
Decentralised Approaches for Network Management

Mohsen Kahani, H.W. Peter Beadle

The Institute for Telecommunication Research (TITR)

Elec. and Comp. Eng. Dept., University of Wollongong

Northfield Ave, Wollongong, NSW 2522, Australia

email: {moka|beadle}@elec.uow.edu.au

Abstract

Centralised network management has shown inadequacy for efficient management of large
heterogenous networks. As a result, several distributed approaches have been adapted to
overcome the problem. This paper is a review of decentralised network management techniques
and technologies. We explain distributed architectures for network management, and discuss
some of the most important implemented distributed network management systems. A
comparison is made between these approaches to show the pitfalls and merits of each.

1. Introduction

Systems are increasingly becoming complex and distributed. As a result, they are exposed to
problems such as failure, performance inefficiency, resource allocation, security issues, etc. So, an
efficient integrated network management system is required to monitor, interpret, and control the
behaviour of their hardware and software resources [1]. This task is currently being carried out by
centralised network management systems, in which a single management system monitors the
whole network.

Most of existing management systems are platform-centred. That is, the applications are
separated from the data they require and from the devices they need to control. Although some
experts believe that most network management problem can be solved with a centralised Simple
Network Management Protocol (SNMP) [2], there are real network management problems that
cannot be adequately addressed by this centralised approach [3]. Also, as managed devices are
increasingly equipped with powerful processing resources, device-centred management can easily
make use of these resources and provide a simpler, more scalable, more flexible, and cheaper
management paradigm than platform-centred ones . There are a number of metrics that can be
used to determine if a network management application is more appropriate for a centralised or
distributed system. Figure 1. shows a metric presented in [3].

Figure 1. Metrics to determine decentralisation

In this paper, we focus on non-centralised approaches for network management, and discus
several architectures proposed to accomplish this purpose. We initially, explain different
architectures for network management systems. Then, we present background information on
distributed systems and then discuss several implemented distributed network management
systems. Finally, we will conclude the paper with a comparison between these systems and discuss
their pitfalls and merits.

2. Network Management Architectures

There are three basic approaches for network management systems: centralised, hierarchical and
distributed [4]. Currently, most network management systems are centralised. That is, there is a
single management machine which collects the information and controls the entire network
(Figure 2.-a). This workstation is a single point of failure, and if it fails, the entire network could
collapse. In case the management host does not fail, but a fault partitions the network, the other
part of the network is left without any management functionality. Also, a centralised system
cannot easily be scaled up when the size or complexity of the network increase [5].

A variation of centralised systems is the platform approach [6] (Figure 2.-b), in which a single
manager is divided into two parts: the management platform and the management application. The
management platform is mainly concerned with information gathering and simple calculations,
while management application uses the services offered by the management platform to handle
decision support and higher functions [7]. The advantage of this approach is that applications do
not need to worry about protocol complexity and heterogeneity. The drawback is that it still
inherits limited scalibility from its centralised architecture.
The hierarchical architecture uses the concept of “Manager of Managers” (MOM) and manager
per domain paradigm[4, 6] (Figure 2.-c). Each domain manager is only responsible for the
management of its domain, and is unaware of other domains. The manager of managers sits at a
higher level and request information from domain managers. In this architecture, there is no direct

communication between domain managers. This architecture is quite scalable, and by adding
another level of MOM a multiple level hierarchy can be achieved.

The distributed approach (Figure 2.-d) is a peer-to-peer architecture[4]. Multiple managers, each
responsible for a domain, communicate with each other in a peer-system. Whenever information
from another domain is required, the corresponding manager is contacted and the information is
retrieved. By distributing management over several workstations throughout the network, the
network management reliability, robustness and performance increases, while the network
management costs in communication and computation decrease [5]. This approach has also been
adapted by ISO standards and the Telecommunication Management Network (TMN)
architecture [8]. The Management model for ATM networks, adapted by ATM Forum, is based
on this approach, too [9].

A combination of the hierarchical and distributed architectures, known as ‘network architecture’,
can also be used [6] (Figure 3.). This architecture uses both manager-per-domain and manager of
managers concepts, but instead of a purely peer-system or hierarchical structure, the managers are
organised in a network scheme. This approach preserves the scalibility of both systems and
provides better functionality in diverse environments.

Management
Workstation

Network

Agent Agent Agent

(a)

(Multiple-vendor)

Network

Agent Agent Agent

(b)

Management Platform

Application Application

(Multiple-protocol)

Network

Agent

Agent

Agent

(c)

Manager 1 Manager n

domain 1 domain n

Manager of
Managers(MOM)

Network

Agent

Agent

Agent

(d)

Manager 1 Manager n

domain 1 domain n

Figure 2. Different management approaches: a) Centralised, b) Centralised Platform-based,
c) Hierarchical and d) Distributed.

Integrated
Manager 1

Integrated
Manager 3

Integrated
Manager 2

Element
Manager 1

Element
Manager 2

Element
Manager n

Network

domain 1 domain n

Figure 3. Network Architecture

3. Distributed Systems and Services

Fault tolerance and parallelism are key properties of a distributed system [10]. A distributed
system should use interconnected and independent processing elements to avoid having a single
point of failure. There are also several other reasons why a distributed system should be used.
Firstly, higher performance/cost ratio can be achieved with distributed systems. Also, they achieve
better modularity, greater expansibility and scalibility, and higher availability and reliability [11].

Distribution of services should be transparent to users, so that they cannot distinguish between a
local or remote service. This requires the system be consistent, secure, fault tolerant and have a
bounded response time. The form of communication in such systems is referred to as client/server
communication [12]. The client/server model is a request-reply communication that can be:
synchronous and blocking, in which the client waits until it receives the reply; or asynchronous
and non-blocking, in which the client can manage to receive the reply later.

Remote Procedure Call (RPC) [13, 14] is well-understood control mechanism used for calling a
remote procedure in a client/server environment. The idea is to extend the use of procedure call in
local environment to distributed systems. This results in simple, familiar and general methods that
can be implemented efficiently.

The Object Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA) [15] is also an important standard for distributed object-oriented systems. It is aimed
at the management of objects in distributed heterogenous systems. CORBA addresses two
challenges in developing distributed systems: making the design of a distributed system not more
difficult than a centralised one; and providing an infrastructure to integrate application
components into a distributed system [16].

4. Non-centralised Network Management

In this section, we will discuss some of the most important proposed systems for management of
networks using non-centralised approaches. These systems include distributed big brother, from
the University of Michigan; Distributed Management Environment, from the Open Software
Foundation (OSF); hierarchical network management, from the Technical University of Vienna
(TU-Wien); and management by delegation, from the University of Columbia. A comparison will
be presented in the next section. There are several other approaches, which are not discussed in
this paper. Interested readers can refer to [17-24].

4.1. Distributed Big Brother

Distributed Big Brother (DBB) is a distributed network management system consisting of
cooperative autonomous computing agents [5]. DBB has been designed with the goal of
distributing management and organisational tasks, while maintaining a central location control
over the whole system. It uses some technologies from the field of distributed AI, such as
contracting information, organisational structuring, election for role management, and hierarchical
control.

DBB distributes the management tasks by using mid-level managers that can be executed in
parallel. It also uses the Contract Net Protocol [25] to reduce the overhead in authority structure.
As the computer networks changes dynamically, it is not desirable to distribute the tasks only at
time of initialisation. So, DBB allows the system to undergo an organisational self-design [26],
and changes the submanagers roles as the network structure varies.

In DBB each agent consists of three basic functional modules: the communication process, the
contracting process, and the task process. The communication process continuously checks
whether a message has been sent to the agent, and if so, transmit it to the contracting process,
which parses them and does appropriate actions. Finally, the task process carries out the agent’s
management task.

Agents' roles are not static. An agent does not have any management role as it enters the network.
At the time of initialisation, or whenever required, the agents choose a chairman to elect the LAN
manager. The chairman announces the election and selects the best nominate (eg. least busy host)
and broadcasts its decision. After electing the LAN manager, all other agents become group
managers and execute tasks for information gathering. The LAN manager, which is responsible
for managing the whole LAN, uses contracting to assign tasks to group managers. Finally, there is
a fixed top manager, which uses contracting to request reports from LAN managers.

A network can have an arbitrary number of LAN managers and group managers. As LAN
managers have some sort of autonomy and independency, more LAN manager means more
autonomous and independent network management systems, which corresponds to higher
robustness. Increasing the number of group managers increases the number of polling agents,
which corresponds to a more frequent polling and more updated management information.
However, there is trade off between increasing number of LAN and group managers and extra

traffic caused by communication between top manager and LAN managers, and between each
LAN manager and its group managers.

4.2. Distributed Management Environment (DME)

The Open Software Foundation’s (OSF) Distributed Management Environment (DME) is an
attempt to represent a structure under which the management of systems and networks can be
brought together [27]. It tries to provide a standard set of services to bring management to
everything, from bridges and router to server-based operating systems and applications [28].
DME is operating system-independent and supports several standards, such as SNMP and CMIP.

DME is tailored to OSF Distributed Computing Environment (DCE) [29]. DCE is a
comprehensive and integrated service that allows development, distribution and maintenance of
distributed applications. It masks the physical complexity of the networked environment and
provides a layer of logical simplicity. DCE uses RPC for communication and provides distributed
directory services, security services, time services and thread services. Using services provided by
DCE, DME provides manageability and allows network components and applications to be well
maintained.

DME consists of a framework that provides the building blocks for application development and
some of the most critical system management functions, such as software management, licence
management and printing services. The architecture of the DME allows the addition of new
services. It consists of two key components: Manager Request Broker (MRB) and Object Server,
as shown in Figure 4.

The MRBs are central pieces in the DME framework; they implement the basic APIs that access
the services furnished by the DME. The MRB establishes a standardised programming interface to
SNMP and CMIP, known as Consolidated Management API (CM-API). The MRB also provides

Object
Server

Object
Server

Management
Request

Broker (MRB)

Management
Request

Broker (MRB)

Management
Protocol

SNMP/CMIP
SNMP/CMIP

Agent Agent

Management
Application

Management
Application

Management
Application

Object
Server

Figure 4. DME in details

a way for management applications to invoke one of the methods associated with a DME object.

The object server provides access to the data stored in the object and can create or delete
instances of an object. Whenever the MRB receives a message, it sends it to an object server that
is associated with the target object. The MRB finds the object by using the Distributed Computing
Environment (DCE) directory services.

The major problem of DME is that, if all network management platform vendors adapt their
system to the DME framework, there will be no differentiating features [30]. As a result platform
vendors haven’t attempted to conform to the it, and although DCE gained success and popularity
in the market, DME has not.

4.3 Hierarchical Network Management

Hierarchical network management system [31] uses the concept of SubManager, similar to the
manager-to-manager(M2M) protocol described in SNMPv2[32]. A SubManager is associated
with a few agents, and collects the primitive information from them, performs some calculations,
and produces more meaningful values that can be used by a superior manager. This method
significantly reduces the amount of management traffics, because only high-level information is
sent to the master manager.

Whenever network operators need more, or high-level, information a downloaded Network
Management Procedure (NMP) is dynamically assigned to the system. This allows dynamic
reconfiguration at run-time, and removes the need to hard-wire everything at compile time [31].
The NMPs are loaded into submanagers, and are stored in two tables: subMgrEntry and
subMgrOps . Each procedure is Periodically activated and a “Worker” is created, which

subMgrValue

subMgrOps

Controller
subMgr

subMgr

Worker
Worker

Agent

 SubManager

Manager Network Management
 Procedure (NMP)

 Presentation
 of result

 get/response
 (SNMPv1/v2)subMgrEntry

Create Worker

Figure 5. Internals of the SubManager

evaluates the procedure and stores the result into subMgrValue table This table is read by the
manager. This procedure is illustrated in Figure 5.

4.4. Management by Delegation (MbD)

Most distributed management systems use a traditional client/server process interaction method,
such as Remote Procedure Call (RPC). The current implementation of this architecture lacks the
required flexibility and needs recompilation and reinstallation of the application whenever a
modification is made [1]. Management by Delegation (MbD) [33, 34, 35] is a more flexible
paradigm and uses the concept of elastic server [36], whose functionality can be extended at
execution time by delegating new functional procedures to it.

In MbD, instead of bringing a device’s data to the management platform application, applications
are delegated to devices and executed in the same environment that data exists. The delegator
entity (manager) uses a delegation protocol to download and control a delegated program (DP).
An elastic server resides in each device, which maintains and executes DPs, as illustrated in
Figure 6.

DP

Delegator
Elastic
Server

Delegation Protocol

Figure 6. Delegating to an elastic server

A DP may be delegated to a device at boot-time so that the device assumes autonomous
responsibilities to handle port failure. This will reduce the need for communication at the times of
stress. As automation of management functions distributes the load, the overall load on operation
centre is reduced. Also, MbD does not require a uniform semantic model of device data, which
simplifies the handling of heterogeneity problem across devices and eliminates barriers to
management application development.

MbD can inter-operate with current management protocols, extend their capabilities and even
provide a complementary paradigm to them. The entire protocol agents may also be incorporated
with an MbD-Kernel as a delegated program, which allows flexible programming for provision of
device information. The other feature of delegation is that it may be used as a converter among
different management protocol. For instance an SNMP device may be scripted to support CMIP
accesses, as well.

MbD improves the survivability of distributed systems by maximising their autonomy. Using MbD
allows devices to acquire regional autonomous management capabilities, conditional on the
network status. In case of losing communication with management entities, the device may
activate management programs that permit fully autonomous management.

5. Comparison

In this section a comparison is made to show the advantages and drawbacks of the discussed
systems. We focus our comparison on the performance of these systems for several requirements
of distributed network management systems, such as polling method, communication between
layers of management, extensibility and flexibility. The comparison is presented in Table 1 and will
be explained in the following paragraphs.

Centralised
Management

Distributed
Big Brother

Distributed
Management
Environment

Hierarchical
Network

Management

Management
by Delegation

Architecture Centralised Hierarchical Hierarchical Hierarchical Distributed/
Hierarchical

Communica-
tion method

N/A Contracting
Protocol

RPC Client/Server Delegation
Protocol

Polling
method

Direct Indirect
(via group
managers)

Indirect
(via object
servers)

Indirect
(via

submanagers)

Indirect
(via elastic

servers)

Polling
Interval

High Low Low Low Low

Autonomy N/A Good Fair Fair Very good

Extensibility Low Medium High High Very high

Flexibility Low High Medium Medium Very high

Table 1- Comparison of systems

All of these systems share the feature of not polling management information for the whole
network from a central location. Instead, they take in events, alarms and alerts from mid-level
management platforms. As a result, the number of nodes that management information has to
travel is significantly reduced. Although, the communication between each layer of management
introduces a new bandwidth penalty, a much less amount of data has to be sent to the higher
layer. This is because raw data gathered from network elements is processed before being sent to
the higher level. In other words, the management traffic has been localised.

Also, as these systems use parallel polling, they reduce the time to poll the whole network
elements' status. Consequently, more recent management information is available. The time to poll
the network is directly related to the number of sublayer managers. However, increasing the
number of layers increases the traffic because of extra overhead required for manager to
submanagers communication. So, there is a trade-off between polling interval and management
traffic.

The method of communication between each manager and its submanagers is different for each
system. DME and hierarchical network management are based on client/server architecture. DME
uses RPC for communication, and hierarchical network management utilises NMPs to download
procedure into submanagers. Distributed Big Brother employs contracting protocol to distributed
the task between submanagers. MbD, however, employs a completely new approach, known as
delegation protocol.

In current RPC-based systems, the communication is limited to the procedures defined at the time
of implementation. Although some techniques, such as Dynamic Link Library (DLL), allow more
flexibilty, still adding a new functionality to the system might require that the system being
shutdown, recompiled and installed again, which cannot be an everyday task. NMP concept
improves this situation by allowing the addition of script at run-time. However, MbD enjoys from
dynamic reconfiguration by adding procedure at run-time, and delegating them to elastic servers.

Managing a distributed network requires real-time access to the status of each network part. As
polling several variables from each segment of the network is not efficient, these data should be
compressed. One method of compressing operational data is computation of index functions,
known as health functions [1]. Health functions, typically utilise a linear combination of some
MIB variables, such as ifInOctets and ifOutOctets , at which status indicators change.

Health functions are calculated at lower layers of management from the raw data, and the result is
polled by the upper layers from time to time. Whenever a fault occurs in the system, it may be
desirable to have a special health indicator which can help the manager localised the fault quickly.
In systems other than MbD, the health functions are fixed and can not be changed easily. So, if the
required indicator has not been already provided, the manager has to poll raw data which may add
a significant amount of traffic.

In terms of autonomy of submanagers, MbD and DBB provide more flexibility. Whenever a fault
partitions the network, so that one part of the network becomes unreachable from the central
management station, the manager agents in that segment can get full autonomy, and monitor and
manage the network, until the connection is restored.

Most commercial distributed network management systems, such as Cabletron’s Spectrum, IBM’s
SystemView and Hewlett-Packard’s OpenView, are based on the concept of ‘manager of
managers (M2M)’ [37]. This may be because of simplicity of this approach compared to the
others. However, MbD provides a more flexible approach. The popularity of Java [38] as a
platform-independent language has eased the implementation of MbD. As trend in network
management is toward using flexible and scalable semi-autonomous area managers [39], it seems
that MbD will get more popularity than any other available models.

6. Conclusion

In this paper, we discuss several distributed approaches for network management. Four of most
important architectures were discussed and compared with each other. Distributed Big Brother is

a system based on some AI techniques, such as contracting protocol, and self-organising network.
It has been implemented at the University of Michigan, and has shown some satisfactory results
when appropriate numbers of LAN and GROUP managers were chosen.

Distributed Management Environment (DME) is based on OSF Distributed Computing
Environment (DCE) to bring the management of systems and networks together. DME does not
seem to have successed.

Hierarchical network management uses the concept of submanagers and manager of managers of
SNMPv2, and utilises the manager-to-manager MIB to communicate between management
agents. This idea has been implemented in several commercial systems, because of its simplicity
and the popularity of SNMP.

Management by Delegation (MbD) is a new approach for distributed management. It uses the
concept of an elastic server, which reside in each management agent, and its functionality can be
extended in run-time by delegating procedures to it. It provides significant flexibility and
autonomy for management agents. Management of huge and diverse emerging broadband
networks will justify the deployment of this approach, and the availability of platform-independent
programming language, such as Java, will ease its implementation.

Acknowledgment

This work is supported by a postgraduate scholarship from ministry of culture and higher
education of I.R. Iran granted to M. Kahani. The financial support of The Institute for
Telecommunication Research (TITR) at the University of Wollongong is also hereby
acknowledged.

References

[1] Goldszmidt, German, “On Distributed System Management”, In Proceedings of the Third IBM/CAS
Conference, Toronto, Canada, October 1993.

[2] Case, J., Fedor, M., Schffstall, M., Davin, J., “A Simple Network Management Protocol (SNMP)”, RFC
1157, May 1990.

[3] Meyer, K., Erlinger, M., Betser, J., Sunshine, C., Goldszmidt, G., Yemini, Y., “Decentralising Control and
Intelligence in Network Management”, Proceedings of International Symposium on Integrated Network
Management, May 1995.

[4] Leinwand, A., Fang, K., “Network Management: A Practical Perspective”, Addison Wesley, 1993.
[5] So, Y., Durfee, E., “Distributed Big Brother”, 8th International Conference on Artificial Intelligence and

Applications, 1992, pp. 295-301.
[6] Herman, J., “Enterprise management Vendors Shoot it Out”, Data Communication International,

November 1990.
[7] Stamatelopoulos, F., Chiotis, T., Maglaris, B., “A Scalable, Platform-Based Architecture for Multiple

Domain Network Management”,
[8] ITU-T Recommendation M.3010, “Principle and Architecture for the TMN”, Geneva, 1992.
[9] Alexander, P., Carpenter, K., “ATM Net Management: A Status report”, Data Communication Magazine,

September 1995.
[10] Mullender, S., “Distributed Systems”, ACM Press Publication, Addison Wisley, 1990.

[11] Spector, A., “Achieving Application Requirement on Distributed System Architecture”, in Distributed
System Book, ACM Press, Addison Wisley, 1990.

[12] Coulouris, G., Dollimore, J, Kindberg, T., “Distributed Systems: Concepts and Design”, Addison Wisley,
1994.

[13] Nelson, B., “Remote Procedure Call”, CSL-81-9, Xerox Palo Alto Research Center, 1981.
[14] Weal, W., “Remote Procedure Call”, in Distributed System Book, ACM Press, Addison Wisley, 1990.
[15] “The Common Object Request Broker: Architecture and Specification-Revision 2.0”, Available at URL

HTTP://www.omg.org/corbask.htm. July 1995.
[16] Schmidth, D., “Object-Oriented Network programming: An Overview of CORBA”, Available at URL

http://www.cs.wustl.edu/~schmidt/corba4.ps.gz.
[17] Agoulmine, N., “Distribution of Management Over Multi-Domains Network Management Systems”, IEEE

GLOBECOM’93, 1993, pp. 1217-1221.
[18] RACE Project - Research and Technology Development in Advanced Communications technologies in

Europe, RCO-CEC, Brussels.
[19] Ahrens, Mike, “Key Challenges in Distributed management of Broadband Transport Networks”, IEEE

Journal on selected areas in communications, vol12, no. 6, August 1994, pp. 991-999.
[20] Kiriha, Y., Nakai, S., Sakauchi, H., Okazaki, F., Okazaki, H., “Concurrent Network Management System

using Distributed Processing Techniques”, IEEE GLOBECOM’93, pp. 202-206.
[21] Lee, k., “A Distributed Network Management System”, IEEE GLOBECOM’94, 1994, pp. 548-552.
[22] Stamateopoulos, F., Roussopoulos, N., Maglaris, B., “Using a DBMS for Hierarchical network

management”, Engineering Conference NETWORLD+INTEROP ‘95, March 95.
[23] Madruga, E., Tarouco, L., “Fault management Tools for a Cooperative and Decentralised Network

Operations Environment”, , IEEE Journal on selected areas in communications, vol. 12, no. 6, August 1994,
pp. 1121-1130.

[24] Zhang, X., Seret, D., “Supporting Network Management Through Distributed Directory Service”, , IEEE
Journal on selected areas in communications, vol. 12, no. 6, August 1994, pp. 1000-1010.

[25] Smith, R., “The Contract Net Protocol: High-level Communication and control in a distributed Problem
Solver”, IEEE Transaction on Computers, C-29(12), December 1980, pp. 1104-1113.

[26] Corkill, D., “A Framework for Organisational Self-Design in Distributed Problem Solving Networks”, PhD
thesis, University of Massachusetts, Feb 83.

[27] “DME Overview”, OSF online document, OSF-DME-PD-0394-2, 1992.
[28] Herman, J., “Distributed Network Management: Time runs for mainframe-based systems”, Data

Communications Magazine, June 1992, pp. 74-84.
[29] “The OSF Distributed Computing Environment”, OSF online document, OSF-DCE-PD-1090-4, 1992.
[30] Acosta, Victor S., “OSF/DME (Distributed Management Environment)”, Available at URL

http://www.frontiernet.net/~/vsa184/paper/osf-dme.htm.
[31] Siegle, M., Trausmuth, G., “Hierarchical Network Management: A Concept and its Prototype in SNMPv2”,

JENC6, 1995, pp. 122/1-10.
[32] Case, J, McCloghrie, K, Rose, M, Waldbusser, S, “Introduction to version 2 of the Internet-standard

Network management Framework”, RFC 1441, SNMP Research Inc. Highes LAN Systems Inc., Dover
Beach Consulting Inc., Carnegie Mellon University, April 1993.

[33] Yemini, Y., Goldszmidt, G., “Network Management by Delegation”, 2nd International symposium of
Integrated Network Management, April 1991.

[34] Goldszmidt, G., Yemini, Y., “Evaluating Management Decisions via Delegation”, 3rd International
symposium of Integrated Network Management, April 1993.

[35] Goldszmidt, German, “Distributed Management by Delegation”, Proceedings of 15th International
Conference on Distributed Computer System, June 1995.

[36] Goldszmidt, German, “Distributed System Management via elastic Servers”, Proceedings of 1st IEEE
international Workshop on System Management, April 1993.

[37] Jander, Mary, “Distributed Net Management: In search of Solution”, Data Communication Magazine,
February 1996.

[38] “Java Language Specification: version 1.0 Beta”, Sun Microsystem, 1995.
[39] Wellens, C., Auerbach, K., “Towards Useful Management”, The Simple Times, Vol. 4, No. 3, July 1996.

