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Abstract: We present a self-organising reinforcement learning (RL) approach 
for scheduling the wake-up cycles of nodes in a wireless sensor network. The 
approach is fully decentralised, and allows sensor nodes to schedule their active 
periods based only on their interactions with neighbouring nodes. Compared to 
standard scheduling mechanisms such as SMAC, the benefits of the proposed 
approach are twofold. First, the nodes do not need to synchronise explicitly, 
since synchronisation is achieved by the successful exchange of data messages 
in the data collection process. Second, the learning process allows nodes 
competing for the radio channel to desynchronise in such a way that radio 
interferences and therefore packet collisions are significantly reduced. This 
results in shorter communication schedules, allowing to not only reduce energy 
consumption by reducing the wake-up cycles of sensor nodes, but also to 
decrease the data retrieval latency. We implement this RL approach in the 
OMNET++ sensor network simulator, and illustrate how sensor nodes arranged 
in line, mesh and grid topologies autonomously uncover schedules that favour 
the successful delivery of messages along a routing tree while avoiding 
interferences. 
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energy efficiency; wake-up scheduling; decentralised; synchronisation; 
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1 Introduction 

Wireless sensor networks (WSNs) form an emerging class of networks able to monitor 
our daily environment with a high spatiotemporal accuracy (Ilyas and Mahgoub, 2005; 
Akyildiz et al., 2002). WSNs are composed of small sensing devices, also known as 
wireless sensor nodes, endowed with sensing, processing and wireless communication 
capabilities. Given the current technological trend, WSNs are envisioned to be mass 
produced at low cost in the next decade, for applications in a wide variety of domains. 
These include, to name a few, ecology, industry, transportation, or defence. 
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A typical WSN scenario consists of a set of sensor nodes, scattered in an
environment, which report their data periodically to a centralised entity called base
station (Ilyas and Mahgoub, 2005; Akyildiz et al., 2002). The resources of the untethered
sensor nodes are often strongly constrained, particularly in terms of energy and
communication. The base station usually possesses much larger resources, comparable
to those of a standard laptop or desktop computer.

The limited resources of the sensor nodes make the design of a WSN application
challenging. Application requirements, in terms of lifetime, latency, or data throughput,
often conflict with the network capacity and energy resources. The standard approach for
addressing these tradeoffs is to rely on wake-up scheduling (Ilyas and Mahgoub, 2005;
Schurgers, 2008), which consists in alternating the active and sleep states of sensor
nodes. In the active state all the components (CPU, sensors, radio) of a node are active,
allowing the node to collect, process and communicate information. During the sleep
state all these components are switched off, allowing the node to run with an almost
negligible amount of energy. However, nodes in sleep mode cannot communicate with
others, since their radio transmitter is switched off. The fraction of time in which the
node is in the active mode referred to as duty cycle.

Wake-up scheduling offers an efficient way to significantly improve the lifetime
of a WSN application, and is best illustrated by SMAC, a standard synchronised
medium access control (MAC) protocol for WSN (Ye et al., 2004). In SMAC, the
duty-cycle is fixed by the user, and all sensor nodes synchronise in such a way that their
waking periods take place at the same time. This synchronised active period enables
the forwarding of messages between any pair of nodes, regardless of the size of the
network.

In this paper, we demonstrate how the performance of a WSN network can be further
improved, if nodes not only synchronise, but also desynchronise with one another. More
precisely, the wake-up schedules of nodes that need to communicate with one another
(i.e., nodes on a given branch of the routing tree) are synchronised to improve message
throughput. We say that those nodes belong to one coalition. At the same time, the
schedules of neighbouring nodes which do not need to communicate (i.e., nodes on
neighbouring branches) are desynchronised in order to avoid radio interferences and
packet losses.

We show that coordinating the duty cycles of sensor nodes can successfully be
done using the multi agent systems and the reinforcement learning (RL) frameworks
by rewarding successful interactions (e.g., transmission of a message) and penalising
the ones with a negative outcome (e.g., message loss or overhearing). This behaviour
drives the agents (i.e., the nodes) to repeat actions that result in positive feedback more
often and to decrease the probability of unsuccessful interactions. Agents that tend to
select the same successful action naturally form a coalition. Within the RL framework,
the scheduling of the sensor nodes emerges from simple and local interactions without
the need of central mediator or any form of explicit coordination. We illustrate the
benefits of the proposed RL approach by implementing it in the OMNET++ simulator,
and study three different WSN topologies, namely line, mesh and grid. We show that
nodes form coalitions which enable a quicker delivery of the data packets to the base
station, allowing shorter active periods and therefore lower energy consumption.
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The paper is organised as follows. Section 2 presents the background of our study
and outlines the energy challenges related to the communication and routing protocols
in WSN. Our approach is exposed in Section 3, together with its application in WSNs
on three different topologies. The results of this work are analysed in Section 4 and
concluded in Section 5.

2 WSNs: energy-efficiency challenges

A WSN is a collection of densely deployed autonomous devices, called sensor nodes,
which gather data with the help of sensors (Ilyas and Mahgoub, 2005; Akyildiz et al.,
2002). The untethered nodes use radio communication to transmit sensor measurements
to a terminal node, called the base station or sink. The sink is the access point
of the observer, who is able to process the distributed measurements and obtain
useful information about the monitored environment. Sensor nodes communicate over a
wireless medium, by using a multi-hop communication protocol that allows data packets
to be forwarded by neighbouring nodes to the sink.

When the WSN is deployed, the routing protocol requires that the nodes determine
a routing path to the sink (Al-Karaki and Kamal, 2004; Ilyas and Mahgoub, 2005). This
is achieved by letting nodes broadcast packets immediately after deployment in order
to discover their neighbours. Nodes in communication range of the sink propagate this
information to the the rest of the network. During the propagation process, each node
chooses a parent, i.e., a node to which the data will be forwarded in order to reach the
sink. The choice of a parent can be done using different metrics, the standard one being
the hop distance, i.e., the minimum number of nodes that will have to forward their
packets (Couto et al., 2005; Woo et al., 2003). An example of multi-hop shortest path
routing structure is given in Figure 1, together with the radio communication ranges of
sensor nodes.

Figure 1 Sensor nodes connected to a base station by means of a multi-hop routing tree
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Note: Greyed circles indicate overlapping communication regions.

Since wireless sensor nodes operate in most cases on finite energy resource, low-power
operation is one of the crucial design requirements in sensor networks (Akyildiz et al.,
2002; Ilyas and Mahgoub, 2005). The challenge of energy-efficient operation must
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be tackled on all levels of the network stack, from hardware devices to protocols
and applications. Although sensing and data processing may incur significant energy
consumption, it is commonly admitted that most of the energy consumption is caused
by the radio communication. A large amount of research has therefore been devoted in
the recent years to the design of energy-efficient communication protocols (Ilyas and
Mahgoub, 2005; Ye et al., 2004).

Figure 2 reports the radio characteristics of three representative and often used radio
platforms: the CC1000 (used in MICA2), CC2420 (used in TelosB and IMote2) and
the Xbee-802-15.4 (used in the Waspmote). An important observation is that for these
typical radios, the transmit and receive power are comparable, and that the sleep power
is at least two orders of magnitude lower. Therefore, the only way to significantly reduce
power consumption is to have the radio switched off most of the time, and to turn it
on only if messages must be received or sent. This problem is referred to as wake-up
scheduling.

Figure 2 Typical wireless sensor hardware developed in the recent years, together with their
main radio characteristics (see online version for colours)

Wake-up scheduling in WSNs is an active research domain, and a good survey on
wake-up strategies in WSNs is presented in Schurgers (2008). Three types of wake-up
solutions can be identified, namely, on-demand paging, synchronous and asynchronous
wake-up.

In on-demand paging, the wake-up functionality is managed by a separate radio
device, which consumes much less power in the idle state than the main radio. The
main radio therefore remains in a sleeping state, until the secondary radio device signals
that a message is to be received on the radio channel. This idea was first proposed
with the PicoRadio and PicoNode projects (Guo et al., 2001) for extremely low power
systems, and extended in Shih et al. (2002) and Agarwal et al. (2005) with hand-held
devices. On-demand paging is the most flexible and energy-efficient solution, but adds
non-negligible costs in the hardware design.

In synchronous wake-up approaches, nodes duty-cycle their radio in a coordinated
fashion. Several MAC protocols have been proposed, allowing nodes to wake-up
at predetermined periods in time at which communication between nodes becomes
possible. A standard paper detailing this idea is that of sensor-MAC (S-MAC) (Ye et al.,
2004). The basic scheme is that nodes rely on a fixed duty-cycle, specified by the user,
where nodes periodically switched between the active and sleep states. This is illustrated
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in Figure 3. Several extensions to S-MAC have been proposed. In particular, authors
in van Dam and Langendoen (2003) proposed T-MAC, which aims at improving the
efficiency by making the active period adaptive. This is achieved by making the active
period very small, e.g., only the time necessary to receive a packet, and by increasing it
at runtime if more packets have to be received. The main concern with protocols based
on synchronous wake-up is the overhead which can be caused by maintaining the nodes
synchronised.

Figure 3 Structure of S-MAC with duty cycle and synchronous wake-up scheduling

Active ActiveSleep Sleep

Period

Finally, in asynchronous wake-up solutions, the nodes are not aware of each other’s
schedules, and communication comes at an increase cost for either the sender or
the receiver. In sender-based asynchronous wake-up, the sender continuously sends
beacons until the receiver is awake. Once the receiver gets the beacon, it sends an
acknowledgment to notify the sender that it is ready to receive a packet. This scheme
is the basis for the low-power listening (Hill and Culler, 2002) and preamble sampling
(El-Hoiydi, 2002) protocols. The receiver-based wake-up solution is the mirror image
of sender-based, and was exposed in the etiquette protocol (Goel, 2005). Sender-based
and receiver-based asynchronous protocols can achieve very low power consumption.
Asynchronous wake-up solutions however require an overhead due to the signalling
of wake-up events, which makes them inefficient when wake-up events are relatively
frequent (Schurgers, 2008).

3 WSN wake-up scheduling with RL

3.1 Motivations and network model

The starting point of our work is to consider an approach similar to SMAC, but where
the active periods are shifted in time. That is, instead of having all nodes communicate
at the same moment, which causes interferences and packet losses, we aim at making the
nodes wake up when the two following conditions are met. First, the parent of the node
in the routing tree should be awake, so that the communication is successful. Second,
the neighbouring nodes other than the parent should not be active.

Depending the routing protocol, coalitions (e.g., synchronised groups of nodes)
logically emerge across the different hops, such that there is, if possible, only one
agent from a certain hop within a coalition. Figure 4 illustrates this concept in three
different topologies. It shows as an example how coalitions form as a result of the
routing protocol. Intuitively, nodes from one coalition need to synchronise their wake-up
schedules. As defined by the routing protocol, messages are not sent between nodes
from the same hop, hence these nodes should desynchronise (or belong to separate
coalitions) to avoid communication interference. The emergence of coalitions will be
experimentally illustrated for different topologies in Section 4.
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Figure 4 Examples of routing and coalition formation

The underlying scheduling mechanism resemble that of SMAC, i.e., that sensor nodes
are duty-cycled, and the period of the duty-cycle is determined a priori by the user.
We further divide each active period into time slots. The sensor nodes then rely on a
standard duty cycle mechanism, in which the node is awake for a predetermined number
of slots during each period. The active period is fixed by the user, while the wake-up
slot is initialised randomly for each node. These slots will be shifted as a result of the
learning (see Section 3.2), which will coordinate nodes’ wake-up schedules in order to
ensure high data throughput and longer battery life.

The routing protocol is not explicitly part of our learning algorithm and therefore
any multi-hop routing scheme can be applied without loosing the properties of our
approach. It is however noteworthy that the communication partners of a node (and thus
the formation of coalitions) are influenced by the communication and routing protocols
that are in use.

3.2 RL approach: methodology

In the following, we see a WSN as a multi-agent system (MAS), in which agents are
the sensor nodes which will aim at improving their communication performances. Each
agent in the WSN uses a RL (Sutton and Barto, 1998) algorithm to learn an efficient
wake-up schedule (i.e., when to remain active within the frame) that will improve
throughput and lifetime in a distributed manner. It is clear that learning in MASs of this
type requires careful exploration in order to make the action-values of agents converge.
We use a value iteration approach similar to single-state Q-learning (Watkins, 1989) with
an implicit exploration strategy, as Subsection 3.5 will further elaborate on. However,
our update scheme differs from that of traditional Q-learning (cf., Subsection 3.4). The
main challenge in such a decentralised approach is to define a suitable reward function
for the individual agents that will lead to an effective emergent behaviour as a group.
To tackle this challenge, we proceed with the definition of the basic components of the
proposed RL algorithm.

3.3 Actions and rewards

The actions of each agent are restricted to selecting a time window (or an active period)
within a frame for staying awake. Since the size of these frames remains unchanged
and they constantly repeat throughout the network lifetime, our agents use no notion
of states, i.e., we say that our learning system is stateless. The duration of this active
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period is defined by the duty cycle, fixed by the user of the system. In other words, each
node selects a slot within the frame when its radio will be switched on for the duration
of the duty cycle. Thus, the size of the action space of each agent is determined by the
number of slots within a frame. In general, the more actions agents have, the slower
the RL algorithm will converge (Leng, 2008). On the other hand, a small action space
might lead to suboptimal solutions and will impose an energy burden on the system.
Setting the right amount of time slots within a frame requires a study on itself, that we
will address in future work.

Every node stores a ‘quality value’ (or Q-value) for each slot within its frame. This
value for each slot indicates how beneficial it is for the node to stay awake during these
slots for every frame, i.e., what is an efficient wake-up pattern, given its duty cycle
and considering its communication history. When a communication event occurs at a
node (overheard, sent or received a packet) or if no event occurred during the active
period (idle listening), that node updates the quality-value of the slot(s) when this event
happened. The motivation behind this scheme is presented in Subsection 3.5.

3.4 Updates and action selection

The slots of agents are initiated with Q-values drawn from a uniform random
distribution. Whenever events occur during node’s active period, that node updates
the quality values of the slots, at which the corresponding events occurred, using the
following update rule:

Qi
s ← (1− α) · Q̂i

s + α · ris,e

where Qi
s ∈ [0, 1] is the quality of slot s within the frame of agent i. A high Qi

s value
indicates that it is beneficial for agent i to stay awake during slot s. This quality value
is updated using the previous Q-value (Q̂i

s) for that slot, the learning rate α ∈ [0, 1],
and the newly obtained reward ris,e ∈ [0, 1] for the event e that (just) occurred in slot s.
Thus, nodes will update as many Q-values as there are events during its active period.
In other words, agent i will update the value Qi

s for each slot s where an event e
occurred. The latter update scheme differs from that of traditional Q-learning (Watkins,
1989), where only the Q-value of the selected action is updated. The motivation behind
this update scheme is presented in Subsection 3.5. In addition, we set here the future
discount parameter γ to 0, since our agents are stateless (or single-state).

Nodes will stay awake for those consecutive time slots that have the highest sum of
Q-values. Put differently, each agent selects the action as′ (i.e., wake up at slot s′) that
maximises the sum of the Q-values for the D consecutive time slots, where D is the
duty cycle, fixed by the user. Formally, agent i will wake up at slot s′, where

s′ = argmax
s∈S

D∑
j=0

Qi
s+j

For example, if the required duty cycle of the nodes is set to 10% (D = 10 for a frame
of S = 100 slots), each node will stay active for those 10 consecutive slots within its
frame that have the highest sum of Q-values. Conversely, for all other slots the agent
will remain asleep, since its Q-values indicate that it is less beneficial to stay active
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during that time. Nodes will update the Q-value of each slot for which an event occurrs
within its duty cycle. Thus, when forwarding messages to the sink, over time, nodes
acquire sufficient information on ‘slot quality’ to determine the best period within the
frame to stay awake. This behaviour makes neighbouring nodes desynchronise their
actions, resulting in faster message delivery and thus lower end-to-end latency.

3.5 Exploration

As explained in the above two Subsections, active time slots are updated individually,
regardless of when the node wakes up. The reason for this choice is threefold. Firstly,
this allows each slot to be explored and updated more frequently. For example, slot s
will be updated when the node wakes up anywhere between slots s− 1 and s−D + 1,
i.e., in D out of S possible actions. Secondly, updating individual Q-values makes it
possible to alter the duty cycle of nodes at run time (as suggest some preliminary results,
not displayed in this paper) without invalidating the Q-values of slots. In contrast, if
a Q-value was computed for each start slot s, i.e., the reward was accumulated over
the wake duration and stored at slot s only, changing the duty cycle at run-time will
render the computed Q-values useless, since the reward was accumulated over a different
duration. In addition, slot s will be updated only when the agent wakes up at that slot. A
separate exploration strategy is therefore required to ensure that this action is explored
sufficiently. Thirdly, our exploration scheme will continuously explore and update not
only the wake-up slot, but all slots within the active period. Treating slots individually
results in an implicit exploration scheme that requires no additional tuning.

Even though agents employ a greedy policy (selecting the action that gives the
highest sum of Q-values), this ‘smooth’ exploration strategy ensures that all slots are
explored and updated regularly at the start of the application (since values are initiated
randomly), until the sum of Q-values of one group of slots becomes strictly larger than
the rest. In that case we say that the policy has converged and thus exploration has
stopped. Due to the implicit exploration scheme explained above, our greedy policy
is not vulnerable to local optima since slots are regularly updated. Once messages are
not delivered properly, due to a failing node, the ‘goodness’ of the awake slots will
decrease, until a different policy is found, causing nodes to re-learn their wake-up
schedule (usually within 10–12 iterations). The speed of convergence and a possible
re-learning is influenced by the duty cycle, fixed by the user, and the learning rate
is typically in the range [0.1; 0.2]. A constant learning rate is in fact desirable in a
non-stationary environment to ensure that policies will change with respect to the most
recently received rewards (Sutton and Barto, 1998).

4 Experimental study

4.1 Experimental setup

We apply our approach on three networks of different size and topology. In particular,
we investigate two extreme cases where nodes are arranged in a 5-hop line [Figure 5(a)]
and a 6-node single-hop mesh topology [Figure 5(b)]. The former one requires nodes
to synchronise in order to successfully forward messages to the sink. Intuitively, if any
one node is awake while the others are asleep, that node would not be able to forward
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its messages to the sink. Conversely, in the mesh topology it is more beneficial for
nodes to fully desynchronise to avoid communication interference with neighbouring
nodes. Moreover, the sink is able to communicate with only one node at a time.
The third topology is a four by four grid [Figure 5(c)] where sensing agents need to
both synchronise with some nodes and at the same time desynchronise with others to
maximise throughput and network lifetime. The latter topology clearly illustrates the
importance of combining synchronisation and desynchronisation, as neither one of the
two behaviours alone achieves the global system objectives. Subsection 4.2 will confirm
these claims and will elaborate on the obtained results.

Figure 5 The three experimental topologies, (a) line topology (b) mesh topology
(c) grid topology

(a)

(b)
(c)

Each network was ran for 3600 seconds in the OMNeT++ simulator
(http://www.omnetpp.org/ – a C++ simulation library and framework). Results were
averaged over 50 runs with the same topologies, but with different data sampling times.
Table 1 summarises the differences between the experimental parameters of the three
topologies.

Table 1 Parameters for experimental topologies

Topology type Num. of nodes Num. of hops Avg. num. of neighbours Data rate (msg/sec)
Line 5 5 1.8 0.10
Mesh 6 1 3.0 0.33
Grid 16 4 3.25 0.05

Frames were divided in S = 100 slots of ten milliseconds each, and we modelled five
different events, namely overhearing (r = 0), idle listening (r = 0 for each idle slot),
successful transmission (r = 1 if ACK received), unsuccessful transmission (r = 0 if no
ACK received) and successful reception (r = 1). Maximising the throughput requires
both proper transmission as well as proper reception. Therefore, we treat the two
corresponding rewards equally. Furthermore, most radio chips require nearly the same
energy for sending, receiving (or overhearing) and (idle) listening (cf., Table 2), making
the three rewards equal. We consider these five events to be the most energy expensive
or latency crucial in wireless communication. Additional events were also modelled,
but they were either statistically insignificant (such as busy channel) or already covered
(such as unsuccessful transmissions instead of collisions).
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Due to the exponential smoothing nature of the reward update function
(cf., Subsection 3.4) the Q-values of slots will be shifted towards the latest reward they
receive. We would expect that the ‘goodness’ of slots will decrease for negative events,
and will increase for successful communication. Therefore, the feedback agents receive
is binary, i.e., ris,e ∈ {0, 1}, since it carries the necessary information. Other reward
signals were also evaluated, resulting in similar performance.

To better illustrate the importance and effect of combining synchronisation and
desynchronisation in these topologies, we compare our approach to networks where all
nodes wake up at the same time. All other components of the compared networks,
such as the routing and communication protocols, remain the same. In other words,
we compare our RL technique to networks with no coordination mechanism, but which
employ some means of time synchronisation, the small overhead of which will be
neglected for the sake of a clearer exposition. It is worth mentioning that both the
learning and the synchronous protocols use a carrier sense multiple access (CSMA)
scheme that is designed to minimise packet collisions. The synchronised approach
ensures high network throughput and is already used by a number of state-of-the-art
MAC protocols, such as RL-MAC (Liu and Elhanany, 2006) and S-MAC (Ye et al.,
2004). However, as we will demonstrate in Subsection 4.2, synchronisation alone will
in fact decrease system performance.

4.2 Evaluation

Figure 6(b) displays the resulting schedule of the line topology [Figure 6(a)] after the
action of each agent converges. The results indicate that nodes have successfully learned
to stay awake at the same time in order for messages to be properly forwarded to
the sink. In other words, we observe that all nodes belong to the same coalition, as
suggested in Figure 4. If any one node in the line topology had remained active during
the sleep period of others, its messages, together with those of its higher hop neighbours
would not have been delivered to the sink. Even though neighbouring nodes are awake
at the same time (or have synchronised), one can see that schedules are slightly shifted
in time. The reason for this desynchronisation is to reduce overhearing of messages
from lower hop nodes and to increase throughput – a behaviour that nodes have learned
by themselves. The size of this time shift depends on the time at which nodes send
data within their active period. As mentioned in Subsection 2, messages are sent at a
random slot within a frame. Therefore, the difference between the wake-up times is
small enough to increase the chance of successful transmissions and large enough to
ensure fast throughput, compensating for propagation delays.

In the line topology this time shift is, however, marginal to the active period and
therefore the performance of the learning nodes is comparable to that of the fully
synchronised network. This effect can be observed in Figure 6(c), which displays the
average end-to-end latency over 50 runs for the learning and the synchronised nodes
respectively. We can conclude from the graph that in a line topology, where nodes
have no neighbours on the same hop, the improvements of our learning algorithm are
marginal to that of a synchronised network. As mentioned above, the reason for this
comparable performance lies in the fact that a successful message forwarding in the line
topology requires synchronisation. Nevertheless, our agents are able to independently
achieve this behaviour without any communication overhead.
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Figure 6 Experimental results for the line topology, (a) line topology (b) resulting wake-up
schedule after convergence of one simulation run for duty cycle of 10%
(c) average end-to-end latency together with standard deviation bars for different
duty cycles

(a)

(b)

(c)

In contrast to the previous topology, our second set of experiments investigate the
performance of the network where all nodes lie on the same hop from the sink. This
setup presents agents with the opposite challenge, namely to find an active period where
no other node is awake. The latter behaviour will eliminate communication interference
with neighbouring nodes and will ensure proper reception of messages at the sink.
Figure 7(b) displays the wake-up schedule of the learning nodes for a duty cycle of
10% after the actions of agents converge. One can observe that desynchronisation has
been successfully achieved where each node is active at a different time within a frame.
Put differently, each node has chosen a different wake-up slot and therefore belongs
to different coalition. The benefit of this desynchronised pattern is clearly evident in
Figure 7(c) where we compare the latency between the desynchronised and synchronised
approaches. The latter figure represents the average end-to-end latency over 50 runs
together with the standard deviation bars. For duty cycles lower than 25% the reduction
in latency is significant as compared to a synchronised network of the same topology.
It is worth noting that for most values the standard deviation is negligible (i.e., smaller
than 0.5), which signifies that the reported averages are consistent across runs.
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Figure 7 Experimental results for the mesh topology, (a) mesh topology (b) resulting wake-up
schedule after convergence of one simulation run for duty cycle of 10%
(c) average end-to-end latency together with standard deviation bars for different
duty cycles

(a)

(b)

(c)

Lastly, we investigate a ‘mix’ of the above two topologies, namely a grid shown in
Figure 8(a). Nodes here need to synchronise with those that lie on the same branch of
the routing tree to ensure high throughput, while at the same time desynchronise with
neighbouring branches to avoid communication interference. The resulting schedule of
the learning nodes after convergence is displayed in Figure 8(b). As expected, the four
columns of nodes belong to four different coalitions, where nodes in one coalition are
synchronised with each other (being active nearly at the same time) and desynchronised
with the other coalitions (sleeping while others are active). Nodes in one coalition
exhibit comparable behaviour to those in a line topology, i.e., they have synchronised
with each other, while still slightly shifted in time. At the same time nodes on one hop
have learned to desynchronise their active times similar to the mesh topology.
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Figure 8 Experimental results for the grid topology, (a) grid topology (b) resulting wake-up
schedule after convergence of one simulation run for duty cycle of 10%
(c) average end-to-end latency together with standard deviation bars for different
duty cycles

(a)

(b)

(c)

The result of applying our learning approach in a grid topology for various duty cycles
can be observed in Figure 8(c). It displays the average end-to-end latency of the
network together with standard deviation bars when using synchronisation alone and
learning. For duty cycles lower than 20% the improvements of our learning nodes over
a synchronised network are outstanding. Due to the high data rate, the synchronised
nodes are incapable of delivering all packets within the short active period, resulting
in increased latency and high packet loss. The high amount of dropped packets at low
duty cycles is simply intolerable for real-time applications. This reduced performance at
low duty cycles is due to the large number of collisions and re-transmissions necessary
when all nodes wake up at the same time. The learning approach on the other hand
drives nodes to coordinate their wake-up cycles and shift them in time, such that nodes
at neighbouring coalitions desynchronise their active periods. When nodes coordinate
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their actions, they effectively reduce communication interference with neighbouring
nodes. This behaviour results in lower amount of overheard packets, less collisions and
therefore fewer retries to forward a message, as compared to the fully synchronised
network. Since the duration of the duty cycle directly influences energy consumption,
using our learning scheme one can increase the energy-efficiency (and therefore the
lifetime) of the WSN by lowering the active period of nodes. As our experiments
indicate, this reduction in the duty cycle is possible without sacrificing throughput.

Finally, we would like to mention the convergence rate of the learning agents. The
implicit exploration scheme, described in Subsection 3.5 makes nodes select different
actions in the beginning of the simulation in order to determine their quality. As time
progresses, the Q-values of slots are updated sufficiently enough to make the policy
of the agents converge. We measured that after 500 iterations at most the actions of
agents in the four by four topology do not change and thus they successfully have both
synchronised and desynchronised their actions. In other words, after 500 seconds each
node in the grid topology finds the wake-up schedule that improves message throughput
and minimises communication interference. This duration is sufficiently small compared
to the lifetime of the system for a static WSN, which is in the order of several days up to
a year depending on the duty cycle and the hardware characteristics (Ilyas and Mahgoub,
2005). The convergence time for the mesh and line topologies was empirically measured
to be at most 200 and 100 seconds respectively.

For illustrative purposes, we assess the benefits of the proposed approach in terms
of energy and lifetime by relying on the following standard settings. Sensor nodes are
usually powered by a pair of 1.5 V AA batteries (Ilyas and Mahgoub, 2005), whose
combined capacity amounts to about C = 7,500 mWh. In terms of energy, this amounts
to E = 7.5 * 3,600 = 27,000 J. The energy consumed by sensor nodes is largely
dominated by the radio. For example, a node using the CC2420 radio consumes on
average 60 mW, i.e., 60 mJ/s (cf., Figure 2). Without relying on a duty-cycle, the
lifetime of such a sensor node is therefore about 27,000

0.06 = 450, 000 s, i.e., slightly more
than five days.

Duty cycling allows to reduce the energy consumption by a factor proportional to
the duty cycle. For a duty cycle of D = 20% (approximately the duty cycle below
which performances of the synchronised approach degrades), the lifetime is significantly
extended to 450,000

0.2 = 26 days. The proposed desynchronised approach allows to further
reduce the duty cycle to 10% without sacrificing latency and doubles the lifetime to
52 days. The convergence time overhead of 500 seconds for the learning agents is
therefore marginal to the gains obtained in terms of network lifetime.

4.3 Discussion

Some WSN applications require longer service duration due to the costly deployment
and maintenance of nodes. This can be achieved by lowering the duty cycle of nodes
and therefore preserving their battery. However, for low duty cycles, nodes are required
to forward more messages during their short active times. The above experiments
demonstrate that both synchronisation and desynchronisation are crucial in such settings
for applications that require real-time data. Our approach drives agents to coordinate
their wake-up cycles without any communication overhead. This behaviour ensures
that neighbouring nodes avoid communication interference at no energy expense. The
synchronised approach, on the other hand, lets all nodes be awake at the same time.
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Thus, for low duty cycles nodes increase the chance of collisions and therefore
re-transmissions. Based on our results we can conclude that synchronising as well as
desynchronising the actions of agents increases the system performance in mesh and grid
topologies for low duty cycles as compared to a standard, fully synchronised approach,
where all nodes wake-up at the same time. Although our learning agents in the line
topology perform similarly to synchronised nodes, we achieve this synchronisation with
no communication overhead.

When duty cycles of (synchronised) agents become larger, nodes have less chance
of collisions and hence re-transmissions, leading to decreased latency and no packet
loss. As mentioned in Subsection 2, packets are sent at random slots within the
active period. Thus, the negative effect of being awake at the same time becomes
less pronounced as the duty cycle increases. Similarly, as the number of messages
per active period decreases, the learning agents receive less reward signals, leading to
slower convergence and poorer adaptive behaviour. In such cases it is less beneficial
to apply our RL approach, as it performs similar to the fully synchronised one.
Nevertheless, synchronised nodes still overhear packets of neighbours, resulting in
higher battery consumption as compared to nodes that use our learning algorithm.
Moreover, we achieve both synchronisation and desynchronisation in a decentralised
manner with no explicit form of coordination, whereas full synchronisation requires
periodical calibration packets.

We would like to note that frames or slots of nodes need not be aligned. We
have overlaid all wake-up schedules of the corresponding topology on the same graph
for a clearer comparison. Individual nodes have no information on the schedules of
neighbours, nor need they model other agents in order to coordinate their actions. Nodes
learn to cooperate by simply observing their own reward signals while forwarding
messages. The learning behaviour of agents therefore ensures that

1 nodes forward messages quickly to the sink and therefore increase throughput

2 they improve their energy efficiency by avoiding collisions and overhearing.

Finally, the convergence times reported in Section 4.2 were obtained experimentally.
A deeper analysis of the convergence properties should be carried out, in order to
better establish the convergence behaviour of the proposed approach in a wider range
of settings. The main factors which are likely to affect the convergence duration are the
number of slots in a frame, the number of agents and the radio connectivity. Although
we cannot yet offer analytical results regarding the convergence properties, it is worth
mentioning that for all our simulations, the proposed approach converged after a few
hundred iterations. As noted in Section 4.2, this duration was in our settings negligible
in comparison to the gains obtained in terms of energy and lifetime.

5 Conclusions

This paper presented a decentralised RL approach for energy-efficient wake-up
scheduling in WSNs. Our approach drives nodes to coordinate their wake-up cycles
based only on local interactions. In doing so, sensor nodes independently learn both
to synchronise their active periods with some nodes, so that message throughput is
improved, and at the same time to desynchronise with others in order to reduce
communication interference. As a result, our learning protocol enables users, based on
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the WSN application requirements, to reduce the duty cycle of the system and increase
its lifetime without sacrificing its functionality.

We applied this self-organising RL approach to nodes in a WSN and compared its
performance to a standard, fully synchronised network. We investigated three different
topologies and showed that agents are able to independently adapt their duty cycles to
the routing tree of the network. For high data rates this adaptive behaviour improves
both the throughput and lifetime of the system, as compared to a fully synchronised
approach where all nodes wake up at the same time. We demonstrated how initially
randomised wake-up schedules successfully converge to being both synchronised and
desynchronised without any form of explicit coordination.

Several optimisations can be brought to the proposed approach. Our current focus is
put on minimising the number of active time slots within a frame, and on relaxing the
constraint of having the active time of nodes in one contiguous period. Future work will
investigate the convergence properties of the proposed algorithm, as well as the analysis
of its behaviour on real-world testbeds.
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