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Abstract— This study considers the discrete-time dynamics
of a network of agents that exchange information according
to the nearest-neighbour protocol under which all agents are
guaranteed to reach consensus asymptotically. We present a
fully decentralised algorithm that allows any agent to compute
the consensus value of the whole network in finite time using
only the minimal number of successive values of its own history.
We show that this minimal number of steps is related to
a Jordan block decomposition of the network dynamics and
present an algorithm to obtain the minimal number of steps in
question by checking a rank condition on a Hankel matrix
of the local observations. Furthermore, we prove that the
minimal number of steps is related to other algebraic and
graph theoretical notions that can be directly computed from
the Laplacian matrix of the graph and from the underlying
graph topology.

I. INTRODUCTION

Fuelled by applications in a variety of fields, there has
been a recent surge of interest in consensus dynamics. In
its most basic formulation, the consensus problem studies
the linear discrete-time dynamics of a network of agents
that exchange information according to the nearest-neighbour
averaging rule. The consensus problem has broad implica-
tions beyond the analysis and design of collective behaviour
in multi-agent systems. Various applications can be cast in
this framework, including swarming and flocking [1], [2],
distributed computing [3], agreement in social networks [4],
[5] or synchronisation of coupled oscillators [6], [7], [8].

The design of efficient distributed consensus algorithms is
a current focus of active research in the Control literature.
Under broad assumptions, well-known results [9], [10], [11]
give conditions to ensure that the state of each agent reaches
the consensus value asymptotically. From a practical point
of view, however, requiring an infinite or arbitrarily long
time to obtain the final consensus value of the system is
unsatisfactory. A finite-time protocol is designed in [12]. The
principles for the computation of the asymptotic final value
of the network in finite time were introduced in [13]. In [14],
we extended those results and studied the minimal number of
discrete-time steps required by an arbitrarily chosen agent to
compute the asymptotic final value of the network without
any prior knowledge of the system dynamics. Importantly,
the information used for that purpose was solely based on
the accumulation of the successive state values of the agent
under consideration, and, consequently, the corresponding
algorithm was truly decentralised.

†Corresponding author: yy311@cam.ac.uk. Ye Yuan and Jorge Gonçalves
are with the Control Group, Department of Engineering, University of
Cambridge. Guy-Bart Stan is with the Department of Bioengineering,
Imperial College London. Guy-Bart Stan is also affiliated with the Centre
for Synthetic Biology and Innovation, Imperial College London. Mauricio
Barahona is with Department of Mathematics, Imperial College London.
Ling Shi is with the Department of Electronic and Computer Engineering,
the Hong Kong University of Science and Technology.

This paper presents a characterisation of our results for
decentralised minimal-time consensus. Firstly, we introduce
an algorithm that allows any agent in a consensus-guaranteed
network to compute the consensus value using one less
step than in [14]. This algorithm relies on the analysis
of the rank of a Hankel matrix constructed from local
observations at any chosen node. Furthermore, we show that
the minimal number of steps is linked to a global property
of the network: the degree of a specific matrix polynomial.
This provides us with an algebraic characterisation of the
local convergence to consensus in terms of properties of the
Laplacian matrix of the graph. Finally, we show that the
minimal number of steps required to compute the consensus
value from local observations of any chosen node can also be
characterised in terms of a combinatorial graph theoretical
property: the minimal external equitable partition of the
graph with respect to that node. Throughout the paper we
illustrate our results with relevant examples to highlight how
our framework can establish a link between the spectral and
graph theoretical properties of a network of interacting agents
and the minimal-time solution of distributed decision-making
problems.

Notation: The notation in this paper is standard. For
a matrix A ∈ RM×N , A[i, j] ∈ R denotes the element in
the ith row and jth column, A[i, :] ∈ R1×N denotes its ith

row, A[:, j] ∈ RM×1 denotes its jth column, and A[i1 :
i2, j1 : j2] denotes the submatrix of A defined by the rows
i1 to i2 and the columns j1 to j2. For a column vector α ∈
RN×1, α[i] denotes its ith element. We denote by eTr =
[0, . . . , 0, 1rth , 0, . . . , 0] ∈ R1×N . Furthermore, IN denotes
the identity matrix of dimension N .

II. CONSENSUS DYNAMICS: FORMULATION AND
PREVIOUS RESULTS

A. Formulation of the problem

Consider a directed unweighted graph denoted by G =
(V, E ,W ), where V = {ν1, . . . , νn} is the set of nodes, E ⊂
V × V is the set of edges, and W = {W [i, j]}i,j=1,...,n is
the corresponding n by n adjacency matrix, with W [i, j] = 1
when there is a link from j to i, and W [i, j] = 0 when there
is no link from j to i. Let x[i] ∈ R denote the state of node
i, which might represent a physical quantity such as altitude,
position, temperature, voltage, etc. The classical consensus
problem on a network of continuous-time integrator agents
is defined by the following dynamics [10]:

ẋ(t) = −Lx(t),

where L ∈ Rn×n is the Laplacian matrix induced by the
topology G. L is defined as L[i, i] =

∑n
l 6=iW [i, l], ∀i =

1, . . . , n and L[i, j] = −W [i, j], ∀i 6= j.
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Here, we consider the associated discrete-time consensus
dynamics on a network:

xk+1 = (In − εL) xk , Axk

yk = eTr xk = xk[r], (1)

where xk ∈ Rn and ε is the sampling time. Without loss of
generality, we concentrate on the case where the measurable
output yk ∈ R corresponds to the local state of an arbitrarily
chosen agent labelled r.

B. Global asymptotic convergence to distributed consensus
(see [9], [10]):

Let dmax = maxi L[i, i] denote the maximal node out-
degree of the graph G. If the network has a rooted directed
spanning tree (or is connected in the case of an undirected
graph) over time, and the sampling time ε is such that 0 <
ε < 1/dmax, then the discrete-time version of the classical
consensus protocol given in (1) ensures global asymptotic
convergence to consensus in the sense that

lim
k→∞

xk =
(
cTx0

)
1n×1

where 1n×1 is a column vector with all components equal
to 1, and cT is a constant row vector. In other words, the
values of all nodes converge asymptotically to the same
linear combination of the initial node values x0.

Algebraic characterisation of distributed asymptotic con-
sensus [15]:: When cT1 = 1, the iteration given by (1)
achieves distributed consensus if and only if:
A.1 A has a simple eigenvalue at 1, and all other eigenval-

ues have a magnitude strictly less than 1.
A.2 The left and right eigenvectors of A corresponding to

the eigenvalue 1 are cT and 1, respectively.

C. Finite-time computation of the final consensus value [13]
Recent work by Sundaram and Hadjicostis [13] showed

that it is possible to obtain the final value of the consensus
dynamics in a finite number of steps. Their result hinges
on the use of the minimal polynomial associated with the
consensus dynamics (1) in conjunction with the final value
theorem.

Definition 1 (Minimal polynomial of a matrix): The min-
imal polynomial of matrix A ∈ Rn×n is the unique monic
polynomial q(t) , tD+1 +

∑D
i=0 αit

i with minimal degree
D + 1 that satisfies q(A) = 0.

Given the explicit solution of the linear system in (1)
with initial state x0, it follows from the definition of the
minimal polynomial that the dynamics in (1) satisfies the
linear regression equation:

xk+D+1 + αDxk+D + . . .+ α1xk+1 + α0xk = 0, ∀k ∈ N.
(2)

Similarly, the regression equation for yk = xk[r], the
measurable output at node r, is determined by the minimal
polynomial of the corresponding matrix observability pair
[A, eTr ].

Definition 2 (Minimal polynomial of a matrix pair): The
minimal polynomial associated with the matrix pair [A, eTr ]

denoted by qr(t) , tDr+1 +
∑Dr

i=0 α
(r)
i ti is the unique

monic polynomial of minimal degree Dr + 1 ≤ D + 1 that
satisfies eTr qr(A) = 0.

Again, it is straightforward to show that:

yk+Dr+1+α
(r)
Dr
yk+Dr

+. . .+α
(r)
1 yk+1+α

(r)
0 yk = 0, ∀k ∈ N.

(3)
Therefore each node r will be associated with a particular
length of the regression (Dr + 1) which is upper bounded
by the degree of the minimal polynomial of the dynamical
matrix A.

Consider now the Z-transform of yk1:

Y (z) =

∑Dr+1
i=1 α

(r)
i

∑i−1
`=0 y`z

i−`

qr(z)
,
H(z)

qr(z)
. (4)

Under the assumptions specified in Section II-B, the minimal
polynomial qr(t) does not possess any unstable root except
for one single root located at 1. We can then define the
following polynomial:

pr(z) ,
qr(z)

z − 1
,

Dr∑
i=0

βiz
i. (5)

The application of the final value theorem [16] then gives
the consensus value

φ = lim
z→1

(z − 1)Y (z) =
H(1)

pr(1)
=
yTDr

β

1Tβ
(6)

where yTDr
=
[
y0 y1 . . . yDr

]
and β(Dr+1)×1 is the

vector of coefficients of the polynomial pr(z) defined in
eq. (5).

Based on these results, an algorithm to obtain the con-
sensus value was proposed in [13]. The proposed algorithm
was distributed but not entirely local, in the sense that a local
calculation is repeated over n independent iterations (where
n is the total number of nodes of the network) and at each
iteration, it requires each node to store its own values for
n+ 1 steps. Hence, a total of n(n+ 1) successive values of
x[r] are required for the calculation of φ.

D. Minimal-time, decentralised computation of the final con-
sensus value

The main purpose of this paper is to characterise the com-
putation in minimal time of the final consensus value φ using
only the output observations yk = xk[r] of the node r alone.
We formalise and improve here our previous results [14] and
show that, for a general arbitrary initial condition, except for
a set of initial conditions with Lebesgue measure zero [18],
the consensus value can be obtained from local observations
in a minimal number of steps that does not depend explicitly
on the total size of the graph. In our framework, the minimal
number of steps is computed in a truly decentralised manner
by checking a rank condition of a Hankel matrix constructed
exclusively from local output observations. We also provide
a graph theoretical characterisation of this local property in
terms of the minimal external equitable partition of the graph.
This characterisation provides insight into which properties

1This follows from the time-shift property of the Z-transform:
Z(xk+n) = znX(z)−

∑n−1
l=0 zn−lxl where X(z) = Z(xk).
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of the graph contribute to the disparity in the ability of the
different nodes to compute the global consensus value from
local information.

III. MINIMAL TIME CONSENSUS AND THE JORDAN
BLOCK DECOMPOSITION OF THE CONSENSUS DYNAMICS

Given the linear system in (1) and an initial state x0,
it follows from above that there always exist scalars d ,
d(r, x0) ∈ N and a0, ..., ad ∈ R such that the following
linear regression equation is satisfied ∀k ∈ N

xk+d+1[r]+adxk+d[r]+. . .+a1xk+1[r]+a0xk[r] = 0. (7)

From the definitions above, it is clear that Dr + 1 is the
minimal length of recursion:

Dr + 1 = min
d∈N

max
x0∈Rn

{d(r, x0) + 1: eq. (7) holds ∀k} .

Remark 1: Among the many recursions of length d that
are not necessarily minimal, (Dr + 1) appears as a min-
max over the space of (d, x0). When d + 1 = Dr + 1, the
coefficients ai in (7) correspond to α(r)

i , the coefficients of
the minimal polynomial of the matrix pair [A, eTr ] in (3).

In this section, we give an algebraic characterisation of the
minimal number of steps Dr + 1 based on the projection of
the Jordan block decomposition of Ak on eTr . Our aim is to
obtain the coefficients α(r)

i in (3) from data, so that we can
compute future outputs recursively. Consider the standard
Jordan decomposition:

A = SJS−1 where (8)
S =

[
s1 s2 . . . sn

]
(9)

J = diag {J1(λ1), J2(λ2), . . . , Jl(λl)} (10)

where

Ji(λi) =


λi 1

λi 1
. . . . . .

λi 1
λi


ni×ni

, (11)

and si, the columns of the non singular matrix S, are the
generalised eigenvectors of A [22]. The matrix A has l
(possibly degenerate) eigenvalues λi, each of them associated
with a Jordan block of size ni, such that

∑l
i=1 ni = n.

Without loss of generality, we assume that the blocks are
ordered according to decreasing size: n1 ≥ n2 ≥ . . . ≥ nl.

Using eq. (8), the linear dynamics (1) can be rewritten as
follows:

xk[r] = eTr A
kx0 =

(
eTr S

)
Jk
(
S−1x0

)
, σTJkχ, (12)

where the vectors

σT =
[
σT1 σT2 . . . σTl

]
1×n (13)

χT =
[
χT1 χT2 . . . χTl

]
1×n (14)

are partitioned according to the Jordan blocks in (8), e.g.,
σT1 =

[
σ11 . . . σ1ni

]
and χT1 =

[
χ11 . . . χ1ni

]
. Here,

Jk = diag
{
Jk1 (λ1), Jk2 (λ2), . . . , Jkl (λl)

}

has the well known structure [17]:

Jki (λi) =

k−1∑
m=0

(
k

m

)
λk−mi Jmi (0), (15)

where Jmi (0) is the m-th power of a Jordan block, as defined
in (11).

The output dynamics (12) then becomes:

xk[r] =

l∑
i=1

k−1∑
m=0

(
k

m

)
λk−mi

[
σTi J

m
i (0)χi

]
. (16)

Note that, because of its Jordan block structure, the matrix
Jmi (0) induces a strict m-shift on the vector χi for m ≤ ni.
Therefore, if k ≥ maxi{ni}, we have:

xk[r] =

l∑
i=1

ni−1∑
m=0

(
k

m

)
λk−mi

ni−m∑
j=1

σijχij+m

 (17)

,
l∑
i=1

ni−1∑
m=0

(
k

m

)
λk−mi gim (18)

However, some of the gim might be zero (we might even
have situations where all the coefficients associated with a
particular eigenvalue are zero) so that the dynamics of node
r can be written as:

xk[r] =

lr∑
i=1

nr
i−1∑
m=0

(
k

m

)
λk−mi gim (19)

where nri ≤ ni and lr ≤ l. Here, {λ1, . . . , λlr} is an
ordered subset of distinct eigenvalues from the original
Jordan block decomposition. As a consequence, the degree
of the characteristic polynomial that underlies the length of
the recursion for node r is:

lr∑
i=1

nri = Dr + 1.

Eq. (19) can be rewritten as a dot product:

xk[r] = vr(k)T gr ,
[
vT1 (k) vT2 (k) . . . vTlr (k)

]

g1
g2
...
glr


where

vTi (k) ,
[(
k
0

)
λki

(
k
1

)
λk−1i . . .

(
k

nr
i−1
)
λ
k−nr

i+1
i

]
1×nr

i

gTi ,
[
gi0 . . . gi(nr

i−1)
]
.

Based upon the decomposition of confluent Vandermonde
matrices introduced in [19], it is easy to see that

vTi (k) = eTi J ki (λi)

where Ji(λi) is a Jordan block of size nri as defined in (11)
and eTi =

[
1 0 . . . 0

]
1×nr

i

is the unit vector of the same
length. The dynamics (12) can thus be rewritten in terms of a
Jordan decomposition of reduced dimensionality as follows:

xk[r] = ET
r J

k
r gr, ∀ k, (20)
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where

ET
r ,

[
eT1 . . . eTlr

]
1×(Dr+1)

and

Jr , diag {J1(λ1),J2(λ2), . . . ,Jlr (λlr )} (21)

are partitioned according to the lr blocks.
From the analysis above, we have the following lemma.
Lemma 1: Consider the discrete-time LTI system (1). The

minimal polynomial associated with x[r], as given in Def-
inition 2, is the characteristic polynomial of the matrix Jr
in eq. (20) which has order Dr + 1 =

∑lr
i=1 n

r
i . The final

consensus value φ can be computed from eq. (6) based on
the coefficients of the minimal polynomial of the pair [A, eTr ]
and the successive values of x[r].

Proof: The Jordan matrix Jr in eq. (20) has the prop-
erty that each of its Jordan block has distinct eigenvalues.
Hence, the minimal polynomial of [A, eTr ] is the same as the
characteristic polynomial of [Jr, e

T
r ] (see [17]): eTr qr(A) =

eTr qr(Jr). Therefore, the minimal polynomial possesses the
following explicit form: det(Jr − tI) =

∏lr
i=1(t − λi)n

r
i =

tDr+1 + αDr
tDr + . . .+ α1t+ α0, and has degree Dr + 1.

This latter relationship also shows that Dr + 1 =
∑lr
i=1 n

r
i .

Remark 2: Lemma 1 states that instead of an n-
dimensional Jordan block form J of xk[r], as in eq. (12),
the general expression of xk[r] can be written in terms of a
smaller Dr+1-dimensional Jordan matrix Jr, as in eq. (20).

Remark 3: The minimal integer value Dr + 1 necessary
for the recursion (7) to hold for almost any initial condition
x0 is given by the degree of the minimal polynomial of the
observability pair [A, eTr ] (see [14]). In other words, eq. (7)
holds for a randomly chosen initial state x0, except for a set
of initial conditions of Lebesgue measure zero [18].

IV. DECENTRALISED MINIMAL-TIME CONSENSUS
COMPUTATION ALGORITHM

In the decentralised problem, we assume that node r does
not have access to any external information such as the total
number of agents n in the network, the local communication
links around node r or the state values or number of its
neighbours. In [14], we showed that for the general discrete-
time LTI system (1), 2Dr + 3 successive discrete-time steps
are needed by agent r to compute the final value in a
fully decentralised manner. If the communication network
is well-designed for consensus (i.e., Assumptions A.1 and
A.2 are satisfied and asymptotic convergence to consensus is
guaranteed), we hereby propose an algorithm that computes
the final value using 2Dr + 2 successive discrete-time steps,
i.e., one fewer step than [14].

Problem 1 (Decentralised problem): Consider the
discrete-time LTI dynamics in eq. (1) where an arbitrarily
chosen state x[r] is observed and assume that the conditions
for consensus (Assumptions A.1 and A.2) are satisfied. The
decentralised problem is to compute the asymptotic value of
this state φ = limk→∞ xk[r] using only its own previously
observed values yk = xk[r].

Consider the vector of successive discrete-time values at
node r, X0,1,...,2k[r] = {x0[r], x1[r], . . . , x2k[r]}, and its

associated Hankel matrix:

Γ{X0,1,...,2k[r]} ,


x0[r] x1[r] . . . xk[r]
x1[r] x2[r] . . . xk+1[r]

...
...

. . .
...

xk[r] xk+1[r] . . . x2k[r]

 k ∈ Z.

(22)
We also define the vector of differences between successive
values of x[r]:

X̄0,1,...,2k[r] = {x1[r]− x0[r], . . . , x2k+1[r]− x2k[r]}.
The following algorithm then allows us to compute the

final consensus value in a minimal number of steps.

Algorithm 1 Decentralised minimal-time consensus value
computation

Data: Successive observations of xi[r], i = 0, 1, . . ..
Result: Final consensus value: φ.

Step 1: Increase the dimension k of the square Hankel
matrix Γ{X̄0,1,...,2k[r]} until it loses rank and store the first
defective Hankel matrix.
Step 2: The kernel β =

[
β0 . . . βDr−1 1

]T
of the first

defective Hankel matrix gives the coefficients of eq. (6).
Step 3: Compute the final consensus value φ using eq. (6).

To understand Algorithm 1, consider a Vandermonde fac-
torisation [19] of the Hankel matrix (22):

Γ{X0,1,...,2k[r]} = V (0, k)TrV
T (0, k), (23)

in which we have defined the confluent Vandermonde matrix

V (0, k)(k+1)×(Dr+1) =


ETr
ETr Jr

...
ETr J

k
r

 , (24)

in terms of the elements defined in eq. (21). As shown
in [19], the (Dr + 1)× (Dr + 1) block diagonal matrix

Tr = diag{Tr,1, . . . , Tr,lr}, Tr,i ∈ Rn
r
i×n

r
i ,

has the following symmetric upper anti-diagonal form:

Tr,i =


∗ ∗ ∗ ∗ ti
∗ ∗ ∗ ti
∗ ∗ . . .

∗ ti 0
ti

 ,
where ti and ∗ are determined from the values of yk.

Without loss of generality, consider λ1 = 1 so that Tr,1 ∈
R. We then have

Γ{X̄0,1,...,2k[r]}
= Γ{X1,2,...,2k+1[r]} − Γ{X0,1,...,2k[r]}
= V Trdiag{λ1, . . . , λlr}V T − V TrV T

= V Trdiag{0, λ2 − 1, . . . , λlr − 1}V T

= V diag{0, (λ2 − 1)Tr,2, . . . , (λlr − 1)Tr,lr}V T

= V ′diag{(λ2 − 1)Tr,2, . . . , (λlr − 1)Tr,lr}V ′T ,
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Fig. 1. Underlying topology for Example 1 with sampling time ε = 1/6.

where V ′ = V [2 : k+ 1, 2 : Dr + 1]. From the last equation,
it is easy to see that for Γ{X̄0,1,...,2k[r]} to be defective, one
must have k ≥ Dr + 1.

Theorem 1: Consider the system in (1) and assume that
the conditions for consensus (Assumptions A.1 and A.2) are
satisfied. Then the minimal number of successive discrete-
time values, starting from step i, for the arbitrarily chosen
state x[r], is 2(Dr + 1) − δr −min{i, δr}, where δr is the
number of zero roots in qr(t) = 0.

Proof: Combining the above derivations and perform-
ing a proof similar to the one presented in [Corollary 1, [14]]
(by taking zk , xk+1[r] − xk[r] as yk in that Corollary)
yields the result.

More elaborate versions of the results presented here can
be obtained by modifying the model in eq. (1) so as to
encompass more complex situations, e.g., time-delays in the
model, noise in the observations or packet drops in the
observations. Due to space constraints, we will not address
them here and present them in more detail in a future paper.
In the present paper, we only focus on the ideal model in
eq. (1). For simplicity of exposition, we further make the
following assumption in the rest of this paper: 2

A.3 The matrix A in eq. (1) does not possess any eigen-
value at 0.

Under Assumption A.3, Theorem 1 establishes that the
minimal number of steps for node r to compute the final
consensus value is 2Dr + 2.

Example 1: Consider the network topology in Fig. 1
under dynamics (1) with A , In − εL and a sampling
time ε = 1/6. The topology is undirected and connected
and A satisfies assumptions A.1, A.2, and A.3. Therefore
the final value of each node is the average of the initial
state values. For the randomly chosen initial state x0 =[
1.3389 2.0227 1.9872 6.0379 2.7219 1.9881

]T
,

the final consensus value is thus 2.6828. We now apply
Algorithm 1 to node r = 1.

Step 1: We increase the dimension k of the square Hankel
matrix Γ{X̄0,1,...,2k[1]} until it loses rank. This happens for

2When A has some eigenvalues at 0, the expression of the minimal
number of steps for node r to compute the final consensus value takes
a more complicated form, see [14].

k = 4. We then store the first defective Hankel matrix:

Γ{X̄0,1,...,8[1]} =


1.2358 0.2050 0.0367 0.0047
0.2050 0.0367 0.0047 −0.0037
0.0367 0.0047 −0.0037 −0.0067
0.0047 −0.0037 −0.0067 −0.0079

 .
Step 2: The normalised kernel of the first defective Han-

kel matrix is

β =
[
−0.0833 0.7778 −1.6667 1

]T
.

This gives the coefficients of eq. (6).
Step 3: We compute the final consensus value φ = 2.6828

using eq. (6).
As shown here for node r = 1, the value of φ obtained in
a decentralised manner is equal to the average of the initial
states.

Repeating this procedure for each of the six nodes gives
the same value φ. However, the number of steps required by
each node to compute the final consensus value φ differs.
This is summarised in Table I.

Ref. [13] Our result
Node 1 6× 7 = 42 2× 4 = 8
Node 2 6× 7 = 42 2× 4 = 8
Node 3 6× 7 = 42 2× 4 = 8
Node 4 6× 7 = 42 2× 5 = 10
Node 5 6× 7 = 42 2× 6 = 12
Node 6 6× 7 = 42 2× 6 = 12

TABLE I
COMPARISON OF THE MINIMAL NUMBER OF SUCCESSIVE VALUES

NEEDED BY EACH NODE TO COMPUTE THE FINAL CONSENSUS VALUE OF

THE NETWORK IN FIG. 1 WITH n = 6 NODES.

While the method proposed in [13] requires a total of
n(n + 1) successive values of x[r], our algorithm shows
that the minimal number of successive values of x[r] is just
2(Dr + 1) for almost all initial conditions. Furthermore, our
algorithm is completely decentralised, i.e., our result does
not require that the arbitrarily chosen state x[r] has any
knowledge of the total number of nodes in the network, n, or
any other kind of global (centralised) information about the
network (contrary to what is assumed in [13, Section V]).

As can be noticed in Table I, some nodes need fewer
successive observations of their own state to compute the
final consensus value of the whole network. In what follows,
we call such nodes dominant nodes. An important question
arises at this point: given a consensus-guaranteed network,
can we identify the dominant nodes? Below, we answer
this question based on an algebraic characterisation of the
minimal number of steps which we then link to a specific
graph partition of the consensus network around the chosen
node.

V. CHARACTERISATION ON THE MINIMAL NUMBER OF
STEPS

We now provide an answer to the question raised at the end
of the last section from two perspectives. First, in Section V-
A, we provide an algebraic characterisation of the minimal
recursion length Dr+1 for node r by performing an analysis
of the Laplacian of the graph. Second, in Section V-B, we
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relate Dr + 1 to the number of cells in a special partition
of the graph called the minimal external equitable partition
with respect to node r.

For simplicity of exposition, we only consider undirected
graphs in the following sections, i.e., we assume:
A.4 The matrices W, L, A in eq. (1) are symmetric.

A. Algebraic characterisation
An algebraic characterisation of the degree of the minimal

polynomial of [A, eTr ] can be obtained based on the Jordan
block decomposition described in Section III. The symmetry
of the Laplacian matrix in undirected graphs simplifies
the analysis since the Jordan matrix in Eq. (12) becomes
diagonal. The following Corollary provides a relationship
between the minimal number of successive values required
by a node to compute the final consensus value of the
network and algebraic properties of the underlying graph.
Before presenting the main result, we introduce the following
notation, which will be used extensively in the remainder of
the paper.

Definition 3 (D-cardinality of a set): Let Λ be a finite set,
potentially containing repeated elements, with cardinality
card{Λ}. The d-cardinality of the set, denoted dcard{Λ}, is
defined as the number of distinct elements in the set.

Example 2: Let Λ = {1, 2, 3, 1, 3, 5}. Then card{Λ} = 6
and dcard{Λ} = 4.

Our first algebraic characterisation of the minimal recur-
sion length at node r relates Dr+1 to the number of distinct
eigenvalues of the Laplacian matrix whose eigenvectors have
non-zero components for node r, as given by the following
Corollary.

Corollary 1: Consider the dynamics (1) where A is as-
sociated with an unweighted and undirected graph. Denote
the eigenvalues of the symmetric matrix A by λi and their
corresponding right eigenvector by ui. Let Λ = {λi(A) | i =
1, . . . , n} and Ψr = {λi(A) |ui[r] = 0}. Then

Dr + 1 = dcard{Λ/Ψr},

where Λ/Ψr is the relative complement of Ψr in Λ.
Proof: Since A is symmetric, all the eigenvalues of

A are real. The proof then follows from Lemma 1 and the
PBH-test [22].

Consider now the following well-known lemma:
Lemma 2: [23, Theorem 9.5.1] Let A be a symmetric

matrix in Rn×n and let R ∈ Rn×m be such that RTR =
Im. Define Θ = RTAR and let {v1, v2, . . . , vm} be
an orthogonal set of eigenvectors for Θ such that Θvi =
λi(Θ)vi, where λi(Θ) is the ith eigenvalue of Θ associated
with the eigenvector vi. Then, we have the following result:
if λi(Θ) = λi(A) for i = 1, . . . , l then, Rvi is an eigenvector
of A with associated eigenvalue λi(Θ) for i = 1, . . . , l.

Our second algebraic characterisation relates Dr + 1 with
the number of eigenvalues shared by the Laplacian matrix
and the r-grounded Laplacian matrix.

Theorem 2: [21] Consider the system in Eq. (1) satisfying
Assumptions A.1–A.4. The rank of the observability matrix
for the pair [A, eTr ] is equal to n− µr, i.e.,

Dr + 1 = n− µr,

where µr is the number of eigenvalues shared between A
and Ar, where Ar is the r-grounded Laplacian matrix, i.e.,
the submatrix of A obtained by deleting the rth row and the
rth column.

Proof: Due to the page limitation, we refer the reader
to the proof in [21]

B. Graph-theoretical characterisation
In this section, we consider the following question: given

an undirected network, can we directly identify the dominant
node(s) from the graph without any algebraic computation?

We adopt definitions and notations from [24]. A partition
of a graph G = (V, E) is defined as a mapping from vertices
to subsets of vertices called cells: π : V → {C1, . . . , CK}
where Ci ⊆ V, ∀i. Let Im(π) denote the image of π, i.e.,
Im(π) = {C1, . . . , CK} and degπ(i, Cj) denote the node-
to-cell degree. degπ(i, Cj) characterises the number of nodes
in cell Cj that share an edge with node vi under partition π:

degπ(i, Cj) = card {k ∈ V|π(k) = Cj and (i, k) ∈ E} .

We define π−1(Ci) = {j ∈ V|π(j) = Ci}, i.e., the set of
nodes that are mapped to cell Ci.3

In what follows, we use the concept of external equitable
partition (EEP) [24]. As we will show below, EEPs partition
the graph into cells while neglecting the internal interconnec-
tion structure inside a cell. We will show that the EEP with
respect to a node is directly related to the minimal number of
steps necessary for this node to calculate the final consensus
value.

Definition 4 (External equitable partition (EEP) [24]):
A partition π∗ of the set of nodes V consisting of s > 1
cells {C1, . . . , Cs} is external equitable if the number of
neighbours ∈ Cj of a vertex v ∈ Ci depends only on the
choice of Ci and Cj (i 6= j), i.e.,

degπ∗(l, Cj) = degπ∗(k,Cj),∀k, l ∈ π∗
−1

(Ci).
Definition 5 (Minimal EEP with respect to a node): A

partition πr of V consisting of cells {C1, . . . , Cs} is external
equitable with respect to node r if the partition is external
equitable and the node r is in a cell alone, i.e., π(vr) = vr.
The minimal EEP of a graph with respect to node r, π∗r , is
such that card{Im(π∗r ))} is minimal.

Theorem 3: Consider the system in (1). Solely based on
observations of node r, the minimal length of recursion
necessary to obtain the final consensus value is equal to the
number of cells sr in π∗r , the minimal external equitable
partition with respect to node r, i.e.

Dr + 1 = card {Im (π∗r )} , sr. (25)
Proof: Without loss of generality, let r = 1. We use

a Breadth-First-Search (BFS) algorithm to label the cells, as
follows. We start from node 1 (i.e., cell 1) and explore all
the neighbouring cells. For each of those nearest cells, we
consider their own neighbouring cells and so on, until we
have labelled all the cells in the minimal EEP with respect
to cell 1 [21].

3Note that π is not a one-to-one mapping but a one-to-many mapping.
However, we can still define a new function to map back from Cj to V .
We adopt this notation from [24].
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Consider now the block matrix obtained by permuting and
partitioning A according to π∗1 , the minimal EEP with respect
to node 1:

Aπ∗
1

=


A11 A12 . . . A1s1

A21 A22 . . . A2s1
...

...
. . .

...
As11 As12 . . . As1s1

 .
Here, Aii ∈ Rli×li contains the interconnections between
any two nodes in cell C∗i and li denotes the number of
nodes in cell C∗i . Hence, l1 = 1 and

∑s
i=1 li = n.

The off-diagonal submatrices Aij ∈ Rli×lj contain the
interconnections between nodes in C∗i and C∗j . In particular,
we will consider the following submatrices:

A1 , Aπ∗
1
[2 : n, 2 : n]

fT1 , Aπ∗
1
[1, 1 : n] =

[
A12 . . . A1j 0 . . . 0

]
.

Note that there are only j neighbouring cells to cell 1, i.e.,
A1(j+1), . . . , A1s1 = 0 for some j > 1.

The observability matrix associated with the pair [Aπ∗
1
, eT1 ]

is:

Ω =


1 0 . . . 0
A11 A12 . . . A1s1

...
...

. . .
...

∗ ∗ . . . ∗

 , (26)

where ∗ is a placeholder representing a real value.
Let Ξ be the observability matrix associated with the pair

[A1, f
T
1 ]. According to [20], [24], the rank of the observ-

ability matrix is equal to the dimension of the following span

rank(Ξ) = dim-span




1r2
0
0
...
0

 ,


0
1r3
0
...
0

 , . . . ,


0
0
0
...

1rs1




,

(27)

with ri = card {C∗i }. Hence,

rank(Ξ) = s1 − 1,

from whence it follows that

D1 + 1 = rank(Ω) = rank


1 0 . . . 0
∗
... Ξ
∗


= rank(Ξ) + 1 = card {Im (π∗1)}

Remark 4: Definition 5 implies that that the number of
cells in π∗r , sr, is greater or equal than the longest distance
from node r to all other nodes in the graph G, d(G, r).
Therefore,

Dr + 1 ≥ d(G, r).
Remark 5: Theorem 3 provides a link between local ob-

servations, i.e., the minimal number of successive values
that a node r needs to accumulate to compute the final

consensus value of the network) and a global property, i.e.,
the underlying minimal EEP of the network with respect to
node r. Based on this theorem, one can directly identify the
dominant nodes in the network without resorting to algebraic
numerical manipulations.

Example 3: As shown numerically in Example 1, nodes
1, 2 and 3 are the dominant nodes since they only require
8 steps, i.e., Dr + 1 = 4 for r = 1, 2, 3. It is easy
to check in Fig. 2(a) that the minimal external equitable
partition with respect to these nodes has 4 cells. Similarly,
Figs. 2(b) and 2(c) show the minimal EEPs for node 4 and
for nodes 5 and 6, respectively. The number of cells in the
corresponding minimal EEPs is consistent with the numerical
results in Example 1 which indicate that these nodes require
respectively 10 and 12 successive values of their own state to
compute the final consensus value of the network according
to Algorithm 1.

6

24 1

5

3

4/64/6

5/6 5/63/6 4/6

1/6

1/6

1/6

1/61/6

1/6

(a) 4-cell based minimal external equitable partition with
respect to nodes 1, 2, 3. As illustrated in Example 1, nodes
1, 2, 3 require 2 × 4 = 8 steps to compute the final
consensus value.
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24 1

5

3

4/64/6

5/6 5/63/6 4/6

1/6

1/6

1/6

1/61/6

1/6

(b) 5-cell based minimal external equitable partition with
respect to node 4. As illustrated in Example 1, node 4
requires 2× 5 = 10 steps to compute the final consensus
value.
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24 1

5

3

4/64/6

5/6 5/63/6 4/6

1/6

1/6

1/6

1/61/6

1/6

(c) 6-cell based minimal external equitable partition with
respect to nodes 5, 6. As shown in Example 1, nodes 5, 6
require 2× 6 = 12 steps to compute the final consensus
value.

Fig. 2. Minimal EEP with respect to the different nodes in Example 1.
Different colours correspond to different cells (colour online).
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VI. CONCLUSION

This paper formulates and analyses the decentralised min-
imal time consensus problem. In contrast to other tools in
the literature, our algorithm computes consensus from the
history of any node in a completely decentralised, local
manner. The necessary information for any node is its own
history and is therefore exclusively local. The algorithm does
not require global knowledge, such as the total number of
nodes in the system, information about the neighbourhood
of the node, or specific edge weights. After characterising
the minimal number of steps required for any given node to
compute the final consensus value, we provided algebraic,
graph-theoretical and local informative interpretations of the
minimal number of steps.

There are a number of interesting directions for future
research in terms of network design. For instance, we are
currently working on the problem of computing a minimal
EEP with respect to a node in polynomial time. Also it is
important to mention that the EEP-based results provided
here for undirected graphs can be extended to directed graphs
at the price of a more elaborate exposition.

Design of network topologies that minimise algebraic
connectivity was presented in [15], [25], [29]. Instead of
minimising the second smallest eigenvalue of a network, we
aim here at minimising the d-cardinality of the Laplacian
spectrum. An interesting question in this context is: given
a constraint on the number of edges in the network, what
are the network structures that minimise the d-cardinality
of the Laplacian spectrum? Constructing Laplacian matrices
with small spectra has been intensively studied in the graph
theoretic community [26], [27]. In the Appendix of [28], the
author computed all the Laplacian spectra for trees up to
n = 10 vertices and connected graphs up to n = 6 vertices.
Interestingly, in a recent paper [25], the authors minimised
the second smallest eigenvalue of a weighted Laplacian
given a constraint on the number of edges in the graph.
It turned out in both examples that the obtained optimal
Laplacian matrix had only 2 (resp. 4) distinct eigenvalues for
5- (resp. 10-) node networks. Future work lies in formulating
the optimal minimal-time consensus network problem as a
standard optimisation problem.

On the analysis part, future work will consist in extending
the model in eq. (1) so as to encompass more complex situ-
ations, e.g., time-delay in the model, noise/quantisation error
in the communication links, packet drop in the observations.
Yet another extension lies in the reconstruction of agent-
network from minimal amount of observed data as illustrated
in [30], [31].
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