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Abstract

Leveraging large-scale unlabeled web videos

such as instructional videos for pre-training

followed by task-specific finetuning has be-

come the de facto approach for many video-

and-language tasks. However, these instruc-

tional videos are very noisy, the accompanying

ASR narrations are often incomplete, and can

be irrelevant to or temporally misaligned with

the visual content, limiting the performance

of the models trained on such data. To ad-

dress these issues, we propose an improved

video-and-language pre-training method that

first adds automatically-extracted dense region

captions from the video frames as auxiliary

text input, to provide informative visual cues

for learning better video and language associ-

ations. Second, to alleviate the temporal mis-

alignment issue, our method incorporates an

entropy minimization-based constrained atten-

tion loss, to encourage the model to automati-

cally focus on the correct caption from a pool

of candidate ASR captions. Our overall ap-

proach is named DECEMBERT (Dense Cap-

tions and Entropy Minimization). Comprehen-

sive experiments on three video-and-language

tasks (text-to-video retrieval, video caption-

ing, and video question answering) across five

datasets demonstrate that our approach outper-

forms previous state-of-the-art methods. Ab-

lation studies on pre-training and downstream

tasks show that adding dense captions and con-

strained attention loss help improve the model

performance. Lastly, we also provide attention

visualization to show the effect of applying the

proposed constrained attention loss.1

1 Introduction

Video and language are ubiquitous in the world

we live. The ability to understand the interplay of

video and language is thus essential for intelligent

agents to operate in real-world scenario. Past suc-

cess in video-and-language has mostly been driven

1Code and models: https://github.com/

zinengtang/DeCEMBERT

by supervised learning, where models are learned

on manually labeled data for a particular task (e.g.,

text-to-video retrieval). However, manually anno-

tating video and language data is very expensive,

hence limiting the scale of such datasets, and con-

sequently also limiting the performance of models

trained on the datasets. The self-supervised pre-

training then finetuning paradigm offers an easy

and generic solution to this dilemma, where models

are first pre-trained on large-scale unlabeled data

by performing various “proxy tasks”, followed by

finetuning the pre-trained model on downstream

tasks where data is often limited.

Recent advances on language pre-training (De-

vlin et al., 2019; Liu et al., 2019) demonstrate the

effectiveness of this approach, where transformer-

based (Vaswani et al., 2017) models pre-trained

on large-scale unlabeled text corpus has shown

to perform remarkably well across a wide range

of natural language tasks (Rajpurkar et al., 2016;

Williams et al., 2017; Zellers et al., 2018; Wang

et al., 2018). Following this momentum, mul-

timodal pre-training (Tan and Bansal, 2019; Lu

et al., 2019; Chen et al., 2020; Su et al., 2019;

Cho et al., 2021; Sun et al., 2019; Li et al., 2020c;

Zhu and Yang, 2020; Miech et al., 2020; Li et al.,

2020b; Lei et al., 2021) on large-scale image-text

corpus (Sharma et al., 2018; Chen et al., 2015; Kr-

ishna et al., 2017) and video-text corpus (Lei et al.,

2018; Miech et al., 2019; Sun et al., 2019) have also

shown to outperform existing approaches (Ander-

son et al., 2018; Yu et al., 2018a; Lei et al., 2020a,b)

on vision and language tasks (Antol et al., 2015; Xu

et al., 2016; Yu et al., 2018a; Suhr et al., 2019; Zhou

et al., 2017; Lei et al., 2020b). The most commonly

used “proxy tasks” for multimodal pre-training are

masked language modeling (Devlin et al., 2019)

(MLM) and cross-modal matching (Tan and Bansal,

2019; Lu et al., 2019; Zhu and Yang, 2020) (e.g.,

video-text matching), where MLM aims to learn a

better language model in the presence of the extra

https://github.com/zinengtang/DeCEMBERT
https://github.com/zinengtang/DeCEMBERT
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Figure 1: An instructional video example from HowTo100M (Miech et al., 2019). We show three clips and their

corresponding ASR captions and dense captions. We use green box to indicate correct matched ASR caption for

the middle clip. We highlight semantically misaligned ASR caption in pink. As can be seen from this example,

the ASR captions are often incomplete and unpunctuated, and are semantically or temporally misaligned with their

corresponding clips. In contrast, dense captions typically capture key objects, attributes and actions in the clips.

vision modality, and the matching objective en-

courages better association and alignment between

relevant image-text or video-text pairs.

Existing video-text pre-training models (Sun

et al., 2019; Miech et al., 2020; Zhu and Yang,

2020) are typically trained on large-scale instruc-

tional video datasets such as HowTo100M (Miech

et al., 2019). The dataset contains 1.2 million

videos with 136 million clips that are automatically

harvested from YouTube. Each clip is paired with

text transcribed from the video narrations via an au-

tomatic speech recognition (ASR) system. While

the models trained on HowTo100M have shown

promising results, they suffer from a few inherent

drawbacks from the dataset: (i) Semantic misalign-

ment: the narration words are sometimes irrelevant

to the visual content (e.g., credits or other non-

visual words, see Figure 1 text highlighted in pink),

and vice versa, i.e., some important visual objects

and actions are not described by words. (ii) Tem-

poral misalignment: the videos and the captions

are far from perfectly aligned, i.e., people might

talk about something before or after they actually

demonstrate it. For example, Figure 1 shows the

caption “cross” is spoken after the action happened.

Miech et al. (2019) reported that around 50% of

the clip-caption pairs in HowTo100M suffers from

these two misalignments, both of which cause diffi-

culties in optimizing the video-text matching objec-

tive. (iii) Furthermore, the ASR captions are gener-

ally noisy, incomplete, and unpunctuated (Tilk and

Alumäe, 2015) (e.g., in Figure 1, “taking pieces

paper go”), which limits the language modeling

ability of the systems that trained on such text.

To address the aforementioned issues, we pro-

pose to add Dense Captions (Johnson et al., 2016;

Yang et al., 2017) as a complementary text input

to the ASR captions. Beyond serving as an extra

language input for better language modeling, dense

captions also describes important object, attribute,

and action details regarding several salient regions

in the video frames, providing useful signals for

video-text matching. In addition to its use in the

pre-training stage, these dense captions also pro-

vide helpful clues for downstream tasks such as

video question answering.

In parallel, to alleviate the temporal misalign-

ment issue, we propose a constrained attention loss

that encourages the model to automatically focus

on the relevant ASR caption from a pool of contin-

uous caption candidates. Instead of using only a

single paired ASR caption for each clip, we also

use the captions from its neighboring clips. We

expect one of neighboring captions semantically

aligns with the clip. To encourage the alignment be-

tween the clip and its relevant caption, we employ

a “constrained attention loss” that encourages the

attention mass from video features to the captions

to be distributed mostly in one of the caption, by

minimizing the entropy of attention scores.

We evaluate our DECEMBERT (Dense Cap-

tions and Entropy Minimization) model on a wide

range of video-and-language tasks, including video

question answering (Xu et al., 2017), text-to-video

retrieval (Xu et al., 2016; Zhou et al., 2017), and

video captioning (Xu et al., 2016; Zhou et al.,

2017), where our approach outperforms previous

state-of-the-art methods. To better understand the

underlying factors that contribute to this success,

we present comprehensive analyses concerning

each of the added components.

To summarize, our contribution is three-fold:

(i) We propose incorporating automatically ex-

tracted dense captions as an extra text input for

video-text pre-training. (ii) We propose an entropy

minimization-based constrained attention loss to
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encourage the model to dynamically select the best

matched captions from a pool of neighboring cap-

tions, to alleviate the inherent misalignment be-

tween the ASR captions and the videos. (iii) Exten-

sive experiments on three video-and-language tasks

(text-to-video retrieval, video captioning, and video

question answering) across five datasets demon-

strate the effectiveness of our approach. Further-

more, we also provide comprehensive ablation

study and visualization to quantitatively and quali-

tatively examine the effect of using dense captions

and the proposed constrained attention loss.

2 Related Work

Since the birth of BERT (Devlin et al., 2019), trans-

former (Vaswani et al., 2017) language pre-training

models (Liu et al., 2019; Yang et al., 2019; Lan

et al., 2020; Dong et al., 2019; Song et al., 2019;

Raffel et al., 2020; Clark et al., 2020) which per-

form unsupervised pre-training followed by down-

stream task specific finetuning has became the de

facto approach for various natural language under-

standing tasks (Rajpurkar et al., 2016; Williams

et al., 2017; Zellers et al., 2018; Wang et al., 2018).

Followed by this success, image-and-language pre-

training models (Tan and Bansal, 2019; Lu et al.,

2019; Chen et al., 2020; Zhou et al., 2020; Li et al.,

2020a) and video-and-language pre-training mod-

els (Sun et al., 2019; Miech et al., 2019; Zhu and

Yang, 2020; Miech et al., 2020; Li et al., 2020b;

Luo et al., 2020; Huang et al., 2020; Stroud et al.,

2020) have also shown promising results on many

vision and language tasks (Antol et al., 2015; Xu

et al., 2016; Zhou et al., 2017).

For video-and-language pre-training in particu-

lar, most existing work (Sun et al., 2019; Miech

et al., 2019; Zhu and Yang, 2020; Miech et al.,

2020; Li et al., 2020b; Luo et al., 2020) are trained

on large-scale unlabeled instructional videos, such

as HowTo100M (Miech et al., 2019) videos. How-

ever, as the ASR captions associated with these

videos are noisy, i.e., they are often temporally

or semantically misaligned with the video con-

tent. Miech et al. (2020) propose Multiple Instance

Learning Noise Contrastive Learning (MIL-NCE)

to address the temporal misalignment issue, but

semantic misalignment still remains. Moreover,

MIL-NCE requires computing a separate similar-

ity score from the target clip to each of the ASR

caption candidates, it does not suitable for the pre-

vailing single-stream transformer pre-training ar-

chitecture due to linearly increased computation

cost.

Inspired by recent work (Kim and Bansal, 2019;

Kim et al., 2020) that uses dense captions (Johnson

et al., 2016; Yang et al., 2017) to improve image

and video QA models, we propose to add dense cap-

tions an as auxiliary text input that provide aligned

visual cues to ease the difficulties of learning a

video-text matching objective from often tempo-

rally and semantically misaligned ASR captions.

In addition, we also propose a constrained atten-

tion loss, which employs an entropy minimization-

based regularization (Tanaka et al., 2018; Yi and

Wu, 2019) to the model to encourage higher atten-

tion scores from the video to the correct matched

caption among a pool of ASR caption candidates.

3 Method

In this section, we describe the details of DECEM-

BERT, including its architecture, pre-training ob-

jectives, dense caption inputs, and the constrained

attention loss. Figure 2 shows an overview of DE-

CEMBERT.

Input Representations. Input text (e.g., ASR

captions) are tokenized and represented as a se-

quence of WordPiece (Wu et al., 2016) tokens. We

use a trainable word embedding layer to encode the

tokens into feature representations. We use appear-

ance and motion features to represent videos. For

appearance, we use a resnet152 (He et al., 2016)

model pre-trained on ImageNet (Deng et al., 2009)

to extract 2D video features at 1FPS. Similarly, for

motion, we use a 3D ResNeXt (Xie et al., 2017;

Hara et al., 2018; Kataoka et al., 2020) to extract

3D video features at 1FPS. The temporally aligned

appearance and motion features are L2-normalized

and concatenated together at feature dimension.

We then apply a two-layer MLP to map the it to

the same dimension as the word embeddings. Next,

we add learned positional embedding and token

type embedding (Devlin et al., 2019) to the video

and text representations to encode the position and

token type information. The video and text rep-

resentations are then concatenated as a single se-

quence as inputs to a 12-layer transformer encoder

for pre-training and downstream task finetuning.

Dense Captions. The original captions from

ASR systems might not well describe a video with

rich content or can even be irrelevant to the video

as discussed in Section 1. Moreover, as ASR cap-



2418

Transformer

+	Position	Embedding

+	Type	Embedding +	Type	Embedding

Video-Text	Matching Masked	Language	Modeling Constrained	Attention	Loss

Video

	a	blue	paper,	the	table	
	is	made	of	wood,	...

	easier	start 	taking	pieces	paper		
	go

	cross

Dense	Captions ASR	Captions

Figure 2: Overview of DECEMBERT architecture. It takes video representations, dense captions and ASR cap-

tions as input to its transformer layers, and learn model parameters via video-text matching, masked language

modeling. It is also regularized by a constrained attention loss for learning better alignment between the video

clips and the ASR captions.

tions are often incomplete and unpunctuated, they

might also be sub-optimal for language modeling.

Therefore, we use dense captions (Johnson et al.,

2016) automatically extracted from an off-the-shelf

image dense captioning model (Yang et al., 2017)

as additional language input for the model. This

dense captioning model is pre-trained on Visual

Genome (Krishna et al., 2017) regional captions.

To obtain video-level captions, we extract dense

captions from frames sampled at every two sec-

onds. There are on average 4.4 dense captions per

frame, we sample two of them from each frame at

each training step to avoid redundant information

and reduce memory and computation cost. Note

that the other dense captions might still be sampled

in another training step. The sampled dense cap-

tions are then concatenated together as video-level

captions for training.

These extracted dense captions provide rich and

comprehensive information regarding the salient

objects, attributes, and actions (see examples in

Figure 1 and Figure 2), which helps to optimize a

video-text matching objective during pre-training

and provide essential visual clues for many down-

stream tasks such as video question answering.

Meanwhile, because the dense captions are text

input with diverse semantics, it complements the

typically short and incomplete ASR captions as

additional resources for better language modeling.

We observe in our ablation study that adding dense

captions improves both MLM accuracy and video-

text matching accuracy, demonstrating the effec-

tiveness of using them as extra inputs.

Pre-Training Objectives. During pre-training,

we use masked language modeling (Devlin et al.,

2019) (MLM) and cross-modality matching (Tan

and Bansal, 2019; Lu et al., 2019; Miech et al.,

2019; Zhu and Yang, 2020) (also referred as video-

text matching in our context) as our objectives to

learn model parameters. For masked language mod-

eling, the goal is to learn better language models

conditioned on bidirectional text context and the

video. We set a probability of 0.202 to replace an

input language token with [MASK]. When dense

captions are used as extra text input, we also per-

form masked language modeling on them with the

same masking probability as the ASR captions.

For video-text matching, with a probability of

0.50, we replace the original ASR captions with

randomly sampled captions from other videos or

clips as a negative. Of the sampled negative ASR

captions, 50% of them are from different videos,

while another 50% are from the same video but

different clips. Text from the same video clip is

likely to have the same theme or similar context,

and thus can serve as hard samples to improve the

model’s ability to do fine-grained matching. We

do not designate a [CLS] token before the start of

input caption, instead we take the mean pooling of

the output sequence hidden states to perform binary

classification for video-text matching. Empirically,

we found this approach works better than using a

2Because ASR captions are typically very short and gram-
matically less rigorous, we use a higher masking probability
of 0.20 instead of the commonly used 0.15 as in BERT (Devlin
et al., 2019).
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Figure 3: Illustration of applying the proposed entropy

minimization-based constrained attention loss. This

loss is added to every attention head in the transformer

layers. It forces the model to give high attention scores

only to one of the candidate ASR captions, i.e., to peak

at only one caption rather than being flat because the

one-hot distribution has the smallest entropy.

designated [CLS] token.

Constrained Attention Loss. The ASR captions

are often temporally misaligned with their corre-

sponding clips, simply pre-train a model over these

misaligned clip-text pairs may lead to sub-optimal

performance. To alleviate this issue, we propose

a constrained attention loss that encourages the

model to automatically select the best matched

ASR caption from a pool of continuous caption

candidates. This is achieved by minimizing the

entropy of the attentions from the video to the ASR

captions. Formally, we denote an input video V

as [c1, c2, ..., cN ], its corresponding ASR captions

are denoted as [s1, s2, ..., sN ], where ci is the i-th

clip of V and si is the ASR caption of ci, N is the

total number of clips in the video. For a clip ci,

instead of only inputting its associated caption si,

we also include captions from its two neighboring

clips,3 i.e., si−1 and si+1. In most cases, the correct

matched caption for the clip is from these three cap-

tions. We denote X=[Xci ;Xsi−1
;Xsi ;Xsi+1

] ∈
R
l×d as the generalized input sequence to each

transformer layer (dense captions are ignored for

simplicity), where Xci , Xsi−1
, Xsi , Xsi+1

are the

embedding matrices correspond to the input clip

and three captions. We further simplify the no-

tations as X=[X0;X1;X2;X3]. A single head

3While our approach works for arbitrary number of neigh-
bors, we use two neighbors to illustrate the idea for simplicity.
In fact, we found that, of 100 randomly sampled videos, using
two neighbors already covers 95% of the videos with at least
one positive matched ASR caption.

self-attention operation in the transformer encoder

layers can then be expressed as:

A = softmax(
XXT

√
d

, dim=1)X, (1)

where softmax(·, dim=1) denotes applying soft-

max at the second dimension of the input matrix. A

is the attention output matrix. When multiple atten-

tion heads are used, the formulation is similar. We

use S to denote the similarity matrix computed by

XXT , it can be expressed using block matrices:

Sq,r = XqX
T
r , q, r ∈ {0, 1, 2, 3}. (2)

Our goal is to encourage the model to focus on the

correct matched caption for an input clip, i.e., the

attention mass from the video clip to the correct

matched caption should be higher than the others.

To achieve this, we first define the maximum re-

sponse between the video hidden states X0 to the

ASR captions hidden states Xj as:

zj = max(S0,j , dim=1), j ∈ {1, 2, 3}. (3)

For a single example, we define its constrained

attention loss as:

uj =
exp(z̄j)∑
3

k=1
exp(z̄k)

, (4)

Le =−
3∑

j=1

uj log(uj). (5)

This loss formulation is based on entropy mini-

mization (Tanaka et al., 2018; Yi and Wu, 2019),

it forces the model to assign high attention scores

only to one of the ASR captions, i.e., to peak at

only one caption rather than being flat because

the one-hot distribution has the smallest entropy.

Figrue 3 shows an overview of applying the con-

strained attention loss. During pre-training, we add

this loss to each of the attention heads across all lay-

ers, we add these losses along with the MLM loss

and video-text matching loss for joint optimization.

Meanwhile, as the similarity matrix S is a sym-

metric matrix, the entropy minimization objective

also encourages the correct matched ASR caption

to have higher similarity to the video, while forcing

the mismatched captions to put more attention on

the other ASR captions rather than the video.

4 Experiments

In this section, we compare our model with state-of-

the-art methods on three video-and-language down-

stream tasks (e.g., video captioning, text-to-video
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retrieval, and video question answering) across five

datasets. We then present a comprehensive ablation

study, where we show that each of our proposed

components help improve the pre-training task

performance and downstream task performance.

Lastly, we also provide an attention visualization

example to demonstrate the effect of applying our

proposed constrained attention loss.

4.1 Datasets and Tasks

Pre-training. We use HowTo100M (Miech et al.,

2019) for pre-training. It contains 1.22 million

YouTube instructional videos that cover 23.6K in-

struction tasks (e.g., making peanut butter, pruning

a tree). Each video is associated with an English

narration automatically transcribed by an Auto-

matic Speech Recognition (ASR) system. On aver-

age, each video has 110 clip-caption pairs, with an

average duration of 4 seconds per clip and 4 words

per caption. We reserve 10K videos for validation,

and use the rest of the videos for pre-training.

Video Captioning. We evaluate video cap-

tioning on MSRVTT (Xu et al., 2016) and

YouCook2 (Zhou et al., 2017) datasets. The task is

to generate a text description (a single sentence or a

paragraph of multiple sentences) for a given video.

(i) MSRVTT contains 10K YouTube videos with

20 descriptions per video. The videos in MSRVTT

are typically 10-30 seconds long, with an average

length of 14.8 seconds. Its contains 6.5K videos

in the train set, 497 videos in the val set, and 3K

videos in the test set. (ii) YouCook2 is a cooking

video dataset harvested from YouTube. It contains

2K videos from 89 recipes with a total length of

176 hours. Each video is annotated with temporal

timestamps that indicate event segments (clips), a

textual description is provided for each segment.

In total, there are 14K video segments.

Text-to-Video Retrieval. We evaluate text-to-

video retrieval on MSRVTT and YouCook2

datasets, where the goal is to retrieve a relevant

video from a gallery of videos given a text query.

(i) MSRVTT is the same dataset as the captioning

task. We follow previous work (Yu et al., 2018b;

Miech et al., 2019) to use the 7k train+val videos

for training and report results on the 1K test set sam-

pled by Yu et al. (2018b). (ii) YouCook2 is the

same dataset as the captioning task. We evaluate

our model on the clip retrieval task as in previous

work (Miech et al., 2019; Zhu and Yang, 2020).

Method B@4 M R C

SibNet (Liu et al., 2020b) 40.9 27.5 60.2 47.5
OA-BTG (Zhang and Peng, 2019) 41.4 28.2 - 46.9
GRU-EVE (Aafaq et al., 2019) 38.3 28.4 60.7 48.1
MGSA (Chen and Jiang, 2019) 42.4 27.6 - 47.5
POS+CG (Wang et al., 2019) 42.0 28.2 61.6 48.7
POS+VCT (Hou et al., 2019) 42.3 29.7 62.8 49.1
ORG-TRL (Zhang et al., 2020) 43.6 28.8 62.1 50.9

DECEMBERT 45.2 29.7 64.7 52.3

Table 1: Video captioning results on MSRVTT test set.

We report BLEU@4 (B@4), METEOR (M), Rouge-L

(R), CIDEr-D (C).

Video Question Answering. We evaluate video

question answering (QA) performance on the

MSRVTT-QA (Xu et al., 2017) dataset. It contains

243K open-ended questions constructed based on

the videos and captions in MSRVTT.

4.2 Implementation Details

We use the BERT-base (Devlin et al., 2019) ar-

chitecture as our transformer encoder, with hid-

den size 768 and 12 transformer layers. The en-

tire model contains 115M parameters. The max-

imum length of video features is set to 100 for

both pre-training and downstream tasks. We use

Adam optimizer (Kingma and Ba, 2014) to op-

timize the model, with an learning rate of 1e-4,

β1=0.9, β2=0.98, L2 weight decay of 0.01. For

pre-training, we train the model for 20 epochs until

convergence. Dense captions in different frames

are potentially repeated if the contiguous frames

have similar objects. This is expected as some

videos have smooth shooting that stays at one angle

for an extended time. We filter those dense cap-

tions to avoid redundancy. For downstream tasks,

we finetune from the same pre-trained weights and

use the same training and optimization settings as

pre-training. We conduct all the experiments using

NVIDIA GeForce GTX 1080Ti GPUs and Intel(R)

Xeon(R) CPU E5-2630 v4. During pre-training,

the model’s inference speed under this infrastruc-

ture with one GPU is 5 samples per second.

4.3 Comparison to State-of-the-Art

We present our results on three downstream tasks

across five datasets, and compare the results against

the state-of-the-art methods. All the downstream

results are obtained by fine-tuning the same pre-

trained model that is pre-trained with dense cap-

tions and constrained attention loss.
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Method B@4 M R C

MTrans 7.62 15.65 32.18 32.26
MART 8.00 15.90 35.74 35.74
MART+COOT 9.44 18.17 34.32 46.06
MTrans+COOT+MIL-NCE PT 11.05 19.79 37.51 55.57
MART+COOT+MIL-NCE PT 11.30 19.85 37.94 57.24

DECEMBERT 11.92 20.01 40.22 58.02

Table 2: Video captioning results on YouCook2 val

set. Model references: MTrans (Zhou et al., 2018),

MART (Lei et al., 2020a), COOT (Ging et al., 2020),

and MIL-NCE (Miech et al., 2020). PT indicates mod-

els with pre-training on HowTo100M.

Video Captioning. We follow Vaswani et al.

(2017) to train auto-regressive captioning models,

by only allowing the text tokens to attend to to-

kens that precede them at training. During infer-

ence time, we use beam search with beam size 5

to generate captions. For MSR-VTT, we evalu-

ate captioning performance at sentence level. For

YouCook2, we follow previous work (Lei et al.,

2020a; Ging et al., 2020) to evaluate performance at

paragraph-level, where single segment captions are

concatenated as a paragraph for evaluation. We use

standard metrics BLEU@4 (Papineni et al., 2002),

METEOR (Denkowski and Lavie, 2014), Rouge-

L (Lin, 2004), and CIDEr-D (Vedantam et al., 2015)

to report performance. Table 1 shows the com-

parison on MSRVTT, our DECEMBERT model

achieves significant performance gain over previ-

ous state-of-the-art. Notably, DECEMBERT out-

performs ORG-TRL (Zhang et al., 2020) by 1.6%

BLEU@4, 2.6% Rouge-L, and 1.4% CIDEr-D,

even though ORG-TRL uses a set of strong visual

features (appearance, motion, and object) together

with a sophisticated graph encoder network and ex-

ternal language model supervision. Table 2 shows

the results on YouCook2 captioning task. Over-

all, DECEMBERT outperforms previous methods

across all metrics. Compared to the strong base-

line method MART+COOT+NIL-NCE (Lei et al.,

2020a; Ging et al., 2020; Miech et al., 2020) PT,

that uses HowTo100M videos for pre-training fol-

lowed by a designated hierarchical modeling train-

ing, our approach still shows better performance

with a reasonable margin. This shows the effective-

ness of our pre-training strategy.

Text-to-video Retrieval. We train text-to-video

retrieval models similar to the way we perform

video-text matching, where we sample a negative

caption 50% of the time. We use average recall at

K (R@K) and median rank (MdR) to report perfor-

Method R@1 R@5 R@10 MdR

HERO (Li et al., 2020b) w/ ASR, PT 20.5 47.6 60.9 -

JSFusion (Yu et al., 2018b) 10.2 31.2 43.2 13.0
HowTo (Miech et al., 2019) 12.1 35.0 48.0 12.0
HowTo (Miech et al., 2019) PT 14.9 40.2 52.8 9.0
Univilm (Luo et al., 2020) PT 15.4 39.5 52.3 9.0
ActBERT (Zhu and Yang, 2020) PT 16.3 42.8 56.9 10.0
HERO (Li et al., 2020b) PT 16.8 43.4 57.7 -

DECEMBERT 17.5 44.3 58.6 9.0

Table 3: Text-to-video retrieval results on MSRVTT 1k

test set (Yu et al., 2018b). PT indicates models with

pre-training on HowTo100M (or on HowTo100M+TV

shows (Lei et al., 2018; Liu et al., 2020a) for HERO).

We gray out models that used extra ASR features for a

fair comparison.

Method R@1 R@5 R@10 MdR

HGLMM 4.6 14.3 21.6 75.0
HowTo 4.2 13.7 21.5 65.0
HowTo PT 8.2 24.5 35.3 24.0
COOT 5.9 16.7 24.8 49.7
COOT+MIL-NCE PT 16.7 40.2 52.3 9.0

DECEMBERT 17.0 43.8 59.8 9.0

Table 4: Text-to-video retrieval results on YouCook2

val set. PT indicates models with pre-training on

HowTo100M. Model references: HGLMM (Klein

et al., 2015), HowTo (Miech et al., 2019), COOT (Ging

et al., 2020), MIL-NCE (Miech et al., 2020)

mance on the retrieval tasks. We show MSRVTT

text-to-video retrieval in Table 3. Overall, our

approach achieves the best performance. Com-

pared to the pre-trained models HowTo (Miech

et al., 2019), ActBERT (Zhu and Yang, 2020), and

HERO (Li et al., 2020b), DECEMBERT achieves

strong performance with a reasonable margin. It

outperforms HERO by 0.7% R1, note that HERO

is pre-trained with extra TV show videos (Lei

et al., 2018; Liu et al., 2020a) in addition to the

HowTo100M videos that we use. Moreover, DE-

CEMBERT is also quite competitive compared

to the HERO w/ ASR model that uses additional

ASR features during finetuning. For YouCook2

text-to-video retrieval results shown in Table 4, our

approach also show better performance compared

to the pre-trained models HowTo and COOT+MIL-

NCE. Notably, it outperforms previous state-of-the-

art COOT+MIL-NCE by 7.5% R@10.

Video Question Answering. We use a two-layer

MLP followed by a softmax layer for open-ended

question answering, where we optimize the proba-

bility of choosing the correct answer from a large

pool of candidate answers. We report accuracy to



2422

Method Accuracy

ST-VQA (Jang et al., 2017) 30.9
Co-Memory (Gao et al., 2018) 32.0
AMU (Xu et al., 2017) 32.5
Heterogeneous Memory (Fan et al., 2019) 33.0
HCRN (Le et al., 2020) 35.6

DECEMBERT 37.4

Table 5: Video question answering results on

MSRVTT-QA test set.

measure the QA performance. We show MSRVTT-

QA results in Table 5 where our approach outper-

form all the baseline methods by a large margin.

Compared to HCRN (Le et al., 2020) which em-

ploys a complicated hierarchical reasoning mod-

ule, our approach achieves 1.8% performance gain,

achieving a new state-of-the-art for the task.

4.4 Analysis

Ablation Study. We present ablation study on

our pre-training strategies, on both the pre-training

tasks and the MSRVTT captioning downstream

task. We report ablation results on our 10K hold-

out HowTo100M videos for pre-training tasks, i.e.,

masked language modeling (MLM) accuracy and

video-text matching accuracy. Because we use

MLM for both dense captions and the original ASR

captions, we report their accuracy separately. The

results are shown in Table 6. To understand how

the pre-training strategies affect the downstream

performance, we also perform downstream finetun-

ing from pre-trained models using these different

pre-training strategies. The results are shown in

Table 7. Compared to the basic model that uses

only a single paired ASR caption with each clip for

training, we observe the the variant that takes three

ASR captions achieves significantly higher accu-

racy in MLM and video-text matching. Adding

dense captions and constrained attention loss fur-

ther improve the performance. Overall, the same

trend also holds true for the downstream perfor-

mance on MSRVTT captioning and QA tasks. The

best captioning and QA models are finetuned from

the model pre-trained using both the dense captions

and the constrained attention loss. Compared to the

basic model with only MLM and video-text match-

ing, our best models achieve a significant perfor-

mance gain: e.g., 3.3% BLEU@4, 3.1% CIDEr-D

for captioning, and 2.3% Accuracy for QA.

Qualitative Results During pre-training, we ap-

ply our proposed constrained attention loss to every

Pre-training Method
MLM Acc Matching

ASR Dense Acc

MLM & Matching 21.95 - 61.63
+ Neighboring ASR Cap. 48.42 - 78.90
+ Dense Captions 49.78 84.06 80.02
+ Constrained Loss 50.66 84.46 80.32

Table 6: Ablation results on HowTo100M (Miech et al.,

2019) hold-out val set. Each row adds an extra compo-

nent to the row above it.

Pre-training Method
Captioning QA

B@4 M R C Acc

MLM & Matching 41.3 27.6 60.3 48.1 35.7
+ Neighboring ASR Cap. 41.6 28.0 60.5 47.8 35.8
+ Dense Captions 43.5 29.6 63.9 49.4 36.7

+ Constrained Loss 44.6 29.9 64.0 51.2 37.0

Table 7: Ablation results on MSRVTT captioning and

MSRVTT QA tasks, both on val set. Each row adds an

extra component to the row above it.

AC1

AC2

AC3

the background is black, a man is wearing a 

white shirt, a man is in a restaurant

AC1: supermarket make course

AC2: love make saw quick roasted

AC3: roasted red pepper hummus 

Video Dense Caption

ASR Captions

AC1

AC2

AC3

+ constrained attention loss

Figure 4: Attention visualization for models with and

without constrained attention loss. After adding con-

strained attention, the attention mass concentrated to

the ASR caption (e.g., AC3) that best matches the video

content and the dense captions. These attention maps

are taken from an attention head of the 10-th layer of

the transformer model.

attention heads across all layers. In Figure 4, we

compare the attention maps from models with or

without the proposed constrained attention loss dur-

ing pre-training. As we found the attention weight

distributions (not absolute values) on different lay-

ers look similar to each other, we randomly chose

the 10-th layer to showcase the effect of adding

constrained attention loss. We observe that after

adding constrained attention loss as a regulariza-

tion, the attention mass concentrated to the best-
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matched ASR caption rather than distributed to all

the captions.

5 Conclusion

In this work, we propose DECEMBERT as an

improved pre-training method for learning from

noisy, unlabeled instructional videos. Specifically,

we propose adding automatically-extracted frame-

level dense captions as an auxiliary text input for

learning better video and language associations.

We also propose a constrained attention loss that

forces the model to automatically focus on the best-

matched caption from a pool of misalignment cap-

tion candidates via entropy minimization. Com-

prehensive experiments on three popular video and

language tasks (i.e., text-to-video retrieval, video

captioning, and video question answering) across

five datasets demonstrate the effectiveness of DE-

CEMBERT compared to existing approaches. We

also provide detailed ablation study and visualiza-

tion to quantitatively and qualitatively examine the

impact of our added components.
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