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Abstract—This paper addresses the problem of controlling
mobile sensing systems to improve the accuracy and efficiency of
gathering information autonomously. It applies to scenarios such
as environmental monitoring, search and rescue, surveillance
and reconnaissance, and simultaneous localization and mapping
(SLAM). A multi-sensor active information acquisition problem,
capturing the common characteristics of these scenarios, is
formulated. The goal is to design sensor control policies which
minimize the entropy of the estimation task, conditioned on the
future measurements. First, we provide a non-greedy centralized
solution, which is computationally fast, since it exploits linearized
sensing models, and memory efficient, since it exploits sparsity
in the environment model. Next, we decentralize the control task
to obtain linear complexity in the number of sensors and provide
suboptimality guarantees. Finally, our algorithms are applied to
the multi-robot active SLAM problem to enable a decentralized
nonmyopic solution that exploits sparsity in the planning process.

I. INTRODUCTION

The remarkable advances in sensing and mobility of robotic
systems allow us to address important information acquisition
problems such as environmental monitoring [1], [2], search
and rescue [3], source seeking [4], active perception [5], [6],
and active SLAM [7]–[9]. In all these scenarios, robots are
deployed to gather information about a physical phenomenon
(target) of interest. For example, in environmental monitoring,
they are used to build spatiotemporal models of pollution prop-
agation [10]. While the estimation aspect of these problems
has received significant attention, there are far less results
for controlling the sensing platforms to acquire information
actively. Near-optimal methods exist for sensor placement
and scheduling [11]–[13] but the approaches for optimizing
the trajectories of mobile sensors are often greedy (optimize
only with respect to the next time step) and rarely provide
performance guarantees. This paper formulates a multi-sensor
active information acquisition problem in which both the
sensors and the targets are modeled as dynamical systems and
allowed to evolve over time. The goal is to design nonmyopic
control policies for the sensors such that the target uncertainty,
conditioned on the future measurements, is minimized.
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Contributions. In previous work [14], we developed an ef-
ficient solution, with performance guarantees, for the single-
sensor active information acquisition problem. In this work:
• the algorithm is improved by using a square-root informa-

tion filter to exploit sparsity in the target information matrix,
• a decentralized solution, based on coordinate descent, is

proposed for the multi-sensor active information acquisition
problem and guarantees are provided for its performance
with respect to the optimal centralized solution,

• the multi-robot active SLAM problem is reduced to an
instance of the active information acquisition problem and
our algorithms are applied to it.

Related work. Approaches for mobile sensor trajectory opti-
mization include [15]–[22]. Charrow et al. [20] choose trajec-
tories based on a fast and accurate approximation of the mutual
information (MI) between nonlinear Gaussian measurements
and a particle representation of the target distribution. Dames
et al. [19] and Meyer et al. [21] have the sensors follow the
gradient of MI and conditional entropy, respectively. Lauri
and Ritala [22] use Monte Carlo tree search to solve a finite-
horizon stochastic control problem with MI as the reward. A
common theme in these works is that the length of the planning
horizon is sacrificed in favor of using the (typically) nonlinear
sensor and target models during planning.

We take the opposite stance and give up some model
accuracy (via linearization) in order to plan efficiently with
long horizons. An additional benefit is that any sparsity in
the target information matrix can be exploited during the
planning process. Recent advances in large-scale finite and
infinite dimensional estimation (e.g. Gaussian Processes [23],
[24], graph-based SLAM [25], [26]) take advantage of such
structure inherent in a graphical-model representation of the
environment. Since the information planning process is based
on the estimation layer, it is natural that it utilizes a sparse
representation too. Interestingly, we also show that when the
target dynamics are controlled (e.g. needed for active self-
localization), MI might not be an adequate value function.

To alleviate the computational burden of multi-robot de-
ployments, it is mandatory to decentralize the information-
seeking control task. Hoffmann and Tomlin [17] compute MI
only for pairs of sensors, thus decreasing the dimension of
the required integration. Similarly, Dames et al. [19] achieve
scalability by assuming that MI approximately decouples
among robot cliques. Fully-distributed approaches based on
belief consensus are proposed in [18], [21]. Decentralization
based on coordinate descent has been used by Singh et al.
[15] and a similar approach based on Gauss-Seidel Relaxation
was proposed by Zhou and Roumeliotis [27]. Of these works,
only Singh et al. [15] provide guarantees on the performance



of their approach, valid for static targets and discrete sensing
locations, without revisiting. Here, we allow revisiting and
extend the guarantees to dynamic targets.

To demonstrate the performance of our algorithms, we
consider the multi-robot active SLAM problem. The advantage
of our approach over existing work in active SLAM is that it
is decentralized, nonmyopic, and memory-efficient. Trajectory
optimization in SLAM is particularly challenging due to the
coupling between the localization accuracy of the robots, the
quality of the map, and the exploration of the environment.
Leung et al. [28] propose a nonmyopic approach for active
SLAM with a single robot. They use attractors for exploration
and an exhaustive search for trajectory optimization. Sim et
al. [8] improve the efficiency by discretizing the environment
and planning only for trajectories without self-intersections.
There are also information-theoretic approaches which rely
on non-Gaussian models (e.g. occupancy grids) but typically
resort to greedy planning [7], [29], [30]. Recently, attention
has been devoted to active visual SLAM as well [31], [32].
When it comes to multi-robot active SLAM, there are very
few approaches [9], [21], [33] and most use greedy control.
Paper organization. The multi-sensor active information ac-
quisition problem is formulated in Sec. II. The optimal cen-
tralized solution, with exponential complexity in the planning
horizon and the number of sensors, is reviewed in Sec. III.
Also, our previous algorithm [14, Alg. 2], which reduces
the complexity in the planning horizon, is reviewed and
improved by exploiting sparsity in the target representation.
The decentralization scheme, which reduces the complexity
in the number of sensors, is introduced in Sec. IV. Finally, in
Sec. V, the algorithms are applied to multi-robot active SLAM.

II. PROBLEM FORMULATION

Consider a team of n sensors with states xi,t ∈ Xi ∼=
Rdxi , i = 1, . . . , n at time t and dynamics governed by the
following sensor motion model:

xi,t+1 = fi(xi,t, ui,t), ui,t ∈ Ui, (1)

where ui,t is the control input and Ui is a finite space of admis-
sible controls. We use the notation xt := [xT1,t · · ·xTn,t]T, ut :=
[uT1,t · · ·uTn,t]T, f(x, u) :=[f1(x1, u1)T · · · fn(xn, un)T ]T, U :=
U1 × . . .× Un, and X = X1 × . . .×Xn with metric dX . The
task of the sensors is to track the evolution of a phenomenon
of interest, whose dynamics are governed by a linear Gaussian
target motion model:

yst+1 = yst ,

ydt+1 = At(xt, ut)y
d
t + wt(xt, ut),

wt(xt, ut) ∼ N (0,Wt(xt, ut)),

(2)

where yt :=
[
(yst )

T (ydt )T
]T ∈ Rdy is the target state at

time t, composed of a dynamic part yd and a static part ys,
and wt is uncorrelated Gaussian noise.

Remark: The deterministic sensor transitions (1) simplify
the planning process (Sec. III) but do not limit the applicability
of the models (1), (2). As will be seen in the active-SLAM con-
text (Sec. V), nondeterministic robot dynamics can be handled
by our approach. The (deterministic) mean of the robot pose
estimates will be captured by x, while the (nondeterministic)

error in those estimates will be captured by yd. The landmark
locations in the environment will be represented by ys.

Further, suppose that the dynamic part of the target state
decomposes as ydt :=

[
(yd0,t)

T (yd1,t)
T · · · (ydn,t)

T
]T

,
where yd0,t captures the evolution of an exogenous process,
which the sensors need to track collaboratively, and ydi,t
captures the evolution of an endogenous process, only of
interest to sensor i. The decomposition of the dynamics is:

yd0,t+1 = A0,ty
d
0,t + w0,t, w0,t ∼ N (0,W0,t),

ydi,t+1 = Ai,t(xi,t, ui,t)y
d
i,t + wi,t,

wi,t ∼ N (0,Wi,t(xi,t, ui,t)).

(3)

The target states that are of interest to sensor i are yi,t :=[
(yst )

T (yd0,t)
T (ydi,t)

T
]T

. The operation of each sensor is
governed by the following sensor observation model:

zi,t=Hi,t(xi,t)yi,t+vi,t(xi,t), vi,t(xi,t)∼N (0,Vi,t(xi,t)) (4)

where zi,t ∈ Rdzi is the measurement signal and vi,t(xi,t)
is a sensor-state-dependent Gaussian noise, whose values are
independent at any pair of times and across the sensors. The
measurement noise is independent of the target noise wt as
well. To simplify notation, let zt := [zT1,t · · · zTn,t]T, vt(xt) :=
[v1,t(x1,t)

T · · · vn,t(xn,t)T ]T, and define Ht(·) appropriately so
that zt = Ht(xt)yt + vt(xt). Note that the observation model
is linear in the target state but might depend nonlinearly on
the sensor state. The information available to the sensors at
time t to compute the control ut is:

Ii,0 :=zi,0, Ii,t :=(zi,0:t, ui,0:(t−1)), t > 0, i=1, . . . , n. (5)

Problem (Active Information Acquisition). Given initial sen-
sor states x0 ∈ X , a prior distribution of the target states
y0, and a finite planning horizon T , choose a sequence of
functions µi,t(It) ∈ Ui for i = 1, . . . , n and t = 1, . . . , T − 1,
which optimizes:

min
µ1:n,0:(T−1)

1

T

T∑
t=1

h(yt | z1:t)

s.t. ut := µ1:n,t(It), eq.(2), t = 0, . . . , T − 1,

xt+1 = f(xt, ut), t = 0, . . . , T − 1,

zt = Ht(xt)yt + vt(xt), t = 1, . . . , T.

(6)

where h(yt | z1:t) is the differential entropy1 of the target state
yt at time t conditioned on the measurement set z1:t.

To emphasize the dependence of problem (6) on the number
of sensors n and the planning horizon T , we use the following
shorthand notation:

min
µ1:n,0:(T−1)

J
(n)
T

(
µ1,0:(T−1), . . . , µn,0:(T−1)

)
. (7)

III. CENTRALIZED SOLUTION

Active Information Acquisition (6) is a stochastic optimal
control problem and in general for such problems adaptive
(closed-loop) control policies have a significant advantage over
nonadaptive (open-loop) ones. However, we showed in [14]

1The differential entropy of a continuous random variable Y with proba-
bility density function p is defined as h(Y ) := −

∫
p(y) log p(y)dy.



that due to the linearity of the models (2), (4) in the target state,
the Gaussian-noise assumptions, and the deterministic sensor
transitions (1), the cost function in (6) becomes independent
of any particular measurement realization and (6) reduces to
a deterministic optimal control problem.

Theorem 1 ([14]). If the prior distribution of y0 is Gaussian
with covariance Σ0 � 0, there exists an open-loop control
sequence σ ∈ UT, which is optimal in (6). Moreover, (6) is
equivalent to the deterministic optimal control problem:

min
σ∈UT

J
(n)
T (σ) :=

1

T

T∑
t=1

γt(Σt, xt)

s.t. xt+1 =f(xt, σt), t=0, . . . , T−1,

Σt+1 =ρet+1(ρpt (Σt, xt, σt), xt+1), t=0, . . . , T−1,

(8)

where γt(Σt, xt) := log det(Σt) for all t, ρet (Σ, x)
is the Kalman filter measurement update with matrices
Ht(x), Vt(x), and ρpt (Σ, x, u) is the prediction step with
matrices diag(At(x, u), I) and diag(Wt(x, u), 0).

Due to this separation principle (Thm. 1), an optimal control
policy for problem (6) can be obtained via forward value
iteration (FVI, Alg. 1). FVI constructs a search tree, Tt, with
nodes at stage t ∈ [0, T ] corresponding to the reachable states
(xt,Σt, Jt). At each such node, there are edges (one for each
control in U) leading to nodes (xt+1,Σt+1, Jt+1), obtained
from the dynamics in (8). Unfortunately, FVI has exponential
complexity, O(|U1 × . . .×Un|T ), in both the time horizon T
and the number of sensors n, since the number of nodes in Tt
equals the number of sensor trajectories of length t.

Algorithm 1 Forward Value Iteration

1: J0 ← 0, S0 ← {(x0,Σ0, J0)}, St ← ∅ for t = 1, . . . , T
2: for t = 1 : T do
3: for all (x,Σ, J) ∈ St−1 do
4: for all u ∈ U do
5: xt ← f(x, u), Σt ← ρet+1(ρpt (Σ, x, u), xt)

6: Jt ← t−1
t
J + 1

t
γt(Σt, xt)

7: St ← St ∪ {(xt,Σt, Jt)}
8: return min {J | (x,Σ, J) ∈ ST }

A. Reduced Value Iteration

In [14] we showed how to significantly reduce the com-
plexity in T of Alg. 1 while providing guarantees on the
performance under the following assumption2.

Assumption. The cost γt(Σ, x) incurred at time t is concave
and monotone in Σ.

In short, we defined notions of trajectory crossing (Def. 1)
and domination in informativeness (Def. 2) and proved that
if several sensor trajectories cross at time t and one is dom-
inated in informativeness by the rest, then its corresponding
dominated node in the search tree Tt can be discarded with a
minimal loss in performance (see [14, Thm. 2, 3, 4]).

Definition 1 (Trajectory δ-crossing). Trajectories π1, π2 ∈
X T δ-cross at time t ∈ [1, T ] if dX (π1

t , π
2
t ) ≤ δ for δ ≥ 0.

2The assumption is satisfied for conditional differential entropy and the
performance guarantees in [14] apply here.

Definition 2 (ε-Algebraic redundancy [11]). Let ε ≥ 0 and
let {Σi}Ki=1 be a finite set of symmetric positive semidefinite
matrices. A matrix Σ � 0 is ε-algebraically redundant with
respect to {Σi}, if there exist nonnegative constants {αi}Ki=1

such that:
∑K
i=1 αi = 1 and Σ + εIn �

∑K
i=1 αiΣi.

This enabled a reduced value iteration (RVI, Alg. 2) algo-
rithm for solving (6). RVI is a powerful technique because it
provides a trade-off between complexity and optimality which
can be controlled via the parameters (ε, δ). In particular, if
both parameters are zero, we obtain the optimal solution with
exponential complexity in T , while if both are infinite, we
obtain a greedy solution with linear complexity in T , which
keeps only the best node at level t of the tree Tt.
Algorithm 2 (ε, δ)-Reduced Value Iteration

1: J0 ← 0, S0 ← {(x0,Σ0, J0)}, St ← ∅ for t = 1, . . . , T
2: for t = 1 : T do
3: for all (x,Σ, J) ∈ St−1 do
4: for all u ∈ U do
5: xt ← f(x, u), Σt ← ρet+1(ρpt (Σ, x, u), xt)

6: Jt ← t−1
t
J + 1

t
γt(Σt, xt)

7: St ← St ∪ {(xt,Σt, Jt)}
8: Sort St in ascending order according to max{Jt, γT (Σt, xt)}
9: S′t ← St[1] % State with lowest cost

10: for all (x,Σ, J) ∈ St \ St[1] do
11: % Find all nodes in S′t, which δ-cross x:
12: Q← {diag(Σ′, J ′) | (x′,Σ′, J ′) ∈ S′t, dX (x, x′) ≤ δ}
13: if isempty(Q) or not( diag(Σ, J) is ε-alg. red. wrt Q ) then
14: S′t ← S′t ∪ (x,Σ, J)

15: St ← S′t
16: return min {J | (x,Σ, J) ∈ ST }

The bottleneck of Alg. 2 is checking ε-algebraic redundancy
(Line 13), which requires solving a linear matrix inequality
(LMI) feasibility problem in dy dimensions. If a solution is
needed quickly (e.g., in applications with nonlinear models, it
is necessary to re-linearize the models and re-plan the trajecto-
ries after every few measurements), the algebraic redundancy
can be verified only approximately, i.e., for a finite number
of values for {αi}Ki=1. In particular, choosing αj = 1 and
αi = 0, i 6= j for j = 1, . . . ,K, requires verifying only K
positive-semidefinite inequalities:

Σ + εIdy � Σi, i = 1, . . . ,K, (9)

instead of solving the LMI feasibility problem.

B. Exploiting Sparsity
A fact, which does not play a role in the problem formula-

tion but is important for the solution, is that if the interactions
among the target states are local (e.g. static landmarks),
the information matrix, Ω0 := Σ−10 , is sparse, whereas the
covariance matrix is not [16]. For example, the information
structure in SLAM is naturally sparse [25], since it encodes
constraints from measurements that connect only two variables
(two robot poses or a robot pose and a landmark location).
Since the planning process (8) uses prior information from
the estimation layer, it is natural that it utilizes a sparse
representation too. Yet, Alg. 2 does not exploit this.

The sparsity of Ω can be leveraged by replacing the Kalman
filter in Alg. 2 with a square-root information filter (SRIF)
[34]. Since most existing formulations require invertible noise
covariances, we derive SRIF equations that specifically handle



the case that part of the target state is static and the associated
covariance is zero. Let the Cholesky factor (informally, square
root) of the information matrix be the upper triangular matrix
C, such that Ω=CTC, and decompose it into blocks:

Ct|t =

[
Dt|t Ft|t

0 Gt|t

]
, (10)

where Dt|t corresponds to the dynamic target states (ydt ) and
Gt|t - to the static target states (yst ).

Proposition 1. The square-root information filter equations,
with prior square-root matrix Ct|t in (10), process model in
(2), measurement model in (4), and known xt, xt+1, ut, are:

Predict:

 W−1/2t 0 0
Dt|tA

−1
t Dt|tA

−1
t Ft|t

0 0 Gt|t

=Q

[
∗ ∗
0 Ct+1|t

]

Update:
[

Ct+1|t

V
−1/2
t+1 Ht+1

]
=Q̄

[
Ct+1|t+1

0

]

Combined:


W
−1/2
t 0 0

Dt|tA
−1
t Dt|tA

−1
t Ft|t

0 0 Gt|t
0 V

−1/2
t+1 Ht+1

=Q̂

∗ ∗
0 Ct+1|t+1

0 0


where Q, Q̄, Q̂ are orthogonal matrices such that the other
matrices on the right-hand sides are upper triangular. The
dependence of At,Wt on xt, ut and of Ht+1, Vt+1 on xt+1 is
not explicit to simplify notation.

Proposition 1 states that the update and prediction steps
can be computed via QR decomposition. To use the SRIF and
avoid computing the covariance matrices in Alg. 2, we express
the cost γt and condition (9) in terms of C. The cost becomes:

γt(Σ, x) = log det(Σ) =−log
(
det(C)2

)
=−2

∑dy
i=1 log |Cii|,

while (9) can be modified via a Schur complement:

Ωi − (Σ + εIdy )−1 � 0, i = 1, . . . ,K,

CTi Ci − CT (Idy + εCCT )−1C � 0, i = 1, . . . ,K,[
Idy + εCCT C

CT CTi Ci

]
� 0, i = 1, . . . ,K.

IV. DECENTRALIZED SOLUTION

A. Coordinate Descent
Reduced value iteration decreases the exponential complex-

ity of forward value iteration in the time horizon T but the
size |U| of the control set still scales exponentially with the
number of sensors n. Instead of solving the active information
acquisition problem (7) jointly over all sensors, consider the
following coordinate descent approach. Suppose that sensor 1
plans its own trajectory, individually, without taking the other
sensors into account. In other words, it solves a single-sensor
active information acquisition problem:

µc1,0:(T−1) ∈ arg min
µ̂∈UT

1

J
(1)
T (µ̂) .

Then, it passes its chosen control sequence (and if necessary
the models (1), (3), (4) evaluated along it) on to sensor 2.
Sensor 2 takes this information into account and plans its

own trajectory by solving a two-sensor active information
acquisition problem but with a fixed policy for sensor 1:

µc2,0:(T−1) ∈ arg min
µ̂∈UT

2

J
(2)
T

(
µc1,0:(T−1), µ̂

)
.

Then, sensor 2 passes its information along to sensor 3, which
solves a 3-sensor problem with fixed policies for the first
2 sensors. In general, sensor i needs the control sequences
(and the models (1), (3), (4) evaluated along them), chosen by
sensors 1 to i−1, and solves an i-sensor active information
acquisition problem with fixed policies for the first i−1 sensors

µci,0:(T−1) ∈ arg min
µ̂∈UT

i

J
(i)
T

(
µc1:(i−1),0:(T−1), µ̂

)
. (11)

Since the sensor labels are arbitrary, the coordinate descent
can be carried out in any order. Because subproblem i in
(11) has a search space of size |Ui|T , the coordinate descent
scheme reduces the complexity in n from exponential to
linear, i.e. from O(|U1× . . .×Un|T ) to O(

∑n
i=1 |Ui|T ). Note

that the approach is not fully-distributed because multihop
communication is needed to pass the information but all-to-all
communication is not required either because the optimization
naturally occurs in communication hops.

B. Performance Guarantees
To gain intuition about the performance of the coordinate

descent scheme with respect to the optimal centralized policy,
we temporarily change the cost function in the active informa-
tion acquisition problem (6) from 1

T

∑T
t=1 h(yt | z1:t) to the

more-commonly-used mutual information, I(y1:T ; z1:T ).

Theorem 2. Consider problem (6) with negative mutual infor-
mation, −I(y1:T ; z1:T ), as cost function. Let µ∗ be the optimal
policy with associated cost J∗T . Let µc be the coordinate
descent policy with arbitrary sensor order and cost JcT .
Suppose that the subproblems (11) are solved optimally. Then,
the following guarantee holds for the performance of µc:

JcT ≥ J∗T ≥ 2JcT . (12)

Since the cost is negative, this means that µc obtains at least
half of the optimal value −J∗.

Remark: The proof relies on the fact that mutual infor-
mation, when viewed as a function of the sensor set, is
submodular. This result is different from [15, Thm.1] because
it applies to controlled dynamic Gaussian-Markov random
fields and allows revisiting sensor states.

Next, we provide performance guarantees with respect to the
original cost function in (6) - conditional differential entropy.

Corollary 1. Let µ∗ be the optimal policy in (6) with cost J∗T .
Let µc be a coordinate descent policy with arbitrary sensor
order and cost JcT . Suppose that the subproblems (11) are
solved optimally. Then:

JcT ≥ J∗T ≥ 2JcT −
1

T

T∑
t=1

h(yt)−∆T ,

where ∆T :=
∑n
i=1

1
T

(∑T
t=1 h(y1:i,t)− h(y1:i,1:T )

)
≥ 0. If

the dynamic target states are controlled (i.e., Ai,t,Wi,t depend
on xi,t, ui,t), then ∆T depends on µ∗.



Although the coordinate descent has a theoretically appeal-
ing guarantee with respect to mutual information, Table I
below shows that, when the target transitions can be controlled
(as in the active SLAM application in Sec. V), mutual informa-
tion might be inadequate as a value function. The conditional
differential entropy criterion in (6) is more appropriate. Note
that the two are equivalent if yd is not controlled.

TABLE I: Suppose that the sensor state is x0, the target covariance
is Σ0 = 1, and there are two available controls u(1), u(2). The table
shows an example in which the target state is a lot more uncertain
after u(1) than after u(2) but nevertheless u(1) is considered more
informative by the mutual information value function. In the SLAM
context, mutual information might prefer very uncertain controls (e.g.
high velocity) even if they provide the same measurement information
(captured by M(x) below) as more certain ones.

u(1) u(2)

A(x0, u) 1 1
W (x0, u) 99999 1

M(x1) := H(x1)TV (x1)−1H(x1) 0.01 0.01
Σp

1 := ρp1(Σ0, x0, u) = AΣ0AT +W 100000 2
Σe

2 := ρe2(Σp
1, x1) = ((Σp

1)−1 +M(x1))−1 99.9 1.96
h(y1 | z1) := 1

2

(
log(2πe) + log det(Σe

2)
)

3.72 1.76
I(y1; z1) := h(y1)− h(y1 | z1) 3.45 0.01

V. APPLICATION TO MULTI-ROBOT ACTIVE SLAM

In this section, we show that the active SLAM problem with
n robots can be reduced to an instance of the information
acquisition problem (6). Consequently, the algorithms we
developed so far enable a decentralized nonmyopic solution
that exploits sparsity. Since the focus of the paper is on the
selection of informative controls, rather than the estimation as-
pect of the problem, we use an existing graph SLAM approach
along the lines of [25]. In our simulations, the estimation
is centralized but the control is decentralized. Decentralized
estimation can be achieved as well, via [35], [36] for example.

Let the robot states at time t be ri,t for i = 1, . . . , n and
let the dynamics of the i-th robot be:

ri,t+1 = fi(ri,t, ui,t, ηi,t), ui,t ∈ Ui, (13)

where ui,t is the control input, Ui is a finite space of ad-
missible controls (e.g. motion primitives), and ηi,t is zero-
mean Gaussian noise with covariance Ei. The robots evolve
in an environment with M landmarks with positions m :=
[mT

1 , . . . ,m
T
M ]T . The task is to explore the environment,

autonomously and efficiently, and create an accurate map
of the landmark locations while staying well-localized. Each
robot, depending on its pose ri,t can obtain measurements
zi,t (typically nonlinear, e.g., range and bearing) of the visible
landmarks according to the sensing model:

zi,t = hi(ri,t,m) + vi,t, vi,t ∼ N (0, Vi) (14)

where vi,t is a Gaussian measurement noise, whose values are
independent at any pair of times and across robots. We assume
that the SLAM estimation layer provides a Gaussian prior on
the robot poses r0 and on the locations m0 of the landmarks
that have been discovered so far:[

r0
m0

]
∼ N

([
r̄0
m̄0

]
,

[
Σrr0 Σrm0
Σmr0 Σmm0

])
.

Time Step: 61
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Fig. 2: A snapshot of the multi-robot active SLAM simulation. The
cyan circles show the true landmark positions, the blue squares and
ellipses show the estimated landmark positions and covariances, the
green triangles show the true robot poses, the red ellipses show the
estimated robot position covariances, the dotted red sectors indicate
the robots’ fields of view, the yellow squares show the exploration
landmarks, and the magenta stars show localization attractors associ-
ated with the top robot. The gray area represents unexplored space.

Problem (Multi-Robot Active SLAM). Given a planning
horizon T , choose a sequence of functions µt(It) ∈ U for
t = 1, . . . , T − 1, which optimizes:

min
µ0:(T−1)

1

T

T∑
t=1

h(rt,mt | z1:t)

s.t. rt+1 = f(rt, µt(It), ηt), t = 0, . . . , T − 1,

mt+1 = mt, t = 0, . . . , T − 1,

zt = h(rt,mt) + vt, t = 1, . . . , T,

(15)

where It is defined as in (5).

Because the robots neither know the total number M of
landmarks, nor have prior information about the locations
of the undiscovered landmarks, it is necessary to encour-
age them to explore the environment. We introduce dummy
“exploration” landmarks with locations l := [lT1 , . . . , l

T
Nl

]T

at the current map frontiers [37] (see Fig. 2) and specify
a Gaussian prior on their locations with mean l̄ := l and
block diagonal covariance Σl with Nl blocks. This fake
uncertainty in the exploration-landmark locations promises
information gain to the robots. If it happens that there are
no exploration landmarks within the reachable fields of view
of the robots, the exploration process will stop because
the algorithm we developed so far is unable to perceive
information about the environment (even if known to the
robots) beyond the planning horizon. Following Leung et
al. [28], we include attractor landmarks (see Fig. 2), which
incorporate global information about the environment in the
local planning process. For each robot we use a state machine
as discussed in [28, Sec.V] to decide the attractor state
from {None, Explore, Improve Map, Improve Localization},
with None having the lowest priority and Improve Localization
- the highest. For instance, if the entropy of robot i’s pose
is larger than a threshold, we place localization attractors
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Fig. 1: Two instances of a four-robot active SLAM simulation which demonstrate the estimation quality and the exploration progress in
an environment with 200 landmarks. The red dotted curves show the estimated robot trajectories, while the other symbols are described in
the caption of Fig. 2. The robots had differential drive dynamics with maximum velocity 3 m/s, standard deviations 0.1 m/s and 5◦/s in
linear and angular velocities, respectively, 10 m sensing ranges, 94◦ fields of view, and used range and bearing measurements with standard
deviations 0.15 m and 5◦, respectively. See http://www.seas.upenn.edu/∼atanasov/vid/Atanasov ActiveSLAM ICRA15.mp4 for more details.

along the shortest path from the robot’s estimated pose to the
best localized landmark (see Fig. 2). We specify a Gaussian
prior on the attractor locations a :=

[
aT1 · · · aTNa

]T
with

mean ā := a and block diagonal covariance Σa with Na
blocks. To simplify notation, let q0 :=

[
mT

0 lT aT
]T

be the combined locations of the discovered landmarks, the
exploration landmarks, and the attractors with prior:

[
r0
q0

]
=


r0
m0

l
a

 ∼ N


r̄0
m̄0

l̄
ā

 ,


Σrr0 Σrm0 0 0
Σmr0 Σmm0 0 0

0 0 Σl 0
0 0 0 Σa




Finally, to reduce the active SLAM problem (15) to an
instance of the active information acquisition problem (6), we
need to deal with the noisy robot dynamics (the sensor dynam-
ics in (1) were deterministic) and the nonlinear measurement
models. We take a model-predictive-control approach (Alg. 3),
in which we linearize the motion and observation models, plan
sensor trajectories, and apply the first set of control inputs. Due
to the nonlinearities, after every few measurements, the models
need to be re-linearized and the trajectories - re-planned. The
models in (15) are linearized about an open-loop predicted
trajectory of the (deterministic) mean (r̄t, q̄t) of the joint robot-
landmark state (rt, qt). Let δrt := rt− r̄t, δqt := qt− q̄t, and
δzt := zt − h(r̄t, q̄t) be the deviations from the mean. We
obtain the following linearized version of (15):

min
µ0:(T−1)

1

T

T∑
t=1

h(rt, qt | z1:t)

s.t. for t = 0, . . . , T − 1

r̄t+1 =f(r̄t, µt(It), 0), q̄t+1 = q̄t, δqt+1 = δqt (16)

δrt+1≈
[
∂f

∂r
(r̄t, µt(It), 0)

]
δrt +

[
∂f

∂η
(r̄t, µt(It), 0)

]
ηt

δzt+1≈
[
∂h

∂r
(r̄t+1, q̄t+1)

]
δrt+1+

[
∂h

∂m
(r̄t+1, q̄t+1)

]
δqt+1+vt,

Algorithm 3 Multi-Robot Active SLAM

repeat:



1) Receive measurements and update the SLAM estimate
2) Remove any exploration landmarks within the robots’

fields of view and add new ones at the map frontiers
3) Remove the old attractors and add new ones if necessary
4) Plan T -step trajectories by solving (16) via coordinate

descent (11) and reduced value iteration (Alg. 2)
5) Apply the first control inputs to move each robot

which is an instance of problem (6) with target state yt :=
(δrTt δq

T
t )T , sensor state xt :=(r̄Tt q̄

T
t )T , target system matrix

A(x, u) := ∂f
∂r (x, u, 0), target noise covariance W (x, u) :=

∂f
∂η (x, u, 0)E ∂f

∂η (x, u, 0)T , sensor observation matrix H(x) :=[
∂h
∂r (x) ∂h

∂m (x)
]

and sensor noise covariance V .
Our solution to the active SLAM problem is summarized

in Alg. 3 and is illustrated in Fig. 1. Cooperation among the
robots is achieved via the coordinate descent scheme, which
allows the robots to take information from their teammates into
account during the planning process. Details about the robot
motion and measurement models are presented in the caption
of Fig. 1. The performance is quantified in Fig. 3. Importantly,
the entropy in the landmark positions is decreasing over time,
although new landmarks are continuously being discovered.
The robot pose entropies fluctuate because the robots need to
repeatedly sacrifice localization accuracy in order to explore
the environment. The plots indicate that the robots successfully
explore the environment, create an accurate map of the land-
mark positions, and remain localized well in the process. The
performance with a 12-step planning horizon is, as expected,
better than greedy planning. However, the message here is not
that our algorithm is better than a greedy approach, but that, if
time for computation is available, it should be used to improve
the planned trajectories. The (ε, δ) parameters of the reduced
value iteration algorithm allow us to utilize the computation
time effectively and the extra work is guaranteed to improve
the performance, compared to the greedy approach baseline.
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Fig. 3: The top three plots show the root mean square error (RMSE) in the robot position estimates, the RMSE in the robot orientation
estimates, and the entropy of the robot pose estimates, average over 15 repetitions of the four-robot active SLAM scenario in Fig. 1. The
middle row shows the RMSE in the landmark position estimates, the average entropy in the landmark position estimates, and the entropy of
the joint robot-landmark-pose estimate. The last two plots show the percentage of the environment covered by the robots and the number of
detected landmarks over time. The robot trajectories were planned using RVI (Alg. 2) with planning horizon T = 12, ε = ∞, and δ = 1.5.
The red dotted curves on the last three plots show the performance when the trajectories are obtained via a greedy policy (RVI with T = 1).

VI. CONCLUSION

The optimal centralized algorithm for active information
acquisition has exponential complexity in both the planning
horizon and the number of sensors. This paper discussed
an approximation algorithm with suboptimality guarantees,
which provides parameters to control the complexity in the
time horizon. Further, it introduced a decentralization scheme
to achieve linear complexity in the number of sensors. The
combination of these techniques is an effective and scalable
approach for controlled information acquisition with multiple
sensors. For example, when applied to multi-robot active
SLAM, it led to a decentralized nonmyopic solution, which
demonstrated good performance and exploited sparsity in the
planning process. Our formulation, however, cannot handle
discrete target state spaces, which are needed particularly for
hypothesis testing and classification problems. Future work
will focus a discrete formulation of the active information
acquisition problem. We also plan to compare our approach
to methods that do not linearize the sensing models and carry
out experiments with mobile targets and real robots.

APPENDIX A: PROOF OF THEOREM 2
Lemma 1. Let F ⊆ {1, . . . , n}, yF := {yi,1:T | i ∈ F},
and zF := {zi,1:T | i ∈ F}. The mutual information
g(F) := I(yF ; zF ) between the target states yF and the
measurement set zF viewed as a function of the set of sensors
F is submodular. In other words, given sets A ⊆ B ⊆
{1, . . . , n} and C ⊆ {1, . . . , n} \ B, the following is satisfied:
g(A ∪ C)− g(A) ≥ g(B ∪ C)− g(B).

Proof: The proof follows the steps of [12, Lemma 2.1] but to
handle the varying dimension of yF we use that for A ⊆ B:

I(yB; zA) = h(zA)− h(zA | yB)

= h(zA)− h(zA | yA) = I(yA; zA)

since when conditioned on yA, the measurements zA from
known sensor states xA := {xi,1:T | i ∈ A} are independent
of all other target states.

Let the measurement sets obtained by µ∗ and µc be z∗1:T
and zc1:T , respectively. Then,

I(y1:T ; z∗1:T )
(a)

≤ I(y1:T ; z∗1:T ) +

n∑
i=1

(
I(y1:T ; zc1:i,1:T , z

∗
i+1:n,1:T )

− I(y1:i−1,1:T , yi+1:n,1:T ; zc1:i−1,1:T , z
∗
i+1:n,1:T )

)
= I(y1:T ; zc1:T ) +

n∑
i=1

(
I(y1:T ; zc1:i−1,1:T , z

∗
i:n,1:T )

− I(y1:i−1,1:T , yi+1:n,1:T ; zc1:i−1,1:T , z
∗
i+1:n,1:T )

)
Lemma 1
≤ I(y1:T ; zc1:T ) +

n∑
i=1

(
I(y1:i,1:T ; zc1:i−1,1:T , z

∗
i,1:T )

− I(y1:i−1,1:T ; zc1:i−1,1:T )

)
= I(y1:T ; zc1:T ) + I(y1:T ; zc1:n−1,1:T , z

∗
n,1:T ) (17)

+

n−1∑
i=1

(
I(y1:i,1:T ; zc1:i−1,1:T , z

∗
i,1:T )− I(y1:i,1:T ; zc1:i,1:T )

)
where (a) follows from the non-decreasing property of mutual
information. By definition of the coordinate descent policy

−I(y1:i,1:T ; zc1:i−1,1:T , z
∗
i,1:T ) ≥ −I(y1:i,1:T ; zc1:i,1:T ), ∀i

and from (17), J∗T = −I(y1:T ; z∗1:T ) ≥ JcT + JcT + 0. �



APPENDIX B: PROOF OF COROLLARY 1
Lemma 2. Given (1), (2), (4), and a deterministic sequence
x0:T , the following relationship between mutual information
and conditional entropy holds:

h(y1:T )−
∑T
t=1 h(yt | z1:t) ≤ I(y1:T ; z1:T )

≤
∑T
t=1 h(yt)−

∑T
t=1 h(yt | z1:t)

Proof: h(y1:T )−
∑T
t=1 h(yt | z1:t)

(a)

≤ h(y1:T )−
∑T
t=1 h(yt | z1:t, yt−1)

(b)
=== h(y1:T )− h(y1:T | z1:T ) = I(y1:T ; z1:T )

=
∑t
t=1 [h(yt | z1:t−1)− h(yt | z1:t)]

(c)

≤
∑T
t=1 h(yt)−

∑T
t=1 h(yt | z1:t)

where (a), (c) hold because conditioning decreases entropy,
(b) is due to the entropy chain rule. �

From Lemma 2 and (17), it follows that

h(y1:T )− TJ∗T

≤
T∑
t=1

h(yt)−TJcT +

T∑
t=1

h(yt)−
T∑
t=1

h(yt | zc1:n−1,1:t, z∗n,1:t)

+

n−1∑
i=1

((
T∑
t=1

h(y1:i,t)

)
− h(y1:i,1:T )

)

+

n−1∑
i=1

(
T∑
t=1

h(y1:i,t | zc1:i,1:t)−
T∑
t=1

h(y1:i,t | zc1:i−1,1:t, z∗i,1:t)

)

≤ 2

T∑
t=1

h(yt)−2TJcT +

(
n−1∑
i=1

(
T∑
t=1

h(y1:i,t)

)
− h(y1:i,1:T )

)
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