
Decentralized Access Control in Distributed File
Systems

STEFAN MILTCHEV and JONATHAN M. SMITH
University of Pennsylvania
and
VASSILIS PREVELAKIS
Drexel University
and
ANGELOS KEROMYTIS
Columbia University
and
SOTIRIS IOANNIDIS
Institute of Computer Science (ICS), Foundation for Research and Technology,
Hellas (FORTH)

The Internet enables global sharing of data across organizational boundaries. Distributed file

systems facilitate data sharing in the form of remote file access. However, traditional access

control mechanisms used in distributed file systems are intended for machines under common

administrative control, and rely on maintaining a centralized database of user identities. They

fail to scale to a large user base distributed across multiple organizations. We provide a survey

of decentralized access control mechanisms in distributed file systems intended for large scale, in

both administrative domains and users. We identify essential properties of such access control

mechanisms. We analyze both popular production and experimental distributed file systems in

the context of our survey.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; K.6.5 [Management

of Computing and Information Systems]: Security and Protection

General Terms: Management, Security

Additional Key Words and Phrases: Authentication, authorization, certificates, credentials, de-

centralized access control, networked file systems, trust management

This work was supported by DARPA and NSF under Contracts F39502-99-1-0512-MOD P0001, CCR-TC-

0208972, and CISE-EIA-02-02063.

Corresponding author’s address: Stefan Miltchev, Department of Computer & Information Science, University

of Pennsylvania, Levine Hall, 3330 Walnut Street, Philadelphia, PA, 19104-6389;

email: miltchev@dsl.cis.upenn.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Computing Surveys, Vol. V, No. N, Month 20YY, Pages 1–32.

2 · Stefan Miltchev et al.

Fig. 1. File sharing across distinct administrative domains. Each administrative domain keeps track of its users

in a user account database. Alice cannot grant Bob access to files on file server A because Bob is not listed in

domain A’s user database.

1. INTRODUCTION

The Internet offers the possibility of global data sharing and collaboration. One class of

mechanisms commonly used by organizations is shared data access via file sharing, using

remote file access in distributed/networked filesystems. However, most existing systems

do not offer secure, scalable and dynamic cooperation across organizational boundaries.

When users in distinct administrative domains try to share files, either inefficient and cum-

bersome exchange of information or compromises in security result.

For example, consider users Alice and Bob, employees of two different companies, who

wish to collaborate on a project (see Figure 1). Alice and Bob have at least four approaches

to sharing project files:

(1) ask their system administrators to create accounts in their own administrative

domain for each remote user. This has several problems. First, it imposes an addi-

tional administrative burden, which is not scalable with increased users and projects.

Often the latency of opening an account for a new user is unacceptable. Second, cre-

ating an account for an external user raises escalation of privilege issues. Ideally the

user should only be able to use the account for the intended purpose, i.e., working on

the project files. However, an account could enable an external user to snoop, search

for local system vulnerabilities, use up CPU cycles, disk space, etc. Because of these

problems, company policy typically limits or prohibits the creation of accounts for

external users.

(2) share account passwords. This approach has serious security implications as it

causes lack of accountability and enables escalation of privileges.

(3) avoid employing an access control mechanism and put the files on the web or

anonymous ftp. This is an unacceptable solution if the content of the files is at all

confidential or sensitive.

(4) exchange files via e-mail or another out of band mechanism. This is an inefficient

way of working as it does not take advantage of any of the safeguards and conveniences

that a file system has to offer. In the event that the e-mails are sent in the clear, there

are obvious security concerns. While still not as convenient as a file system, sites like

www.filesdirect.com act as a broker between users in different administrative domains

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 3

File 1 File 2

User X read read, write

User Y read

Fig. 2. An Access Control Matrix

and offer better security than unencrypted e-mail. However, such solutions require

trust to be placed in a third party.

While more approaches can be imagined, the four listed illustrate the challenges of file

sharing across organizational boundaries. This survey examines how access-control mech-

anisms of different distributed file systems handle file sharing across distinct administrative

domains. This survey is restricted to the topic of access control in distributed file systems,

and largely ignores other design features and tradeoffs, except where they impact access

control. It is clear that well engineered systems must pay attention to many diverse goals,

and the system designer must decide how to weigh different axes of interest during the

design phase. As a result, a system that evaluates well here may appear weaker when ex-

amined along other important axes. The survey should be interpreted for what it is: an

attempt to understand how the choices made by different system designers affect the abil-

ity of end users to share information, and control the sharing of that information, using a

distributed file system.

The rest of this survey is organized as follows. We establish a framework for comparison

in Section 2. Section 3 presents a survey of distributed file systems in our framework. We

discuss the results in Section 4 and conclude with Section 5.

2. COMPARISON FRAMEWORK

We survey selected distributed file systems to determine their suitability for file sharing

across organizational boundaries. To classify the surveyed systems we use the following

necessary features as axes of a comparison framework.

(1) Authentication. Authentication determines and verifies the identity of a user in the

system, i.e., providing an answer to the question: “Who is the user?” Traditional authenti-

cation mechanisms rely on maintaining a centralized database of user identities, making it

difficult to authenticate users in a different administrative domain as depicted in Figure 1.

Systems aiming to provide decentralized access control cannot rely on local identification

and must employ a decentralized authentication mechanism, or rely on indirect authenti-

cation.

(2) Authorization. Authorization determines the access rights of a user, i.e., it provides

an answer to the question: “Is user X allowed to access resource R?” The common way of

performing authorization is to look up a user’s rights in an access control matrix [Lampson

1971], e.g., such as the one depicted in Figure 2. The access control matrix is usually

implemented either in the form of access control lists (ACLs) or capabilities.

ACLs correspond to columns of the access control matrix. An ACL is associated with

every resource, i.e., every object in the file system, and lists all users authorized to access

the object along with their access rights. The identity of a user must be known before access

rights can be looked up in the ACL. Thus, authorization depends on prior authentication,

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

4 · Stefan Miltchev et al.

Fig. 3. Simplified structure of the UNIX file system (from [Farmer and Venema 2004]).

Fig. 4. On-disk layout of a typical UNIX file system (from [Farmer and Venema 2004]).

i.e., systems that rely on ACLs for authorization must use a decentralized authentication

mechanism to work across administrative boundaries.

Capabilities [Dennis and Van Horn 1966; Levy 1984] correspond to rows of the access

control matrix. A capability is an unforgeable token that identifies one or more resources

and the access rights granted to the holder of the capability. A user that possesses a capa-

bility can access the resources listed in the capability with the specified rights. In contrast

to ACLs, capabilities do not require explicit authentication. Capabilities can be transferred

among users, which makes them suitable for authorization across organizational bound-

aries. Because capabilities explicitly list privileges over a resource granted to the holder,

they naturally support the property of least privilege, an intuitively desirable goal in a sys-

tem design. However, because possession of a capability conveys access rights, capabilities

must be carefully protected from theft, which in a distributed system requires that they be

transferred over secure and authenticated channels [Tanenbaum et al. 1986]. In addition,

capabilities may make it more difficult to perform later auditing or forensic analysis. Es-

pecially for large-scale decentralized systems where the logs themselves or the meaning of

the information contained in the capabilities is spread across several system components,

collecting all the necessary information involves considerable effort.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 5

Fig. 5. Delegation of privileges, from an administrator to Alice, and from Alice to Bob. The administrator grants

Alice full access by issuing her the first certificate. Alice can then delegate read access to Bob by issuing him the

second certificate. To be granted access Bob must present a certificate chain consisting of both certificates.

(3) Granularity. Granularity is the extent to which a system contains discrete com-

ponents of ever-smaller size. E.g. UNIX file systems are organized within a single tree

structure underneath one root directory, internal nodes of the tree recursively represent

sub-directories of the root, and leaves of the tree can be either files or directories. At a

lower layer of abstraction, the same file system consists of inodes and data blocks (Fig-

ure 3), and yet another layer lower one can find zones, labels, and partitions (Figure 4).

A distributed file system must strike a balance between extremely coarse-grained and ex-

tremely fine-grained authorization. Some systems work at a coarser granularity of higher-

level container objects, e.g., directories or volumes. While coarser granularity decreases

the amount of access control meta-data and the number of access control decisions re-

quired, it can make sharing of individual files cumbersome for users. In turn, systems that

employ only fine-granularity access control can become difficult to manage, e.g. specify-

ing block-level access control when only file-level control is desired. Ideally, the system

should allow a flexible level of access control granularity.

(4) Autonomous delegation. We evaluate the suitability of file systems for file sharing

across organizational boundaries with minimal administrative overhead. A user should be

able to delegate access rights to another user, subject to administrative policy. Figure 5

illustrates delegation using authorization certificates. We identify the following require-

ments for delegation:

—Autonomy. To facilitate ease of file sharing and lower administrative overhead, the

delegation mechanism should be user-to-user, i.e., no administrator involvement should

be required. If delegation is not allowed by default, the administrator will need to be

involved in each permission change, becoming a significant bottleneck in large-scale

systems. Of course, this need not be a binary condition: for example, unlimited delega-

tion may be allowed between users of the same organization, but explicit administrator

approval may be required to delegate to external entities.

—Accountability. It should always be possible to determine who delegated access to a

particular user, at least as part of an auditing (forensics) process.

—Organizational independence. A user should be able to delegate his access rights to

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

6 · Stefan Miltchev et al.

a user in a different administrative domain, if this is allowed by organizational policy.

Furthermore, this should be done while preserving accountability.

—Low Latency. A user should be able to access a resource as soon after a delegation as

possible.

—Transitivity. Delegation chaining should be possible, e.g., if Alice delegates access to

Bob, Bob should be able to further delegate to Charlie (creating a chain from Alice to

Charlie). A mechanism to restrict the right to further delegate and thus limit the length

of the delegation chain is also desirable. This allows the system to scale arbitrarily, by

pushing administrative responsibility to end users.

—Fine granularity. A user should be able to delegate a subset of his access rights, e.g., if

Alice has read and write access to a file, she should be able to delegate read only access

to Bob.

(5) Revocation. While the ability to grant access to users in different administrative

domains is very desirable, a distributed file system should also have provisions for revoking

access. Revocation in systems that base authorization on ACLs is conceptually simpler: a

user’s access to an object can be revoked by updating the object’s ACL to remove access.

Capability based systems must rely on timeouts encoded in the capabilities or centralized

revocation mechanisms, e.g., revocation lists or trusted on-line agents that determine if a

capability is still valid. An in-depth evaluation of revocation techniques for a capability

based system is presented in [Keromytis 2001; Keromytis and Smith 2007]. There is also

a fundamental tension between the requirement for revocation and caching. Once a file has

been cached by a temporarily trusted client, the client might allow future accesses even

after access to the file has been revoked by the server. The same tension applies also to

auditing as the client might allow access to the cached copy without informing the server.

We survey a number of distributed file systems in this comparison framework in the next

section, Section 3 and summarize the results in Table I and Table II in Section 4.

3. DISTRIBUTED FILE SYSTEMS

It is useful to divide systems into production and experimental, with the split centered on

the scale and persistence of deployment, use and experience. A reasonable rule of thumb

to designate a system as production would be one which has found wide-spread acceptance

with (at least) many thousands of users.

3.1 Production Systems

The initial analysis is an examination of how the access control mechanisms of production

systems handle file sharing across administrative boundaries. The need to be robust in the

face of mission-critical use often forces these systems to be conservative in their design

choices. Thus, fundamental considerations like performance, portability, robustness are

likely to take precedence over the features that are the focus of this paper. We anticipate

that readers of this survey will have used at least some of the file systems presented in this

section. Thus, our review of production systems is biased towards the user experience. We

review the systems in chronological order.

3.1.1 NFS. The Network File System (NFS) [Sandberg et al. 1985] developed at Sun

Microsystems remains one of the most widely used network-attached file systems. Security

in NFS appears to have been an afterthought, and global file sharing was not part of the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 7

Fig. 6. NFS architecture (from [Sandberg et al. 1985])

original design. However we choose to review NFS in our framework due to its familiarity

and widespread use; it makes an excellent baseline.

The NFS protocol uses the Sun Remote Procedure Call (RPC) [Lyon 1984] mechanism

as illustrated in Figure 6. The RPC protocol allows several styles of user authentication,

referred to as authentication flavors. The original NFS release used weak UNIX-style

authentication (user ID and group ID) allowing a user’s credentials to be forged (see Fig-

ure 7). Support for Diffie-Hellman and Kerberos version 4 authentication flavors was added

later, but UNIX style authentication (AUTH SYS) was the only mandatory flavor, and thus

the most commonly implemented. Host authentication is also weak, because it relies on

spoofable IP addresses or DNS names.

Authorization in NFS follows UNIX semantics [Thompson 1978]. Thus, access to every

file is controlled by the standard UNIX mode bits associated with the file. The permission

bits can be viewed as a simple ACL, that lists three principals: the owner of the file, the

group associated with the file, and the group consisting of all other users. Thus, we refer to

UNIX mode bits as UNIX ACLs throughout the rest of the discussion. The rights that can

be given to each principal are Read, Write and Execute. Before users can access a remote

file, privileged administrators must mount the file system where the remote file is located.

This is done through the mount protocol [Callaghan et al. 1995], through which file system

names are mapped to directory identifiers (handles). The remote server’s administrator

controls access by listing exported file systems and hosts allowed to mount them. A handle

for the top-level directory of an exported file system will be provided to hosts that are

allowed to mount that file system. Once that handle is acquired, no further use of the

mount protocol is needed. This is another weakness of the NFS security model: since

directory handles do not change often (or at all), revocation of mount privileges cannot be

assured.

While initially it appears that the object access granularity in NFS is at the file level, the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

8 · Stefan Miltchev et al.

Fig. 7. NFS trust model when using the AUTH SYS authentication flavor (adopted from [Callaghan 2000]). The

NFS server trusts client hosts A and B. Access control is enforced by inspecting the source IP address of RPC

requests. User Bob can legitimately access his files after authenticating to client A. However, a privileged user on

client B (Root) can easily assume the credential of Bob without knowledge of his password. Finally, user Eve on

client C can spoof the IP address of client A. Thus, RPC requests from C appear to come from A, and client C is

trusted, though it is not in the server’s access list!

Fig. 8. NFS access control granularity with the (remote) mount protocol. The server exports a file system (e.g.,

/home) to the client. An administrator on the client mounts the exported file system (e.g., under /mnt). Because

the server trusts the client to enforce file-access rights, object-access granularity in NFS is at the file system level.

server actually trusts the client workstation that mounts an exported file system to check

file-access rights (see Figures 7 and 8). This security problem was addressed with the

introduction of the ACCESS procedure in NFSv3. Because no strong host authentication

mechanism is used, security is based merely on matching the IP or DNS name of the client

workstation. Because a file cannot be shared without a file system being exported on the

server and mounted on the client, object-access granularity in NFS is at the file system

level. Once an exported file system has been mounted, the user perceives object access

granularity to be at the individual file level.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 9

Significant administrative involvement is required for Alice to share a file with Bob if

he resides in a different administrative domain. The administrator of Alice’s server must

trust Bob’s server and export a part of the local file system to it. The administrator of

Bob’s workstation must trust Alice’s server and mount the exported file system. Finally,

since access control is performed using UNIX permission bits, Bob must obtain an account

in Alice’s domain to have a meaningful UNIX user identifier (UID). Thus, autonomous

delegation between users in different administrative domains is not supported in NFS.

Revocation in NFS is conceptually simple. A server administrator can edit the export

list and remove directories or hosts. Administrators can also disable user accounts or edit

group definitions in the centrally administered user database. Finally, access to individual

files or directories can be revoked by changing the UNIX bit masks associated with them.

In summary, authentication and authorization in early versions of NFS were designed

assuming a tightly administered domain (e.g.,, a single campus LAN or extended LAN),

making it unsuitable for global file sharing. This view is reflected in some earlier litera-

ture. The creators of the Athena system [Rosenstein et al. 1988; Dyer 1988], which relies

on NFS and Kerberos, recognize some of the barriers to access control scalability, and in-

dicate the numerous ACLs in the system were difficult to administer. Further, additional

intermediate levels of access between administrators and users were desirable. The au-

thors of the Bones system [J. Schönwälder and H. Langendörfer 1993] point out similar

problems.

3.1.2 AFS. The Andrew file system (AFS) [Howard et al. 1988; Howard 1988; Satya-

narayanan 1989; 1990; 1992] was developed at Carnegie Mellon University as a secure

distributed file system with centralized user authentication. The earliest version of AFS

was developed concurrently and independently of NFS, but its design was strongly influ-

enced by the need to scale to many thousands of users. This need for scalability drove

many aspects of its design, especially those pertaining to performance and security. AFS

introduced several improvements in access control mechanisms, e.g., richer ACLs and user

editable groups. The resulting reduced administrative overhead and improved scalability

of access control management, though limited to the local administrative domain, make

AFS very relevant to this survey.

Authentication in early versions of AFS was based on a variant of the Needham-Schroeder

authentication protocol [Needham and Schroeder 1978]. Users could only share files with

other users in the same cell (i.e., AFS administrative domain). Cross-cell authentication

required users to have an account in each foreign cell where they wished to access files.

Later versions of AFS have adopted the Kerberos authentication system [Miller et al. 1987]

for purposes of standardization.

Kerberos version 5 [Kohl and Neuman 1993; Linn 1996] is a centralized authentica-

tion system based on symmetric-key cryptography. Administrative domains in Kerberos

are called realms. An administrator maintains the user database for each realm. A Key

Distribution Center (KDC) and Ticket Granting Service (TGS) grant users tickets that al-

low them to access services on specific hosts in a realm. Because Kerberos relies on a

trusted third party and symmetric key cryptography, accessing services across administra-

tive boundaries is not straightforward. Administrators have to set up trust relationships and

exchange keys for users to access services in a different realm. While cross-realm authen-

tication has been studied [Trostle et al. 2001; Westerlund and Danielsson 2001], Kerberos

does not currently allow for autonomous delegation between users in different administra-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

10 · Stefan Miltchev et al.

tive domains. A more extensive evaluation of Kerberos for decentralized access control

scenarios is presented in [Keromytis and Smith 2007].

An AFS cell defined along administrative boundaries corresponds to a Kerberos realm.

Cross-realm authentication allows users to share information between their respective cells,

without possessing accounts in each cell. However, cross-realm authentication requires

administrator involvement, because a local administrator must configure in advance which

remote cells should be available to users in the local cell. Thus, AFS does not support

autonomous delegation between users in different administrative domains.

Authorization in AFS is based on ACLs associated with directories rather than individual

files. Thus, object access granularity is at the directory level. The authors argue that the

reduction in state and conceptual simplicity coming from a coarser granularity facilitate

scalability. AFS ACLs specify the operations that principals (users or groups) can perform

on directories, namely:

—read any file in the directory

—write any file in the directory

—list directory contents

—insert new files in the directory

—delete files from the directory

—lock files in the directory

—administer the directory, i.e., modify the ACL

If there is no ACL entry allowing a particular operation, access is denied. AFS ACLs can

also specify negative rights, i.e., explicitly state that a user is not allowed to perform one or

more of the operations listed above. When a request for access is evaluated, the entries in

the normal rights section of the ACL are examined first. Any permission associated with

the user on the negative rights section of the ACL are then subtracted. Thus, in the case

of conflicts, negative rights override positive rights. This mechanism facilitates rapid and

selective revocation, e.g., in cases where a user is a direct or indirect member of groups

with access to the object. Using negative rights, the user can be explicitly denied access to

the object while the user’s group membership information is being updated and propagated,

a process that may sometimes take significant time in a large distributed system. AFS also

retains the standard UNIX mode bits on files; however, these are not used to enforce access

on the server and only have local significance on the user’s workstation.

Group names are used in AFS ACLs to identify lists of users with particular access

permissions. Users can create and maintain their own protection groups - as opposed to

UNIX where only system administrators can manage /etc/group. Nesting of protection

groups is not allowed, i.e., a protection group cannot be a member of another protection

group. While user-configurable groups improve the ease of file sharing between users

in the same cell they do not address the problem of granting access to users in different

administrative domains.

More recent versions of AFS allow users external to the current cell to appear on an

ACL, e.g., an ACL on a server that is in the “cs.cmu.edu” cell can have an entry giving

“bob@cs.ucla.edu” rights on a directory. However, configuring the respective cells to sup-

port cross-realm authentication requires administrator involvement.

Revocation in AFS is conceptually simple. Because user accounts are centrally man-

aged, any account can easily be disabled. Any user’s access to a directory can be re-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 11

voked by editing the corresponding ACL. Using groups simplifies revocation considerably

- whenever there is a change of membership of a group, the change needs only to be made

in the definition of the group and not on each ACL concerned. In addition, negative rights

allow for rapid revocation if resolving and updating the user’s group membership is ex-

pected to take significant time.

The Coda file system [Satyanarayanan et al. 1990; Kistler and Satyanarayanan 1991;

Satyanarayanan 2002] is a descendant of AFS developed with the goal of being more

resilient to failures. Coda provides high availability through the use of two distinct but

complementary mechanisms, server replication and disconnected operation. However, be-

cause the access control model of Coda is based largely on AFS, it faces similar limitations

in regard to supporting collaboration between users in different administrative domains.

3.1.3 CIFS. The Common Internet File System (CIFS) [Leach and Perry 1996; SNIA

CIFS Technical Work Group 2002; Hertel 2003] is the distributed file system native to

the Microsoft Windows family of operating systems, and, due to its ubiquitous nature,

of particular interest to this survey. CIFS is not limited to the Windows platform as the

Samba project [Samba project] offers open source implementations of a server and client

for UNIX based platforms. CIFS is based on the Server Message Block (SMB) protocol

[Microsoft Corporation 1996] originally developed at IBM in the mid-1980s [IBM Corp.

1984]. In CIFS every server offers a set of resources (directory tree, named pipe, printer)

to clients over the network. Whenever a resource is made available (shared) via SMB it is

given a share name. Before a user on a client can access a share they must authenticate to

the server holding the corresponding resource.

CIFS permits a number of different authentication methods. The SMB protocol defines

two security levels: share-level and user-level.

Share-level mode is a form of SMB authentication from the days of early corporate

LANs when security was not considered a top priority and PC operating systems (e.g.,

DOS) did not support user-based authentication. Thus, passwords, if used at all, are as-

signed to shares, not users, and are transmitted in plaintext over the network. Users that

know the name of a server and a share, along with the potential password, can gain access

to that share. A single share may have multiple passwords assigned, each granting different

access rights, e.g., one password may grant read-only and another read/write access.

Share-level mode, while still used, is considered deprecated and has been replaced with

user-level mode. A server employing user-level security makes use of username/password

pairs instead of sharename/password pairs. With user-level security, a user must first au-

thenticate and get a valid user identifier (UID), and then present the UID to gain access

to any shares. User-level security can be implemented using a plethora of authentication

protocols. It is possible to use anonymous or guest login, plaintext passwords, several

challenge-response variations (LanManager (LM), NTLM, NTLMv2), and, in more recent

versions, Microsoft’s implementation of Kerberos [Swift et al. 2002] or other mechanisms

based on the Generic Security Services API (GSS-API) [Linn 1997] and the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) [Baize and Pinkas 1998]. The

GSS-API enables source-level portability of applications to different environments by pro-

viding callers with a common interface to security services in a generic fashion. Thus,

security services can be supported with a range of different underlying mechanisms and

technologies.

Authorization in CIFS depends on the authentication level and the underlying file system

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

12 · Stefan Miltchev et al.

access control mechanism. In share-level mode authorization is combined with authentica-

tion: knowledge of a password grants access to a share. In user-level mode the server could

in the best case use ACLs to control file accesses. However, ACLs may not be available

on all systems. Because CIFS was designed to work with DOS, OS/2, and Windows sys-

tems, the underlying file system on the server could be FAT, FAT32, HPFS or NTFS. While

FAT has no concept of file ownership and only supports 6 attribute bits (e.g., the archive,

hidden, read-only, and system bits), NTFS offers support for ACLs. Thus, depending on

version and the mechanisms supported by the underlying file system, authorization in CIFS

can exhibit varying degrees of sophistication: none (when anonymous access is allowed),

rudimentary (read-only or read-write access), or more fine grained access control (when

ACLs are supported).

Object access granularity in CIFS is at the share level. In a file system context a share is

a directory.

Like NFS, CIFS was designed for tightly administered domains and thus does not sup-

port all the requirements for autonomous delegation across organizational boundaries. As

expected, anonymous and guest access or share-level passwords do not provide account-

ability or fine granularity of delegation. If user-level security with stronger authentication

is used, delegation of access control cannot take place without administrative intervention.

Administrators must either create accounts for users outside of the local domain, or deal

with establishing complex trust relationships between different domains.

Revocation in CIFS can be accomplished in a number of ways. Sharing of a resource

can be turned off. Administrators can disable user accounts. If supported, ACLs on any

files may be edited to revoke access at a finer level of granularity.

3.1.4 NFSv4. In an effort to address requirements mandated by the wide-spread use

of the Internet, NFS version 4 [Shepler et al. 2003] proposes many improvements over

earlier versions. Stronger security and better suitability to deployment on the Internet are

the main design goals. A good overview of NFSv4 and a comparison with older versions

is presented in [Pawlowski et al. 2000]. We review the relevant changes in the context of

our framework.

NFS is based on, and relies on, the underlying security of ONC (Open Network Com-

puting) RPC [Srinivasan 1995], a remote procedure call framework developed by Sun Mi-

crosystems. NFSv4 mandates the use of strong RPC security flavors for authentication

(older methods, e.g., AUTH SYS can optionally still be supported). This is achieved by

adding a new security flavor based on GSS-API [Linn 1993a; Wray 1993] called RPC-

SEC GSS [Eisler et al. 1997]. RPCSEC GSS encapsulates the GSS-API messaging tokens

and acts as a transport for conforming security flavors. Examples of GSS-API implemen-

tations include:

—Kerberos version 5

—The Low Infrastructure Public Key (LIPKEY) system [Eisler 2000]. LIPKEY provides

an authentication model resembling the Secure Sockets Layer (SSL), that makes it more

suitable for use on the Internet. Authentication with LIPKEY is similar to using an

HTTPS server with htaccess, i.e., the server is authenticated with a public key certifi-

cate, while the clients authenticate using usernames and passwords. Communication is

encrypted with a session key. This scheme relies on passwords being centrally man-

aged at the server, i.e., a user cannot delegate access to another user not listed in the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 13

centralized password database without administrator involvement. Thus, LIPKEY is not

suitable for autonomous delegation between users in different administrative domains.

—The Simple Public-Key GSS-API Mechanism (SPKM) [Adams 1996]. In contrast to

Kerberos, SPKM is based on an asymmetric-key infrastructure. SPKM allows both uni-

lateral and mutual authentication to be accomplished without the use of secure times-

tamps. Thus, out of the existing GSS-API mechanisms, SPKM with both client and

server authentication using public keys is most suitable for global file sharing across

administrative boundaries. However, the GSS-API decouples authentication and au-

thorization, thus limiting the support for autonomous delegation across administrative

domains (see discussion in Subsection 3.2.9).

The implementation of user and group identifiers also influences the suitability of an

authentication mechanism for deployment across the Internet. Earlier NFS versions rep-

resented users and groups via 32 bit integers. This is unsuitable for global file sharing,

because user and group identifier assignments in different administrative domains are un-

likely to agree. NFSv4 uses character strings instead of integers to represent user and

group identifiers. Uniqueness can be guaranteed by using a format of user@domain or

group@domain and leveraging the global domain name registry.

Authorization in NFSv4 is enhanced over the UNIX mode bits used by earlier versions

with the introduction of support for ACL attributes. NFSv4 ACL support is similar to the

Windows NT model [Microsoft Corporation 2005; Swift et al. 2002]. The NFSv4 ACL

attribute is an array of access control entries. Access control entries can be one of four

types: ALLOW, DENY, AUDIT or ALARM. The ability to explicitly grant access to users

who are not the owner or in the group of a file improves flexibility over standard UNIX

ACLs. The ability to explicitly deny access facilitates rapid revocation.

NFSv4 eliminates the mount protocol by using initialized file handles like the public file

handle in WebNFS [Callaghan 1996a; 1996b] (A WebNFS client uses the special reserved

public filehandle as an initial filehandle rather than using the mount protocol). File-access

rights as specified in ACLs are checked on the server, not the client. Thus, while the server

administrator still exports file systems rather than individual files, object access granularity

is at the file level.

While NFSv4 introduces changes that facilitate global file sharing (elimination of the

mount protocol, introduction of public file handles, a global user identifier name space), au-

tonomous delegation between users in different administrative domains is still not possible

with the currently supported authentication mechanisms. Kerberos requires administrator

involvement for establishing trust relationships between realms, while LIPKEY requires

administrator involvement in account creation for the non-local user.

Revocation mechanisms in NFSv4 remain mostly unchanged and involve editing ACLs.

Support for more feature-rich ACLs and negative rights in ACLs are the major changes

over previous versions.

3.2 Experimental Systems

Our review suggests that widely adopted production systems are evolving from support-

ing file sharing within a single administrative domain to supporting file sharing between

different organizations with a pre-established administrative relationship, often referred to

as federation. However, production systems fail to address the problem of file sharing

between distinct domains with no pre-existing administrative trust relationship. In the fol-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

14 · Stefan Miltchev et al.

lowing section we examine a number of experimental systems and evaluate their support

for autonomous ad-hoc sharing between users in different administrative domains. Exper-

imental systems are not as widely adopted as production systems and their maturity can

range from simple proof of concept implementations to prototypes tested by a limited user

base within a university’s computer science department. Thus, our review of the following

systems is based on what authors claim can be done, rather than user experience, which

can put production systems at a disadvantage. We review the experimental systems in

chronological order.

3.2.1 Truffles. Truffles [Reiher et al. 1993] was one of the early systems to recognize

and address the need for file sharing between users in different administrative domains.

Truffles was built on the replication services provided by the Ficus file system [Guy et al.

1990] and added a mechanism for setting up secure file sharing without administrator in-

tervention. Sharing was at the granularity of a volume, i.e., a subset of a local file system.

Truffles used Privacy Enhanced Mail (TIS/PEM) [Linn 1993b; Kent 1993; Balenson

1993; Kaliski 1993] to authenticate users and provide a secure transport channel. Users

were identified by public keys bound to X.500 distinguished names in X.509 certificates

[CCITT 1989]. Truffles authentication thus relied on a hierarchy of certification authorities

(CAs). This limited autonomous delegation, because users from different administrative

domains still had to have a common root CA.

Authorization in Truffles relied on standard UNIX and Ficus access control mechanisms,

where each file has a standard UNIX ACL associated with it.

Truffles did not address revocation.

3.2.2 Bayou. Bayou [Terry et al. 1995; Petersen et al. 1996] was a replicated, weakly

consistent storage system designed for the mobile computing environment. To maximize

availability, users could read and write any available replica. The Bayou system used a

primary commit scheme to resolve conflicts, i.e., one server designated as the primary took

responsibility for commiting updates. Bayou is relevant to this survey because it was one

of the early systems trying to address the problem of enabling autonomous delegation by

using an authorization mechanism based on access control certificates instead of ACLs.

Authentication in Bayou was based on public-key cryptography. Every user possessed

a public/private key pair and was authenticated by the server using a challenge/response

protocol.

Authorization in Bayou was based on digitally signed access control certificates. Three

types of certificates were supported:

—access granting certificates granted a user access (one of read, write, or server) to a data

collection, the unit of replication. In the context of a file system the unit of replication

was a directory. The “server”privilege enabled a user to maintain a replica of the data on

his workstation or portable computer, i.e., to run a server for the data collection. Access

granting certificates were signed by a single trusted signing authority.

—delegation certificates delegated a user’s privileges from an access control certificate to

another user. Delegation certificates had to be signed by the delegating user.

—revocation certificates allowed the original signer of a certificate to revoke it. Thus,

access-granting certificates were revoked by the signing authority (administrator), while

delegation certificates could be revoked by the user that issued them.

As a side note, Bayou required separate certificates for read and write access.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 15

Identity: K0

To: K1

Attributes: A1

Sign: S1={K1,A1}K0
-1

To: K2

Attributes: A2

Sign: S2={K2,A2}K1
-1

To: K3

Attributes: A3

Sign: S3={K3,A3}K2
-1

…..

Transfer 1

Transfer 2

Transfer 3

Fig. 9. Structure of a CRISIS transfer certificate (from [Vahdat 1998]). The transfer certificate is a chain of X.509

certificates. The first certificate is an identity certificate identifying the principal wishing to make the transfer by

his public key, K0. In each subsequent certificate the issuer transfers a subset of his available privileges to another

principal. E.g., in the first transfer K0 delegates privileges described by A1 to K1 and signs the certificate with

his private key, K1

0
. Certificates can be arbitrarily chained, e.g., in this example K1 transfers privileges to K2,

who in turn transfers privileges to K3.

All access-granting certificates in Bayou were signed by a single trusted signing author-

ity. This approach limits autonomous delegation across organizational boundaries, because

a user in a different administrative domain might be unknown to the signing authority. The

access control model in Bayou provided authorization at the granularity of a whole data

collection.

Revocation in Bayou was accomplished using revocation certificates. Revocation cer-

tificates were stored by write operations and propagated with the data collections to which

they apply. Thus, revocations of write privileges were applied at the primary server, and

there was no need to ensure that every other server be notified of the revocation.

3.2.3 xFS. xFS [Anderson et al. 1995], a serverless distributed file system, was de-

veloped as part of the UC Berkeley Network of Workstations (NOW) project. Any node

in the system could act as both server and client to provide all file system services in a

peer-to-peer fashion. The primary concerns of the xFS architects were better performance,

scalability, and higher availability than traditional file systems. However, the decentralized

architecture of xFS did not carry over to its access control mechanisms. Unfortunately we

were not able to find a detailed description of the xFS access control mechanisms in the

literature.

The xFS architects describe the system as appropriate for a restricted environment,

where machines trust one another’s kernels to enforce security, i.e., the system was de-

signed to operate within a given admnistrative domain. xFS nodes were split in two cat-

egories: trusted core nodes within the admnistrative domain and less trusted client nodes.

Trusted nodes ran the standard xFS file sharing protocol and acted as NFS servers to the

less trusted client nodes. Because communication with clients outside of the trusted adm-

nistrative domain followed NFS security semantics, xFS was functionally equivalent to

NFS for file sharing across organizational boundaries and consequently suffered from the

same limitations.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

16 · Stefan Miltchev et al.

/sfs/

Location
z }| {

sfs.lcs.mit.edu :

HostID (specifies public key)
z }| {

vefvsv5wd4hz9isc3rb2x648ish742hy /

path on remote server
z }| {

pub/links/repository/sfscvs

Fig. 10. SFS self-certifying pathname (from [Mazieres et al. 1999])

3.2.4 WebFS. WebFS was part of the WebOS [Vahdat 1998] project at UC Berkeley.

The system’s authorization mechanism was based on a combination of ACLs and autho-

rization certificates. Thus, it is of interest to examine whether such a hybrid approach can

exploit the advantages of both mechanisms while minimizing the disadvantages.

WebFS was a global file system layered on top of the HTTP protocol. This approach

allows access to files through the file system using existing URLs as file names. The

security architecture for WebOS was called CRISIS [Belani et al. 1998]. Authentication

in CRISIS was based on X.509 certificates [CCITT 1989; Polk et al. 2002; Housley et al.

2002].

Authorization in CRISIS used a hybrid model to best exploit the tradeoffs between ACLs

and capabilities. Principals that should have long-term access to an object were listed on

the ACL for that object. In the case of WebFS, each file had an associated list of users

authorized to read, write or execute. The principals listed on an ACL could then further

delegate a subset of their rights to an object by creating transfer certificates, short-lived

and revocable capabilities. Transfer certificates were encoded in X.509 format, digitally

signed and could be chained. Figure 9 shows the structure of a CRISIS transfer certificate.

Object access granularity in WebFS was at the file level. Autonomous delegation in

WebFS was limited since users could only delegate to users who had a certificate from

a CA trusted by the local domain. Because WebFS relied on a hierarchy of certification

authorities, users in different administrative domains still had to have a common root CA

to share files.

CRISIS had good support for revocation. If a principal was listed on an object’s ACL

his access could be revoked simply by modifying the ACL. When access was granted with

certificates, revocation relied on timeouts. Each certificate was first signed by the principal

making a statement with a longer timeout. The certificate was then counter-signed by a

principal of the signer’s choosing. The counter-signature was issued with a shorter timeout.

The counter-signer acted as a locally trusted on-line agent (OLA). The OLA checked if

a certificate had been revoked before refreshing its counter-signature with a new short

timeout. While the CRISIS approach allows for shorter timeouts, it also introduces the

need for trusted on-line agents.

3.2.5 Self-Certifying File System (SFS). SFS [Mazieres et al. 1999; Mazieres 2000;

Fu et al. 2002] was a global decentralized file system. SFS is relevant to our survey as its

major stated goal was to free SFS clients from any notion of administrative realm, making

inter-realm file sharing trivial. To accomplish this goal SFS introduced the notion of self-

certifying pathnames – file names that effectively contain the appropriate remote server’s

public key (see Figure 10). Thus, SFS needed no separate key management machinery to

communicate securely with file servers. By convention, SFS files could be accessed under

/sfs/Location/HostID/Path, where Location is the DNS name or IP address of the server,

HostID specifies the server’s public key, and Path is the path to the file on the server.

The resulting file names were difficult to remember due to the embedded cryptographic

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 17

information, so symbolic links had to be used as a mnemonic aid.

SFS separated user authentication from the file system by removing key management

from the file system. Users in SFS were authenticated using public key cryptography. On

the client an agent program with access to the user’s private keys was used to authenticate

the user to a separate authentication server on the remote server. The authentication server

maintained a database mapping public keys to UNIX credentials (a user ID and a list of

group IDs). If a user did not have an account on a file server, the server defaulted to

anonymous access.

Object access granularity in SFS was at the file level. Object access control in SFS was

similar to NFS. Authorization was performed by matching the UNIX credentials returned

by the authentication server with standard UNIX ACLs associated with each file.

Autonomous delegation in SFS was not supported because users must have an account

on the authentication server trusted by the file server. This would not necessarily be the

case for users in different administrative domains. GSFS, a further development of SFS,

tried to overcome this limitation and is covered later in this survey.

Revocation of a user’s access in SFS was simple. Because the authentication server

hosts a centralized user database, the user’s entry in the database could be easily re-

moved/disabled. A user could also be removed from groups that appear on ACLs for files

he was no longer supposed to access. The authors also describe mechanisms for revok-

ing self-certifying pathnames using revocation certificates, should a server’s private key be

compromised. As an alternative, a user’s agent could also request HostID blocking from

the client. The second approach could be useful when no signed revocation certificate is

found, but access restriction is still desirable, e.g., due to system policy.

3.2.6 OceanStore. OceanStore [Kubiatowicz et al. 2000] was a proposed architecture

for global-scale persistent storage. Pond [Rhea et al. 2003] was the OceanStore prototype

containing many of the features of a complete system. The primary design goals of the ar-

chitecture were high reliability and scalability to billions of users. The system relied upon

an overlay network named Tapestry [Zhao et al. 2001; Hildrum et al. 2002] for decen-

tralized object location and routing. This allowed the Oceanstore designers to defer many

access-control decisions to the overlay. While cryptographic mechanisms were used to

deal with Byzantine failures (which would affect reliability) some of the access control is-

sues that would be addressed by a conventional file system were addressed by participation

or non-participation in the overlay (e.g., authentication) while other issues were addressed

more conventionally (e.g., storage and access of blocks and files by the file system itself).

Authentication of clients in OceanStore was based on public key cryptography.

The access control model of the Bayou system inspired the designers of OceanStore to

adopt an asymmetric authorization model with regard to reader and writer restrictions:

reads were restricted at clients via key distribution, while writes were restricted at servers

by ignoring unauthorized updates. Files were encrypted and the encryption key was dis-

tributed to users with read permission. A file was located in the system using its globally

unique identifier (GUID). The GUID is computed as the secure hash of the owner’s pub-

lic key and some human-readable name. The owner could choose an ACL for the object.

Write access was enforced at servers by verifying all write requests against the respective

object’s ACL.

The granularity of sharing in OceanStore was at the file level.

The overview of the OceanStore architecture and the description of the Pond prototype

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

18 · Stefan Miltchev et al.

give no indication how delegation would be accomplished in the system. As described,

delegation granularity is coarse, i.e., limited to distinguishing between read and write ac-

cess. For read access delegation would be accomplished by communicating the key used

to encrypt the file. While this provides autonomy, there are difficulties with accountability

and the need to re-key and re-distribute the key to all legitimate users if revocation becomes

necessary. Write access is controlled with ACLs, and delegation in this case is subject to

the same limitations as other ACL based systems. The authors briefly hint at the possibility

of using a trust-management system such as PolicyMaker [Blaze et al. 1996] for expressing

richer access control policies, but no details are given.

Revocation in OceanStore would be handled differently, depending on whether it is read

or write access that needs to be revoked. To revoke read permission, the owner must request

that replicas be deleted or re-encrypted with a new key. However, old data from cached

copies could still be available to revoked readers. To revoke write access, the owner of an

object could modify the ACL for the object. Because all writes must be signed, servers

can verify requests against the ACL. While the access control mechanism of Tapestry is

not specified, revocation could possibly also be accomplished by blacklisting users so that

they can no longer participate in the overlay network.

3.2.7 CapaFS. CapaFS [Regan and Jensen 2001] used self-certifying file names as

sparse capabilities to control access to files by users in different administrative domains.

CapaFS dispensed with user identifiers altogether, thus eliminating the need to resolve the

identities of remote users locally. By relying solely on knowledge of the capability file

name for access control, CapaFS aimed to provide autonomous delegation across organi-

zational boundaries.

A capability file name consisted of two parts: a client part used by the client to locate

the remote server and a server part used by the server to find the file in local storage.

The client part contained the hostname and port of the server. The server part contained

the local path name and access rights on the server and was encrypted to protect it from

tampering. However, the resulting capability file names were long and meaningless to

users, and necessitated the use of symbolic links to assign meaningful names to remote

files.

There was no explicit user authentication in CapaFS: knowledge of the filename was

sufficient to obtain access to a file. Authorization was based on the access rights encoded

in the server part of the capability file name. Object access granularity was at the file level.

Because there was no local user identification in CapaFS, autonomous delegation was

easily achieved. To share a file, a user needed only to communicate the file name to an-

other user. Thus, no system administrator involvement was required. However, there were

a number of problems with the original CapaFS. Because knowledge of the file name pro-

vided access to the file, communicating file names to other users had to be done over a se-

cure and authenticated channel (however, no infrastructure for that was developed as part

of the system). The original CapaFS was also vulnerable to a man-in-the-middle attack

because there was no server authentication. The authors suggested implementing server

authentication by adding the server’s public key to the capability filename. Because no

client authentication was performed, there was no accountability in the original CapaFS,

i.e., there was no way of telling which particular user accessed a file. This made audit-

ing impossible in CapaFS. The authors describe a way of adding client authentication by

adding a client’s public key to the server part of the capability file names. The proposed

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 19

approach allowed for delegation to specific users by including their public keys as an ex-

tension of the capability file name. However, there was no way for a user to delegate only

a subset of his access rights to another user, e.g., a user possessing a read/write capability

file name could not delegate read-only access to another user.

Revocation in CapaFS could be achieved by having the server keep a capability revo-

cation list (CRL) of all capability file names that have been revoked. This approach is

unlikely to scale well as the list grows with time. Because the user’s public key was not

included in the capability filename, the original CapaFS design did not support revoking

access on a per-user basis. Another approach to revocation suggested by the authors was

to limit the lifetime of a capability file name by including a timeout in it.

3.2.8 Fileteller. FILETELLER [Ioannidis et al. 2002] was a credential-based distributed

file storage system with provisions for paying for file storage and getting paid when others

access files. FileTeller was developed by a subset of the authors of this paper. Users used

a micropayments system to pay for both the initial creation of files and any subsequent

accesses to network-based storage. FILETELLER illustrates the use of trust management

credentials for both access control and payment resulting in an elegant and scalable archi-

tecture that works across organizational boundaries. Trust management [Blaze et al. 1996;

Blaze et al. 1999a] eliminates the need for ACLs by incorporating access control in a new

kind of certificate, namely an authorization certificate or credential. Such a credential di-

rectly authorizes an action rather than dividing the authorization task into authentication

and access control. Unlike traditional credentials, which bind keys to principals, trust-

management credentials bind keys to the authorization to perform certain tasks.

Authentication in FILETELLER was based on public keys. There were three participants

in the system: Network Users (NUs), Network Storage Providers (NSPs), and Check Guar-

antors (CGs). All participants were identified by their public keys. A network user had to

to authenticate with the storage provider before any file operation could take place. The

authentication protocol provided strong authentication and, optionally, let the user piggy-

back credential delivery to the NSP. Security protocols such as IPsec [Kent and Atkinson

1998] or TLS [Dierks and Allen 1999] could be configured to meet these requirements.

Authorization in FILETELLER was based on KeyNote [Blaze et al. 1999b] trust manage-

ment credentials. A network user held one or more credentials issued by a check guarantor

indicating the user’s credit line with the CG, as shown in Figure 11. CGs played a role

similar to that of PKI CAs, sharing many of the deployment and operational limitations.

There were four kinds of credentials used in different parts of the system:

(1) Check Guarantor credentials, which specified a user’s line of credit.

(2) Microchecks, which authorized a payment from a network user to an NSP, or to an-

other NU.

(3) Server credentials, issued by the check guarantors, that identified complying storage

providers the network users can use.

(4) File-access credentials, initially issued by NSPs when a file is created, authorizing

subsequent access to that file by the owner. File owners could then issue further file-

access credentials, delegating access to other NUs.

Granularity of access in FILETELLER was at the file level, i.e., users were able to create,

read, delete, append to, or replace whole files. Whole files were prefered to individual

blocks for two reasons: to amortize the cost of a check verification over the transfer of

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

20 · Stefan Miltchev et al.

Fig. 11. Network Storage Providers (NSPs) issue a KeyNote credential to each Check Guarantor (CG) authorizing

them to act as introducers of users, by in turn issuing them credentials. A file owner needs to convince a CG to

provide them with a credit line, also expressed as a KeyNote credential. The file owner needs to provide these

two credentials to the NSP, along with a microcheck conveying payment to the storage provider. In response, the

NSP returns to the file owner a KeyNote access credential, granting her full privileges in accessing the file.

Fig. 12. A user wishing to access another user’s file needs to have their own line of credit with a Check Guarantor

(CG), as well as a credential from the file owner granting them access to that file. When accessing the file, the user

needs to provide the credit-backing credential from the CG, a microcheck to the NSP, and the access credential(s)

to the file. If the owner has set a “pay-back” disposition for the file, an additional microcheck to the owner may

also be needed to gain access.

an entire file, and to avoid choosing some arbitrary block size and defining block-level

operations, which would tie FILETELLER to a particular file system philosophy rather than

make it a general file-storage service.

Autonomous delegation across organizational boundaries was supported in FILETELLER

as shown in Figure 12. A network user with access to a file could delegate a subset of their

access rights to another NU by issuing a file-access credential. This delegation mechanism

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 21

KeyNote-Version: 2
authorizer: "<Administrator’s Public Key>"
licensees: "<Alice’s Public Key>"
conditions: (app_domain == "DisCFS") &&

(HANDLE == "discfs://discfs.cis.upenn.edu/Makefile.stefgjxg")
-> "RWX";

signature:
"<Signature by Administrator>"

Fig. 13. Credential granting user Alice (as identified by her public key, in the Licensees field) access to file

Makefile.stefgjxg on host discfs.cis.upenn.edu. The 1024-bit keys and signatures in hex encoding have been

omitted in the interest of readability.

is transitive and does not require administrator involvement. Users did not have to reside

in the same administrative domain, however a user wishing to access a file served by a

given storage provider had to establish a line of credit with a CG that recognized the NSP

as valid. Because users were vouched for by a CG and uniquely identified by their public

keys, accountability was preserved. File attributes were used in file-access credentials to

allow fine-granularity delegation. These attributes were meta-data associated with the file

by the owner, and could be used to implement easy file grouping, associate security labels

with files, or for any other similar scheme. For example, a user could associate arbitrary

textual tags with each file, similar to the way popular websites allow the tagging of digital

photos and video clips; access control credentials could then use such tags as part of the

access control decision.

Revocation in FILETELLER was time-based and relied on credential expiration. As with

previous work on which FILETELLER was based [Blaze et al. 2001], CG credentials is-

sued to users were relatively short-lived, avoiding the need for credential revocation lists.

Other revocation mechanisms could also be used with FILETELLER, as specified on a per-

credential basis.

3.2.9 DisCFS. The Distributed Credential File System (DisCFS) [Miltchev et al. 2003]

was developed by the authors of this paper with the explicit goal of allowing access to re-

mote users not known in advance to the file server. Thus, DisCFS directly addressed the

problem focused upon by this survey. DisCFS, like FILETELLER used KeyNote trust man-

agement credentials [Blaze et al. 1999b] to identify: (1) files being stored; (2) users; and

(3) conditions under which their file access is allowed. An example credential is shown in

Figure 13.

Users in DisCFS were identified by their corresponding public keys. Authorization in

DisCFS was based on trust-management credentials. Trust-management credentials con-

tain the identity (i.e., public key) of the user authorizing an action, and the identity of the

user authorized to perform the action (respectively, the authorizer and licensee fields in

Figure 13).

When a user wished to access a remote file, the software on the client’s workstation sent

the relevant credentials with a request to access the file on behalf of the user. The file server

passed the credentials along with a query to the KeyNote system. KeyNote checked the

signatures on all credentials, evaluated whether the conditions specified in the credentials

were met and returned an answer to the query. If the query was successful, the file server

granted the user access to the file. As part of this exchange, the server had to verify that

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

22 · Stefan Miltchev et al.

a user was the legitimate owner of the public key present in the licensee field of the cre-

dential(s) she presented, i.e., that the user had knowledge of the corresponding private key.

In DisCFS, this was accomplished by establishing an IPsec connection between the client

workstation and the file server, using the Internet Key Exchange (IKE) [Harkins and Carrel

1998] protocol. File sharing then took place over this IPsec association.

DisCFS controled access at the file level, however trust-management credentials could

also be applied at a coarser granularity if system requirements favored a minimization of

state over fine-grained control.

DisCFS had full support for autonomous delegation between users in different admin-

istrative domains. If Alice has been granted access to a file, she possesses a credential

specifying her access rights (e.g., the one depicted in Figure 13). If she wishes to delegate

a subset of these access rights to Bob, Alice can create a new credential identifying her as

the authorizer, Bob as the licensee, and specifying Bob’s access rights in the conditions

field. Alice must then sign the new credential and send it to Bob along with her original

credential. When Bob requests access to the file, he must present the credential chain

consisting of both credentials. This mechanism provides autonomy and organizational in-

dependence: no administrator involvement is necessary, and Bob does not have to be a

member of the same administrative domain as Alice. Because each user could act as a CA

in DisCFS, the need for higher-level certification authorities was eliminated. Credentials

were signed to prevent tampering and could be sent in the clear or posted on the web (of

course, this is not a good idea in environments where privacy of file-access rights is desir-

able). DisCFS provided good delegation latency: users could begin accessing files as soon

as they were issued a credential.

DisCFS supported multi-level delegation. That is, if Alice delegates access to Bob, he

can then further delegate to Charlie by creating a new credential. It was also possible to

limit delegation to one hop. Trust-management credentials allow for fine granularity of

delegation: users can delegate any subset of their rights. The trust management engine

ensures that there is no rights amplification, i.e., if Alice is granted read access to a file and

issues Bob a credential granting read/write access, Bob will not be able to write to the file

using the credential.

Delegation in DisCFS preserved accountability, because the public keys corresponding

to each authorizer and licensee were included in the credentials.

Revocation in DisCFS was not as straightforward as in ACL-based systems, because it

was not always evident who had access to a resource. In a multi-level delegation chain,

a user is only aware of the next “hop”, e.g., if Alice delegates access to Bob, and Bob

delegates access to Charlie, Alice has no knowledge of Charlie, and thus no way to revoke

his access. Thus, DisCFS relied on timeouts in credentials to limit their useful life. As a

more user-centric system, DisCFS made a tradeoff and avoided the administrative overhead

of running on-line agents for revocation checks at the expense of having to use longer

timeouts.

3.2.10 WebDAVA. WebDAVA [Levine et al. 2003] was a web file sharing service de-

signed specifically for users in distinct administrative domains. WebDAVA was developed

by a subset of the authors of this paper. The system provided file transfer rather than

file-access services, i.e., files had to be transferred in their entirety between server and

client, rather than being manipulated in place. Thus, WebDAVA was not, strictly speaking,

a distributed file system. However, we examine it as another example of a system using

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 23

authorization credentials to allow access across organizational boundaries.

Authentication in WebDAVA was performed using a challenge-response protocol. When

the server received a file request it responded with a challenge containing a nonce and the

server’s public key. The client response included the user’s public key, the file-access

credential, and a newly created nonce credential signed with the user’s private key. While

the protocol details are somewhat vague, it appears only the client was being authenticated.

It is possible that the server was authenticated by other means, e.g., using TLS [Dierks and

Allen 1999].

Authorization in WebDAVA was handled by KeyNote [Blaze et al. 1999b] trust-management

credentials. The credentials authorized desired actions corresponding to the HTTP GET or

PUT methods. Downloading a file from the server was done via the HTTP GET method.

The PUT method allowed file creation or modifying a stored file by overwriting it. Delet-

ing a file was done by saving an empty file; the server notices that the file is empty and

removes it. Granularity of access control in WebDAVA was at the file level.

WebDAVA had full support for autonomous delegation between users in distinct ad-

ministrative domains. Users could delegate a subset of their access to any other users by

retrieving their public keys and issuing them a credential. Credentials were protected from

tampering by a signature and thus could be sent over e-mail or downloaded from the web.

For example, when Alice wants to allow Charlie to access a file stored on the WebDAVA

server, she needs to retrieve Charlie’s public key, construct the credential delegating ac-

cess to Charlie’s key, and then send this credential along with her own access credentials

to Charlie. Charlie must import these credentials and use them to access the file. While

Alice may use any mechanism to get Charlie’s key, WebDAVA provides a key-server that

stores the keys of the various users to simplify credential management. To transfer a cre-

dential to Charlie, Alice simply selects the credential and enters Charlie’s email address.

The WebDAVA client then creates an email message using these credentials and sends it to

Charlie. Charlie can use these credentials to download the file from the server. No admin-

istrator involvement is required and Charlie need not have any kind of relationship with the

WebDAVA server in order to download the files.

Revocation in WebDAVA was handled by credential expiration and certificate revocation

lists. Each file in the system had an associated file that stored hashes of revoked credentials

and thus acted as a CRL. Credentials were passed on to the KeyNote compliance checker

for evaluation only if their hash was not found in the revocation file. The original issuer of

a credential could revoke it by uploading it to the CRL using the PUT method.

3.2.11 GSFS. GSFS [Kaminsky et al. 2003], a further development of SFS, is of par-

ticular interest to this survey as it was conceived with the explicit goal of allowing file

sharing between users in different administrative domains. GSFS tried to achieve this goal

with an access control mechanism based on ACLs.

Authentication in GSFS was based on public keys, similar to SFS. However, to facili-

tate global file sharing, the authentication server was modified to contact servers in other

administrative domains and retrieve remote user and group definitions (see Figure 14). For

the purposes of this discussion we define remote users to be users outside of the local ad-

ministrative domain. Remote authentication servers were referenced with self-certifying

hostnames, similar to file servers. A GSFS authentication server had to contact the remote

authentication servers of any remote users or groups listed as members of local groups.

Because of network latency and failures, it is not feasible to do this at the time an authen-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

24 · Stefan Miltchev et al.

Fig. 14. Overview of the GSFS authentication architecture (from [Kaminsky et al. 2003])

tication request is made. Thus, the GSFS designers traded off freshness for availability

by having the authentication server periodically (e.g., every hour) contact the remote au-

thentication servers of any remote users or groups listed in local group definitions. This

introduced a delay between when a decision to grant access had been made and when the

actual access could occur.

Authorization in GSFS was done using ACLs. The ACLs were similar to those used

in AFS, but were extended to differentiate between files and directories. Access rights

available in GSFS ACLs included the right to modify the ACL itself. GSFS ACLs could

list four different kinds of principals: local user names, local group names, public key

hashes, and anonymous entries. Public key hashes were the only way of listing a remote

principal directly on a GSFS ACL. Remote groups could not be listed directly on the ACL,

but could be included indirectly by making them a member of a local group.

As with SFS, object access granularity in GSFS was at the file level.

There are two scenarios for autonomous delegation in GSFS. In the first scenario, user

Alice may choose to share a file with user Bob in a different administrative domain by

listing a hash of Bob’s public key on the ACL of the file (assuming that Alice has the right

to modify the ACL of the file). However, if Bob wants to then further share access to the

file with another user, Bob must also be given the right to modify the ACL of the file.

As delegation chains grow longer, this approach will lead to longer and harder to manage

ACLs on the fileserver. It is also impossible to allow fine-grained multi-level delegation,

e.g., if Alice gives Bob read access to the file and wishes him to be able to delegate that

access, she must also give him the right to modify the ACL. However, in this case there is

nothing to prevent Bob from modifying the ACL and granting himself write access. Thus,

this approach is only suitable for limited one-hop delegation from a local user to a remote

user.

In the second scenario, Alice can create a local group (e.g., alice.friends) and list remote

users (e.g., Bob) or groups from another administrative domain (e.g., friends@otherdomain)

as members of the local group. This assumes that there is a remote authentication server

for the domain that Bob or Alice’s other friends belong to. Remote groups can in turn

contain other groups and the nesting can be arbitrarily deep. Thus, indirection through

authentication servers can provide delegation. In contrast to public key hashes, multi-level

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 25

delegation can be achieved, e.g., if Alice allows access to a group owned by Bob, then Bob

can add new members (which can be other groups) to the group. However, this approach

still makes it difficult for a principal to delegate only a subset of his access rights. For

example, if Alice has allowed members of the group managed by Bob read/write access,

Bob cannot delegate read-only access to Charlie.

Listing a public key hash directly has several advantages over using group or user names:

—Latency – because the user record does not have to be pulled from a remote authentica-

tion server, the user can begin accessing files immediately.

—Simplicity – users in a different administrative domain need not be associated with an

authentication server.

—Privacy – public-key hashes offer a degree of privacy by obfuscating the usernames on

a group membership list. Because anyone can query an authentication server and user-

names could correspond to e-mail addresses, group membership lists could be harvested

for purposes of sending unsolicited bulk electronic mail (“SPAM”).

Group and usernames on the other hand offer the following advantages over public key

hashes:

—Indirection allows for multi-level delegation. The remote authentication servers also

provide a single point of update if a user needs to change his key or revoke it.

—Naming – names are easier for users to keep track of than hashes and thus would im-

prove accountability and scalability.

Beyond the mechanisms for revocation available for SFS, GSFS had to handle revoca-

tion involving remote users and groups. Thus, revocation in GSFS was closely related to

freshness. If a remote user changed his key or was removed from a remote group record, it

would take an update cycle for the change to be reflected on the local authentication server.

On the other hand, access granted to public-key hashes in GSFS could be instantly revoked

by editing the ACL or group record.

4. DISCUSSION

Table I classifies the file systems studied in Section 3 within the framework defined in Sec-

tion 2. Systems that were not designed for file sharing across organizational boundaries

(NFS, AFS, xFS, CIFS, SFS) require substantial administrator involvement for merging

realms or account creation. The inability to list non-local users using ACLs in NFS, AFS,

xFS, CIFS and SFS makes it impossible for these systems to support autonomous delega-

tion across organizational boundaries.

The remaining systems reviewed in Section 3 exhibit varying degrees of support for

autonomous delegation. We present a more detailed comparison in Table II.

OBSERVATION 1. Systems that support autonomous delegation across organizational

boundaries use public-key cryptography for authentication.

It is hardly surprising that public-key cryptography is used as a building block for the

authentication mechanism employed by systems that need to scale beyond the local ad-

ministrative domain. Public-key cryptography eliminates the need for synchronous com-

munication with a trusted third party. The public keys of every host and user can be freely

distributed. Knowledge of the respective public keys allows two principals to establish a

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

26 · Stefan Miltchev et al.

Table I. File system classification

Status1 Authentication Authorization Granularity Autonomous

Delegation

Revocation

NFS P AUTH SYS,

Kerberos

ACL (UNIX) File system No ACL

NFSv4 P Kerberos,

LIPKEY,

SPKM

ACL (NT) File No ACL

AFS& Coda P Kerberos ACL (AFS) Directory No ACL

CIFS P Plaintext

password,

Challenge-

Response,

Kerberos

ACL Directory No ACL

xFS E AUTH SYS,

Kerberos

ACL (UNIX) File system No ACL

Truffles E Public Key

(X.509)

ACL (UNIX) Volume Limited No

Bayou E Public Key AC Certifi-

cate

Data Collection Limited Revocation certificate

WebFS E Public Key

(X.509)

Hybrid File Limited ACL, CRL, OLA2,

Certificate Expiration

CapaFS E No Capability File Limited CRL, Timeout

SFS E Public Key ACL (UNIX) File No ACL, CRL

GSFS E Public Key ACL (SFS) File Limited ACL, CRL

DisCFS E Public Key Trust Mgmt.

Credential

File Yes Credential Expiration

WebDAVA E Challenge-

Response

Trust Mgmt.

Credential

File Yes CRL, Credential Ex-

piration

Fileteller E Public Key Trust Mgmt.

Credential

File Yes Credential Expiration

1Production (P) or experimental (E) file system
2locally trusted on-line agent

secure communication channel without external administrative involvement. Of the sys-

tems supporting autonomous delegation, CapaFS is the only one that does not employ

public key cryptography (in the original design).

OBSERVATION 2. Mechanisms based on pure capabilities cannot provide accountabil-

ity.

Systems based on pure capabilities like CapaFS exhibit a high degree of user autonomy.

However, our review of CapaFS revealed that if the capabilities are not tied to user identi-

ties in any way, it is impossible to meet the accountability requirement for delegation. In

addition, exchanging capabilities becomes problematic, because their content should not

be disclosed to third parties. The CapaFS authors recognize the problems of using capa-

bilities with no ties to user identities, however the proposed solution does not meet the

requirement for fine-grained delegation.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 27

Table II. Autonomous delegation support in networkeddistributed file systems

Autonomy Organizational

Independence

Low Latency Transitivity Fine

Granularity

Accountability

Truffles • • • •

Bayou • • • • •

WebFS • • • • •

CapaFS • • • • •1

Fileteller • • • • • •

DisCFS • • • • • •

WebDAVA • • • • • •

GSFS2 • • • • •

GSFS3 •4 • • •

1Only if user’s public key is included in capability filename.
2Public key hashes of remote users listed on ACL.
3Remote groups listed on ACL.
4Remote users must be associated with remote authentication server.

OBSERVATION 3. Mechanisms based solely on ACLs do not scale well to a user base

distributed across organizational boundaries.

The difficulty of supporting autonomous delegation in GSFS best exemplifies this observa-

tion. GSFS tries to address the problem of global file sharing using ACLs. However GSFS

offers only limited support for delegation. If public-key hashes are used to identify non-

local users, the formulated requirement of multi-level delegation is not met. If groups are

used instead, multi-level delegation is possible, however the requirement for fine-grained

delegation is not met. This illustrates the difficulty of using an ACL-based authorization

mechanism when the users are distributed in different administrative domains.

OBSERVATION 4. Authorization certificates come closest to fulfilling all requirements

for autonomous delegation across organizational boundaries.

Bayou, WebFS, DisCFS, WebDAVA and Fileteller meet most of the requirements for au-

tonomous delegation. These systems rely on some form of authorization certificates: ac-

cess granting and delegation certificates, transfer certificates, or trust-management creden-

tials. Transitivity of delegation is achieved by chaining the certificates. Successive links

in a delegation chain can only refine, and never expand, the access rights of the original

certificate. This ensures that the fine granularity requirement for delegation is met. By

supporting both transitive and fine-grained delegation, the systems based on authorization

certificates distinguish themselves from systems based on ACLs that tend to support either

transitive or fine-grained delegation, but not both.

OBSERVATION 5. There is a tradeoff between user autonomy and ease of revocation.

Systems based on ACLs (e.g., GSFS) do not provide full support for autonomous delega-

tion. However, access to an object can be revoked by simply editing that object’s ACL.

Some systems based on authorization certificates or ACL/authorization certificate hybrid

schemes (e.g., Bayou, WebFS) make provisions for delegation. These systems require

users in different administrative domains to have a common root CA. While this limits the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

28 · Stefan Miltchev et al.

users’ organizational independence, it also makes revocation easier, since only a limited

number of CAs must be contacted to update CRLs.

In DisCFS and WebDAVA, a more user-centric approach is taken. Users act as CAs

and sign trust-management credentials they issue themselves. Thus, delegation in these

systems has the highest degree of user autonomy. However, because access control is com-

pletely decentralized, revocation must rely on certificate expiration or online revocation

authorities.

5. CONCLUSIONS

This survey provided a new framework for analyzing the suitability of distributed file sys-

tem access-control mechanisms to the challenge of supporting global file sharing across

organizational boundaries. We identified authentication, authorization, granularity, au-

tonomous delegation, and revocation as necessary features of a system aiming to address

this challenge. Thus, these features formed the axes of the comparison framework we used

to survey selected systems.

While the focus of the survey has purposely been on distributed file system design, the

framework might prove useful in understanding the tradeoffs inherent in global access to

any form of shared data. The central concerns of scalability and ease of use pervade much

of system design and evaluation. While file systems provide naming and persistence, con-

cerns of access control for a networked shared memory (with more dynamic state) would

require access control as well. Overlay solutions (of which Web-based file systems can be

seen as an example) exist at least in part to overcome administrative inertia. For example,

port 80 is left open through most Internet firewalls to accommodate user web browsing,

and therefore file-sharing can overcome administrative resistance simply by accessing data

using HTTP. If the issue is achieving global “user-controlled” access in a secure manner, it

seems more effective to address this problem directly rather than employing a workaround.

Our analysis, summarized in Tables I and II, suggests how the problem might be addressed

effectively.

Systems based on authorization certificates generally provide better support for au-

tonomous delegation of access rights between users in different administrative domains,

compared to systems based on ACLs or pure capabilities. Therefore they are attractive

from the perspective of scalability, but there are some operational and ease-of-use con-

cerns, in addition to the problem indicated by Table I: all of these systems are experimental

and do not enjoy widespread use.

The major operational concern is revocation. Authorization certificates resemble ca-

pabilities, in that revocation is a challenge. Many systems attempt to achieve revocation

semantics with artificial means such as “keep-alives” or timeouts, which are inelegant and

introduce a window of risk: a certificate might have unwarranted access until a certain ex-

piration time is reached. Future research on revocation of authorization certificates should

seek to minimize the existing tradeoff between user autonomy and ease of revocation.

The major ease-of-use concern is the management of the Public-Key Infrastructure (PKI)

and certificates required for users to access data. Widespread PKI deployment would

greatly ease the deployment of systems that use trust management techniques, and a fo-

cus on ease-of-use would ensure that users have tools (or automated management systems)

that make the use of certificates for remote access to be transparent and seamless, relative

to local access of data. However, we must acknowledge the significant logistical difficulties

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 29

in building, deploying, and operating a real-world PKI.

Both the revocation and ease-of-use concerns would be most effectively addressed by

moving at least one file system from experimental to production status.

REFERENCES

ADAMS, C. 1996. The Simple Public-Key GSS-API Mechanism (SPKM). RFC (Proposed Standard) 2025,

Bell-Northern Research. October.

ANDERSON, T. E., DAHLIN, M. D., NEEFE, J. M., PATTERSON, D. A., ROSELLI, D. S., AND WANG, R. Y.

1995. Serverless network file systems. In Proc. 15-th Symposium on Operating Systems Principles.

BAIZE, E. AND PINKAS, D. 1998. The Simple and Protected GSS-API Negotiation Mechanism. RFC (Proposed

Standard) 2478, Bull. December.

BALENSON, D. 1993. Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and

Identifiers. RFC (Proposed Standard) 1423, IAB IRTF PSRG, IETF PEM WG. February.

BELANI, E., VAHDAT, A., ANDERSON, T., AND DAHLIN, M. 1998. The CRISIS Wide Area Security Archi-

tecture. In Proceedings of the USENIX Security Symposium. 15–30.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. 1999a. The Role of Trust Management

in Distributed Systems Security. In Secure Internet Programming. Lecture Notes in Computer Science, vol.

1603. Springer-Verlag Inc., New York, NY, USA, 185–210.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. D. 1999b. The KeyNote Trust Manage-

ment System Version 2. RFC (Proposed Standard) 2074, AT&T Labs - Research. September.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized Trust Management. In Proceedings of the

17th IEEE Symposium on Security and Privacy. Oakland, CA, 164–173.

BLAZE, M., IOANNIDIS, J., AND KEROMYTIS, A. D. 2001. Offline Micropayments without Trusted Hardware.

In Proceedings of the Fifth International Conference on Financial Cryptography.

CALLAGHAN, B. 1996a. WebNFS Client Specification. RFC (Proposed Standard) 2054, Sun Microsystems,

Inc. October.

CALLAGHAN, B. 1996b. WebNFS Server Specification. RFC (Proposed Standard) 2055, Sun Microsystems,

Inc. October.

CALLAGHAN, B. 2000. NFS Illustrated. Addison-Wesley.

CALLAGHAN, B., PAWLOWSKI, B., AND STAUBACH, P. 1995. NFS Version 3 Protocol Specification. RFC

(Proposed Standard) 1813, Sun Microsystems, Inc. June.

CCITT. 1989. X.509: The Directory Authentication Framework. International Telecommunications Union.

DENNIS, J. B. AND VAN HORN, E. C. 1966. Programming semantics for multiprogrammed computations.

Communications of the ACM 9, 3 (March), 143–155.

DIERKS, T. AND ALLEN, C. 1999. The TLS PRotocol Version 1.0. RFC (Proposed Standard) 2246, Internet

Engineering Task Force. January.

DYER, S. P. 1988. The Hesiod Name Server. In Proceedings of the USENIX Winter Technical Conference.

183–190.

EISLER, M. 2000. LIPKEY – A Low Infrastructure Public Key Mechanism Using SPKM. RFC (Proposed

Standard) 2847, Zambeel. June.

EISLER, M., CHIU, A., AND LING, L. 1997. RPCSEC GSS Protocol Specification. RFC (Proposed Standard)

2203. September.

FARMER, D. AND VENEMA, W. 2004. Forensic Discovery. Addison Wesley Professional.

FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. 2002. Fast and secure distributed read-only file system.

Computer Systems 20, 1, 1–24.

GUY, R. G., HEIDEMANN, J. S., MAK, W., PAGE, JR., T. W., POPEK, G. J., AND ROTHMEIR, D. 1990.

Implementation of the Ficus Replicated File System. In Proceedings of the Summer 1990 USENIX Conference.

63–71.

HARKINS, D. AND CARREL, D. 1998. The Internet Key Exchange (IKE). RFC (Proposed Standard) 2409,

Internet Engineering Task Force. November.

HERTEL, C. R. 2003. Implementing CIFS: The Common Internet File System. Prentice Hall PTR.

HILDRUM, K., KUBIATOWICZ, J., RAO, S., AND ZHAO, B. 2002. Distributed object location in a dynamic

network. In Proceedings of ACM SPAA. 41–52.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

30 · Stefan Miltchev et al.

HOUSLEY, R., POLK, W., FORD, W., AND SOLO, D. 2002. Internet X.509 Public Key Infrastructure: Certificate

and Certificate Revocation List (CRL) Profile. RFC (Proposed Standard) 3280. April.

HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDEBOTHAM, R., AND

WEST, M. 1988. Scale and Performance in a Distributed File System. ACM Transactions on Computer

Systems 6, 1 (February), 51–81.

HOWARD, J. H. 1988. An Overview of the Andrew File System. In Proceedings of the USENIX Winter Technical

Conference. Dallas, TX, 213–216.

IBM CORP. 1984. IBM PC Network Technical Reference Manual, No.6322916, First ed.

IOANNIDIS, J., IOANNIDIS, S., KEROMYTIS, A., AND PREVELAKIS, V. 2002. Fileteller: Paying and Getting

Paid for File Storage. In Proceedings of the Sixth International Conference on Financial Cryptography.

J. SCHÖNWÄLDER AND H. LANGENDÖRFER. 1993. Administration of large distributed UNIX LANs with

BONES. In Proceedings of the World Conference On Tools and Techniques for System Administration, Net-

working, and Security.

KALISKI, B. 1993. Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and Related

Services. RFC (Proposed Standard) 1424, RSA Laboratories. February.

KAMINSKY, M., SAVVIDES, G., MAZIÈRES, D., AND KAASHOEK, M. F. 2003. Decentralized user authenti-

cation in a global file system. In Proceedings of the 19th ACM Symposium on Operating Systems Principles

(SOSP ’03). Bolton Landing, New York, 60–73.

KENT, S. 1993. Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management.

RFC (Proposed Standard) 1422, IAB IRTF PSRG, IETF PEM WG. February.

KENT, S. AND ATKINSON, R. 1998. Security Architecture for the Internet Protocol. RFC (Proposed Standard)

2401, Internet Engineering Task Force. November.

KEROMYTIS, A. D. 2001. STRONGMAN: A Scalable Solution to Trust Management in Networks. Ph.D. thesis,

University of Pennsylvania.

KEROMYTIS, A. D. AND SMITH, J. M. 2007. Requirements for Scalable Access Control and Security Manage-

ment Architectures. To appear in the ACM Transactions on Internet Technology (ToIT) 7, 4 (November).

KISTLER, J. J. AND SATYANARAYANAN, M. 1991. Disconnected operation in the Coda file system. In 13th

ACM Symposium on Operating Systems Principles. Vol. 25. ACM Press, 213–225.

KOHL, J. AND NEUMAN, C. 1993. The Kerberos Network Authentication Service (V5). RFC (Proposed

Standard) 1510. September.

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHER-

SPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale

persistent storage. In Proceedings of ACM ASPLOS. ACM.

LAMPSON, B. 1971. Protection. In Proceedings of the 5th Princeton Conference on Information Science and

Systems. 437–443.

LEACH, P. AND PERRY, D. 1996. CIFS: A common internet file system. Microsoft Internet Developer.

LEVINE, A., PREVELAKIS, V., IOANNIDIS, J., IOANNIDIS, S., AND KEROMYTIS, A. D. 2003. Webdava:

An administrator-free approach to web file-sharing. In Proceedings of the IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETIC), Workshop on Distributed and

Mobile Collaboration. Linz, Austria, 59–64.

LEVY, H. M. 1984. Capability-Based Computer Systems. Butterworth-Heinemann, Newton, MA, USA.

LINN, J. 1993a. Generic Security Service Application Program Interface. RFC (Proposed Standard) 1508, Geer

Zolot Associates. September.

LINN, J. 1993b. Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentica-

tion Procedures. RFC (Proposed Standard) 1421, IAB IRTF PSRG, IETF PEM WG. February.

LINN, J. 1996. The Kerberos Version 5 GSS-API Mechanism. RFC (Proposed Standard) 1964, OpenVision

Technologies. June.

LINN, J. 1997. Generic Security Service Application Program Interface, Version 2. RFC (Proposed Standard)

2078, Internet Engineering Task Force. January.

LYON, B. 1984. Sun Remote Procedure Call Specification. Tech. rep., Sun Microsystems, Inc.

MAZIERES, D. 2000. Self-certifying file system. Ph.D. thesis, MIT.

MAZIERES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. 1999. Separating key management

from file system security. In Symposium on Operating Systems Principles (SOSP). 124–139.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Decentralized Access Control in Distributed File Systems · 31

MICROSOFT CORPORATION. 1996. Microsoft Networks SMB File Sharing Protocol (Document Version 6.0p).

MICROSOFT CORPORATION. 2005. Microsoft access control model.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/access control model.asp.

MILLER, S. P., NEUMAN, B. C., SCHILLER, J. I., AND SALTZER, J. H. 1987. Kerberos Authentication and

Authorization System. Tech. rep., MIT. December.

MILTCHEV, S., PREVELAKIS, V., IOANNIDIS, S., IOANNIDIS, J., KEROMYTIS, A., AND SMITH, J. 2003.

Secure and Flexible Global File Sharing. In Proceedings of the Annual USENIX Technical Conference, Freenix

Track. 165–178.

NEEDHAM, R. M. AND SCHROEDER, M. D. 1978. Using encryption for authentication in large networks of

computers. Commun. ACM 21, 12, 993–999.

PAWLOWSKI, B., SHEPLER, S., BEAME, C., CALLAGHAN, B., EISLER, M., NOVECK, D., ROBINSON, D.,

AND THURLOW, R. 2000. The NFS version 4 protocol. In Proceedings of Second International System

Administration and Networking (SANE) Conference.

PETERSEN, K., SPREITZER, M., TERRY, D., AND THEIMER, M. 1996. Bayou: Replicated Database Services

for World-Wide Applications. In Proceedings of the 7th ACM SIGOPS European Workshop.

POLK, W., HOUSLEY, R., AND BASSHAM, L. 2002. Algorithms and Identifiers for the Internet X.509 Public

Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC (Proposed Standard) 3279.

April.

REGAN, J. AND JENSEN, C. 2001. Capability File Names: Separating Authorization from User Management in

an Internet File System. In Proceedings of the USENIX Security Symposium. 211–233.

REIHER, P., PAGE, T., CROCKER, S., COOK, J., AND POPEK, G. 1993. Truffles—a secure service for

widespread file sharing. In Proceedings of the Privacy and Security Research Group Workshop on Network

and Distributed System Security.

RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO, B., AND KUBIATOWICZ, J. 2003. Pond: the

OceanStore prototype. In Proceedings of the Conference on File and Storage Technologies (FAST). USENIX.

ROSENSTEIN, M. A., JR., D. E. G., AND LEVINE, P. J. 1988. The Athena Service Management System. In

Proceedings of the Winter USENIX Conference. 203–212.

SAMBA PROJECT. Samba. http://www.samba.org.

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. 1985. Design and Implementation

of the Sun Network File System. In Proceedings of the Summer USENIX Conference.

SATYANARAYANAN, M. 1989. Integrating security in a large distributed system. ACM Trans. Comput. Syst. 7, 3,

247–280.

SATYANARAYANAN, M. 1990. Scalable, secure, and highly available distributed file access. Computer 23, 5,

9–18, 20–21.

SATYANARAYANAN, M. 1992. The influence of scale on distributed file system design. IEEE Trans. Softw.

Eng. 18, 1, 1–8.

SATYANARAYANAN, M. 2002. The evolution of Coda. ACM Trans. Comput. Syst. 20, 2, 85–124.

SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., OKASAKI, M. E., SIEGEL, E. H., AND STEERE, D. C.

1990. Coda: A highly available file system for a distributed workstation environment. IEEE Transactions on

Computers 39, 4, 447–459.

SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW, R., BEAME, C., EISLER, M., AND NOVECK, D.

2003. Network File System (NFS) version 4 Protocol. RFC (Proposed Standard) 3050. April.

SNIA CIFS TECHNICAL WORK GROUP. 2002. Common internet file system (CIFS) technical reference. SNIA

technical proposal, Storage Networking Industry Association. March.

SRINIVASAN, R. 1995. RPC: Remote Procedure Call Protocol Specification Version 2. RFC (Proposed Standard)

1831, Sun Microsystems. August.

SWIFT, M., TROSTLE, J., AND BREZAK, J. 2002. Microsoft Windows 2000 Kerberos Change Password and

Set Password Protocols. RFC (Proposed Standard) 3244, University of Washington, Cisco Systems, and

Microsoft. February.

SWIFT, M. M., BRUNDRETT, P., DYKE, C. V., GARG, P., HOPKINS, A., CHAN, S., GOERTZEL, M., AND

JENSENWORTH, G. 2002. Improving the granularity of access control for windows 2000. ACM Transactions

on Information and System Security 5, 4 (November).

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

32 · Stefan Miltchev et al.

TANENBAUM, A., MULLENDER, S., AND VAN RENESSE, R. 1986. Using sparse capabilities in a distributed

operating system. In Proceedings of the 6th International Conference on Distributed Computing Systems.

558–563.

TERRY, D., THEIMER, M., PETERSEN, K., DEMERS, A., SPREITZER, M., AND HAUSER, C. 1995. Managing

Update Conflicts in Bayou, a Weakly Connected Storage System. In Proceedings of the 15th ACM Symposium

on Operating Systems Principles (SOSP).

THOMPSON, K. L. 1978. UNIX implementation. The Bell System Technical Journal 57, 6, Part 2 (July–August),

1931–1946.

TROSTLE, J. T., KOSINOVSKY, I., AND SWIFT, M. M. 2001. Implementation of Crossrealm Referral Handling

in the MIT Kerberos Client. In NDSS.

VAHDAT, A. 1998. Operating system services for wide-area applications. Ph.D. thesis, UC Berkeley.

WESTERLUND, A. AND DANIELSSON, J. 2001. Heimdal and Windows 2000 Kerberos: How to Get Them to

Play Together. In Proceedings of the 2001 USENIX Annual Technical Conference, Freenix Track. 267–272.

WRAY, J. 1993. Generic Security Service API : C-bindings. RFC (Proposed Standard) 1509, Digital Equipment

Corporation. September.

ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH, A. D. 2001. Tapestry: An infrastructure for fault-tolerant

wide-area location and routing. Tech. Rep. UCB/CSD-01-1141, UC Berkeley. Apr.

Received Month Year; revised Month Year; accepted Month Year

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

