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ABSTRACT System capacity and service coverage are the most critical performance metrics in cellular

wireless communication networks. Usually, system capacity enhancements are at the expense of service

coverage degradations, and vice versa. This capacity-coverage tradeoff and the associated joint optimization

problem becomes very challenging in massive multiple-input multiple-output (MIMO) wireless systems,

due to a large amount of antenna tilt values to be configured and very sophisticated inter-cell interference

conditions, under massive antenna scenarios. This paper proposes a novel approach, namely group alignment

of user signal strength (GAUSS), to efficiently support the user scheduling for the massive MIMO system,

and thus serve as an effective parameter for the coverage and capacity optimization (CCO) problem.

Together with a unified threshold of Quality of Service, i.e. the minimum signal-to-interference-plus-noise

ratio (SINRmin) for user satisfaction, GAUSS can effectively control the variance of signal strengths of

multiple users in the neighborhood. Moreover, an intelligent and efficient deep-learning enabled coverage

and capacity optimization (DECCO) algorithm is proposed and evaluated, which adopts a pre-trained deep

policy gradient-based neural network to dynamically derive GAUSS and SINRmin during CCO. Furthermore,

an inter-cell interference coordination (ICIC) is proposed to enhance the CCO performance. Analytical

and simulation results show that the proposed DECCO algorithm can effectively achieve a much better

performance balance between system capacity and service coverage than traditional fixed optimization (FO)

and proportional fair optimization (PFO) algorithms. Specifically, DECCO significantly increases the overall

spectrum efficiency by 24% and 40%, respectively, than FO and PFO in a typical massive MIMO system.

INDEX TERMS Coverage and capacity optimization, deep reinforcement learning, massive MIMO, user

scheduling, inter-cell interference coordination.

I. INTRODUCTION

The multiuser MIMO (MU-MIMO) technology plays an

important role in modern wireless communication systems

due to its capability of providing significant performance

gains over the single-user MIMO (SU-MIMO). With MU-

MIMO, a multi-antenna base station (BS) can simultaneously

serve multiple user equipments (UEs) within a cell using

the same spectrum resource, and thus greatly improving the

overall spectrum efficiency [2]. As a promising technology

for the Fifth Generation (5G) wireless communication stan-

dard [3]–[5], massiveMIMOwith large scale antennas further

enhances the system performance in terms of spectrum effi-

ciency and energy efficiency. In real operations, wemust con-

currently balance system capacity and service coverage by

appropriately tuning optimization parameters at BSs, which

is referred as the Coverage and Capacity Optimization (CCO)
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problem. Usually, CCO related system parameters include

reference signal power, antenna tilt, scheduling parameters,

and etc. However, it is very difficult and expensive to con-

figure a lagre number of antenna tilt values for adaptive

CCO. We have to study and define more tractable optimiza-

tion parameters for addressing the CCO in massive MIMO

systems.

Specifically, user scheduling mechanisms are responsible

for choosing how to allocate spectrum resources for the BSs

with fine time and frequency resolutions, taking into account

channel condition and QoS requirements. Thus we can seek

for tuning the scheduling parameters for the CCO problem

instead of antenna tilt. Combes et al. [6] proposed an α-fair

scheduler technique to improve coverage performance at the

expense of very small capacity losses. In [6], an optimization

parameter α was proposed to adaptively adjust the scheduling

rules based on whether the number of users is small or not.

Comsa et al. [7] proposed a dynamic neural Q-learning-

based scheduling technique that achieves a flexible system

capacity and user fairness tradeoff, including the Q-learning

algorithm is used to adopt different policies of scheduling

rules at each Transmission Time Interval (TTI). Nevertheless,

both [6] and [7] focuse on SU-MIMO that schedules only

one user for transmission. In the context of MU-MIMO and

massive MIMO, Sun et al. [8] proposes a joint user schedul-

ing and power allocation algorithm for Joint Spatial Division

and Multiplexing (JSDM) [9] scheme in massive MIMO

downlink systems, which schedules users and allocates power

iteratively with the MAX user scheduling and the Lagrange

power optimization method. Based on a two-stage precoding

framework for the massive MIMO systems, Xu et al. [10]

proposed an improved K -means user grouping scheme which

allocates the users to different pre-beamforming groups using

the second-order channel statistics, and then a user grouping

scheme that considers both load balancing and precoding

design. After user groups are determined, they presented a

dynamic user scheduling schemewhere second-stage precod-

ing is designed based on instantaneous channel conditions.

However, the researches of [8] and [10] are only to maximize

the system sum rate and thus without considering to concur-

rently optimize the system capacity and coverage.

In this paper, we propose a novel parameter GAUSS to

efficiently support the user scheduling for the massiveMIMO

system, and thus serve as an effective parameter for the CCO

problem. Together with SINRmin, GAUSS can effectively

control the variance of signal strengths of scheduled user

group. Moreover, the DECCO is proposed to dynamically

derive GAUSS and SINRmin during the process of coverage

and capacity optimization. We also propose an inter-cell

interference coordination scheme to enhance the CCO perfor-

mance. The key contributions of this work are summarized as

follows.

• A novel scheduling parameter GAUSS, together with a

unified threshold of quality of service SINRmin, is pro-

posed to address the challenging problem of CCO in

massive MIMO systems.

• A novel CCO algorithm DECCO is proposed to dynam-

ically derive the optimal combination of GAUSS and

SINRmin with a pre-trained policy gradient neural net-

work in the user scheduling scheme, together with a

novel ICIC scheme.

• Analytical and simulation results show that the proposed

DECCO algorithm can effectively achieve a much bet-

ter performance balance between system capacity and

service coverage. In particular, compared with tradi-

tional Fixed Optimization (FO) and Proportional Fair

Optimization (PFO) algorithms, DECCO significantly

increases both cell average and cell-edge spectrum effi-

ciency in a typical massive MIMO system.

The rest of this paper is organized as follows. In section II,

we briefly introduce the massive MIMO system model and

the coverage and capacity optimization problem formulation.

In section III, we present the novel optimization parame-

ter GAUSS for the user scheduling scheme. In section IV,

we present the DECCO algorithm, including the deep rein-

forcement learning-based user scheduling algorithm and the

inter-cell interference coordination scheme. In section V,

we give the simulation results to verify the effectiveness

of the proposed parameters, and compare the coverage and

capacity performance of our proposed DECCO algorithm

with a algorithm using the best fixed configuration of the pro-

posed parameters in the user scheduling scheme. We finally

conclude this work in section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first briefly introduce the system model

for multiuser massive MIMO and the user SINR estimation

model. Then we provide the formulation of the coverage and

capacity optimization problem.

A. MASSIVE MIMO SYSTEM MODEL

We consider the downlink transmission of a massive MIMO

network as depicted in Figure 1. The shadow area of the

cells is regarded as the cell center and the area between the

dashed line and the solid line is defined as the cell edge.

For the CCO problem of this system, the Key Performance

FIGURE 1. A typical massive MIMO network scenario with inter-cell
interference.
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Indicators (KPIs) of system capacity and service coverage are

thus defined as the Cell Average SpectrumEfficiency (CASE)

and the Cell-Edge Spectrum Efficiency (CESE), which are

calculated as the average spectrum efficiency of all the users

in the cell and the cell-edge users, respectively.

Each BS is equipped withMt antennas, and can simultane-

ously serve K user terminals with Nr antennas. We assume

that the Mt × (K × Nr ) dimensional channel matrix H is

fixed for a certain block length, which is the coherence time

of the channel, and changes from block to block. In order

to reduce the Channel State Information (CSI) feedback

overhead, two-stage precoding scheme is usually adopted

for Frequency Division Duplexing (FDD) massive MIMO

systems [9], [11], [12]. The inner precoder adopts zero-

forcing scheme based on local CSI, and the outer precoder

groups the UEs based on the similarity of the eigenspace of

auto-correlation matrix of the UEs’ downlink channel. The

received signals at the user side using the two-stage precoding

scheme is then given by

y = HHBPd+ z, (1)

where y is the received signal, d is transmitted data symbol

vector, z is the additive Gaussian noise, B is outer precoder,

P is the inner precoder, and H is the channel matrix. Assum-

ing each UE’s signal is allocated with equal power, the nor-

malized received signal ỹ can be further obtained as

ỹ =

√

Pt/N

Tr(BPPHBH )
HHBPx+ n, (2)

where Pt is the total transmit power at BS, N is the noise

power, x and n are the normalized signal and Gaussian noise

respectively, and Tr(·) denotes the matrix trace.

B. PROBLEM FORMULATION

Considering the interference, the user SINR could be

estimated as

SINR =
Pt/(N + I )

Tr(BPPHBH )
. (3)

In downlink of massive MIMO network with MU-MIMO

transmission mode, the number of transmit antennas at the

BS is much larger than the total number of receive antennas of

scheduled UEs in a cell, thus the two-stage precoding scheme

using distributed zero-forcing can apparently reduce inter-

cell interference and intra-cell interference.

In each scheduling duration, users’ SINR can be calculated

according to the channel matrix composed by the scheduled

users, and then the SINR of each user can be estimated

accurately assuming we can get ideal CSI. When scheduling,

the minimum user SINR threshold, denoted as SINRmin, can

be used to control the minimum SINR value of the user and

adjust coverage and capacity performance. The bandwidth

of spectrum is denoted as B, which is shared by the users

when scheduling. Multiple users can be scheduled simultane-

ously to improve the spatial gain. For the sake of simplicity,

we assume the interference is perfectly cancelled through the

two-stage precoding scheme and the inter-cell interference

coordination scheme. Thus the users’ SINR within each cell

in the network can be estimated as follows.

SINR =
Pt/N

Tr(BPPHBH )
. (4)

The instantaneous spectrum efficiency of a cell at certain time

step t can be calculated as

E(t) =

∑K∗

k=1 B log2(1+ ρk )

B
=

K∗
∑

k=1

log2(1+ ρk ), (5)

whereK is the number of scheduled users, ρk is the k-th user’s

SINR, defined by Equation 4. Thus CASE can be computed

as Cumulative Distribution Function (CDF) of 50% tile of

the instantaneous spectrum efficiency, and CESE can be cal-

culated as CDF of 5% tile of the instantaneous spectrum effi-

ciency. A unified KPI of an optimization area, e.g., sector i,

is defined as

KPIi = wE5% + (1− w)E50%, (6)

where E denotes E(t), and w is used as a weight factor to

balance coverage and capacity performance. As mentioned

in previous section, we utilize user scheduling scheme and

interference coordination scheme for the optimization of cov-

erage and capacity. The scheduling results of a sector has

little impact on neighboring regions since the interference is

perfectly cancelled through the two-stage precoding scheme

and the inter-cell interference coordination scheme. In this

sense, the scheduling result will result in little effect on the

neighboring sectors’ KPIs. Thus the coverage and capacity

optimization problem can be formulated as a KPI maximiza-

tion problem for a sector i:

max
G

KPIi = wE5% + (1− w)E50%,

s.t. 0 < |G| ≤ K∗,

0 ≤ w ≤ 1, (7)

where G is defined as the group of scheduled users, and the

number of users in the group in constrained by K∗. Note that

this optimization problem is constrained by how to sched-

ule the users. We will offer the discussion in the following

section.

III. GROUP ALIGNMENT OF USER SIGNAL STRENGTH

In this section, we introduce our proposed optimization

parameter GAUSS, which is used to identify the qualified

users to be scheduled.

According to the property of singular value decomposition

(SVD), we can get

Tr(BPPHBH) = Tr(uλvHvuH )

= Tr(λ2uHu)

= Tr(λ2)

=

K∗
∑

k=1

λ2k , (8)
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where BP = uλvH with singular values λ =

diag
(

λ1, · · · λk , · · · λ
∗
K

)

in descending order. With the

scheduling constraints, K∗ should be no larger than the rank

of BPPHBH . Substituting (8) into (5), with µ = Pt
N

, there is

E(t) =

K∗
∑

k=1

log2(1+
µ

K∗
∑

i=1

λi
2

), (9)

where λi
2 can be interpreted as the channel gain factor for

each user in the MIMO scenario, this value is larger for the

cell-edge user, and smaller for the cell-center user. Equa-

tion 9 can be rewritten as

E(t) =

K∗
∑

k=1

log2(1+
µ

λ1
2
K∗
∑

i=1

γ 2
i

), (10)

where γi =
λi
λ1

and γ1 = 1, γi < 1(i 6= 1). Thus we can infer

that spectrum efficiecy is mainly determined by a small num-

ber of users with larger channel gain factor. If the cell-center

users and the cell-edge users are scheduled simultaneously,

the throughput of the center users will be lowered by the cell-

edge users. In order to ensure the system capacity will not

decline while improving the spatial multiplexing rate, it needs

to guarantee the gap between max(λi) and min(λi) within a

certain range. In this sense, we introduce the user scheduling

optimization parameter GAUSS to align the users’ SINR in

the scheduled user group, where GAUSS is defined as follows

R =
max(λi)

min(λi)
. (11)

If we increase the value of GAUSS, i.e. R, the num-

ber of scheduled user K increases while the k-th user’s

instantaneous SINR ρk decreases since more UE scheduled.

We denote ξi as the average channel gain factor of user i. Then

Equation 10 can be rewritten as follows

E(t) =

K∗
∑

i=1

log2(1+
µ

ξi
) (12)

The user’s average channel gain factor is sorted in ascend-

ing order, combined with group alignment of users’ signal

strength R, Figure 2 can be obtained. After selecting a user i,

with the average channel gain factor of the user ξi as the center

and the group alignment of users’ signal strength R as the

radius, the qualified users that can participate the scheduling

process can be determined. The user channel condition at the

left of ξi is superior to user i, the user channel condition at

the right of ξi is inferior to user i. According to the previous

analysis, in a scheduling process we should obtain the user

set based on their channel condition, and the target user set

is controlled by how we choose R, i.e. the value of GAUSS.

Further considering SINRmin, we can obtain the following

inequality

ξi ≤
µ

SINRmin
= β. (13)

FIGURE 2. Group alignment of users’ signal strength.

If ξi is smaller than β, the scheduling user i can satisfy the

constraint in (11) and can be scheduled with other users;

otherwise, user i cannot satisfy the constraint in (11) and

cannot be scheduled with other users to avoid lower SINR.

In this sense, the users on the left side of β can be reused when

scheduling, while the users on the right side of β cannot be

reused when scheduling. Another observation is that SINRmin

determines the location of β, as SINRmin decreasing, the point

of β moves to the right. Hence the system capacity decreases

due to more poor channel condition users are scheduled.

However, since the SINR of the users located to the right

of β is higher, the coverage performance can be improved.

When we increase SINRmin, the system capacity and network

coverage change vice versa.

IV. DEEP-LEARNING ENABLED COVERAGE AND

CAPACITY OPTIMIZATION

In this section, we present the DECCO algorithm to

perform the capacity-coverage optimization by the deep

reinforcement learning-based user scheduling scheme and a

subsequent inter-cell interference coordination scheme. The

overall framework of DECCO is depicted in Figure 3, and the

detailed implementation is presented in the following.

FIGURE 3. The framework of DECCO algorithm with a joint ICIC scheme
and user scheduling scheme.

A. PRELIMINARIES

We will only introduce the basic concepts of deep reinforce-

ment learning techniques that we build on in this paper.

Detailed survey and rigorous derivations can be found in [13].
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1) REINFORCEMENT LEARNING

Reinforcement learning is a model-free method to solve a

Markov decision process (MDP). Typically, an MDP con-

sists of a state space S , an action space A, a stationary

transition distribution describing the environment dynam-

ics p(st+1|st , at ) which satisfies the Markov property, and

a reward function r . Figure 4 shows a general setting of

reinforcement learning where an agent interacts with an

environment [14]. The agent observes some state st and

chooses an action at at each time step t . Once the action is

done, the state of the environment transitions to st+1 and the

agent receives reward rt . Specially, the state transitions and

rewards of the environment are stochastic and are assumed to

have the Markov property, thus they are only depending on

the value of the previous timestep.

FIGURE 4. Reinforcement Learning with DNN as function approximator.

We should notice here that the agent can only control its

actions and have no apriori knowledge of the environment.

However, the agent can learn to act properly by randomly

choosing actions and observing the transitions of the envi-

ronment. The goal of learning is to maximize the expected

cumulative discounted reward:E[
∑∞

t=0 γ trt ], where γ is a

factor discounting future rewards within (0,1]. If we set a very

small γ , learning will not depend on future rewards much and

immediate rewards are dominating. On the other hand, if it is

too large, learning will count on future rewards heavily.

2) POLICY

At each timestep t , the agent’s decision making procedure is

characterized by a Policy, π (s, a) = Pr{at = a|st = s}, ∀s ∈

S, a ∈ A, which is the probability distribution that action a

is taken in state s. In practical problems, the state space and

action space are normally large, which is intractable to store

the policy in tabular form. In this sense, function approxima-

tors are utilized to parametrize the policy as πθ (s, a) with a

parameter vector θ , where θ ∈ R
l , for l << |S|. Another

advantage of function approximators is that the agent could

take similar actions for ‘‘close-by’’ states.

There are many forms of function approximators that can

be used to represent the policy. It is popular to use linear com-

binations of features of the state/action space as the function

approximator. Recently Deep Neural Networks (DNNs) have

been successfully used to account for large-scale reinforce-

ment learning tasks. Generally speaking, algorithms that use

DNNs are belong to Deep Learning techniques. The insight of

using DNNs as the function approximators is that they do not

need human-crafted features. In this paper, we use a DNN to

represent the policy and thus our algorithm is Deep-learning

enabled.

3) POLICY GRADIENT METHODS

Policy gradient methods are heavily used in the recent state-

of-the-art reinforcement learning algorithms. In these meth-

ods, training of the policy is performed by following the

gradient of cumulative discounted reward with respect to the

parameter vector, which is given by [15]:

∇θE[

∞
∑

t=0

γ trt ] = Eπθ
[∇θ logπθ (s, a)Q

πθ (s, a)], (14)

where Qπθ (s, a) is the value of expected cumulative dis-

counted reward by determinstically choosing action a in

state s. The insight of policy gradient methods is to estimate

the gradient by observing the trajectories of executions that

are obtained by executing the policy. The agent emprically

calculates the cumulative discounted reward vt with the sim-

pleMonte Carlo Method [16] by sampling multiple trajecto-

ries, and uses it as an unbiased estimate of Qπθ (st , at ). Thus

the policy parameters are updated via gradient descent as

follows

θ ← θ + α
∑

t

∇θ logπθ (st , at )vt , (15)

where α is the step size. This equation leads to the episodic

REINFORCE algorithm [15] which can be intuitively under-

stood as follows. The agent should update the policy param-

eters following the direction of ∇θ logπθ (st , at ) thus to

increase πθ (st , at ) (the probability of action at at state st ).

This results in the effect that reinforces actions that empiri-

cally lead to better performance.

B. USER SCHEDULING SCHEME

The user scheduling scheme takes into account both spec-

trum efficiency and user fairness. We choose the first user

with classical proportional fair (PF) scheduling factor. While

scheduling the other users, we introduce the group alignment

of users’ signal strength R to ensure spectrum efficiency, and

meanwhile exploit SINRmin to ensure user estimated SINR no

less than it thus ensuring system capacity. We assume that L

is the user set to be scheduled, g is the scheduled user set, rk is

the instantaneous data rate of user k , Dk is the average data

rate of user k , M is the number of scheduled users, K∗ is the

maximum number of scheduled users, λmax and λmin are the

maximum and the minimum singular value respectively, R is

the maximum group alignment of users’ signal strength.

In this paper, we seek to dynamically choose SINRmin and

R for each TTI. The resulting user scheduling scheme consists

of two phases: 1) In each TTI, SINRmin and R are identi-

fied via the deep reinforcement learning algorithm. 2) Then

SINRmin and R are utilized by the subsequent user scheduling

scheme.
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1) THE DEEP REINFORCEMENT LEARNING FORMULATION

State space. Each sector of the cell is defined as a agent

that aims to maximize both CASE and CESE of the cell.

We define the continuous state as: st = {CASEt ,CESEt },

where CASE and CESE of the cell at timestep t can be

calculated by the previous definition.

Action space. The action space is constructed by the com-

binations of SINRmin and R parameter sets. Suppose there

are m discrete levels of SINRmin and n discrete levels of R

respectively, thus the action space consists of m · n combina-

tions. We use DNN as function approximator to compute the

policy that the agent should follow in a given state, where the

policy is the combination of SINRmin and R with the largest

probability that can result in the largest reward.

at = argmax
a

πθ (st , a) (16)

DNN is used to approximate the policy in the sense that the

state space is continuous in our scenario, where we can not

use a tabular to store the learned policies.

Rewards. The reward function is calculated with Equa-

tion 17 by taking into account the sub-rewards for CASE and

CESE.

rt = η · rCASEt + (1− η) · rCESEt , (17)

where η (0 ≤ η ≤ 1) is the weight that enables the setting of a

desired tradeoff between CASE and CESE. The sub-rewards

are defined as follows

rCASEt =

{

1, CASEt+1 ≥ CASEt ,

−1, otherwise.
(18)

The same expression is applied for rCESEt .

2) TRAINING

Based on the above formulation, we represent the policy as a

neural network (called policy network) which takes as input

the state st , and outputs a probability distribution over all

possible actions. The policy network is trained with a variant

of the REINFORCE algorithm in an episodic setting. In each

training iteration, we run N episodes for a fixed duration of

T TTIs to explore the probabilistic space of possible actions

using the current policy, and use the resulting data to improve

the policy. We should notice here that an episode is the

whole simulation procedure of a TTI consisting of computing

SINRmin and R via policy network, utilizing the parameters

in user scheduling, and inter-cell interference coordination.

The trajectories consisted of the state, action, and reward

are recorded for all timesteps of each episode, and use these

values to calculate the discounted cumulative reward, vt ,

at each timestep t of each episode. The estimation of policy

gradient with Equation 15 introduces high variance, thus

we need to subtract a baseline from vt . A simple approach

that we calculate the baseline is to use the average of the

discounted cumulative rewards. The implementation of the

variant REINFORCE algorithm is described as Algorithm 1.

Algorithm 1 Policy gradient algorithm

1: Initialize policy with parameter θ1
2: for iteration k = 1, 2, . . . do

3: 1θ ← 0

4: run episode i = 1, . . . ,N :

5: Obtain {si1, a
i
1, r

i
1, . . . , s

i
T , aiT , r iT } under policy πθk

6: for t = 1,. . . ,T do

7: for i = 1,. . . ,N do

8: compute rewards: vit =
∑T

s=t γ
s−tr is

9: compute baseline: bit =
1
N

∑N
i=1 v

i
t

10: 1θ ← 1θ + α∇θ logπθ (s
i
t , a

i
t )(v

i
t − b

i
t )

11: end for

12: end for

13: θk ← θk +1θ

14: end for

C. INTER-CELL INTERFERENCE COORDINATION SCHEME

Interference coordination mechanism is completed by the

measurement module and the precoding module [17]–[19].

The basic scheme for mitigating inter-cell interference is dis-

tributed zero forcing, which needs channel matrix informa-

tion of neighbor cells. In order to control the spatial freedom

of transmission antennas used for inter-cell interference coor-

dination, we define a new parameter percentage of cell-edge

users needing inter-cell interference suppression denoted by

δ for setting the percentage of users that need interference

suppression so as to adjust the spatial freedom resources

between inter-cell and intra-cell interference cancellation.

Denote es as the number of cell-edge users in cell s. δ with

the value of 100% means that all the cell-edge users need to

perform interference suppression. The steps of the proposed

inter-cell interference coordination scheme are as follows.

Step 1: Each service cell measures the downlink average

SINR of each UE, and counts all users whose downlink aver-

age SINR is lower than SINRmin, and defines these users as

cell-edge users. These cell-edge users are sorted by SINR in

ascending order.

Step 2: Each service cell sends a command to the edge

users to measure the strong interference cells and estimate

the channel matrix of the strong interference cells.

Step 3: Each serving cell forms the interference matrix

table as shown in Table 1.

TABLE 1. Interference matrix table.

Step 4: Each cell in the network interacts with the respec-

tive interference matrix table on X2 interface, and obtains

interfering edge user information of neighbor cells and the

channel matrix to these users.

Step 5: When precoding, according to ascending order of

average SINR, each service cell selects the interfered users

whose channel vectors constitute null space, and interference
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Algorithm 2 DECCO Algorithm

Phase 1 – User Scheduling

1: Initialization: L = {1, 2, . . . ,K } , g = ∅, k∗ =

argmax
L

( rk
Dk

), g = g ∪ {k∗}, M = 1, L = L\{k∗}

2: Compute SINRmin and Rmax with policy gradient net-

work

3: schedule_allow_flag = True

4: while M ≤ K∗ and schedule_allow_flag = True do

5: Ltmp = L

6: while Ltmp 6= ∅ do

7: Select k∗ from Ltmp, g
′ = g ∪ {k∗}, calculate

B, P according to H formed by gg′, calculate SINR,

do singular value decomposition for BP and obtain λmax

and λmin

8: if λmax
λmin
≤ Rmax and SINR ≥ SINRmin then

9: g = g ∪ {k∗},M = M + 1,L = L\{k∗},

schedule_allow_flag = True

10: break

11: else

12: Ltmp = Ltmp\{k
∗}, schedule_allow_flag =

False

13: end if

14: end while

15: end while

Phase 2 – Inter-Cell Interference Coordination

16: Initialization: calculate SINR and obtain edge-user set es,

obtain the null space matrix H of the edge-users’

17: for each cell do

18: Obtain the outer precoding matrix B and achieve

interference suppression for neighboring cells by HHB

19: Obtain the inner precoding matrix P and form the

final precoding matrix HHBP

20: end for

suppression is performed by selecting channels of the first

δ × es users of each neighbor cell.

Step 6: The service cell generates the null space matrix of

the interfered user channel matrix, and multiplies the outer

precoder by the null space matrix to achieve interference

suppression for neighbor cells.

Step 7: The service cell constructs inner precoding to form

the final precoding matrix.

In conclusion, the overall DECCO algorithm is formed by

user scheduling schemewith a pre-trained policy network and

the subsequent inter-cell interference coordination scheme,

and it is concluded in Algorithm 2.

V. SIMULATION RESULTS

In this section, we demonstrate performance and behavior

of the proposed concepts and models for optimization of

coverage and capacity by simulative evaluation [20] of rep-

resentative case studies.

A. SIMULATION SETUP

We take the International Telecommunications Union’s (ITU)

three-dimensional urban macro cell (3D-UMa) model as our

channel model. The number of antennas at BS is 64, and the

number of antennas at UE is 2. We use the JSDM scheme as

the downlink transmission method. SINRmin is quantified for

15 levels from 1dB to 15dB, and R is quantified for 20 levels

from 25 to 500. Other parameters needed for the simulation

are listed in Table 2.

TABLE 2. System simulation parameter settings.

Once the simulation parameters are set, the architecture of

the policy network for computing the proposed parameters

SINRmin and R in the DECCO algorithm can be indentified.

The input layer of the resulting neural network has 2 neurons,

which accept CASE and CESE of the cell respectively. The

output layer consists of 300 neurons, which denote the full

combinations of SINRmin and R parameter sets and output the

probability distribution of policies. We use two hidden layers

to learn and approximate the optimal policy, where each layer

consists of 100 neurons. Thus the policy network has 4 layers,

and a total of 6,000,000 parameters.

B. POLICY NETWORK TRAINING

As dicussed earlier, the policy network is used to derive the

combination of SINRmin and R for the downlink transmission.

Concretely, it maps an environment state into an policy (or

action) by learning from tremendous trajectories that the

agent experienced. In this sense, training the policy network

is performed interactively between the agent and the environ-

ment. We leave the learning rate α as a hyperparameter of

the policy network in the DECCO algorithm to tune during

training. We run 1000 iterations for training, and in each

training iteration, we run N = 20 Monte Carlo simulations
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(also named episodes) in parallel. We update the policy net-

work parameters using the stochastic gradient ascent with

the configurable learning rate.

We tune the learning rate and investigate the average

reward performance with different learning rate used by

updating the policy network parameters. Figure 5 shows the

average reward trend with three different learning rate 0.01,

0.05, 0.10. To make the figure more readable, we use the

common logarithm of iteration. It is obvious that the aver-

age reward converges to a better stage with learning rate

α = 0.01.

FIGURE 5. Average reward per BS of the policy network training with
different learning rate.

C. INFLUENCE OF THE WEIGHT FACTOR η

Recall that the weight factor η in the reward function controls

the balance between maximizing CASE and CESE of the

cell. We investigate the influence of weight factor η adopted

in the DECCO algorithm on capacity-coverage performance

as the number of BS N increases from 1 to 7. Specifically,

we set δ, the percentage of cell-edge users needing inter-cell

interference suppression, with 100% for this scenario. Unless

otherwise specified, the results below are from the CCO

algorithms with δ = 100%. Figure 6 and Figure 7 together

shows the average CASE and CESE performances with dif-

ferent weight factors as the number of BSs grows. The weight

factor with η = 0.0 and η = 1.0 are two special cases,

where the two optimization objectives that maximize CASE

and CESE are reduced to a single objective problem. When

η = 0.0, the DECCO algorithm only optimizes CESE since

the term of CASE becomes zero. This case may not happen

in practical network operation. When η = 1.0, CASE is the

only objective to be optimized by the DECCO algorithm,

and this case may happen in practical network operation

since only providing good service for the majorities is a

possible option for the network operators. When η = 0.8,

CASE is the dominant factor that contributes to the average

reward thus CESE grows slower than CASE. While the vice

versa trend of CASE versus CESE occurs when η = 0.3.

An equal performance gains of CASE and CESE are achieved

when we choose the weight factor η to be 0.5, which is

FIGURE 6. Average CASE per BS obtained with DECCO adopted different
weight factors as the number of BSs increases. For all the three cases,
the percentage of cell-edge users needing inter-cell interference
suppression is 100%.

FIGURE 7. Average CESE per BS obtained with DECCO adopted different
weight factors as the number of BSs increases. For all the three cases,
the percentage of cell-edge users needing inter-cell interference
suppression is 100%.

safe for whatever the number of BSs is. However, the inter-

cell interference increases with the number of BSs. Thus

CESE decreases more quickly than CASE as the number of

BSs increases. In this sense, the weight factor of CESE that

controls the contribution of CESE to the reward, 1−η, should

be increased to effectively optimize CESE by learning as the

number of BSs grows.

D. PERFORMANCE COMPARISON OF DIFFERENT

CCO ALGORITHMS

We would like to point out that the evaluation of DECCO

and other CCO algorithms is made within the user scheduling

scheme, and all CCO algorithms use the same ICIC scheme

as proposed. We compare the capacity-coverage performance

between DECCOwith the dynamic configuration of SINRmin

and R computed by the policy network in the user scheduling

algorithm at runtime and a CCO algorithm with best fixed

configuration of SINRmin and R obtained through trial-and-

error as the number of BS increases, where we denote the later

algorithm as Fixed coverage and capacity Optimization (FO).

Moreover, we set the CCO algorithm with proportional fair

(PF) scheduling scheme and the proposed ICIC scheme as the

baseline for the comparison, where we denote this algorithm
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as PFO. The weight factor η for the DECCO algorithm,

and SINRmin and R for the FO algorithm with the specified

number of BSs are listed in Table 3.

TABLE 3. Parameter settings.

Figure 8 and Figure 9 depict that the proposed DECCO

algorithm outperforms the FO algorithm and the PFO algo-

rithm on both CASE and CESE. In this sense, SINRmin and R

are two effective capacity-coverage optimization parameters.

The FO algorithm outperforms the PFO algorithm on CASE,

while it does not perform better than the PFO algorithm on

CESE since it schedules the users with fixed thresholds which

fails to track the changing inter-cell interference. As the num-

ber of BSs increases, the performance gains of the DECCO

algorithm against the FO algorithm decrease. In this In prac-

tical systems, we can partition learning groups to alleviate

learning performance degradation with large scale learning.

For example, we can set every learning group with 4 base

stations. Figure 10 depicts the empirical cumulative density

FIGURE 8. Average CASE per BS with different CCO algorithms as the
number of BSs increases.

FIGURE 9. Average CESE per BS with different CCO algorithms as the
number of BSs increases.

FIGURE 10. Empirical CDF of different CCO algorithms with the number of
BSs N = 7.

TABLE 4. Capacity-coverage performance at runtime.

function (Empirical CDF) of spectrum efficiency of different

CCO algorithms at runtime, where the number of BSsN = 7.

We also evaluate the influence of the different weight factors

on our proposed DECCO algorithm working at runtime when

η = 0.3 and η = 0.8. The results are concluded in Table 4,

where SD is the abbreviation of Standard Deviation. The

DECCO algorithm with η = 0.3 outperforms the FO algo-

rithm and the PFO algorithm by 5.6% and 18.1% on CASE,

respectively. When it comes to CESE, the DECCO algorithm

with η = 0.3 outperforms the FO algorithm and the PFO

algorithm by 62.9% and 7.5%, respectively. Thus it is explicit

that the performance gain of CESE is larger than that of

CASE since CESE gains more weight than CASE. Moreover,

the PFO algorithm outperforms the FO algorithm on CESE

just as we discussed earlier. When η = 0.8, the DECCO

algorithm outperforms the FO algorithm and the PFO algo-

rithm by 22.2% and 36.5% onCASE, respectively. In terms of

CESE, the DECCO algorithm outperforms the FO algorithm

and the PFO algorithm by 57.1% and 3.8%, respectively.

In contrast to η = 0.3, the performance gain of CASE is

larger than that of CESE due to the fact CASE plays a more

important role in reward calculation with η = 0.8. This is in

consistency with the investigations of influence of the weight

factor we have conducted. An important observation is that

the DECCO algorithm has more potential on maximizing

CESE than CASE in comparison with the FO algorithm.

Beyond that, the DECCO algorithm improves CASE larger

than the PFO algorithm. In addition, the DECCO algorithm

has a smaller SD value, which means the coverage and capac-

ity optimization performance is more fair and stable. As a

result, our proposed DECCO algorithm is a generally optimal

method for capacity-coverage optimization.
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VI. CONCLUSIONS

In this paper, we have proposed a novel Deep reinforce-

ment learning Enabled Coverage and Capacity Optimiza-

tion (DECCO) algorithm, in which a deep reinforcement

learning-based user scheduling scheme and a novel inter-

cell interference coordination (ICIC) scheme are contained,

to address the coverage and capacity in massive MIMO net-

works. In addition, we proposed a novel optimization param-

eter GAUSS, i.e. Group Alignment of Users’ Signal Strength,

is proposed together with Together with a unified threshold

of QoS, i.e. SINRmin to be dynamically configured with a

pre-trained deep policy gradient-based neural network in each

transmission time interval in the user scheduling scheme.

Furthermore, a novel ICIC scheme has been proposed to

further enhance the performance of the deep reinforcement

learning-based user scheduling scheme.We conducted exten-

sive simulations to compare the capacity-coverage perfor-

mance between our proposed DECCO algorithm with a CCO

algorithm utilizing the best fixed configuration of the pro-

posed optimization parameters in the user scheduling scheme,

and used theCCO algorithmwith proportional fair scheduling

as the baseline. Simulation results show that 1) our pro-

posed optimization parameters are effective in optimizing the

coverage and capacity, 2) our proposed DECCO algorithm

outperforms the other two CCO algorithms with the same

ICIC scheme on both coverage and capacity. This means our

methods successfully track the dynamics of the considered

systems. Moreover, we can set learning clusters to account

for learning gains decreasing as opposed to the scale of

networks. Thus future work will be done to enable coverage

and capacity optimization in large scale learning.
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