dynamics, observed experimentally or numerically, looks as if it can be described 
(approximately) with only a few essential parameters. Choosing the correct set of such "robust 
observables" is an essential ingredient of a successful low dimensional description. This paper reports on 
a specific example of a more general approach that aims at describing certain (low dimensional) 
phenomena in (high dimensional) damped/driven equations with parameters that are essentially deter- 
mined from the underlying conservative part of the equation. In particular, a Hamiltonian or a Poisson 
structure of the conservative part is exploited to find (characterize) families of exact solutions. These 
solutions are then used as the "base functions" with the aid of which the solutions of the disturbed 
system are approximated. This approximation is accomplished using the parameters that characterize the 
family as variables that depend on time. In this paper, this procedure is applied to a class of systems 
which admit travelling waves when dissipation is ignored. 
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