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Abstract. For the truncated Schwinger functions of the P(®), field theories, we show
strong decrease in the separation of points. This shows uniqueness of theories with P
of degree four. We also extend the domain of analyticity in the coupling constant. For
theories with P of degree four, the combination of these two results gives Borel summability.

Introduction

In this paper, we consider the two dimensional Euclidean boson
field theories and we give bounds on the truncated Schwinger functions
which have the decay properties expected from perturbation theory
and introduced in statistical mechanics in [3]. We use methods known
from statistical mechanics [9] to obtain these bounds.

We first formulate the bound and give then some applicatirns. The
Schwinger functions for Euclidean field theories in two dimensions in a
finite (space-time) volume A are defined as the moments of the normalized
measure

e M dp,/f e Vdp,, ,

where dpu,. is the Gaussian measure on &'(R?) with mean zero and
covariance (—4 +m?)~1, and
V(A)y=[d*x: P(P):(x).
A
Here, P is a lower bounded polynomial, and Wick ordering : : is with

respect to the free theory defined by du,,..

* Supported by the Fonds National Suisse.
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Let Sp(A) = Fe *®dy ., where F = n F,, and
i=1
k(J) (J)
szjdyln 1 (v) Wj()/p e yk(j)) s
=1
with suppw;CA; x - j»4; a unit square in R? centered at a lattice

point of Zz and w;e L for some p. The degree of F; is defined to be
k()

Y n{. The truncated functions are then defined by

=l nooq PUL...m) p

Z— Z H SnF’D/SF 1(1
p=1 p Ry,...Rp j=1 ieR

where 2* is the sum over all partitions of {1, ...n} into p non empty sets

Ry, ...R,. Our main technical estimate is '

Theorem A: There is an £>0, and constants K, K,, K5 depending
on p>1 such that for |A]| <e, ReAd >0, and m sufficiently large,
k

n
ISFIS K K55 [T lwyll, [T Y degF)1?
j=1 =1 \i, 4= 245
-l e~ Kadldi,.. 4l ,
where Ay, ... A, are the distinct squares in VA, and d(4},...4}) is the
length of the shortest tree connecting the centers of these squares.

This theorem is given as Theorem 6 and 8 below. Theorem A states
that the “strong decrease property” of Duneau, lagolnitzer, and Souillard
[3b] holds in P(®), models. Our improved bounds as compared to [5]
come from using methods from statistical mechanics which exhibit
in a better way the cancellations between the numerator and the
denominator (see also Section3 for a more detailed explanation).
In the same way one proves (cf. Theorem 7 below):

Theorem B: Let F=F,. Then, for |A|<e¢, Red>0, and m sufficiently

large, o 5,00
2 ERY N <o, Ciptén2
’dﬂ"(smu))!— 1

where d is the degree of the interaction polynomial P.

Theorem B implies that the @&* theories (degP=4) are uniquely
defined by the Taylor series of the Schwinger functions at A=0, since
they are analytic in ReA>0, |A| <& and C® on the imaginary axis with
bounds preserved (cf. Hardy [7], p. 194). This means that among all the
theories which are analytic in the same region, the one constructed by
Glimm, Jaffe, and Spencer [5], is the unique one corresponding to
conventional perturbation theory.
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In Chapter II, we extend the domain of analyticity and the bounds for
P(®), in 1 to a region of the form of Fig. 1. Let 2% be the set of functions
f which, for some ¢ >0, are analytic in the region

Fig. 1

{(21, ey ZZk)E(EZ, Iargzl, <8, i: 1, iy 2k}

and for which
+ oo

1/p
Hfll,,,g=os<up< ( § dxl---dxulf(xle”’,...,xzke”')l") <.
<&'<e

Then we show the

Theorem C: If w;e @57, j=1,...n and degP=4, one has Borel
summability of the Schwinger functions Sgp(4)/Sp=,(A) at A=0.

Note that such a result has been obtained for &* theories with
cutoffs by Rosen and Simon [8]. Also, Dimock showed in [1]
Sp(A)/Sp= (D) tobe C* at A =0 for all lower semi-bounded polynomials P,
and that the derivatives can be identified with truncated functions, which
is a useful input for the proof of Theorem B.

Theorem D: The “pressure” Alirgzlz ’il—'log Sp=1(A) has the same sum-

mability properties as Sp(A)/Sg=(4).

Chapter 1
Bounds on Truncated Schwinger Functions
(Mayer Expansion)

1. A Reordering of the I'-Expansion of [5]

We define a reordering of the I'-expansion of Glimm, Jaffe, and
Spencer [5] which will turn out to be well adapted for the cancellations
we want to carry out in the truncated Schwinger functions.

In this section, we use some notations of [5] without repeating the
definitions. We apply the I'-expansion to the theory inside a box Y
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(a union of unit lattice squares over Z* C R?) with an interaction inside A,
with YD A,0YNnéA=@ and Dirichlet boundary conditions on dY.
We shall obtain bounds independent of Y and A. As the theory is “regular
at infinity” [5, p. 209], proving uniform bounds for all bounded Y
and A C Yimplies that the same bounds hold in the infinite volume limit.

We change notation with respect to the introduction and we will
come back to the original notation in Section 6. Define F; as in the
introduction. For  a union of lattice squares, define

F(Q): 1_[ Fj7

jrd;c R
with the conventions F(@) =1, empty products = 1. Let
Sr@,4={ F(Q) e%V(A)dHcY >
Sepa=Je" W(A)d/v‘cy

The basic formula of [5] is

note that

Sr@,4= Z H dstF(Q)e W(A)dlv‘cy«sb»

FCY*O bell

= Z Sr@), 4.1 >
rcy*
where Y* is the set of lattice lines of Y\0Y. Two lattice squares are
called connected if they have a boundary segment in common. Given
I'CY*, the lattice lines Y, where Yp:=0YU(Y*\I') define a partition
of Y into connected sets X Lo e X o) Let X;= X 8(X ), so I" defines
a partition into connected sets Xl,... sy Note that 6X;nI'=0
and therefore the X, define a partition '=uTI;, I'=InX, of I'. By
definition of Sgg,) 4, r,there are Dirichlet boundary conditions on 4Xj,

so that o)

SF(.Q),A,F = n SF(QmXi),Ar\X;,I"r\X,' . (1)

i=1

The rearrangement consists now in collecting all terms in ) which give

T
rise to the same partition of Y. Given X, connected, I'C Y* is called
compatible with X, (notation I'/X) if X\ X} is connected. In other terms,
if #={X,,..., X,} is a partition of Y into connected sets and I';/X; for
all i, then I' =T, generates again #. Therefore

pn

SF(Q),A= Z H SF(QnXi),Ar\Xi,FnXi
rcy*i=1 @)

P(Y) ¥

= Z H Z SF(QmXi),AmX,',I"w

L Xpi=1Ih/X
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where ZP) denotes the sum over all partitions of Y into r=1,...|Y]
non empty connected sets (which are unions of lattice squares).
We now fix F and A, and we define

Y Sr@ax.anx. if X is connected
, _Jrx
SalX) = {0 , otherwise .
Then .
Se@,4= Z H So(X0),
X1, Xri=1
and .

fe—w(/l)dﬂcyz z HSE(XJ
X1, . Xpi=1

Note that for X nQ =, So(X) = S, (X).

In contrast to [5], we also expand in sums over compatible contours
for regions not intersecting Q=supp F, i.e. we keep the expansion in
its primitive form and do not perform the resummation over the above
terms.

2. The Functional Calculus for Power Series

It is our desire to perform cancellations in Sy o), 4/SF 4, 4 bY €xpanding
the numerator and the denominator into power series and we then
invert the series for the denominator. We apply the formalism of Ruelle
[9] with the following conventions.

We number the (centers of the) unit squares in Yin the obvious manner
by a subset Y of Z2. The “indices” in our series will be elements of the
set ¥ of functions N from ¥ to the non negative integers, N(i)=Ofor i e .
The support N of N is the union of the lattice squares associated to the
i eZ* for which N(i)>0. We write N <1 if N(i)<1 for all i, we use the
notation |N|=) N(i), and for X CY we define the characteristic

ieY
function yy by xx(i)=1 if i “in” X, 0 otherwise; (xx) = X, xx < 1. Also
N!=][NOL

The functional calculus relates functions on Y as formal power
series. If f, g are functions on Y, then f % g is defined by
FrdN)= T SN gNy)
*g = ) ESEEVEY
M A AT A
and f 4 g by linearity. The unit for the product is 1(N)=0 unless N=g.
Inverses, exponentials and logarithms are defined in the obvious fashion,
and one defines (Dyf)(M)= f(M+ N); for [N|=1, Dy is a derivation
with respect to the #-product.
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3. The Series for the Normalized Schwinger Function

We combine the definitions of Sections 1 and 2 and we proceed to an
expansion in those components of the partition X, ... X, for which
| X;| = 1. Since a contour I'/X has the property of factorizing the measure
across 0X, we see that what we are doing is actually an expansion in the
smallest regions for which the measure factorizes. It will then turn out
(as to be expected) that for the truncated function, these regions have
to be connected and to contain all squares of £, and this will yield the
desired decay properties (strong clustering of [37]) which allows for the
bounds on derivatives with respect to A.

We say that X is Q-connected (X— Q) if X C Y and if each connected
component of X has a non trivial intersection’ with Q. Also X D Q means
X_Q and X D Q. We rewrite Eq. (2)

P(Y)
SF(Q),A: z l—[ Sbnxj(Xj) H S:{)(Xj)
X1..Xr j: X502 JiX -0

P(X) r P(Y\X) s

:Z Z l_[Snan(W ZXSJHS¢

XD Wi W,

wW; 0

PN

Define now Z(X)—(]—[ hY (A)) where the product ranges over the
4eX
unit squares of X. By continuity, Z(4)=% for || <4y, ReA=0. Note

that Z(X U Y)=Z(X) Z(Y) if XA Y =0. Now

P(X) v

Sr@a= 2 2 nSQnW,(W)Z(W) Zw)~!

X;Q Wi... W, j=

W2
P(Y\X)

Y ozn\x) ] SyX)ZHX).
X1...Xs j:lX_,'|>1

This suggests the definition of two functions on ¥:
IfQ=+0, we let

PA  r N
) Y HSQ )Z7Y(X)), fNL1and NDQ
SQ(N) = X}l( gr i=
0, otherwise,
and if =4,
S,(N) Z Y(N), ifN<1andN connected, |[N|= 1
Sy(N)= .
0, otherwise .

! Le. at least one unit square.
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We observe that Sb(]\?) (@ arbitrary) describes the fluctuations
between a theory in which there is coupling from the free covariance
(absence of boundary conditions) and a theory in which there is no
coupling (Dirichlet data on lines in I, I'|N). These fluctuations are
small at large mass. It is therefore our aim to do an expansion in
elementary squares with these fluctuations as coefficients. This is the
purpose of dividing by Z~*(N) in the above definition.

We note now that

Xi... Xr B =1 F! X1u..§Xr=X ’
X; is connected
XinX;=dif i)
and setting S,(0)= 1, we get
SF(Q),AZZ(Y) z S.Q(XX) Z (eXPS¢) () 5

X0 WcY\X
where exp is the -exponential. Therefore
S Z {SQ(XX) Z (exp S¢) (XW)}
F(,4 — Xo0 WCY\X ) (3)
SF(¢),A Z (exp S¢) (tw)

wcyY

Let T(N)=(exp Sy)(N) if N<1, and 0 otherwise and let D(N)
=(So * T)(N) if N =1, and 0 otherwise. Then we define %, by writing

s Y D(N)N!~! :
F(2),4 N -1
= —— =) S(N)N!I"1, (4)
Sewpa L TINN!! % @
N

so that %, =D = T~'. Note that the sum in (4) extends over all N and
not only over N of the form y; this is due to the inversion of the power
series for > T(N)N 171

N

4. Bounds on $p(N)
We rewrite Egs. (3) and (4) as

a N!
Fa(N)= Solx) Ox(N — xx) 7> (5)
2(N) ﬁD;go o(xx) Ox Ax (N— 1!
where the “quotient” Q is
_ M!
Qx(M)= Y T(M)T (M) AR (6)
My+M>=M 2°
MinX=¢
Mi=1

The bound on ¥,(N) comes from a bound on Qy.
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Lemma 1. There is a C,>1, and for all K>0, there is a A,>0
such that for |A] < 4y, Re A > 0 and m sufficiently large one has
0x(M)] S CXT* Ml KIMIp

Proof. The proof uses an induction on [M|+ |X| and the following
recurrence relation, valid for 4 C X, A a unit square

QX(M) = QX\A(M) (7)
M!
—Kﬁﬁ&%:d)rsqs(N + 1) Ovox(M — 240%) M=yl

Proof of the recurrence formula (7):

Qx(M) — Qx\4(M)
M
=— ) T(M)T (Mz)M—Z!

M +Ma=M
MinX\d)=¢
MiD>4

== Y (0, epS)00) TOL)

MitM2=M~—xa4

MinX=¢
M1
1 M!
== X Y So(Ny ) TIN,) T (My)
Mi+tM2=M~-x4 N1+N2=M; 2
MinX=¢
M1
1 M!
== _ > Se(Ny+14)- Y T(N,) T (Mz)‘ma
Ninx=¢ N2t M2=M~-2aufy 2:
NiC(M—x4)”~ Nan{XUNy)=¢

which proves (7). 3

Note that |X\A|+|M|<|X]|+|M] and | XUN|+|M — y, 5 <|X]
+ |M], so that Eq.(7) allows for an induction on |X|+ |M]. To start the
induction, note that Q,(M)=1(M). Suppose now the lemma is true for
[ X'| + M| < |X|+ |M|. Then, by (7)
0x(M) < ¥+ M- {e—K'M'M! Y ISW ) e-K'M-“uﬁ'M!}

NnX=¢
NC(M ~xa)™

_S_ C|1X|+lMl—le—KtM|M! {1 + Z |S:»(Y)' e(K+a)\Yl} ,
Wz
where ¢! bounds Z(Y).
We now use the definition of Sj(Y). By the bound of Proposition 5.3.
of Glimm, Jaffe, and Spencer [5, p. 2187, we find

Sy(Y) < Co exp(— (Y] — 1) K(m)) 2*1"1.
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Here, we have used that the number of bonds to make Y connected is at
least |Y|— 1. On the other hand, there are at most 2*/" ways to place
bonds in Y. The construction of S,(Y) ensures that |Y|= 2. Therefore,
if |1] is sufficiently small, ReA>0 and m sufficiently large, then

ISe(Y)I < Cq exp(—(1Y]/2) (K(m) — 210g 16)) < Co exp(—|Y[ (K + ¢))
for some ¢ > a + 8log4. The bound on Qy(M) follows now by setting
Ci=1+Cy Y e ol

Y4
[Yfz2
where the last sum is finite because the number of Y_ A with |Y|=k is
"bounded by 4%*. This completes the proof of Lemma 1.

We have the following bound:

Lemma 2. There is a C,>1 and for all K >0 there is a Ay>0 such
that for |A| < Ay, ReA>0 and m sufficiently large one has

A~ rom
SoU) < [wll, Cg=2 e KIM@D TT 1/n.!

A;e

for some p> 1. Here n; is the number of ®@’s in | Fw localized in 4;.

Proof. By the theorem of the Appendix, we have that

rom
FFOD dpel < Iwll, C2== [T V/mi!.
A;e2
Now Corollary 9.6 of [5, p. 237] follows with II ;! replaced by II n;!*/2.
We now follow the proof of [5, Lemma 10.1] which is the main input
for the bound [5, Lemma 10.2].
(Lemma 10.1": There exists a K5 independent of m, and n; such that

[T N2 < eI CEm TT (M(A)1)P T 12
4 4
where N (4) is the number of @’s in 4 coming from n; and the applications
of e™*"™). Lemma?2 now follows as in [5, Proposition 5.3, p.218,
proved in § 10, p. 239].
By Eq. (5) and Lemmas 1 and 2 we get

(SN Y [wll, C5me KIXITKI2ITT | /1

.C(1X|+|N—1xle—KlN—xX|N!

= [lw], TL|/n;! Nt CIVICymeKI®le=KINL 3

X0
NOX



260 J.-P. Eckmann et al.

The last sum is bounded by 2!¥! and therefore we have shown that for
all K> 0,
|So(N) £ [[wl, T}/ ;! Cyre”IM=I2D N )

if Re A >0, |l < A; for some A, >0, m sufficiently large.

5. Bounds on Sy 4/SFwy.4

These bounds are obtained by using Eq. (8) and the following support
property of F,.

Lemma 3. %,(N)=0 unless NQQ.

Proof. We call X and Y separated (X < Y) if they have no boundary
segment in common. The formal power series have the properties:

P1) If for all M—N one has F(M + N)=F(M) F(N) and F(0)+0
then also F"'(M+ N)=F ‘1(M) “HN),

P2) Qx(M)=1(M) 1meM 0,

P3) if M—N, X AN =0 then QX(M+N) Ox(MY1(N),

P4) if M—N, then Qx(M + N)= Q. i(M)Qx 5(N).

We leave the proof of P1) and the inspection of P2) to the reader.
Proof of P3):S,(N)=0 unless N is connected. Therefore exp S, and T
factorize in the sense of P1), and thus so does T~ !. We rewrite Qx(M + N),

_ - M!IN!
Ox(M4N)= T T(M)T(N) T (M) T~ (Ny) ot N
Mi+M>=M MZ'NZ'

N;j+Na2=N

MlnX=@

=0,(M)1(N), which is P3).

P4) is now an easy consequence of P3).
We come back to Lemma3. Let N= NluNz, N,<, then by
definition

N!
N X;Q Soltx) Qx(N — 1x) (N = 1,)]
e __Nt
B x%n Salix) Qxl(Ny — 1) + N;) (N —xx)!

P N, !
= x§n Solxx) Qx(N; — xx) L(N,) m

which is zeroif N, £0. g.ed.
The bound (8) and L.emma 3 are the input to

< |wl, I ]/n;t C5.

(by P4))

Theorem 4. &@i

F(¢),4
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Proof. By (8) and Lemma 3, we see that for A= 0,

-1 < % ”WHPH]/ni!e—K(INI—IQI)C)gni’
N:Nx0

since Spgy 4= 1 by Jensen’s inequality.

SF(Q) A

SF(¢) 4

But, )
NZ e KINI_ Z Z 1—[ o KNG
) XSO N@H21i%e" X
vi“e" X
_ Z e KX
X0

forsome 0 < K’ < K if K is large enough. We use again the argument about
the number of X 2 Q with |X|=k to obtain the bound on the expansion
T Fo(N)N!™! for ReA=0 and |A| £ A,. Now, unnormalized Schwinger
functions of a finite volume are analytic in ReA =0, as can be seen by
approximating through cylinder functions and using Vitali’s theorem.
Therefore the terms F,(N) are analytic in the region Rel=0, || < 4,
since Z(4) does not vanish in this region. Thus TF(N)N!"! is an
analytic function which equals Spq 4/Spg.a on AZ0 so that
Sr@, a/Srw,4 18 actually analytic in ReA=0,|A <|4o| with bounds
preserved, and independent of the volume A.

6. The Truncated Functions

Consider the functions of section 1, F=F,...F,. For each subset
{iy, ..., 0,3 of {1,...,n}, one can define a function &, , (N) associated
to F'=F,,...F; in the same way as ,(N) was assomated to F, Eqg. (4).
Now write also S, ;. for Spo), 4/Sr(s),4- Then the truncated function

ST is defined by
P({1,...n}) (

P
ST=— % Ust,

R;i...R,

P({1,...n}

where > is the sum of partitions of {1,...n} into p=1,...n non
Ry...R, . .

empty sets R;= {i;,...i; ,}; j=1,...p. We can rewrite this as

S (N1)... e (N
R;...R P~ +"Z+:N =N ? .
1...Kp 1. p I—[ NJ‘

ST _ _P({l,...n)) (_ 1)p

We define therefore
P({1,...n}) (_ 1)17
o FT(N ) = - Z

Ryi...R, p

(S, xFg,) (N) ©

so that SI=Y #T(N)NI-" .
N
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In analogy to the carlier sections, we establish support properties and
bounds on % .

Lemma 5. 7 (N)=0 unless N is connected and N>Q= U A,
where A, is the support of F,. =

Proof. Case 1: Suppose N does not contain the square 4. Then all
terms in the sum (9) contain a factor of the form F (V) with NnA,=0
which is zero by Lemma 3. Therefore & (N)= 0 unless N D

Case 2: Suppose N=N; + N,, N, +—>N2, N1 00, N2 D> 2,. Then
F100,(Ny + Ny) = S5, (Ny) %5,(N,), because

Foroe, N1 +N))= Y ggi(Xxl)ggz(sz) Ox,ox: (N — xx,) + (N — 1x,))

X108,
X228,

since S, factorizes in the sense of P1), p. 260. The assertion follows now
from P4) and well-known properties of truncation sums (9).

In order to bound %, we want to be more specific about what the
functions F; are in our case. We want to bound the n’th derivative with
respect to A of the Schwinger function S(4) defined by

S, (4)
S(y=
ey
_ S duce T 0 () L P () w0y, - v A
J‘d'u e —AV(4) N
By the explicit calculation of Dimock [1],
dn—l
din1 S(4)= Z SR-F(A;)...F(A,.): (10)

25.--4dn

where F(4)= [ : P(®): (x) dx. For simplicity, we assume P is a monomial
4

of degree 2d, d > 12. Let the degree of F,; in @ be v and let w; have support
in A4,.

Write Q= u 4, as a union of distinct lattice squares 45, ... 4;, and
let n; be the number of 4; = 4]. Let d(43, ... 4;) be the length of the shortest
tree connecting the centers f the 4;. Our main bound is then

Theorem 6. With the above assumptions and definitions, there is for
all K3>0a A, >0 such that for [ < Ay, ReA> 0, and m sufficiently large
one has ,

ISEI< Iwyll, KoK T (1 e ottt didy
i=1

for some p, K |, K, > 1.

% The assumption that the F; are monomials is for notational convenience only.
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Proof. Let A7 =A,. Given a subset R of {{,... n}, we define ng(4)
to be the number of i € R with i= 2, and 4, = A.
The degree ng(45) of the monomial || F; in 4] is 2dng(4}) in general
ieR
and 2dng(4;)+vif1eRand j=1.
By Egs. (8) and (9) and Lemma 3

P({1,. 1
e (NI will, 2 N, L

, L (11)
Z C%d(n~l)+ve~K|N|eKn n n V;IR,(A)! ,
Nyt !'+Np=N i=1 AC(Ry)
No(R)
where (R)) = ;- Since the degree v of F, is fixed,

Ij I1 Vnx )‘<C(v)2‘*"ﬂ [1 V(zdnk,(g))z

AC(Ry) i=1 AC(Ry)
by the inequality <Z) = 2"}

k
< TR [T 0l
J =

We have used

14 i=1
H [T nx ! <
=1 AC(Ry) p
[TIR;!
ji=1
We next estimate
P({IZ .n}) 1 lg[ Z Z nl
— 11 IRI'E ), — — ..
Ri...Rp p=1 p ny+.o..+np=n nll-'-np! P
nzl
n
<y in!<"_1)§nz2".
=1 P \p—1

Going back to (11), we get

1ZyF N)N‘ 1’ < i; HWIH Crn+1nn ‘d 1 *K\N|
Q
N connected



264 J.-P. Eckmann et al.

and summing over N as in the proof of Theorem 4,

Y e KINl < p=Fa(4L... 4 Y e I

. Me N
N connected

we complete the proof of the theorem.
Finally, we formulate the bound

dn— 1
Y
Proof. By the symmetry of F,, ... F,, [Eq. (10)],

I dn—l

Theorem 7. < wyll, Dy D5 — 1)1

d}vn—l

Su)] -

Z S;:rF(Az)wF(An)
Az... Ay

n _ N

y 5y 1 ’ (n’ 1).! T st
k=1 n=1 (k=11 nyting! Ay Ay

mt.. tm=n—1

IA

which is bounded by

n i 12 k

n
—— — K,K" R\
k;1 (k—1)! niz;,l n,! wyll, Ky 2il=—[1 (n;1)

agt...tme=n—1 (12)

. Z e~ Kaddi,.. 4y
T

By [3a, p. 196], the sum over 4; is bounded by K%(k— 1)!, so (12) is less

than n k
lwill, K. K5 ) Kb > nt? [1 ()2
k=1 i=1

niz1

nt...tm=n—1

< lwyl, Ky Ksnt?

from which the assertion follows by adapting the constants.

The following generalization of Theorem 6 is useful when considering
truncated functions of general arguments. Let Sg(4) be defined as in the
introduction with k=1, and let m;= ) (degF). Let S{ be the

jrdj= A]
corresponding truncated function.

Theorem 8. For all K;>0 there is a Ay>0 such that for |4 < 4,,
Re A > 0 and m sufficiently large one has

n k . .
ISEWI < [T lwill, nt Ky KE™ [ (n, )12 e Fodtctr a9,

i=1 i=1

for some p, K, K, > 1.



Decay Properties in Field Theories 265

Proof. The proof is an easy adaptation of the proof of Theorem 6.
Given a subset R of {1, ...n} one defines now

nR(A;): Z n;,
ieR
Ay=4j
p k
and Eq.(i1) holds in this case. Now [[ [] }/ng4)!< f[ i
j=1 Ae(Rj) i=1

and the remainder of the proof is as in Theorem 6.

Chapter 11
Extending Analyticity Domains

We show that it is possible to extend the analyticity and the bounds
of ChapterI for a P(®), interaction to a region of the shape of Fig. 1.
This yields the Borel summability of the Taylor series of the Schwinger
functionsat A =0(Hardy [7, Theorem 136, p. 192]). The extension rests on
two basic identities related to dilatations and changes of mass. The use
of these well-known identities for the present problem has been advocated
by Simon.

We make the convention that Wick ordering is always with respect
to the covariance occurring in the integral in question. This necessitates a
Wick reordering formula, which we give now.

Let
[n/2] n! APku—v) Y
A P = (pn—Zl i
e ®") ,;O 21 (n—2D)! ('f (k2+u)(k2+v)> ()
It is easy to see that
:@n:m% = Amg mz(@") (2)
and we extend A4 by linearity to polynomials.
Our two basic formulae are
k
Lemma 1. § []:@":(x) W(x,, ..., x;) e HEXFP@ @0, ,
j=1
2k k
mj . B - m ms
:(m—l) jJI;Il.@ .(xj)W(m‘lxl,...mxk)dxl...dxk (3)

- l(:‘f)zfdzx: P(@): (x)h (Z—f %)

2.
m;

du
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Lemma 2. For [b|<mi, beR,

e —Lj@2: (x)h(x)dxd'u

LI_I}} j-e zf B2 (x)h(X)dxd/,t —d:umf+b~ (4)

These two lemmas are easy to prove and will be shown at the end of
this chapter. It is worth noting that Lemma 2 means (we always write
h=1)

k
FTT @M (x) Wixy, .o %) e"gj:qszz(x)dxdum%
i=1

j‘efg_f:dﬂ:(x)dxd’um%

®)
k
= 1—11 : Am%,m§+b(¢nj) S Wi(xqs s X d,um21+b-

=

Also, the left hand side of (5) is an analytic function of b, in |b| < m3«
for a fixed a >0, as can be seen by the proof of Theorem 4.
Combining Lemmas { and 2, we get with V(A)={: P(®):(x}dx
A

[ﬁ LB (x) W(x)dx e ST D,
fG. py= lim —=

7
A e 1+ﬂV(A)dlum2
(1+ Py ﬂ P (x) W/ 1+ px)dxe " Vdu,oq 4 p
= lim (6
A-w© j‘e_;“V(A)d,umZ(1+p)

Mj:dﬂ:(x)dx

=g(4, f)= lim (j' R

Ao

di) (14 B

ﬁT”lzj"di":'(x)dx

k - . .
* j’ 1_[ . Am2’m2(1 +ﬁ)(¢’lj) . (XJ) W(I/ 1 + x) d.x Q_AV(A)Q d#mz
j=1
where V(A)= [t A2 21+ p(P) 1 (x) dx and B being real and small.
A

We now want to extend f into the complex plane, and we identify f
with the analytic continuation of the first expression in (6), g with the
last.

If |8l < 3, m* large and || < &(m?), Re

n i ; >0, then, as in the proof
of Theorem 4, f(4, p) is analytic in 4 and f in the above region, and in this

region one has, uniformly in A and B, |——- f(4 f)| = | W ,K, K5(n!)*

4
dir

where P has degree 2d, by Chapter L
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The discussion of g(4, §) is more delicate. We first restrict § such
that the map A, ,2(;1+4 has analytic coefficients. This is the case for
1Bl <1, cf. Eq. (1).

If [4], |} are small (say <¢,) and ReA=0, Reff >0, then g(4, f) has a
cluster expansion, cf. Theorem 4.

By the assumption of Theorem C (p. 5), W has analytic continuations
into some angle and thus the terms in the expansion are analytic and
therefore the expansion defines the analytic continuation of g(4, f)
in |A| <e,, |Bl <&, ReA>0, Re > 0. Also we have again ’

‘ T 90 ﬂ)‘ <KW/ T+ )], Ky(nl)’

<KW, K5, forsomed>0,
cf. p. 53.

By Eq. (6), the two functions f(4, f) and g(4, ) coincide in an open
real subset in A and § which is interior to their domains of analyticity.
So they are analytic continuations of each other, and verify a bound
of the form:

n

di"

7 ﬁ){ <K} W, K2l ™

where f is the common analytic continuation of f and g. Combining the
domains of analyticity we see that Sy(4) extends to a function analytic
in the region:

U= {m: 1_’:ﬁ,(l b| g Re 1iﬁ >0>or(Re/,t>0,Re/3>0,

<, Il <6< 1)}

so that %> {/1 [/1|< ,larg /1|< e +arctg 2}, which is the region

of Fig. 1. Theorem C is now an 1mmed1ate consequence of Eq. (7), the
form of % and Theorem 136 in Hardy [7, p. 192].

Proof of Lemma 1. Consider the cylinder function F(®(f)), ..., ®(f,)
with fi,..., f, linearly independent functions in & (R?). Let (4,2);
={f;» C,af> with C,. the free covariance with mass m. Let dv,. the
measure on IR” given by

exp{—3zd, z}dz
{exp{—%z4,7z}dz’

dvmz(Z) =

* We thank B. Simon for pointing out an error in the original manuscript at this step.



268 J.-P. Eckmann et al.

then | F(®(f}), ..., (f,) dity2 = § F(2) dv,2(z). We now dilate, then

ik(x—y)

(Apo)iy= ) o S0 A dxdy

=g* jfi(sx)%fj(sy) dkdxdy

=4[O, Coape [ =5 (A8,2);; with  f9(x) = fi(sx).

exp{—is z(A(S) )7 ts '22} ds 2z

Jexp{—1s22(A8,2) s 22z} ds 2z

JF(2) dvye(z)= IF(Z)dV(S)mZ( _22) FF(s™22) dv¥,a(2)
=[F(sT2@(f), ... s T2 O(f) dpta e

since the f;®) are also linearly independent.
The general case follows by approximating Wick polynomials as in
Dimock and Glimm [2]. We first replace @(y) by Px(y)=P(xx(- —y)

(K™'x), 2(0)=1,

Thus dv,.(z) = =dv9,.(s %z)and

with yx an approximate ¢ function, XK(x)z% X

¥(x)=0for x| > 1, f x(x)dx=1.
Then we replace integrals by Riemann sums [dx*— —12— Y.
xes 172
In this way we can approximate our expressions by cylinder functions for
which we gave the proof. The result comes from the fact that dilatations
go through this approximation procedure.

Proof of Lemma 2. The proof relies solely on the Gaussian character.
Think of C as (—A+m?) ™, typically. There is a unique countable
additive measure dy. such that [ ! ®V ¢y =1 and this measure
is Gaussian [Gelfand-Vilenkin, 4]. By Dimock and Glimm [2]

[ @(g) PN TR CDdpc= [ dx dy g(x) Clx, y) f =2~ 0d(y) eI P due

=ilg, Cf). (8)
The Gaussian character of d . implies that for all measurable functions F,
[F(®) D3N dpe = [F(@+ f)duc,

where (® + 1) (g) = ®(g) + i(C f, g). Lemma 2 is proved if we can show for
C'~'=C "'+ h, h a symmetric function in IR?* x IR?, that

J‘ eicb(gH%(g,C’g)e—%M)(x)d’(y)h(x, y)dxdyd'uc

=1, )

J' e_%fd’(x)‘D(y)h(x,y)dxdyd'uC

and by taking limits on h.
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Write g=C"'f=C ' f+hsf haf(x)=[h(x,y) f(y)dy, and use
the Gaussian character of du. [Eq. (8)]. So the left hand side of (2) is:

_feiq)(C"inq’(h*le(f LN S, f)—%I@(X)lb(y)h(x,y)dxdyd‘uc

j‘ e P PO (x,y)dxdy d‘u
/\
— J‘el(<17+C lf)(h*f)+1h*ff)—2,f(¢+c LN @+ co 1f)(y)h(xy)dxdyd'u

.f e I P PO hLx, y)dxdyduc
=1 this is obtained by evaluating the exponent .
Finally we give the
Proof of Theorem D. By [6, Chapter VI] hm ——logSp- (%) con-

I/ll
verges. Let F,= f P(®):(x)dx. The derlvatlves of the pressure are of the

— 1) .
form ( JA’) Z SFA1 £, (4), by Dimock [1]. Now by Theorem B,
A1,

the sum over 4,, .. A . converges and the sum over A4, yields a contribu-
tion bounded by something proportional to |4| and hence the theorem
i1s proved.

Appendix

We consider integrals of Wick monomials with respect to a Gaussian
measure du- with covariance C e %, the set of convex combinations of
(—4+mf)~! with Dirichlet boundary conditions along I¢ [5,p. 202
and p. 224].

We index Z* by numbers /=1,2, ..., and we write R*= [ ] S, where

U
the S, are unit lattice squares centered at points of Z>CIR? Let
R= j"]—[ D(x)" : w(xy, ..., Xx,) dx, with w supported in S, x ---x S, . Let
Z p;> the degree of Rin S;. Let my = 1 and g = p’- (max p,), n=ZXn,,

J:lj~l

p/—l _*_pAl — 1
Theorem. For Ce % one has
f R dpcl < [w],(Cmg * ﬂ m 2.
Proof. The theorem is a slight 1mprovement of Theorem 9.4 in

[5,p.236], replacing [ | n;! by ] n;!*% The proof is identical to the
i=1 i=1
one in [2], but we give a better bound on
e—adist (S'fslz) , (Al)
GeV(R) I
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where 77(R) is the sum over all vacuum graphs G (pairings of &),
] is the product over all the bonds in the pairings, extending from
!

square §;, to §;, and « = % >0.
We show (A;) < []n!"? C", which, inserted into the proof of

Theorem 9.4 of [5, p. 236] proves our assertion.
Let now gy, denote the number of bonds from square S, to square S;*.
Then (A;) can be bounded by

Y n! — aos dis Grx!
3 {H H k '}{n (qu'le g d t(Sk,Sz))} 1‘[ kk — (A,)
k dri’ k
]

k>1 ik 52
5!

where 2" ranges over the set {g|9x = qux> ), 9= M G €Ven}, and the
1

first factor comes from the number of ways one can choose the points
which connect to a given point, and the other factors come from the
number of pairings and the exponential decrease.
We use now
2a)!

1/2 a
o <o) <al2

and I1q;! (X a;)!, and we symmetrize the product [ ] by taking square
k>1
roots, to obtain the following bound for (A,)

!

2// I—[ k

k H qx!
i

The theorem is proved if we can show that (A ;) is bounded by C; I1(n,!)

Now (A ;) is certainly bounded by

e*%quzdist(Sk.Sz)(nk !)1/2 Ci’k . (A3)

1/2

! .
H Z 1y ; e_%zl;q, dist (Sk,S1) C’llk(nk !)1/2 , (A4)

P q;-

_Z a=m 1
and the theorem follows if we can show that the ( ) in (A,) is bounded by
C¥.

Note now that there is for each k an arrangement of indices such that
dist (S, S)) =1(1"* — 3), so that it suffices to bound

Z d' e—a'Zdiil/z
4,

o«
Y d,=d
i=o

* For k=1, g, is the number of bonds times 2.
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which is equal to

© d
(Z e—a’i1/2> :C‘i

i=0

and this proves the theorem.

Remark. The combinatorial argument extends to any number v
of dimensions because there is an arrangement of indices such that
dist(S,, S)= 01" 1=1,2,....
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