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Abstract

We consider decay properties including the decay parameter, invariant measures and quasi-
stationary distributions for a Markovian bulk-arrival and bulk-service queue which stops
when the waiting line is empty. Investigating such a model is crucial for understanding
the busy period and other related properties of the Markovian bulk-arrival and bulk-service
queuing processes. The exact value of the decay parameter λC is firstly obtained. We
show that the decay parameter can be easily expressed explicitly. The invariant measures
and quasi-distributions are then revealed. We show that there exists a family of invariant
measures indexed by λ ∈ [0, λC ]. We then show that under some mild conditions, there
exists a family of quasi-stationary distributions also indexed by λ ∈ [0, λC ]. The generating
functions of these invariant measures and quasi-stationary distributions are presented. We
further show that this stopped Markovian bulk-arrival and bulk-service queueing model
is always λC -transient. Some deep properties regarding λC -transience are examined and
revealed. The clear geometric interpretation of the decay parameter is explained. A few
examples are then provided to illustrate the results obtained in this paper.

Keywords: Stopped Markovian bulk-arrival and bulk-service queues;
Decay parameter; Invariant measures; Quasi-stationary distributions.
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1. Introduction

During the development of general theory and applications of continuous time Markov
chains, there is a long history in investigating a few closely linked and very important con-
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cepts: the decay parameter, invariant measures, invariant vectors, and the quasi-stationary
distributions. While the idea of using a quasi-stationary distribution can be traced back at
least to the early work of Yaglom [45], who considered the long run behavior, in the sense
of conditional distribution, of the subcritical Galton-Watson process, the key feature and
importance of this theory was not fully realised and explored until the publication of the
remarkable work of Vere-Jones [44]. At nearly the same time, the existence of the decay
parameter was firstly revealed by Kingman, when he showed in Kingman [25] that if C is an
irreducible class of a continuous time Markov chain defined on the state space E, then there
exists a number λC ≥ 0, called the decay parameter of the corresponding process, such that
for all i, j ∈ C,

1

t
log pij(t) → −λC as t → +∞,

where P (t) = (pij(t); i, j ∈ E) is the transition function of the corresponding continuous
time Markov chain. It can be easily proved that this decay parameter can be expressed as

λC = inf{λ ≥ 0 :

∫ ∞

0

eλtpij(t)dt = ∞} = sup{λ ≥ 0 :

∫ ∞

0

eλtpij(t)dt < ∞} (1.1)

where the quantities in the middle and right hand side of (1.1) are independent of i, j ∈ C.
Beginning with this pioneer and remarkable work, this extremely useful theory has been
flourished due to much important research, including the significant contributions made
by Flaspohler [16], Pollett [36], Darroch and Seneta [13], Kelly [23], Kijima [24], Nair and
Pollett [32], Tweedie [41], Van Doorn [42], [43] and many others.

On the other hand, Markovian queueing theory, as one of the most notable and prominent
as well as one of the oldest subareas in applied stochastic processes, occupies a significant
niche in applied probability. Markovian queueing theory plays an important role both
in the development of general queueing models (for example, Asmussen [4], Gross and
Harris [19], Kleinrock [26] and Medhi [31]) and in the theory and application of continuous-
time Markov chains (for example, Anderson [1] and Chung [12]). Within this framework,
state-dependent input and output mechanisms have attracted considerable attention. In
particular, Gelenbe [17] and Gelenbe, Glynn and Sigman [18] introduced the very useful
concept of negative arrival, and this was followed up by other authors, including Bayer
and Boxma [5], Harrison and Pitel [20], Henderson [21] and Jain and Sigman [22]. The
queueing models with negative arrivals also has close theoretical links with the versatile
Markovian arrival processes introduced by Neuts [33], which include several kinds of batch-
arrival process. Additionally, Neuts [34] described a number of interesting batch-arrival
models together with useful methods for analysing them. For further developments, see
Stadje [38], Lucantoni [29], Lucantoni and Neuts [30], Nishimura and Sato [35] and Dudin
and Nishimura [14]. Also, in Chen and Renshaw [10, 11] the possibility of clearing the entire
workload is allowed. At the same time, the theory of bulk queues (bulk arrival and/or bulk
service) is also well developed. See the excellent reference of Chaudhry and Templeton [7].
For recent advances see Armero and Conesa [2], Arumuganathan and Ramaswami [3],
Chang, Choi and Kim [6], Fakinos [15], Srinivasan, Renganathan and Kalyanaraman [37],
Sumita and Masuda [39] and Ushakumari and Krishnamoorthy [40]. The queueing models
with both bulk-arrival and bulk-service incorporating with state-dependent control have
also been attracted much interest. In particular, very recently, Chen et al [8] discussed an
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interesting model where state-dependent control can happen only when no customer is at
waiting list except possibly a customer in service.

In spite of these developments in both topics, it seems that the deep relationship between
decay properties and Markovian queueing models has not been fully revealed. In fact, even
calculating the exact value of the decay parameter for most transient Markovian queueing
models is still an open problem. In particular, we still know little about decay properties
of the queueing model discussed in Chen et al [8]. Note that, however, if the bulk-service
is not presented, the decay parameter and the associated properties have been examined in
Li and Chen [27, 28].

The main aim of this paper is therefore to consider the decay parameter and the as-
sociated properties including the most important invariant measure and quasi-stationary
distributions of the Markovian bulk-arrival and bulk-service queue with state-dependent
control explored in Chen [27, 28]. Investigating such properties will greatly deepen our
understanding of the busy period distribution of the corresponding queueing model and
provide much information in designing appropriate state-dependent control, which, in turn,
could significantly improve the efficiency and effectiveness of the queueing systems. We
shall see that this basic aim has been achieved in this paper. In particular, we shall show
that the decay parameter for our models can be obtained very easily. Many deep associated
properties have also been revealed. Based on the results obtained in this paper, we shall
be able to further investigate the decay parameter and the associated properties for the
more general Markovian bulk-arrival and bulk-service queue with state-dependent controls,
particularly for the transient case, in our subsequent papers,

In addition to achieving the above aims, this paper is also of methodological significance.
Indeed, several new ideas and methods are employed in our analysis. These new methods
will be very useful in analyzing more complex models. This will also be revealed in our
subsequent papers.

We now begin our study by specifying our known conditions. That is that we first
specify the generator matrix, i.e., the so-called q-matrix Q = (qij ; i, j ∈ Z+), of our stopped
Markovian bulk-arrival and bulk-service queue queueing models, where Z+ stands for the
nonnegative integers {0, 1, 2, · · · }.

Definition 1.1. A q-matrix Q = (qij ; i, j ∈ Z+) is called a stopped bulk-arrival and bulk-
service generator (henceforth referred to as a stopped BABS generator), if

qij =

{
bj−i+2, if i ≥ 2, j ≥ i − 2

0, otherwise,
(1.2)

where

b0 > 0, bj ≥ 0 (j �= 2), 0 <
∑
j �=2

bj ≤ −b2 < ∞. (1.3)

In order to avoid discussing some trivial cases, we shall, throughout this paper, assume
that

∞∑
j=3

bj > 0 (1.4)
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and
∞∑

j=0

b2j+1 > 0. (1.5)

Also, let

md = 2b0 + b1, mb =
∞∑

j=3

(j − 2)bj (1.6)

denote the mean service rate and the mean arrival rate, respectively.
By (1.2) we may see that the behaviour of the stopped BABS could be described as

follows. Whenever the queuing length is great than 1, then the arrival of customers follows
a compound Poisson process with arrival of a batch of r individuals with rate br+2 (r ≥
1) coupled with batch service to j individuals with rate b2−j (j = 1, 2). The queueing
process will stop moving whenever either the queue is empty or there is only one customer
being-served in the queue. From practical point of view, this is, of course, not a realistic
model. However, as shown in Chen et al [11], this structure is the underlined structure of a
Markovian bulk-arrival and bulk-service queue with state-dependent control and thus plays
extremely important role in analysis the latter practical model.

By (1.3) we see that non-conservativeness is allowed in this paper. The reason for dealing
with this general definition is two-fold: firstly in our later proof, we need to consider the non-
conservative case. Secondly and more importantly, this definition provides us an opportunity
to consider more general models.

Let

d = −
∞∑

j=0

bj (1.7)

be the deficit. Then d ≥ 0 and d = 0 if and only if Q is conservative.

Definition 1.2. Let Q = (qij; i, j ∈ Z+) be a stopped BABS generator matrix defined in
(1.2)–(1.3). The corresponding transition function P (t) = (pij(t); i, j ∈ Z+), usually called
the Q-function, is called a stopped Markovian bulk-arrival and bulk-service queueing process
(henceforth referred to as a stopped BABS-process).

Note that we have defined the queueing process as the corresponding transition function
P (t) rather than the process itself. In fact, for convenience, we shall freely use this term to
denote either of them in this paper. Also, under this interpretation, the terms Q-process
and Q-function, referring to a specific q-matrix Q, are identical. Such kind of usage is, of
course, commonly accepted and won’t cause any confusion. Since our generator matrix Q is
bounded and thus, by the general theory of continuous time Markov chains, we know that
there exists only one Q-process which is the Feller minimal one. Since we have assume that
both b0 > 0 and (1.4)–(1.5) hold, it is clear that C = {2, 3, · · · } is an irreducible class for Q
and, also, for the corresponding Q-function P (t) = (pij(t); i, j ∈ Z+).

It is well known that the decay parameter and quasi-stationary distributions are closely
linked with the so-called μ-subinvariant measures and μ-subinvariant vectors. An elementary
but detailed discussion of this theory can be seen in Anderson [1]. For convenience, we briefly
repeat these definitions, tailored for our special models, as follows:

QUES9194_source



Decay Properties and Quasi-stationary Distributions for Stopped Markovian Bulk-Arrival and Bulk-Service Queues 5

Definition 1.3. Let Q = (qij ; i, j ∈ Z+) be a stable generator matrix and C be a
communicating class of Z+. Assume that μ ≥ 0. A set (mi; i ∈ C) of strictly positive
numbers is called a μ-subinvariant measure for Q on C if

∑
i∈C

miqij ≤ −μmj , j ∈ C. (1.8)

If equality holds in (1.8), then (mi; i ∈ C) is called a μ-invariant measure for Q on C.

Definition 1.4. Let P (t) = (pij(t); i, j ∈ Z+) be a Q-function and C is a communicating
class of Z+. Assume that μ ≥ 0. A set (mi; i ∈ C) of strictly positive numbers is called a
μ-subinvariant measure for P (t) = (pij(t); i, j ∈ Z+) if

∑
i∈C

mipij(t) ≤ e−μtmj , j ∈ C. (1.9)

If equality holds in (1.9), then (mi; i ∈ C) is called a μ-invariant measure for P (t) on C.

The subinvariant vectors can be similarly defined. Finally, following Van Doorn [43], we
give the definition of quasi-stationary distributions as follows.

Definition 1.5. Suppose that P (t) = (pij(t); i, j ∈ Z+) is a Q-function. Assume that C
is a communicating class of Z+ and (mi; i ∈ C) is a probability distribution over C. Let
pj(t) =

∑
i∈C mipij(t), for j ∈ C and t ≥ 0. If

pj(t)∑
i∈C pi(t)

= mj , j ∈ C, t > 0, (1.10)

then (mi; i ∈ C) is called a quasi-stationary distribution.

The relationship between invariant measures and quasi-stationary distributions has been
revealed by, say, the work of Van Doorn [43] and Nair and Pollett [32].

The structure of this paper is as follows. Some preliminary results, which also provide
useful techniques and methods to be used later, will be firstly presented in Section 2. In
Section 3 we concentrate on studying the decay parameter for the stopped Markovian bulk-
arrival and bulk-service queues. The exact value of decay parameter will be revealed in two
theorems which deal with two different cases by using different approaches. The simple and
practical calculation methods are then presented. The interesting geometric interpretation
is also explained in this section. Transience properties related to the decay parameter will
be discussed in the following Section 4. We shall prove that a stopped Markovian bulk-
arrival and bulk-service queueing process is always λC-transient and some exact expressions
closely related to this property are revealed. The important λC-invariant measures and
quasi-stationary distributions are addressed in Section 5. We show that there exists a
family of invariant measures indexed by λ ∈ [0, λC ]. We then show that under some mild
conditions, there exists a family of quasi-stationary distributions also indexed by λ ∈ [0, λC ].
The generating functions of these invariant measures and quasi-stationary distributions are
presented. In the final section 6, several examples are provided to illustrate the results
obtained in the previous sections.

2. Preliminaries
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In order to find the decay parameter λC and to study invariant measures and quasi-
stationary distributions for the stopped BABS-processes, we need to define a function B(s)
which is the generating function of {bk; k ≥ 0}, i.e.,

B(s) =

∞∑
k=0

bks
k. (2.1)

with, as a power series, convergence radius

ρ = 1/ lim sup
n→∞

n
√

bn. (2.2)

Clearly,

ρ ≥ 1. (2.3)

By Noting that B(0) = b0 > 0 and B(1) = −d ≤ 0, we know that B(s) = 0 has a root
q0 ∈ (0, 1]. Also B(1) = 0 if and only if d = 0.

Our first observation on B(s) is that both B(s) and B′(s) are strictly piecewise monotone
functions on [0, ρ) with at most two interlaced nonnegative zeros, respectively. In fact, B′(s)
is even convex on [0, ρ), as the following two lemmas show.

Lemma 2.1. Assume that ρ = +∞. Then B(s) is a piecewise convex and monotone
function on [0,∞) with exactly two zeros 0 < q

S
< q

L
< ∞, while B′(s) is a convex function

on [0,∞) with exactly two zeros 0 ≤ ξ
S

< ξ
L

< ∞. More specifically,
(i) if d = 0 and md = mb (or equivalently, B(1) = B′(1) = 0), then there exist four points

0 ≤ ξ
S

< q
S

= ξ
L

= q
L

= 1 such that B′(ξ
S
) = B′(ξ

L
) = B(q

S
) = B(q

L
) = 0. Moreover,

if b1 = 0 then ξ
S

= 0 and B′(s) < 0 for s ∈ (0, 1) and B′(s) > 0 for s ∈ (1,∞) and that
B(s) > 0 for all s ≥ 0 except that B(1) = 0, while if b1 > 0 then 0 < ξ

S
< 1, and that

B′(s) < 0 for s ∈ (ξ
S
, 1) and B′(s) > 0 for s ∈ (0, ξ

S
) ∪ (1,∞) and that B(s) > 0 for all

s ≥ 0 except that B(1) = 0.
(ii) If d > 0 or md �= mb, then there exist four interlaced points 0 ≤ ξ

S
< q

S
< ξ

L
< q

L
<

+∞ such that B′(ξ
S
) = B′(ξ

L
) = B(q

S
) = B(q

L
) = 0. Moreover, if b1 = 0 then ξ

S
= 0

and that B′(s) < 0 for s ∈ (0, ξ
L
) and B′(s) > 0 for s ∈ (ξ

L
,∞) and that B(s) < 0 for

s ∈ (q
S
, q

L
) and B(s) > 0 for s ∈ [0, q

S
)∪ (q

L
,∞). If b1 > 0 then ξ

S
> 0, and that B′(s) < 0

for s ∈ (ξ
S
, ξ

L
) and B′(s) > 0 for s ∈ [0, ξ

S
) ∪ (ξ

L
,∞) and that B(s) < 0 for s ∈ (q

S
, q

L
)

and B(s) > 0 for all s ∈ [0, q
S
) ∪ (q

L
,∞).

Proof. First note that the function

B′′′(s) =

∞∑
j=3

j(j − 1)(j − 2)bjs
j−3 (2.4)

is positive for all s > 0 (note also B′′′(0) ≥ 0), which is due to the assumption (1.4). It follows
that B′(s) and B′′(s) are strictly convex and increasing functions, respectively, on [0,∞).
Also, by the facts that ρ = +∞ and (1.4), it is easily seen that all of B′′′(s), B′′(s), B′(s) and
B(s) tend to +∞ as s → +∞. Considering that B′′(0) = 2b2 < 0 and lims→+∞ B′′(s) = +∞
and the fact that B′′(s) is strictly increasing on [0,∞), we know that B′′(s) has exactly one
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zero, denoted by η, on (0,∞) and that B′′(s) < 0 for s ∈ [0, η) and B′′(s) > 0 for s ∈ (η,∞).
Hence B′(s) is strictly decreasing on [0, η) and strictly increasing on [η,∞).

Now, if B′(0) = b1 = 0, then 0 is a root of B′(s) = 0 on [0,∞) and thus ξ
S

= 0 and
then B′(s) is strictly decreasing until its minimum point η and thus we must have B′(s) < 0
for all s ∈ (0, η]. After hitting η, B′(s) is then strictly increasing on (η, +∞) and since
lims→+∞ B′(s) = +∞, we know that B′(s) must have exactly one zero, denoted by ξ

L
, on

(η, +∞). It follows that B(s) is strictly decreasing on [0, ξ
L
) (recall ξ

S
= 0) and strictly

increasing on (ξ
L
,∞) and thus B(s) attains its minimum value B(ξ

L
) at ξ

L
. Note that

B(0) = b0 > 0, B(1) = −d ≤ 0 and lims→+∞ B(s) = +∞, it is clear that B(s) has exactly
two positive zeros q

S
and q

L
and all the conclusions in this Lemma 2.1 regarding the case

of b1 = 0 follow.

On the other hand, if B′(0) = b1 > 0, then B′(s) is strictly decreasing on [0, η) from
b1, which is positive, to its minimal value B′(η). Now, we claim that B′(η) < 0. Indeed,
if B′(η) ≥ 0, then B′(s) would be positive for all s �= η and hence B(s) would be strictly
increasing on [0,∞) which contradicts with the fact that B(0) = b0 > B(1) = −d. Therefore,
we have proven that B′(η) < 0. It then easily follows that B′(s) has exactly two zeros ξ

S

and ξ
L

such that 0 < ξ
S

< η < ξ
L

and that B′(s) < 0 for s ∈ (ξ
S
, ξ

L
) and that B′(s) > 0

for s ∈ [0, ξ
S
) ∪ (ξ

L
,∞). Then B(s) is strictly increasing on [0, ξ

S
] ∪ [ξ

L
,∞) and strictly

decreasing on [ξ
S
, ξ

L
]. Now, beginning from B(0) = b0 > 0, B(s) increases on [0, ξ

S
) until

its local maximum B(ξ
S
), which must be positive, and then decreases on [ξ

S
, ξ

L
], until its

minimum value B(ξ
L
). Of course, we have B(ξ

L
) ≤ 0 (because of B(1) ≤ 0) with B′(ξ

L
) = 0

if and only if B(1) = B′(1) = 0. After reaching the non-positive minimum value B(ξ
L
),

B(s) then increases to +∞ as s → +∞. Hence, B(s) must have exactly two positive zeros
q

S
and q

L
such that 0 < ξ

S
< q

S
< ξ

L
< q

L
< ∞ except that in the case of B(1) = B′(1) = 0

we have 0 < ξ
S

< q
S

= ξ
L

= q
L

= 1. All other conclusions now easily follow. �

Remark 2.1. By Lemma 2.1 and its proof, we also see that B(s) is concave on [0, η) and
convex on [η,∞) with s = η as the inflection point, where η is the unique positive zero of
B′′(s). This η, together with the other four important quantities ξ

S
, q

S
, ξ

L
and q

L
determines

the local properties of B(s). For example, we may easily derive the intervals on which B(s)
is negative, decreasing and concave, etc.

Lemma 2.1 completely describes the behavior of B(s) for ρ = +∞. If ρ < +∞, then
the principle of the above proof still works. The only difference is that, of course, we can
only consider the behavior of B(s) on the finite interval [0, ρ) and that we may not have the
property that B′′′(ρ), say, is infinity. Therefore, with some obvious amendments, we may
easily prove the following conclusion.

Lemma 2.2. Assume that ρ < +∞.

(i) If B(ρ) > 0 ( including B(ρ) = +∞) or, if B(ρ) = 0 but ρ > 1, then all the conclusions
of Lemma 2.1 hold. In particular, each of B(s) and B′(s) has exactly two interlaced zeros
0 ≤ ξ

S
< q

S
< ξ

L
< q

L
.

(ii) If B(ρ) < 0 and B′(ρ) ≥ 0 (including B′(ρ) = +∞), then B′(s) has two nonnegative
zeros 0 ≤ ξ

S
< ξ

L
≤ ρ with ξ

S
= 0 if and only if b1 = 0 and ξ

L
= ρ if and only if B′(ρ) = 0

with B′(s) < 0 for s ∈ (ξ
S
, ξ

L
) and B′(s) > 0 for s ∈ (0, ξ

S
) ∪ (ξ

L
, ρ). Moreover, B(s) has

exactly one nonnegative zero q
S
∈ (ξ

S
, ξ

L
) with B(s) > 0 for s ∈ [0, q

S
) and B(s) < 0 for

s ∈ (q
S
, ρ].
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8 Chen A.Y., Li J.P., Hou, Z. T & Ng, K.W.

(iii) If B(ρ) < 0 and B′(ρ) < 0, then each of B′(s) and B(s) has exactly one zero, ξ
S

and
q

S
, respectively, such that 0 ≤ ξ

S
< q

S
< ρ with ξ

S
= 0 if and only if b1 = 0. Moreover,

B′(s) > 0 for s ∈ (0, ξ
S
) and B′(s) < 0 for s ∈ (ξ

S
, ρ] and B(s) > 0 for s ∈ [0, q

S
) and

B(s) < 0 for s ∈ (q
S
, ρ].

Remark 2.2. If B(ρ) = 0, ρ = 1 and B′(ρ) ≤ 0 then B(s) has exact one zero q
S

= 1 and
B′(s) has a zero ξ

S
∈ [0, 1). Furthermore, ρ = 1 is a zero of B′(s) if and only if B′(ρ) = 0.

If B(ρ) = 0, ρ = 1 and B′(ρ) > 0 then B(s) has exact two zeros 0 < q
S

< q
L

= 1 and B′(s)
has exact two zeros ξ

S
, ξ

L
such that 0 ≤ ξ

S
< q

S
< ξ

L
< q

L
= 1.

In connection with B(s) and B′(s), we define a new function

g(s) = sB′(s) − 2B(s), s ∈ (−ρ, ρ). (2.5)

Obviously, g(s) is also a power series with the same convergence radius ρ as B(s). We shall
see later that the function g(s) plays a role as the “testing function” in determining the
decay parameter and hence it is crucial to understand the properties of g(s).

Lemma 2.3. The function g(s) is convex on (0, ρ) and there are only two possibilities for
the nonnegative zeros of g(s). That is that either g(s) has only one zero or no zero on [0, ρ]
(if ρ = +∞, [0, ρ] should be read as [0, ρ)). More specifically,

(i) If ρ = +∞, then there exists a unique s∗ ∈ (0,∞) such that g(s∗) = 0 and that
g(s) < 0 for all s ∈ (0, s∗) and g(s) > 0 for all s ∈ (s∗,∞).

(ii) If ρ < +∞ and B(ρ) = +∞, then there exists a unique s∗ ∈ (0, ρ) such that g(s∗) = 0
and that g(s) < 0 for all s ∈ (0, s∗) and g(s) > 0 for all s ∈ (s∗, ρ).

(iii) If ρ < +∞, B(ρ) < +∞ and
∑∞

j=3(j−2)bjρ
j ≥ b1ρ+2b0, then there exists s∗ ∈ (0, ρ]

such that g(s∗) = 0 and that g(s) < 0 for all s ∈ (0, s∗) and g(s) > 0 for all s ∈ (s∗, ρ].
Furthermore, s∗ = ρ if and only if

∑∞
j=3(j − 2)bjρ

j = b1ρ + 2b0.

(iv) If ρ < +∞ and
∑∞

j=3(j − 2)bjρ
j < b1ρ + 2b0, then g(s) < 0 for all s ∈ [0, ρ] and thus

there exists no zero for g(s) on [0, ρ].
Moreover, for the first three cases we have g′(s∗) > 0.

Proof. Note that for 0 ≤ s < ρ, we have

g′(s) = sB′′(s) − B′(s) (2.6)

and

g′′(s) = sB′′′(s). (2.7)

Hence, g′′(s) > 0 for all s ∈ (0, ρ) due to the fact that B′′′(s) > 0 on the same interval.
Therefore g(s) is convex on [0, ρ) and g′(s) is strictly increasing on [0, ρ). It follows that
g(s) has at most two zeros on [0, ρ) (or [0, ρ] if ρ < +∞). Now we further claim that
g(s) has at most one nonnegative zero. Indeed, since g′(s) is strictly increasing on [0, ρ)
and that g′(0) = −B′(0) = −b1 ≤ 0, we know that if b1 = 0 then g′(0) = 0 and thus
g′(s) > 0 for all s ∈ (0, ρ) since g′(s) is strictly increasing. This implies that g(s) is
strictly increasing on (0, ρ) and thus g(s) has at most one zero on [0, ρ). Furthermore, since
g(0) = −2B(0) = −2b0 < 0 we see that g(s) changes its sign from negative to positive
in crossing this unique nonnegative zero. On the other hand, if b1 > 0 then g′(0) < 0.
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Considering g′(s) strictly increases on [0, ρ), we know that there are only two possibilities
for signs of g′(s). That is that either g′(s) < 0 for all s ∈ (0, ρ) or g′(s) changes its signs
from negative into positive in some point (which is the zero of g′(s)) in (0, ρ]. It follows
that either g(s) decreases on (0, ρ) or g(s) changes its decreasing property into increasing
property at the zero of g′(s). Now g(0) = −2b0 < 0 and thus either g(s) ≤ 0 for all s ∈ (0, ρ)
(if ρ < +∞, (0, ρ) should be read as (0, ρ]) or g(s) could become positive in some point. It
is clear that the former can happen if and only if ρ < +∞ and g(ρ) ≤ 0, or equivalently, if
and only if ρ < +∞ and

∑∞
j=3(j − 2)bjρ

j ≤ 2b0 + b1ρ. The last equivalency is due to the
fact that

g(s) =
∞∑

j=3

(j − 2)bjs
j − 2b0 − b1s.

Now all the conclusions except the last part in the lemma easily follow.
We now prove the last part, i.e., g(s∗) = 0 implies g′(s∗) > 0. However, this is easy.

Indeed, we know that g(s∗) = 0 is just

∞∑
j=3

(j − 2)bjs
j
∗ = b1s∗ + 2b0

or

∞∑
j=3

(j − 2)bjs
j−1
∗ − 2b0

s∗
= b1 (2.8)

since s∗ > 0. Now, by (2.6) we have

g′(s∗) =

∞∑
j=3

j(j − 2)bjs
j−1
∗ − b1 (2.9)

Substituting (2.8) into (2.9) yields that

g′(s∗) =

∞∑
j=3

(j − 1)(j − 2)bjs
j−1
∗ +

2b0

s∗

which is obviously positive. �
Lemma 2.4. Let Q and Q̃ be two generator matrices as defined in Definition 1.1 (neither
is assumed to be necessarily conservative) which are determined by two sequences {bn; n ≥ 0}
and {b̃n; n ≥ 0}. Suppose that

b̃n = anbn, n ≥ 0 where a > 0. (2.10)

Then Q and Q̃ as well as their corresponding transition functions have a common irreducible
class C = {2, 3, · · · }. Moreover, their corresponding decay parameters, denoted by λC and
λ̃C, respectively, have the relationship

λ̃C = a2λC . (2.11)
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Proof. It is obvious that Q and Q̃ have the same irreducible class C and hence we only
need to prove (2.11). We first show that

λ̃C ≥ a2λC . (2.12)

Note that λC is the decay parameter for Q on C, we know that there exists a λC-subinvariant
vector (xj ; j ≥ 2) such that xj > 0 (j ≥ 2) and

⎧⎪⎨
⎪⎩

∑∞
j=2 bjxj ≤ −λCx2∑∞
j=1 bjxj+1 ≤ −λCx3∑∞
j=0 bjxj+i−2 ≤ −λCxi, i ≥ 4.

(2.13)

Now, let x̃j = xj/a
j (j ≥ 2). It is obvious that x̃j > 0 (j ≥ 2) and that we have for i = 2,

∞∑
j=2

b̃j x̃j =

∞∑
j=2

bjxj ≤ −λCx2 = −(a2λC)x̃2, (2.14)

and for i = 3,

∞∑
j=1

b̃j x̃j+1 =
1

a
·

∞∑
j=1

bjxj+1 ≤ −λCx3/a = −(a2λC)x̃3, (2.15)

and finally for i ≥ 4

∞∑
j=0

b̃j x̃j+i−2 =
1

ai−2
·

∞∑
j=0

bjxj+i−2 ≤ −λCxi/a
i−2 = −(a2λC)x̃i. (2.16)

Therefore, (x̃j , j ≥ 2) is a a2λC-subinvariant vector for Q̃ on C and hence (2.12) is proved.
However, noting a > 0, we may get from (2.10) that bn = b̃n/an (n ≥ 0) and thus by the

same argument as above we may obtain

λC ≥ λ̃C/a2. (2.17)

By (2.12) and (2.17), we know that (2.11) is true. �
Lemma 2.5. Suppose that Q and Q̃ are two generator matrices defined on the same state
space E satisfying

Q̃ = Q + αI (2.18)

where I is the identity matrix on E× E and α is a real number. Then the corresponding
Feller Q- and Q̃-functions, denoted by P (t) = (pij(t); i, j ∈ E) and P̃ (t) = (p̃ij(t); i, j ∈ E)
have the relationship

p̃ij(t) = eαtpij(t), i, j ∈ E, t ≥ 0. (2.19)

In particular, if P̃ (t) and P (t) have the same irreducible class C, then

λ̃C = λC − α (2.20)

where λC and λ̃C are decay parameters for P (t) and for P̃ (t) on C, respectively.
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Proof. (2.19) is trivial and then (2.20) follows from (2.19) and (1.1). �

Note that Lemma 2.5 holds true for any two generator matrices, not necessarily for the
BABS generator matrices. Now in combining Lemmas 2.4 and 2.5, we may get the following
useful lemma which will be one of our basic methods in determining the decay parameter
and the invariant measures for the stopped BABS queues.

Lemma 2.6. Suppose that Q is a BABS generator matrix as defined in Definition 1.1 and
C = {2, 3, · · · } is an irreducible class for Q. Define a new sequence {b̃n; n ≥ 0} as

b̃n = bnβn (n �= 2) and b̃2 = b2β
2 + αβ2 (2.21)

where β > 0 and α ≥ 0. Let Q̃ = (q̃ij ; i, j ≥ 0) be defined as

q̃ij =

{
b̃j−i+2, if i ≥ 2, j ≥ i − 2

0, otherwise.
(2.22)

Assume that

∞∑
n=0

b̃n ≤ 0. (2.23)

Then Q̃ is also a BABS generator matrix as defined in Definition 1.1 and Q̃ is conservative if
and only if the equality in (2.23) holds. Furthermore, C = {2, 3, · · · } is a common irreducible
class for Q and Q̃ and we have

λ̃C = β2λC − αβ2 (2.24)

where λ̃C and λC are the decay parameter of Q̃-function P̃ (t) and Q-function P (t), respec-
tively.

Proof. By (2.21), it is clear that b̃n ≥ 0 (n �= 2). Condition (2.23) then guarantees that
b̃2 < 0 and that Q̃ given in (2.22) is indeed a BABS generator matrix. Furthermore, since
b̃n > 0 (n �= 2) if and only if bn > 0 (n �= 2) and thus Q̃ also satisfies all the additional
requirements (1.4)–(1.5). Hence C = {2, 3, · · · } is a common irreducible class for both Q
and Q̃. Now the conclusion (2.24) follows from Lemmas 2.4 and 2.5. �

Remark 2.3. By Lemma 2.6, we see that the essential condition is (2.23). Also note that
both states 0 and 1 are common absorbing states for Q and for Q̃. In other words, in
applying Lemma 2.5, when defining Q̃ = Q + αI as in (2.18), the αI is actually confined on
C = {2, 3, · · · } only.

3. Decay parameter

We are now ready to determine the decay parameter λC for our stopped BABS queueing
processes, where C = {2, 3, · · · }. Similarly as in Li and Chen [27], define

ρ0 = sup{s ≥ 0; B(s) ≤ 0} (3.1)
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and

λ∗ = sup{λ ≥ 0; B(s) + λs2 = 0 has a root in [0, ρ0]}
= sup{λ ≥ 0; B(s) + λs2 = 0 has a root in [q

S
, ρ0]}. (3.2)

By Lemmas 2.1 and 2.2, it is easily seen that both ρ0 and B(ρ0) are finite and that there
are only two possibilities for ρ0: either ρ0 = q

L
or ρ0 = ρ < +∞. Indeed, for all cases in

Lemma 2.1 and the first case in Lemma 2.2 we have ρ0 = q
L

while for the last two cases
in Lemma 2.2 we have ρ0 = ρ < +∞. The last equality in (3.2) also easily follows from
Lemmas 2.1 and 2.2.

We shall see later that the supremum in (3.2) is attainable and, more importantly, is just
the decay parameter for our stopped BABS queue. Hence, it is very informative and useful
to give further characteristics of this important quantity, including its geometric meaning.
To achieve this aim, we define

λ̄ = max

{
−B(s)

s2
; s ∈ [q

S
, ρ0]

}
= max

{
−B(s)

s2
; s ∈ [0, ρ0]

}
. (3.3)

Of course, this quantity can also be expressed as

λ̄ = −min

{
B(s)

s2
; s ∈ [q

S
, ρ0]

}
= −min

{
B(s)

s2
; s ∈ [0, ρ0]

}
. (3.4)

Since we have assumed that b0 > 0 which implies q
S

> 0, we know that −B(s)
s2 is continuous

on [q
S
, ρ0]. Therefore, (3.3) is well-defined. That is that there exists s̄ ∈ [q

S
, ρ0] such that

λ̄ = −B(s̄)
s̄2 . Note, again, that the last equality in both (3.3) and (3.4) easily follows from

Lemmas 2.1 and 2.2.

Lemma 3.1. λ∗ = λ̄.

Proof. Firstly, it is clear that λ̄ ≤ λ∗. Indeed, by (3.3) we know that B(s̄) + λ̄s̄2 = 0
where s̄ ∈ [q

S
, ρ0] and thus by (3.2) we obtain λ̄ ≤ λ∗. In order to prove the converse, we

assume that λ̄ < λ∗. It follows that there exists a μ ∈ (λ̄, λ∗). Since μ < λ∗, we know that

the equation B(s) + μs2 = 0 has a root sμ ∈ [q
S
, ρ0] which just means that μ = −B(sμ)

s2
μ

.

Hence by (3.3) we have μ ≤ λ̄ which is a contradiction. �

Lemma 3.2. (i) For the three cases (i)–(iii) in Lemma 2.3, we have

λ∗ = −B(s∗)

s2
∗

= −B′(s∗)

2s∗
,

where s∗ is the unique root of the equation B(s) + λ∗s
2 = 0 in [0, ρ0] and, also, is the same

s∗ as defined in Lemma 2.3.

(ii) For case (iv) in Lemma 2.3, we have

λ∗ = −B(ρ0)

ρ2
0

.
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Proof. Let f(s) = B(s)
s2 (s ∈ (0, ρ0]), then

f ′(s) =
sB′(s) − 2B(s)

s3
=

g(s)

s3
(3.5)

where g(s) is defined in (2.5). It follows from (3.5) that

f ′′(s) =
g′(s)

s3
− 3g(s)

s4
. (3.6)

By (3.5), it is clear that there exists a s∗ ∈ [q
S
, ρ0] such that f ′(s∗) = 0 if and only if

g(s∗) = 0. For this s∗, we can get from (3.6) and Lemma 2.3 that

f ′′(s∗) =
g′(s∗)

s3
∗

− 3g(s∗)

s4
∗

=
g′(s∗)

s3
∗

> 0. (3.7)

Hence the function f(s) attains its minimum value at s = s∗. Conclusion (i) thus follows.
To prove (ii), just note that for this case we have g(s) < 0 for all s ∈ (0, ρ0] and thus by
(3.5) we also have f ′(s) < 0 for all s ∈ (0, ρ0]. It follows that f(s) is strictly decreasing on
(0, ρ0] and thus attains its minimum at point ρ0. �
Lemma 3.3. Let g(s) be given in (2.5). Then g(ρ0) ≥ 0 if and only if one of the following
situations occurs.

(i) ρ = ∞.
(ii) ρ < ∞ and 0 ≤ B(ρ) ≤ +∞.
(iii) ρ < ∞, B(ρ) < 0 and B′(ρ) ≥ 0.
(iv) ρ < ∞, B(ρ) < 0 and B′(ρ) < 0 and ρB′(ρ) ≥ 2B(ρ).
Thus g(ρ0) < 0 if and only if ρ < ∞, B(ρ) < 0, B′(ρ) < 0 and ρB′(ρ) < 2B(ρ).

Proof. In cases (i) and (ii), we have ρ0 = q
L

and thus B(q
L
) = 0. However, by Lemmas 2.1

and 2.2 we know that B′(q
L
) > 0 and thus g(ρ0) > 0. For case (iii), ρ0 = ρ and thus since

B(ρ) < 0 and B′(ρ) ≥ 0 we know that g(ρ0) > 0. Case (iv) is just the condition that
g(ρ0) ≥ 0 for all other cases. The proof is complete. �

We now present our main result in this section by specifying the decay parameter. We
shall present this result in two theorems dealing with two different cases.

Theorem 3.1. Suppose that Q is a stopped BABS generator matrix as defined in Defini-
tion 1.1. If ρ0B

′(ρ0) ≥ 2B(ρ0) (that is g(ρ0) ≥ 0), then the decay parameter λC for Q on
C = {2, 3, · · · } is

λC = λ∗. (3.8)

Proof. We first consider the very special case of B(1) = B′(1) = 0 (that is d = 0 and
md = mb). For this case, it is trivial to see that λ∗ = 0. We now claim that for this case we
also have λC = 0. Assume, on the contrary that λC > 0. Then for any λ ∈ (0, λC), we have∫ ∞
0

eλtpij(t)dt < +∞ for all i, j ≥ 2, where (pij(t); i, j ≥ 0) is the Q-function. However, by
the Kolmogorov forward equation we know that, for example,

p′20(t) = b0p22(t) and p′21(t) = b1p22(t) + b0p23(t)
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and hence ∫ ∞

0

eλt(p′20(t) + p′21(t))dt < +∞. (3.9)

Since λ > 0 and using the inequality eλt ≥ 1 + λt, we can obtain by applying (3.9) that

∫ ∞

0

t(p′20(t) + p′21(t))dt < +∞. (3.10)

Note that (3.10) is just saying that E2[τ ] < +∞ where τ is the overall extinction time and
E2[·] is the conditional expectation when the process starts at state 2 (see Chen et al [8]).
This contradicts Theorem 2 in Chen et al [8]. Therefore, (3.8) is true if B(1) = B′(1) = 0.

Now, we consider the general case under the condition ρ0B
′(ρ0) ≥ 2B(ρ0). By Lemma 3.2

we know that there exists a s∗ ∈ (0, ρ0] such that

B(s∗) = −λ∗s
2
∗ and B′(s∗) = −2λ∗s∗. (3.11)

Now, define

b̃k = bks
k
∗, k �= 2 (3.12)

and

b̃2 = b2s
2
∗ + λ∗s

2
∗. (3.13)

It is easily seen that b̃k ≥ 0 (k �= 2) and

∞∑
k=0

b̃k = B(s∗) + λ∗s
2
∗ = 0.

Hence, (2.23) is satisfied. Therefore, if we define Q̃ as in (2.22), then Q̃ is a conservative
stopped BABS generator matrix as defined in Definition 1.1 and then by Lemma 2.6, we
have

λ̃C = λCs2
∗ − λ∗s

2
∗. (3.14)

For this Q̃, we now define

B̃(s) =

∞∑
j=0

b̃js
j.

Then it is easy to see that B̃(1) = B̃′(1) = 0. Therefore, by the proven (3.8) for this special
case, we know that

λ̃C = 0

which, together with (3.14), immediately yields that λC = λ∗ since s∗ > 0. �
In order to consider the case of ρ0B

′(ρ0) < 2B(ρ0), we provide another lemma.
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Lemma 3.4. Suppose that the given stopped BABS generator matrix Q is conservative and
let B(s) be the generating function given by (2.1). Assume that ρ = 1 and B′(1) < 0, then
λC = λ∗ = 0.

Proof. First, considering that B(s) is not defined for s > 1 due to the assumption that
ρ = 1, we define B(s) = ∞ for all s > 1 for technical reasons. Now since B(1) = 0,
B′(1) < 0 and ρ = 1, it is clear that λ∗ = 0. Hence we only need to prove λC = 0. For this
purpose, choose N0 ≥ 3 such that bN0 > 0 and for any n ≥ N0, we define

b
(n)
k =

{
bk, if k ≤ n

0, if k > n
(3.15)

and then define a generator matrix Q(n) = (q
(n)
ij ; i, j ≥ 0) as

q
(n)
ij =

{
b
(n)
j−i+2, if i ≥ 2, j ≥ i − 2

0, otherwise
(3.16)

It is clear that Q(n) is a nonconservative stopped BABS generator matrix and C is an
irreducible class for each Q(n) (n ≥ N0). Let

Bn(s) =
∞∑

k=0

b
(n)
k sk (3.17)

and

λ(n)
∗ = sup{λ ≥ 0; Bn(s) + λs2 = 0 has a root in [0, ρ

(n)
0 ]} (3.18)

where ρ
(n)
0 = sup{s > 0; Bn(s) ≤ 0}. It is obvious that the convergence radius for each

Bn(s) is infinite and thus ρ
(n)
0 B′

n(ρ
(n)
0 ) > 2Bn(ρ

(n)
0 ) (indeed, Bn(ρ(n)) = 0 and B′

n(ρ(n)) > 0).
It follows from Lemma 3.3 and Theorem 3.1 that the decay parameter for Q(n) is

λ
(n)
C = λ(n)

∗ . (3.19)

We also know that for each n ≥ N0, there exists s
(n)
∗ ∈ [q(n)

S
, q(n)

L
] such that λ

(n)
C =

max{−Bn(s)
s2 ; s ∈ [q(n)

S
, q(n)

L
]}, where q(n)

S
and q(n)

L
are the two zeros of Bn(s) satisfying

0 < q(n)
S

< 1 < q(n)
L

< +∞ (3.20)

since Bn(1) < 0 for each n ≥ N0.
By (3.15) and (3.16), it is easily seen that for all s > 0,

Bn(s) ≤ Bn+1(s) < B(s) (3.21)

with Bn(0) = B(0) (n ≥ N0). Intuitively speaking, (3.21) means that the whole curve
Bn+1(s) is above Bn(s) and all Bn(s) is below B(s) for all s ≥ 0. It follows that q(n)

S
and

q(n)
L

are increasing and decreasing functions of s, respectively and that

[q(n)
S

, q(n)
L

] ⊃ [q(n+1)
S

, q(n+1)
L

].
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Therefore, both the limits limn→∞ q(n)
S

and limn→∞ q(n)
L

exist, denoted by q(∞)
S

and q(∞)
L

respectively. By (3.20),

q(∞)
S

≤ 1 ≤ q(∞)
L

.

Now, we claim that

q(∞)
S

= q(∞)
L

= 1. (3.22)

Recall we already have that q(∞)
L

≥ 1 and thus in order to prove q(∞)
L

= 1, it is sufficient

to show that B(q(∞)
L

) < +∞ since ρ = 1. However, we have that Bn(q(n)
L

) = 0 for all n
which means that ∑

k �=2

b
(n)
k (q(n)

L
)k = −b2(q

(n)
L

)2. (3.23)

Since q(n)
L

⇓ q(∞)
L

as n → ∞ and the left hand side of (3.23) is a nonnegative series, we
conclude that for all n ∑

k �=2

b
(n)
k (q(∞)

L
)k ≤ −b2(q

(n)
L

)2.

Therefore,
∑
k �=2

bk(q
(∞)
L

)k ≤ −b2(q
(∞)
L

)2 < +∞. (3.24)

Hence q(∞)
L

≤ 1 and thus q(∞)
L

= 1.

We now prove that q(∞)
S

= 1. Recall that Bn(q(n)
S

) = 0, i.e.,

∑
k �=2

b
(n)
k (q(n)

S
)k = −b2(q

(n)
S

)2. (3.25)

Now, each term in the left hand side of (3.25) is increasing with n since both b
(n)
k and q(n)

S

are increasing and thus we may apply the monotone convergence theorem directly in (3.25)
to obtain ∑

k �=2

bk(q
(∞)
S

)k = −b2(q
(∞)
S

)2

or B(q(∞)
S

) = 0. Since B(1) = 0, we know that q(∞)
S

= 1. Therefore, we have proved

(3.22). However, recall that s
(n)
∗ ∈ (q(n)

S
, q(n)

L
) and it follows from (3.22) that we also have

limn→∞ s
(n)
∗ = 1.

Finally, let (m)P (t) = ((m)pij(t); i, j ≥ 0) and P (t) = (pij(t); i, j ≥ 0) be the Feller minimal
Q(m)-function and Q-function, respectively. It is well-known that (see p.71 in Anderson [1],
for example) each (m)P (t) (m ≥ N0) and P (t) can be obtained by using the backward
integral recursions

(m)p
(n)
ij (t) =

{
δije

−qit, if n = 0

(m)p
(0)
ij (t) +

∫ t

0
e−qis

∑
k �=i q

(m)
ik (m)p

(n−1)
kj (t − s)ds, if n ≥ 1

(3.26)
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p
(n)
ij (t) =

{
δije

−qit, if n = 0

p
(0)
ij (t) +

∫ t

0
e−qis

∑
k �=i qikp

(n−1)
kj (t − s)ds, if n ≥ 1,

(3.27)

respectively, where δij is the Kronecker delta, i.e.,

δij =

{
1, if i = j

0, if i �= j.

Therefore, (m)p
(n)
ij (t) ↑(m) pij(t) and p

(n)
ij (t) ↑ pij(t) as n → ∞. By (3.26), (3.27), (3.17) and

(3.18), it is easily seen that for all n ≥ 0,

(m)p
(n)
ij (t) ≤(m+1) p

(n)
ij (t) ≤ p

(n)
ij (t), for all i, j ≥ 0 and t ≥ 0

and thus

(m)pij(t) ≤(m+1) pij(t) ≤ pij(t), for all i, j ≥ 0 and t ≥ 0. (3.28)

It follows from (1.1) and (3.28) that

λ
(m)
C ≥ λ

(m+1)
C ≥ λC . (3.29)

That is that λ
(m)
C is decreasing with m and thus the limit limm→∞ λ

(m)
C exists, denoted by

λ
(∞)
C , and that

λ
(∞)
C ≥ λC . (3.30)

But we have λ
(n)
C = λ

(n)
∗ = −Bn(s

(n)
∗ )

(s
(n)
∗ )2

. Noting limn→∞ s
(n)
∗ = 1 and using a similar technique

as above yields that

lim
n→∞

λ
(n)
C = −B(1) = 0.

Hence, by (3.30) we obtain λC = 0 which completes the proof. �
Now we can present the final result regarding the decay parameter.

Theorem 3.2. Suppose that Q is a stopped BABS generator matrix as defined in (1.2)–
(1.3), determined by the sequence {bk; k ≥ 0}. Then the decay parameter λC = λ∗ where λ∗
is given by either (i) or (ii) in Lemma 3.2.

Proof. By Theorem 3.1, we now only need to consider the situation B(ρ0) > ρ0B′(ρ0)
2

.

However, for this case we know that s∗ = ρ and λ∗ = −B(ρ)
ρ2 . Now, as a similar manner to the

proof of Theorem 3.1, just define another sequence {b̃k; k ≥ 0} by letting b̃k = bkρ
k (k �= 2),

b̃2 = b2ρ
2 + λ∗ρ

2 and B̃(s) =
∑∞

k=0 b̃ks
k. It is then easy to see that B̃(1) = 0 and B̃′(1) < 0,

and thus by Lemma 3.4 we get λ̃C = 0. But by Lemma 2.6, again, we know that

λ̃C = λCρ2 − λ∗ρ
2

and thus λC = λ∗. �
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The following conclusion reveals the clear geometric interpretation of our basic conclusion.

Theorem 3.3. (i) If ρ0B
′(ρ0) ≥ 2B(ρ0), then the two curves y = B(s) and y = −λs2

contact with degree one at point (s∗, B(s∗)). In other words, −2λCs∗ is the slope of the
common tangent line of the two curves y = B(s) and y = −λs2 contact at a point whose
abscissa is s∗.

(ii) If ρ0B
′(ρ0) < 2B(ρ0), then the two curves y = B(s) and y = −λs2 contact with degree

0 at point (s∗, B(s∗)).

Proof. Just note that two curves y = f(x) and y = g(x) contact with degree one at
point M with abscissa x0 if and only if f(x0) = g(x0), f ′(x0) = g′(x0) and f ′′(x0) �= g′′(x0)
and contact with degree 0 at point M ′ with abscissa x0 if and only if f(x0) = g(x0) and
f ′(x0) �= g′(x0). Now all the conclusions easily follows from Lemma 3.2, Theorems 3.1
and 3.2. �

The following theorem gives the simple and practical calculation method for obtaining
the decay parameter of the stopped BABS queue.

Theorem 3.4. Let ρ0 be determined by (3.1) and g(s) = sB′(s)−2B(s) be given by (2.5).

(i) If g(ρ0) ≥ 0, then g(s) = 0 has a unique root s∗ ∈ [0, ρ0] and thus λC = −B′(s∗)
2s∗

. In
other words, s∗ and λC satisfy the equation

{
s∗B

′(s∗) − 2B(s∗) = 0

λC = −B′(s∗)
2s∗

(3.31)

or equivalently, s∗ and λC are the unique solution of the equation
{

sB′(s) − 2B(s) = 0

2λs + B′(s) = 0,
(3.32)

in the unknowns s and λ. Moreover, s∗ = ρ0 if and only if g(ρ0) = 0.

(ii) If g(ρ0) < 0, then λC = −B(ρ0)
ρ2
0

.

Proof. This is obvious by the previous conclusions in this section. �
Remark 3.1. If g(ρ0) = 0, then although we may use conclusion (i) in Theorem 3.4, it

follows directly that λC = −B(ρ0)

ρ2
0

. In other words, as far as the value of λC is concerned,

the conclusion agrees with situation (ii) when g(ρ0) = 0.

In applying Theorem 3.4, we need to calculate g(ρ0) which may not be an easy job for all
cases. The reason is that ρ0 may equal q

L
which is the largest zero of B(s), and in many

cases, it may be a hard job to calculate the exact value of q
L
. Fortunately, this difficulty

can be avoided. Indeed, note that in applying Theorem 3.4, the only thing we need to
check is the sign of g(ρ0) rather than the exact value of g(ρ0) itself. However, as revealed
by Lemma 3.3, to check the sign of g(ρ0) is really a very easy job since all the conditions
involved only concern with the quantity ρ rather than ρ0, as the following theorem shows.
This tells us that in practical cases, we first use Lemma 3.3 to check the test function g(s)
and then apply Theorem 3.4 to get the decay parameter λC together with s∗. Considering
that in nearly all the practical situations, we are interested in tackling the conservative case,
we present the following conclusion to summarize our basic results regarding determining
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the decay parameter of the stopped BABS queue, particularly for the conservative case.
Recall md and mb are defined in (1.6) and ρ ≥ 1.

Theorem 3.5. If ρ = +∞, then g(ρ0) ≥ 0, while if ρ < +∞, then g(ρ0) ≥ 0 if and only
if g(ρ) ≥ 0. In particular, suppose that the stopped BABS generator Q is conservative, then

(i) If mb > md (including mb = +∞), then λC and s∗ can be obtained by using (3.31) or
(3.32) and for this case, we have 0 < s∗ < 1 and λC > 0.

(ii) If mb = md, then s∗ = 1 and λC = 0.
(iii) Assume that mb < md.
(a) If ρ = +∞, or if 1 < ρ < +∞ and 0 ≤ B(ρ) ≤ +∞, then λC and s∗ can be obtained

by using (3.31) or (3.32) and that for this case, we have 1 < s∗ < +∞ and λC > 0.
(b) If ρ = 1, then s∗ = 1 and λC = 0.
(c) Suppose that 1 < ρ < +∞ and B(ρ) < 0. Then if B′(ρ) ≥ 0 or if B′(ρ) < 0 with

ρB′(ρ) ≥ 2B(ρ), then λC and s∗ can be determined by using (3.31) or (3.32) and that
1 < s∗ ≤ ρ (with s∗ = ρ if and only if ρB′(ρ) = 2B(ρ)) and λC > 0 while if B′(ρ) < 0 and

ρB′(ρ) < 2B(ρ), then s∗ = ρ and λC = −B′(ρ)
2ρ

.

Proof. If ρ = +∞, then by Lemma 3.3 we immediately get that g(ρ0) ≥ 0. Now
we assume ρ < +∞. If B(ρ) > 0, then again by Lemma 3.3 we still automatically have
g(ρ0) ≥ 0. However, by the proof of Lemma 2.3, we know that g(ρ0) ≥ 0 implies g(ρ) ≥ 0
and thus for this case the conclusion still holds. If B(ρ) ≤ 0, then ρ0 = ρ, the conclusion
holds trivially. Hence the first part of Theorem 3.5 is proven.

To prove the latter part, again, recall that B(s) = 0 has either one positive root q
S

or has exactly two positive roots q
S
≤ q

L
. Now note that when Q is conservative then

B′(1) = mb − md and thus, if B′(1) > 0 then q
S

< 1 and q
L

= 1 and if B′(1) = 0 then
q

S
= q

L
= 1. Moreover, if B′(1) < 0, then q

S
= 1 and there exists q

L
> 1 if and only if

either ρ = +∞ or 1 < ρ < +∞ together with 0 ≤ B(ρ) ≤ +∞. Therefore, the conclusion
follows from Lemma 3.3 and Theorem 3.4. �

We shall see that it is extremely easy to determine the decay parameter by applying this
theorem. In Section 6, we present examples to show that how easily these conclusions could
be applied.

4. Transience Properties

Having obtained the decay parameter of the stopped BABS queueing process, we now
further consider the λC-transience properties of the process. From now on, we shall assume
that the stopped BABS generator Q is conservative.

Lemma 4.1. Suppose that for some λ > 0, the equation B(s) + λs2 = 0 has a positive
root, u(λ) > 0, say. Then for this fixed λ > 0, B(s) + λs2 = 0 also has a negative root,
denoted by v(λ). Moreover, we have that |v(λ)| < u(λ).

Proof. Since B(u(λ)) + λu(λ)2 = 0, then by letting s1 = −u(λ), we obtain

B(s1) + λs2
1 = B(u(λ)) + λu(λ)2 − 2

∞∑
j=0

b2j+1u(λ)2j+1 = −2

∞∑
j=0

b2j+1u(λ)2j+1 < 0

where the last inequality follows from (1.5). But B(0)+λ02 = b0 > 0 and thus B(s)+λs2 = 0
possesses a negative root v(λ) ∈ (−u(λ), 0). The fact |v(λ)| < u(λ) also easily follows. �
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In the following we shall use u(λ) and v(λ) to denote the smallest positive root and the
largest negative root of B(s) + λs2 = 0, respectively. Note that for λ < 0, we have used
u(λ) and v(λ) to denote these two roots of B(s) + λs2 = 0, see Chen et al [8].

Lemma 4.2. Let u(λ) and v(λ) be the smallest positive and the largest negative root,
respectively, of the equation B(s) + λs2 = 0 where λ ∈ (−∞, λC].

(i) u(λ), v(λ) ∈ C∞(−∞, λC).
(ii) u(λ) is a decreasing function while v(λ) is an increasing function of λ ∈ (−∞, λC).
(iii) limλ→0 u(λ) = q

S
and limλ→0 v(λ) = ζ where q

S
and ζ are the smallest positive root

and the largest negative root, respectively, of the equation B(s) = 0.
(iv) limλ→λC

u(λ) = s∗ and limλ→λC
v(λ) = ζ∗ where s∗ and ζ∗ are the smallest positive

root and the largest negative root, respectively, of B(s) + λCs2 = 0.

Proof. All conclusions follow from elementary considerations. �
Remark 4.1. If one compares Lemma 4.2 with Lemma 3 in Chen et al [8], one would find,
interestingly, that the two functions u(λ) and v(λ) defined here can be viewed as extensions
of the two corresponding functions, bearing the same title in [8], with the domain extended
from (−∞, 0) to (−∞, λC). Hence they inherit the relevant properties stated in Lemma 3
in Chen et al [8].

Lemma 4.3. Let P (t) = (pij(t); i, j ∈ Z+) be the stopped BABS-process (the Q-function)
with generator matrix Q as defined in (1.2)–(1.3). Then for any i ≥ 2,

∞∑
j=0

p′ij(t)s
j = B(s)

∞∑
k=2

pik(t)s
k−2, |s| < ρ0. (4.1)

Proof. It is well-known (see Anderson [1]) that the corresponding Q-resolvent (φij(λ); i, j ∈
Z+) can be obtained by the forward recursion scheme

{
φ

(0)
ij (λ) =

δij

λ+qj
,

φ
(n+1)
ij (λ) =

δij

λ+qj
+

∑
k �=j φ

(n)
ik (λ)

qkj

λ+qj
, n ≥ 0

and φ
(n)
ij (λ) ↑ φij(λ) as n ↑ ∞ for all i, j ∈ Z+.

This recursion scheme together with mathematical induction immediately yields that for
any n ≥ 0, i ≥ 0 and 0 ≤ s ≤ ρ0,

∞∑
k=1

φ
(n)
ik (λ)sk−1 < +∞. (4.2)

Also, by the above recursion scheme and (1.2), we know that for |s| ≤ ρ0,

∞∑
j=0

(λ + qj)φ
(n+1)
ij (λ)sj = si +

∞∑
k=2

φ
(n)
ik (λ)sk−2 · (b0 + b1s +

∞∑
m=3

bmsm). (4.3)

Noting that λ + qj = λ − b2 > −b2 (j ≥ 2) and

b0 + b1s +
∞∑

m=3

bmsm ≤ b0 + b1ρ0 +
∞∑

m=3

bmρm
0
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for s ∈ [0, ρ0], we know that for s ∈ [0, ρ0],

−b2

∞∑
j=2

φ
(n+1)
ij (λ)sj ≤ si +

(
b0 + b1ρ0 +

∞∑
m=3

bmρ0
m

) ∞∑
k=2

φ
(n)
ik (λ)sk−2 < +∞. (4.4)

Now if we define A
(n+1)
ij (λ) = φ

(n+1)
ij (λ) − φ

(n)
ij (λ) (n ≥ 0). Then A

(n)
ij (λ) ≥ 0 and

lim
n→∞

A
(n)
ij (λ) = 0 for all i, j ∈ Z+. (4.5)

Using this notation, (4.3) can be rewritten as

λ

∞∑
j=0

φ
(n+1)
ij (λ)sj = si + B(s)

∞∑
k=2

φ
(n)
ik (λ)sk−2 + b2s

2

∞∑
j=2

A
(n+1)
ij (λ)sj−2. (4.6)

Letting s = ρ0 in (4.4) we get that

∞∑
k=2

A
(n)
ik (λ)ρ0

k ≤ (−b2)
−1ρ0

i, n ≥ 1.

Hence applying the Dominated Convergence Theorem and using (4.5) we obtain that for
s ∈ (0, ρ0)

lim
n→∞

∞∑
j=2

A
(n+1)
ij (λ)sj−2 = 0.

Letting n ↑ ∞ in (4.6) and using the above limit yields that

λ

∞∑
j=0

φij(λ)sj = si + B(s)

∞∑
k=2

φik(λ)sk−2, s ∈ (0, ρ0). (4.7)

We now prove that both sides of (4.7) are finite for all s ∈ [0, ρ0). Indeed, this is trivial if
ρ0 = 1. If ρ0 > 1 then we may find an ε > 0 such that B(s) < 0 for all s ∈ (ρ0 − ε, ρ0).
Thus both sides of (4.7) must be finite for s ∈ (ρ0 − ε, ρ0) and hence must be also finite for
all s ∈ [0, ρ0). It follows from (4.3) that (4.7) actually holds for all |s| < ρ0.

By noting that the finite expression
∑∞

k=2 φik(λ)sk−2 is the Laplace transform of
∑∞

k=2 pik(t)s
k−2,

we know that
∑∞

k=2 pik(t)s
k−2 < ∞ for all |s| < ρ0 and for almost all t ≥ 0. Now, since for

any λ > 0 and |s| < ρ0 we have limt→∞ e−λt
∑∞

k=2 pik(t)|s|k−2 = 0, it is easy to see that

lim
t→∞

e−λt

∫ t

0

( ∞∑
k=2

pik(u)sk−2

)
du = 0.

Therefore, (4.7) can be rewritten as

∫ ∞

0

e−λt

( ∞∑
j=0

pij(t)s
j

)
dt =

si

λ
+ B(s)

∫ ∞

0

e−λt

{∫ t

0

( ∞∑
k=2

pik(u)sk−2

)
du

}
dt, |s| < ρ0.
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Hence,

∞∑
j=0

pij(t)s
j = si + B(s)

∫ t

0

( ∞∑
k=2

pik(u)sk−2

)
du, |s| < ρ0

for almost all t ≥ 0. However, the right hand side of the above equality is a differentiable
function with respect to t, and thus we obtain

∂

∂t

( ∞∑
j=0

pij(t)s
j

)
= B(s)

∞∑
k=2

pik(t)s
k−2, |s| < ρ0.

We now claim that

∂

∂t

( ∞∑
j=0

pij(t)s
j

)
=

∞∑
j=0

p′ij(t)s
j, |s| < ρ0.

Indeed, by the Kolmogorov forward equations, we have

p′ij(t) =

j+2∑
k=2

pik(t)bj−k+2.

Now since
∑∞

k=2 pik(t)s
k−2 < ∞ and B(s) < ∞ for all |s| < ρ0, we may get from the above

equality that
∞∑

j=0

p′ij(t)s
j = B(s)

∞∑
k=2

pik(t)s
k−2, |s| < ρ0.

The proof is complete. �
We are now ready to consider whether the stopped BABS- process is λC-transient or not.

Theorem 4.1. Let P (t) = (pij(t); i, j ∈ Z+) be the stopped BABS-process with generator
matrix Q as defined in (1.2)–(1.3). Then for any λ ∈ (−∞, λC] and i ≥ 2

∫ ∞

0

eλtp′i0(t)dt =
u(λ)v(λ)i − v(λ)u(λ)i

u(λ) − v(λ)
(4.8)

and ∫ ∞

0

eλtp′i1(t)dt =
u(λ)i − v(λ)i

u(λ) − v(λ)
. (4.9)

Proof. By (4.1), for any λ ∈ (−∞, λC), i ≥ 2 and s ∈ [−ρ0, ρ0],

eλtp′i0(t) + eλtp′i1(t)s +
∞∑

k=2

eλtp′ik(t)s
k = B(s)

∞∑
k=2

eλtpik(t)s
k−2.

Then for any fixed T > 0, we may obtain

∫ T

0

eλtp′i0(t)dt + s

∫ T

0

eλtp′i1(t)dt +

∫ T

0

(
eλt ∂Fi(t, s)

∂t
dt

)
s2 = B(s)

∫ T

0

eλtFi(t, s)dt
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where Fi(t, s) =
∑∞

k=2 pik(t)s
k−2. Using integration by parts, we get

(B(s) + λs2)

∫ T

0

eλtFi(t, s)dt =

∫ T

0

eλtp′i0(t)dt + s

∫ T

0

eλtp′i1(t)dt + s2eλT Fi(T, s) − si.(4.10)

Now, recall that for λ ∈ (−∞, λC ], the equation B(s)+λs2 = 0 has two roots u(λ) and v(λ)
and thus by letting s = u(λ) and v(λ), respectively, in (4.10), we see that for any T > 0,∫ T

0

eλtp′i0(t)dt + u(λ)

∫ T

0

eλtp′i1(t)dt + u(λ)2eλT Fi(T, u(λ)) = u(λ)i (4.11)

and ∫ T

0

eλtp′i0(t)dt + v(λ)

∫ T

0

eλtp′i1(t)dt + v(λ)2eλT Fi(T, v(λ)) = v(λ)i. (4.12)

We now claim that

lim
T→∞

eλT Fi(T, u(λ)) = lim
T→∞

eλT Fi(T, v(λ)) = 0. (4.13)

To prove (4.13), it is sufficient to prove that the first limit in (4.13) is zero since the second
one is controlled by the first one, see Lemma 4.1. Note first that for all t ≥ 0, we have
p′i0(t) ≥ 0 and p′i1(t) ≥ 0 and thus all the three terms in the left hand side of (4.11) are
nonnegative and also the first two terms are increasing with T > 0. Observing that the right
hand side of (4.11) is independent of T > 0, we know that the third term in the left hand
side of (4.11) is decreasing with T > 0. Therefore, all three terms have finite nonnegative
limit when T → ∞. Hence, letting T → ∞ in (4.11) yields∫ ∞

0

eλtp′i0(t)dt + u(λ)

∫ ∞

0

eλtp′i1(t)dt + u(λ)2 lim
T→∞

eλT Fi(T, u(λ)) = u(λ)i. (4.14)

We now further prove that the third limit on the left hand side of (4.14) is zero for all
λ < λC . To this end, assume that limT→∞ eλT Fi(T, u(λ)) > 0 for some λ < λC . Since
u(λ) is increasing with λ and thus for any λ̃ ∈ (λ, λC), we have Fi(T, u(λ̃)) ≥ Fi(T, u(λ)).
It then follows that lim infT→∞ eλT Fi(T, u(λ̃)) > 0. Thus since λ̃ > λ, we must have

limT→∞ eλ̃T Fi(T, u(λ̃)) = +∞. However, (4.11) also holds for λ = λ̃ and thus∫ ∞

0

eλtp′i0(t)dt + u(λ̃)

∫ ∞

0

eλ̃tp′i1(t)dt + u(λ̃)2 lim
T→∞

eλ̃T Fi(T, u(λ̃)) = u(λ̃)i

which contradicts with limT→∞ eλ̃T Fi(T, u(λ̃)) = +∞. Therefore, limT→∞ eλT Fi(t, u(λ)) = 0
and hence (4.13) is proven. It then follows from (4.11) that∫ ∞

0

eλtp′i0(t)dt + u(λ)

∫ ∞

0

eλtp′i1(t)dt = u(λ)i (4.15)

which implies that
∫ ∞
0

eλtp′i0(t)dt < +∞ and
∫ ∞

0
eλtp′i1(t)d < +∞. Hence, by (4.12) we

know that ∫ ∞

0

eλtp′i0(t)dt + v(λ)

∫ ∞

0

eλtp′i1(t)dt = v(λ)i. (4.16)

Now, (4.3) and (4.4) follow from (4.15) and (4.16) for the case of λ < λC .
Finally, by taking the appropriate limit, it can be easily proved that (4.8) and (4.9) also

hold for λ = λC . �.
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Remark 4.2. Again, if one compares expressions (4.8) and (4.9) with expressions (26) and
(27) presented in Theorem 1 in Chen et al [8], one would interestingly find, once again, that
the former two expressions are just the extensions of the latter two to the domain (−∞, λC).

Theorem 4.2. Let P (t) = (pij(t); i, j ∈ Z+) be the stopped BABS-process with generator
matrix Q as defined in (1.2)–(1.3). Then for any λ ∈ (−∞, λC] and i ≥ 2,

∞∑
k=2

(∫ ∞

0

eλtpik(t)dt

)
sk−2

=
1

B(s) + λs2

(
u(λ)v(λ)i − v(λ)u(λ)i

u(λ) − v(λ)
+

u(λ)i − v(λ)i

u(λ) − v(λ)
s − si

)
, |s| < u(λ) (4.17)

and, in particular,

∫ ∞

0

eλtp2k(t)dt = u(λ)4−k G
(k−2)
λ (0)

(k − 2)!
, (k ≥ 2) (4.18)

where G
(k)
λ (0) denotes the k’th derivative of

Gλ(s) =
1

B(u(λ)s) + λu(λ)2s2

[
−v(λ)

u(λ)
+

(
1 +

v(λ)

u(λ)

)
s − s2

]

evaluated at 0. Hence the stopped BABS-process is always λC-transient.

Proof. Letting T → ∞ in (4.10) and using (4.8)–(4.9) immediately yields (4.17). Then
(4.18) follows directly from (4.17) by first letting i = 2 and then letting s = u(λ)s. �

5. Invariant measures and Quasi-stationary Distributions

We now turn our attention to the λC-invariant measures and quasi-stationary distributions
for P (t) on C. We shall assume in this section that Q is conservative.

Theorem 5.1. Suppose that the generator matrix Q defined in (1.2)–(1.3) is conservative.
Let P (t) = (pij(t); i, j ∈ Z+) be the Q-function of the stopped BABS-process and λC be the
decay parameter of C. Then for any λ ∈ [0, λC ],

(i) there exists a λ-invariant measure (mi; i ∈ C) for Q on C, which is unique up to

constant multiples. Moreover, the generating function of this λ-invariant measure

M(s) =
∑∞

i=2 mis
i−2 takes the simple form as

M(s) =
m2b0

B(s) + λs2

(
1 − s

v(λ)

)
, |s| < u(λ) (5.1)

where v(λ) is the largest negative root of B(s) + λs2 = 0 and m2 > 0 is a constant.

(ii) This measure (mi; i ∈ C) is also a λ-invariant measure for P (t) on C.

(iii) This λ-invariant measure is convergent (i.e.,
∑

i∈C mi < ∞) if and only if B′(1) < 0,

ρ > 1 (including ρ = +∞) and 0 < λ ≤ λC, where ρ is the convergence radius of B(s).
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Proof. For λ ∈ [0, λC ], let u(λ) and v(λ) denote the smallest positive and the largest
negative root of B(s) + λs2 = 0, respectively. Consider

B̃(s) = B(u(λ)s) + λu(λ)2s2, |s| ≤ 1.

It is easy to see that B̃(1) = 0 and B̃′(1) ≤ 0. By Lemma 2 of Chen et al [9], the function

G(s) = 1−s
eB(s)

(
s − v(λ)

u(λ)

)
is well defined at least in (−1, 1) and can be expanded as a Taylor

series

G(s) =

∞∑
k=0

gks
k, |s| < 1

where the coefficients gk = G(k)(0)/k! (k ≥ 0) satisfy 0 < gk ≤ g0 = − v(λ)
b0u(λ)

(k ≥ 1).
Therefore

1

B̃(s)

(
s − v(λ)

u(λ)

)
=

∞∑
n=0

(
n∑

k=0

gk

)
sn, |s| < 1.

Choose m2 > 0 and define

mi+2 =
m2

g0(u(λ))i

i∑
k=0

gk, i ≥ 1. (5.2)

Then the sequence {mj; j ≥ 2} so defined is clearly strictly positive. Now for all |s| < u(λ),

M(s) =

∞∑
i=0

mi+2s
i =

m2

g0

∞∑
i=0

(
i∑

k=0

gk

)(
s

u(λ)

)i

=
m2

g0B̃
(

s
u(λ)

)
(

s

u(λ)
− v(λ)

u(λ)

)

=
m2

g0(B(s) + λs2)

(
s

u(λ)
− v(λ)

u(λ)

)

=
m2b0

B(s) + λs2

(
1 − s

v(λ)

)
.

Here the last equality follows from the fact that g0 = − v(λ)
b0u(λ)

. Hence

B(s)M(s) − m2b0

(
1 − s

v(λ)

)
= −λM(s)s2, |s| < u(λ).

Comparing the coefficient of s in the above equality, we know that the coefficient of s in the
left-hand side must be 0, i.e,

m3b0 + m2b1 +
m2b0

v(λ)
= 0.

Therefore

B(s)M(s) − m2b0 − (m3b0 + m2b1)s = −λM(s)s2, |s| < u(λ)
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and hence

∞∑
j=2

(
j+2∑
i=2

mibj−i+2

)
sj = −λM(s)s2, |s| < u(λ).

Noting that M(s) =
∑∞

j=2 mjs
j−2, we get

j+2∑
i=2

mibj−i+2 = −λmj , j ≥ 2 (5.3)

which shows that (mi; i ∈ C) is a λ-invariant measure for Q on C.
We now prove uniqueness. Suppose that μ ∈ [0, λC] and (mi; i ≥ 2) is a μ-invariant

measure for Q on C, that is, mi > 0 (i ≥ 2) and

j+2∑
i=2

mibj−i+2 = −μmj , j ≥ 2. (5.4)

Let b = −b2, then b > 0 and b > λC . We shall prove the uniqueness in three steps. First
show that the generating function M(s) =

∑∞
j=2 mjs

j−2 of {mj ; j ≥ 2} is well defined at

least on
(
−

√
b0

b−μ
,
√

b0
b−μ

)
. Indeed, note that (5.4) can be rewritten, after replacing b2 = −b,

as

mj+2b0 = (b − μ)mj −
∑

i∈{2,··· ,j+1}\{j}

mibj−i+2, j ≥ 2 (5.5)

and hence mj+2 ≤ b−μ
b0

mj . Therefore,

m2j ≤
(

b − μ

b0

)j−1

m2, j ≥ 2 (5.6)

m2j+1 ≤
(

b − μ

b0

)j−1

m3, j ≥ 2. (5.7)

It follows from (5.6) and (5.7) that the convergence radius of M(s) =
∑∞

j=2 mjs
j−2 is at

least
√

b0
b−μ

.

Secondly, it follows from (5.4) that for all s ∈
(
−

√
b0

b−μ
,
√

b0
b−μ

)
,

∞∑
j=2

(
j+2∑
i=2

mibj−i+2

)
sj = −μ

∞∑
j=2

mjs
j. (5.8)

Using some algebra yields that for all s ∈
(
−

√
b0

b−μ
,
√

b0
b−μ

)
,

(B(s) + μs2)M(s) = m2b0 + (m3b0 + m2b1)s. (5.9)
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Note that although (5.9) is obtained under the condition that |s| <
√

b0
b−μ

, the right hand

side of (5.9) is positive for all s > 0. However, B(s)+μs2 is finite and in fact positive for all
s ∈ (0, u(μ)), where u(μ) is the smallest positive zero of B(s) + μs2 as defined above, and
thus M(s) is also well-defined. That is that M(s) is finite for all s ∈ (0, u(μ)). Furthermore,
we have

M(s) =
m2b0 + (m3b0 + m2b1)s

B(s) + μs2
, s ∈ (0, u(μ)). (5.10)

Recall that B(s) + μs2 = 0 has a largest negative root v(μ) ∈ (−u(μ), 0) and thus M(v(μ))
is finite. It then follows from (5.9) that

m2b0 + (m3b0 + m2b1)v(μ) = 0. (5.11)

Noting that B(s) + μs2 = 0 has exactly two roots on [−u(μ), u(μ)], we may further write
(5.10) as

M(s) =
m2b0 + (m3b0 + m2b1)s

B(s) + μs2
, s ∈ (−u(μ), u(μ)). (5.12)

Because of (5.11), we know that the μ-invariant measure is unique up to constant multiples.
We now prove (ii). By Theorem 5.4.3 of Anderson [1], we only need to show that the

equations

j+2∑
i=2

yibj−i+2 = −νyj , 0 ≤ yj ≤ mj , j ≥ 2 (5.13)

has no nontrivial solution (yi; i ≥ 2) for some ν < λ. Indeed, suppose that (yi; i ≥ 2) is
a solution of (5.13). Since |M(s)| < ∞ for all |s| < u(λ) and yj ≤ mj (j ≥ 2), we know
that Y (s) =

∑∞
j=2 yjs

j−2 is convergent for all |s| < u(λ). Hence, it is easily seen that for
|s| < u(λ),

(B(s) + νs2)Y (s) = y2b0 + (y3b0 + y2b1)s.

Since ν < λ, we know that B(s)+νs2 = 0 has a positive root s̃ ∈ (0, u(λ)). Letting s = s̃ in
the above equality and noting Y (s) ≤ M(s) < ∞ for all s ∈ (0, u(λ)) yields that y2 = y3 = 0.
Hence, Y (s) = 0 for s ∈ (0, u(λ)) which implies that yi = 0 (i ≥ 2). Conclusion(ii) is thus
proven.

Finally, note that B(s) + λs2 = 0 has a smallest positive root u(λ) > 1 if and only if
B′(1) < 0, ρ > 1 and 0 < λ ≤ λC and thus conclusion (iii) follows from (5.1). The proof is
complete. �
Remark 5.1. Since a λ-invariant measure for P (t) on C must be a λ-invariant measure
for Q on C. Theorem 5.1 implies that the λ-invariant measure for P (t) on C is unique up
to constant multiples.

Having given the λC-invariant measure, we now further consider the quasi-stationary
distributions for P (t) = (pij(t); i, j ∈ Z+) on C.
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Theorem 5.2. Suppose that the generator matrix Q defined in (1.2)–(1.3) is conservative.
Let P (t) = (pij(t); i, j ∈ Z+) be the corresponding stopped BABS queueing process and λC be
the decay parameter determined as above. Then there exists a quasi-stationary distribution
for P (t) = (pij(t); i, j ∈ Z+) on C if and only if B′(1) < 0 and ρ > 1. Moreover, if
these conditions hold, then there exist one-parameter family of quasi-stationary distributions
{(mi(λ); i ∈ C); λ ∈ (0, λC ]} which can be given by

Mλ(s) =
λ(s − v(λ))

(1 − v(λ))(B(s) + λs2)
, |s| < u(λ) (5.14)

where Mλ(s) =
∑∞

i=2 mi(λ)si−2 and v(λ) is the largest negative root of B(s) + λs2 = 0.

Proof. By Proposition 3.1 of Nair and Pollett [32], a probability distribution (mi; i ∈ C)
on C is a quasi-stationary distribution for P (t) = (pij(t); i, j ∈ Z+) on C if and only if,
for some λ > 0, (mi; i ∈ C) is λ-invariant for P (t) = (pij(t); i, j ∈ Z+) on C. Thus the
conclusions follow from Theorem 5.1. �

6. Examples

In this section, we present some examples to illustrate the results obtained in the previous
sections. Since a stopped BABS generator matrix only depends on the sequence {bk; k ≥ 0}
and it is clear how to construct the generator matrix Q from this sequence, we shall, in
the following examples, only specify the sequence {bk; k ≥ 0} and then discuss the decay
parameter λC of the corresponding queueing process.

Example 6.1. Assume that b0 = d2 > 0, b1 = d1 ≥ 0 and there exists k ≥ 3 such that

bk = b > 0 and bj = 0 (j ≥ k + 1) and b2 = −
(
d2 + d1 +

∑k
j=3 bj

)
. This is a queueing

model that no more than k − 2 customers (if k = 3, then no more than 1 customer) will
arrive at the queue and the serve rates for 1 and 2 customers are d1 and d2, respectively.
For this example, we have ρ = +∞ and

B(s) = d2 + d1s −
(

d2 + d1 +
k∑

j=3

bj

)
s2 +

k∑
j=3

bjs
j (6.1)

and

B′(s) = d1 − 2

(
d2 + d1 +

k∑
j=3

bj

)
s +

k∑
j=3

jbjs
j−1. (6.2)

By Theorem 3.5, we know that λC and s∗ can be determined by using (3.31) or (3.32). That
is that s∗ is the positive zero of the polynomial

k∑
j=3

(j − 2)bjs
j − d1s − 2d2

and then λC = −B′(s∗)
2s∗

. In particular, if k = 3 and b3 = b > 0, then

B(s) = d2 + d1s − (d1 + d2 + b)s2 + bs3
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and

B′(s) = d1 − 2(d1 + d2 + b)s + 3bs2.

The equation (3.32) becomes

{
bs3 − 2d2 − d1s = 0

2λs + d1 − 2(d1 + d2 + b)s + 3bs3 = 0

If d1 = 0, then
{

bs3 − 2d2 = 0

2λs − 2(d2 + b)s + 3bs3 = 0

and hence the equation bs3 − 2d2 = 0 has a unique positive root s∗ = 3
√

2d2/b (the other
two roots are complex). Therefore, we have

λC = d2 + b − 3

2
3
√

2d2b2.

If d1 > 0, then the unique positive root of the equation bs3 = 2d2 + d1s is

s∗ =
3

√√√√d2

b
+

√(
d2

b

)2

−
(

d1

3b

)3

+
3

√√√√d2

b
−

√(
d2

b

)2

−
(

d1

3b

)3

and hence

λC = (d1 + d2 + b) − 3b

2
s2
∗ −

d1

2s∗
.

For any λ ∈ [0, λC ], the generating function of λ-invariant measure M(s) =
∑∞

i=2 mis
i−2

is given by

M(s) =
m2d2

B(s) + λs2
(1 − s

v(λ)
)

where v(λ) is the largest negative root of B(s) + λs2 = 0 and m2 > 0 is a constant. This

M(s) gives a quasi-stationary distribution if and only if
k∑

j=3

(j−2)bj < 2d2+d1. In particular,

if k = 3 and b3 = b > 0, then this M(s) gives a quasi-stationary distribution if and only if
b < 2d2 + d1.

Example 6.2. Let b0 = (1 − α)a, b1 = (1 − α)(1 − a), bj = α(1 − b)bj−3 (j ≥ 3) and
b2 = −1 where 0 < a ≤ 1, 0 < α < 1, 0 ≤ b < 1. This is a queue that the arrival rates
follow a geometric distribution coupled with the serve rates follow a Bernoulli distribution.
For this example, we have

B(s) = (1 − α)[a + (1 − a)s] − s2 +
α(1 − b)s3

1 − bs
. (6.3)
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Hence, ρ = 1/b and B(ρ) = +∞. Therefore by Theorem 3.5 we see that λC and s∗ must
satisfy Equation (3.32) in the unknowns λ and s. That is

{
sB′(s) − 2B(s) = 0

λ = −B′(s)
2s

.

Recall g(s) = sB′(s) − 2B(s), it is thus easy to see that

g(s) =
α(1 − b)s3

(1 − bs)2
− (1 − α) (2a + (1 − a)s) .

Note that g(0) = −2(1 − α)a < 0 and g(1/b) = +∞ and thus g(s) = 0 has a root s∗ in
(0, 1/b). By Lemma 2.5 we also know that s∗ is the unique positive root of g(s) = 0. Note
also that g(1) = α(1 − b)−1 − (1 − α)(1 + a) and hence if α/(1 − b) > (1 − α)(1 + a) then
s∗ ∈ (0, 1) while if α/(1 − b) < (1 − α)(1 + a) then s∗ ∈ (1, 1/b). The above calculation
coincides with our intuitive explanation. Indeed, for this example, mb = α/(1 − b) and
md = (1 − α)(1 + a) and thus mb > md if and only if α/(1 − b) > (1 − α)(1 + a)

To get the exact value of s∗, we need to find the positive root of the equation

α(1 − α)−1(1 − b)s3 = [2a + (1 − a)s](1 − bs)2

or

[α(1 − α)−1(1 − b) − (1 − a)b2]s3 + 2b(1 − a − ab)s2 + (4ab + a − 1)s − 2a = 0 (6.4)

After finding this positive root s∗, then

λC = 1 − 1

2

[
(1 − α)(1 − a)

s∗
+ α(1 − b)s∗

3 − 2bs∗
(1 − bs∗)2

]
.

In particular, if a = 1 (that is b0 = 1 − α and b1 = 0), then Equation (6.4) becomes

α(1 − α)−1(1 − b)s3 − 2b2s2 + 4bs − 2 = 0

and then

λC = 1 − α(1 − b)
3s∗ − 2bs2

∗
2(1 − bs∗)2

.

Note also that if a = 1 then g(1) = α
1−b

− 2(1 − α) and hence if α(1 − α)−1 > 2(1 − b)
then 0 < s∗ < 1 while if α(1 − α)−1 < 2(1 − b) then 1 < s∗ < 1/b. In the special case of
α(1 − α)−1 = 2(1 − b), we have s∗ = 1 and thus λC = 0. For all other cases, λC > 0.

For any λ ∈ [0, λC ], the generating function of λ-invariant measure M(s) =
∑∞

i=2 mis
i−2

is given by

M(s) =
m2(1 − α)a

B(s) + λs2
(1 − s

v(λ)
)

where v(λ) is the largest negative root of B(s) + λs2 = 0 and m2 > 0 is a constant. This
M(s) gives a quasi-stationary distribution if and only if (1 − α)(1 − a) + 3α−2b

1−b
< 2.
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Finally, we consider a more subtle example. We shall see that even for this complicated
example, Theorem 3.5 still works well.

Example 6.3. Suppose that b0 = d2 > 0, b1 = d1 ≥ 0, bk = bθk

k(k−1)(k−2)
(k ≥ 3) and

b2 = −
[
d2 + d1 + b

∑∞
k=3

θk

k(k−1)(k−2)

]
, where b > 0 and 0 < θ ≤ 1.

For this example we have

B(s) = d2 + d1s + b2s
2 + b

∞∑
k=3

(θs)k

k(k − 1)(k − 2)
(6.5)

and thus ρ = 1/θ < +∞. Easy algebra then yields

B′(s) = d1 + 2b2s + b
∞∑

k=3

θksk−1

(k − 1)(k − 2)
(6.6)

and

g(s) = −2d2 − d1s + b
∞∑

k=3

(θs)k

k(k − 1)
. (6.7)

By (6.7), we immediately obtain

g(ρ) = g

(
1

θ

)
=

b

2
−

(
2d2 +

d1

θ

)

which is nonnegative if and only if b
2
≥ 2d2 + d1

θ
.

Note also that closed forms for B(s), B′(s) and g(s) in (6.5)–(6.7) are available. In
particular, after easy algebra, B′(s) can be written as

B′(s) = d1 +

[
bθ(2 − θ)

2
+ b(1 − θ)2 ln(1 − θ) − 2(d2 + d1)

]
s + bθ(1 − θs) ln(1 − θs). (6.8)

The form of B′(s) in (6.8) also holds for θ = 1 under the convention that limθ→1(1−θ) ln(1−
θ) = 0.

Now, an application of Theorems 3.4 and 3.5 immediately yields the following conclusion.

Theorem 6.1. (a) Suppose 0 < θ < 1.

(i) If b
2
≥ 2d2 + d1

θ
, then λC = −B′(s∗)

2s∗
where B′(s) is given in (6.8) and s∗ is the unique

positive root of the equation

(1 − θs) ln(1 − θs) − θ2s2

2
+

(
θ − d1

b

)
s =

2d2

b
. (6.9)

(ii) If b
2

< 2d2 + d1

θ
, then

λC = d2 + d1

(
1 − θ

2

)
− bθ(2 − θ)

4
− b(1 − θ)2

2
ln(1 − θ). (6.10)
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(b) Suppose θ = 1. Then λC = 0 if and only if b
2
≤ 2d2+d1 and for the case of b

2
> 2d2+d1,

this positive λC is given by

λC = d2 + d1 −
b

4
− d1 + b(1 − s∗) ln(1 − s∗)

2s∗

where 0 < s∗ < 1 is the unique positive root of the equation

(1 − s) ln(1 − s) − s2

2
+

(
1 − d1

b

)
s =

2d2

b
. (6.11)

Proof. Just note that g(ρ) ≥ 0 if and only if b
2
≥ 2d2 + d1

θ
and that, by some easy

algebra, g(s∗) = 0 if and only if s∗ is the unique positive root of the Equation (6.9), then
the conclusion in Part (a) immediately follows from Theorems 3.4 and 3.5. The conclusion
in Part (b) is also easy. In particular, Equation (6.11) is just the version of Equation (6.9)
when θ = 1. The proof is complete. �
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