
2050 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999

Decentralized Adaptive Control of Nonlinear
Systems Using Radial Basis Neural Networks

Jeffrey T. Spooner and Kevin M. Passino

Abstract—Stable direct and indirect decentralized adaptive radial basis
neural network controllers are presented for a class of interconnected
nonlinear systems. The feedback and adaptation mechanisms for each
subsystem depend only upon local measurements to provide asymptotic
tracking of a reference trajectory. Due to the functional approximation
capabilities of radial basis neural networks, the dynamics for each
subsystem are not required to be linear in a set of unknown coefficients
as is typically required in decentralized adaptive schemes. In addition,
each subsystem is able to adaptively compensate for disturbances and
interconnections with unknown bounds.

I. INTRODUCTION

Decentralized control systems often arise from either the physical
inability for subsystem information exchange or the lack of computing
capabilities required for a single central controller. Furthermore,
the difficulty of, and uncertainty in, measuring parameter values
within a large-scale system may call for adaptive techniques. Since
these restrictions encompass a large group of applications, a variety
of decentralized adaptive techniques have been developed. Model
reference adaptive control (MRAC) based designs for decentralized
systems have been studied in [1]–[3] for the continuous time case
and in [4] for the discrete time case. These approaches, however, are
limited to decentralized systems with linear subsystems and possibly
nonlinear interconnections. Decentralized adaptive controllers for
robotic manipulators were presented in [5] and [6], while a scheme
for nonlinear subsystems with a special class of interconnections was
presented in [7]. It was shown in [8] that it is possible to provide
stable tracking in decentralized systems which contain uncertainties
which are bounded by polynomials with known order. These previous
results consider subsystems which are linear in a set of unknown
parameters, or consider the uncertainties to be contained within
the dynamics describing the subsystem interconnections which are
bounded.

On-line function approximation approaches have been successfully
applied to a wide variety of control problems, in particular in the area
of nonlinear adaptive control of SISO systems (see [9]–[13] for exam-
ples). On-line function approximation approaches adjust parameters
within a universal approximator (such as a fuzzy system or neural
network) to estimate unknown nonlinearities which may describe
plant dynamics or a desired control law. Universal approximators
possess the property that, given an appropriate approximator structure,
it is possible to represent continuous nonlinearities over a compact
space with arbitrary accuracy as described in [14] and [15]. This
means that entire classes of nonlinearities may be represented with a
single approximator structure using different parameter choices.

In this correspondence, we exploit the function approximation
capabilities of radial basis functions to provide asymptotic tracking
given a class of nonlinear subsystems with unknown interconnection
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strengths. Using radial basis neural networks to approximate unknown
functions on-line allows us to extend the results in [16] to include the
case of both parametric and dynamic uncertainty. A direct adaptive
approach approximates unknown control laws required to stabi-
lize each subsystem, while an indirect approach is provided which
identifies the isolated subsystem dynamics to produce a stabilizing
controller. Both approaches ensure asymptotic tracking using only
local feedback signals.

This correspondence is organized as follows. In Section II, an
overview of radial basis neural networks is given. In Section III,
the details of the problem statement for the decentralized system are
presented. The adaptive algorithms for each subsystem using only
local information are presented and composite system stability is
established in Sections IV and V for the direct and indirect cases,
respectively. Simulation examples are given in Section VI, while
concluding remarks are provided in Section VII.

II. RADIAL BASIS NEURAL NETWORKS

A radial basis neural network (RBNN) is made up of a collection
of parallel processing units called nodes. The output of theith node is
defined by a Gaussian functionzi(x) = exp(�jx� cij

2=�2i ), where
x 2 n is the input to the network,ci is the center of theith node,
and�i is its size of influence. The output of a radial basis network,
y = F(x; A), may simply be calculated by either a weighted sum
so that

F(x; A) =

p

i=1

aizi(x) (1)

or by a weighted average

F(x; A) =

p

i=1

aizi(x)

m

i=1

zi(x)

(2)

where A = [a1; � � � ; ap]
> is a vector of network weights.

We notice that (1) and (2) may be rewritten asF(x; A) =
A>�(X), where �(X) is a set of radial basis functions defined
by �>(x) = [z1(x); � � � ; zp(x)] for the weighted sum, (1), and
�>(x) = [z1(x); � � � ; zp(x)]=

p

i=1
zi(x); for the weighted average

(2).
Given a single RBNN, it is possible to approximate a wide variety

of functions simply by making different choices forA. In particular,
if there are a sufficient number of nodes within the network, then
there exists someA� such that

sup
x2S

jF(x; A�)� f(x)j < W

whereSx is a compact set, andW > 0 is a finite constant provided
f(x) is continuous [17]. This lets us expressf(x) = F(x; A�) +
w(x) with jw(x)j < W when x 2 Sx. Notice that even though
RBNN’s are linear in a set of adjustable parameters, we may, e.g.,
approximate a functionf(x) = a + cos(bx>x) which is not linear
in an independent set of parameters[a; b]>. Thus we are using an
approximator which is linear in the parameters to describe functions
which are not necessarily linear in another set of parameters.

Even though we will be defining the control laws in terms of radial
basis networks, it should be noted that any universal approximator
which is linear in the adjustable parameters may be considered.
Other examples are standard fuzzy systems with adjustable output
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membership centers [9], Takagi–Sugeno fuzzy systems [13], CMAC
networks, among others.

III. A C LASS OF DECENTRALIZED SYSTEMS

Here we consider each subsystemSi to be SISO such that

_xi = fi(x1; � � � ; xm) + gi(xi)ui

yi =hi(x1; � � � ; xm)
(3)

wherexi 2 n is the state vector,ui 2 is the input, andyi 2 is
the output ofSi. We assume that the functionsfi(�); gi(�) 2 n and
hi(�) 2 , i = 1; � � � ; m are smooth. If each subsystem has strong
relative degreedi, then the output dynamics may be rewritten as

y
(d )
i = �i(xi) + �i(xi)ui +�i(t; x1; � � � ; xm) (4)

where y
(d )
i is the dith time derivative ofyi [16]. Here we are

assuming that the influence of the other subsystemsSj ; j 6= i, is
represented by the�i(t; x1; . . . ; xm) term in (4). We also assume
that for some�0 > 0, we have�i(xi) � �0 so that the control
gain is bounded away from zero (for convenience we assume that
�i(xi) > 0).

Assumption 1—Plant:The plant can be defined by (3) and trans-
formed to (4) with input gain bounded by0 < �0 � �i(xi) � �1 .
The zero dynamics for each subsystem are exponentially attractive
[18]. The ith subsystem input gain rate of change is bounded by
j _�i(xi)j � Bi whereBi 2 is a finite constant defined later in
Theorem 1.

The tracking error forSi is defined byei = ri � yi. Our
objective is to design an adaptive control system for each subsystem
which will cause the outputyi of a relative degreedi subsystem
Si to track a desired output trajectoryri (i.e., ei ! 0) in the
presence of interconnections and unknown disturbances, using only
local measurements. The desired output trajectory may be defined by
a signal external to the control system so that the firstdi derivatives
of the ith subsystem’s reference signalri may be measured, or by
a reference model, with relative degree greater than or equal todi
which characterizes the desired performance. This requirement leads
to the following assumption.

Assumption 2—Reference Model:The desired output trajectory
and its derivativesri; � � � ; r

(d )
i for the ith subsystemSi are

measurable and bounded.
Let the scalars
i; j quantify the “strength” of the interconnec-

tions and the output error vector for theith subsystem be defined
by eeei = [ei; � � � ; e

(d �1)
i ]>. It is assumed that the interconnec-

tions satisfy�i(x1; � � � ; xm) = �i(t) + �i(x1; � � � ; xm), where
j�i(x1; � � � ; xm)j � m

j=1 
i; j jeeej j2 and �i(t) 2 L1. Let ~��i =
(sup(�i(t))� inf(�i(t)))=2 be a measure of the variation of�i(t)
and �i = (sup[�i(t)] + inf(�i(t)))=2 be a measure of the center
position of�i(t). We may thus let�i(t) = ��i+ ~�i(t) for some~�i(t),
where j~�ij � ~��i , with ~��i assumed to be bounded. Also, if�i is
nonzero, we may absorb�i into �i(xi) within (4) as an unknown
bias since it is not dependent upon the other subsystem states. The
assumptions for the interconnections are summarized as follows.

Assumption 3—Interconnections:The interconnections satisfy

�i(x1; � � � ; xm) = �i(t) + �i(x1; � � � ; xm)

where

j�i(x1; � � � ; xm)j �

m

j=1


i; j jeeej j2 and �i(t) 2 L1:

This assumption on the interconnections can be satisfied by a variety
of decentralized nonlinear systems. For instance, in [16] it is shown
to be satisfied for an intervehicle spacing regulation problem in a

platoon of an automated highway system. In this correspondence, we
show that it is satisfied for the control of two inverted pendulums
connected by a spring. It should be noted that if the interconnections
satisfy j�i(�)j � m

j=1 
i; j jyyyj j2 (which is the case for many
mechanical systems), thenj�i(�)j �

m

j=1 
i; j(jeeej j2 + jrrrj j2) where

yyyi = [yi; � � � ; y
(d )
i ]> and rrri = [ri; � � � ; r

(d )
i ]> which satisfies

Assumption 3 provided eachrrri is bounded.

IV. DIRECT ADAPTIVE CONTROL

Because state information about theith subsystem is only available
for theith controller, a standard feedback linearizing control law may
not be defined for the composite system, even if the plant dynamics
are known. Ideally we may, however, define a controller which
compensates for the dynamics of each isolated subsystem. For the
ith isolated subsystem, a feedback linearizing controller is defined by

u�i (xi; �i) =
��i(xi) + �i(t)

�i(xi)
= uu (xi; �i) + uk (5)

where the signal�i will be defined below,uu (xi; �i) is the unknown
portion of the control law that is smooth in its arguments, and
uk (xi) is a known part of the control which is assumed to be
well defineda priori. The termuk is included to allowa priori
control knowledge into the decentralized controller design. The ideal
decentralized control function (5) may be represented by an RBNN
(or other approximation structure),Fu , such that

u�i = Fu xi; �i; A
�
u + uk (xi) + wu (xi; �i) (6)

where the vector of ideal control parameters is defined as

A�u = arg min
A 2


sup
x 2S ;� 2S

jFu (xi; �; Au )� uu (xi; �i)j

(7)

so thatwu (xi; �i) is the representation error which arises when
uu (xi; �i) is represented by an RBNN of finite size. From the uni-
versal approximation property, we know that for a given approximator
structure, there existsA�u such thatjwu j � Wu for some finite
Wu > 0. The subspacesSx and S� are defined as the compact
sets through which the state trajectories for theith subsystem and
�i may travel. The subspace
u is the convex compact set which
contains feasible parameter sets forA�u . The stability proof to follow
will establish bounds forSx and S� . The following assumption
summarizes the controller requirements.

Assumption 4—Control:If xi 2 Ln1 , then uk 2 L1. Also,
assume that the representation errorwu (xi; �i) is bounded by some
Wu > 0, i.e., jwu (xi; �i)j � Wu .

An adaptive algorithm will be defined to estimateA�u with Au .
These estimates are then used to define the control law as

ui = Fu (xi; �i; Au ) + uk (xi) (8)

whereFu (xi; �i; Au ) is the RBNN used to approximate an ideal
controller for theith subsystem. A parameter error vector is defined
as�u = Au � A�u for each subsystem.

It is desired that the output error of theith subsystem follow
e
(d )
i + ki; d �1e

(d �1)
i + � � � + ki; 0ei = 0, where the coefficients

are picked so that eacĥLi(s) = sd +ki; d �1s
d �1+ � � �+ki; 0 has

its roots in the open left-half plane (is Hurwitz). The error dynamics
for the ith subsystem may be expressed as

e
(d )
i = r

(d )
i � �i(xi)� �i(xi)ui ��i(x1; � � � ; xm):

Adding and subtracting�i(xi)u�i and using the definition ofu�i in
(5), we obtain

e
(d )
i = r

(d )
i � �i(xi)[ui � u�i ]� �i(t)��i(x1; � � � ; xm): (9)
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Let a� (t) anda� (t) be scalar time functions and

�i = r
(d )
i + ki; d �1e

(d �1)
i + � � �+ ki; 0ei + a� (t)

� sgn eee>i Pibi + a� (t)eee>i Pibi=2:

where Pi 2 d �d is a positive definite matrix defined by a
Lyapunov matrix equation andbi 2 d is a vector. These will both
be defined shortly. Using the definition of�i, the error dynamics
may be expressed as

_eeei =�ieeei + bi ��i(xi)[ui � u�i ]� a� sgn eee>i Pibi

� a� eee>i Pibi=2��i(x1; � � � ; xm) (10)

where

�i =

0 1 0 � � � 0
0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1
�ki; 0 �ki; 1 �ki; 2 � � � �ki; d �1

and bi = [0; 0; � � � ; 0; 1]> 2 d .
In the analysis to follow, we will use the fact thatui � u�i =

�>u �u � wu ; where

�>u =
@Fu (xi; �i; Au )

@Au

with jwu j � Wu . Consider the following update laws:

_Au = �u �u eee>i Pibi (11)

_a� = �� eee>i Pibi (12)

_a� = �� eee>i Pibi
2

(13)

where�u > 0; �� > 0, and�� > 0; i = 1; � � � ; m are adaptation
gains. The update law (11) is used to estimate the dynamics of
the subsystem under control, while the update laws (12) and (13)
are used to stabilize the subsystem by estimating the effects of the
interconnections. Both (12) and (13) increase monotonically and we
require thata� (0); a� (0) � 0 so a projection algorithm may be
required to ensure that they do not become unnecessarily large.

Theorem 1: Given the decentralized system with reference mod-
els satisfying Assumption 2, subsystems satisfying Assumption 1,
interconnections satisfying Assumption 3, and controllers satisfying
Assumption 4, then the control law (8) with adaptation laws (11)–(13)
will ensure that fori = 1; � � � ; m if Bi < (�0 �min(Ri)=�max(Pi))
then:

1) the subsystem outputs and their derivatives,yi; � � � ; y
(d �1)
i ,

are bounded;
2) each control signal is bounded, i.e.,ui + uk 2 L1;
3) the magnitude of each output error,jeij, decreases asymptoti-

cally to zero, i.e.,limt!1 jeij = 0;
4) limt!1 j _Au j = 0; limt!1 j _a� j = 0, and limt!1 j _a� j =

0;

whereRi is defined below.
Proof: Consider the following Lyapunov-type function for the

ith subsystem:

vi =
eee>i Pieeei
�i(xi)

+
1

�u
�>u �u +

1

�1 ��
�2� +

1

2�1 ��
�2� (14)

where�� = a� � ��i ; �� = a� � ��i , and eachPi 2 d �d is
a positive definite and symmetric matrix (��i and��i will be defined

shortly). Taking the time derivative ofvi yields

_vi =
eee>i Pi�i + �>i Pi eeei

�i(xi)
�

2eee>i Pibi
�i(xi)

�i(x1; � � � ; xm)

�
eee>i Pieeei _�(xi)

�2i (xi)
+

2

�u
�>u _�u +

2eee>i Pibi
�i(xi)

� ��i(xi)[ui � u�i ]� a� sgn eee>i Pibi � a� eee>i Pibi=2

+
2

�1 ��
�� _�� +

1

�1 ��
�� _�� : (15)

Since each�i is negative definite, given some positive definite
Ri, there exits a unique symmetric positive definitePi satisfying
Pi�i + �>i Pi = �Ri, a Lyapunov matrix equation.

Since _�u = _Au ; _�� = _a� , and _�� = _a� , using the definition
of the adaptive laws (15) may be written as

_vi =
�eee>i Rieeei
�i(xi)

�
2eee>i Pibi
�i(xi)

�i(x1; � � � ; xm)

�
eee>i Pieeei _�(xi)

�2i (xi)
+

2

�1
�� eee>i Pibi +

2eee>i Pibi
�i(xi)

� �i(xi)wu � a� sgn eee>i Pibi � a� eee>i Pibi=2

+
1

�1
�� eee>i Pibi

2

: (16)

Since1=�1 � 1=�i(xi), anda� � 0; a� � 0 we have

_vi �
�eee>i Rieeei
�i(xi)

�
2eee>i Pibi
�i(xi)

�i(x1; � � � ; xm)�
eee>i Pieeei _�(xi)

�2i (xi)

+ 2eee>i Pibiwu �
2��i
�1

eee>i Pibi �
��i
�1

eee>i Pibi
2

: (17)

If we choose��i = �1 ~��i =�0 + �1 Wu , then the inequality

�
eee>i Pibi
�i(xi)

~�i(t) + eee>i Pibiwu �
��i
�1

eee>i Pibi (18)

holds. Substituting (18) in (17) yields

_vi �
�eee>i Rieeei
�i(xi)

�
��i
�1

eee>i Pibi
2

�
2eee>i Pibi�i(x1; � � � ; xm)

�i(xi)

�
eee>i Pieeei _�(xi)

�2i (xi)
: (19)

It is possible to set��i = 0 and useM -matrix techniques to
determine sufficient conditions for system stability [19]. Due to the
conservativeness of theM -matrix techniques, however, the resulting
composite system stability results are very restrictive for systems
with relative degreedi > 1. Here, we complete the squares (in an
analogous manner to [2]) to obtain

_vi �
�eee>i Rieeei
�i(xi)

+
�1 �

2
i (x1; � � � ; xm)

��i �
2
i (xi)

+
�max(Pi)Bieee

>
i eeei

�2i (xi)
(20)

where each��i > 0 and�max(Pi) denotes the maximum eigenvalue
of Pi.

Now consider the composite system Lyapunov candidateV =
m

i=1 civi, where eachci > 0. Taking the derivative ofV and using
(20) and Assumption 3 gives

_V �

m

i=1

ci �
eee>i Rieeei
�i(xi)

+
�1

��i �
2
i (xi)

m

j=1


i;j jeeej j2

2

+
�max(Pi)Bieee

>
i eeei

�2i (xi)
: (21)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999 2053

Since m

j=1 
i; j jeeej j2 = �>�i, where� = [jeee1j2; � � � ; jeeemj2]
> and

�i = [
i; 1; � � � ; 
i;m]>, (21) may be written as

_V �

m

i=1

ci ��min(Ri) +
�max(Pi)Bi

�i(xi)

jeeeij
2
2

�i(xi)

+
�1

��i �
2
i (xi)

�>�i�
>
i � (22)

where�min(Ri) is the real part of the eigenvalue ofRi with the
minimum magnitude. Require thatBi < �0 �min(Ri)=�max(Pi) so
that ��min(Ri) + �max(Pi)Bi=�0 < ��i, where each�i > 0 is
some finite constant. This gives us

_V �

m

i=1

ci
��ijeeeij

2
2

�i(xi)
+

�1
��i �

2
i (xi)

�>�i�
>
i � : (23)

Define K� = [��1; � � � ; �
�
m]. Let ��i = ��; i = 1; � � � ; m for

some0 < ��, define

D = diagfc1�1=�1 ; � � � ; cm�m=�1 g

and M = m

i=1 ci�1 �i�
>
i =�

2
0 , so that _V � ��>A�, where

A = D � (1=��)M. Then for some sufficiently large�� > 0,
the matrixA is positive definite. This diagonal dominance property
may be established using Gershgorin’s Theorem [20]. Now define
K� = [��; � � � ; ��]> 2 m as

K� = arg min
K 2

0<�

K� K�: A = D �
1

��
M is positive definite :

(24)

There exists sufficiently large�� such thatA, defined by (24), is
positive definite, which implies thatV 2 L1, and thusj�j2 2
L1. Given bounded reference signals, Part 1 is established. With
exponentially attractive zero dynamics, the states for each subsystem
are bounded. Boundedness of the Lyapunov function thus ensures
that ui + uk 2 L1 so Part 2 holds. Also

1

0

�>A�dt � �
1

0

_V dt+ const (25)

so that j�j2 2 L2. Since all of the signals are well defined, we
also have_eeei 2 Ld1 so thatd=dtjeeeij2 = eee>i _eeei=jeeeij2 � j _eeej2 2 L1.
Using Barbalat’s Lemma, we thus establish thatlimt!1 j�j2 = 0,
thus we are guaranteed asymptotically stable tracking for each of the
subsystems so Part 3 holds. In addition, since each of the plant and
control signals is bounded andlimt!1 jeij = 0, convergence of the
update law derivatives to zero is established by their definitions.

Remark 1: The stability results are semiglobal in the sense that
they hold forxi 2 Sx whereSx is dependent upon the span of the
RBNN. In the case that the RBNN’s may approximate the feedback
linearizing controller (5) globally,Sx may be defined as n and
S� as (rather than compact sets) so the results hold globally.

Remark 2: The bound for the representation error,Wu , does not
need to be known for our choice of adaptation laws (all we needed
to know earlier was that it existed and we are guaranteed this). In
addition, the magnitude of the interconnections are estimated on-line
to produce stable tracking.

Remark 3: The direct adaptive control scheme presented here does
require thatBi < �0 �min(Ri)=�max(Pi). That is, the rate at which
the control gain changes may influence the design of the update and
control laws through the choice ofPi given some�i. For subsystems
with �i(xi) a constant, then this requirement is always satisfied since
Bi = 0 is a valid choice. As the rate of change of the control
gain increases, however, this bound becomes more restrictive for the
control design.

V. INDIRECT ADAPTIVE CONTROL

The direct adaptive decentralized control law was defined using an
RBNN with adjustable parameters to approximateu�i . For the indirect
case, however, an identifier will be used to approximate the isolated
system dynamics so that a feedback linearizing controller may be
defined based on the certainty equivalence principle. We will first
represent the isolated system dynamics (4) as�i(xi) = �u +�k (xi)
and �i(xi) = �u + �k (xi), where �u and �u represent the
unknown dynamics, while�k and�k represent the known dynamics
(which can be equal to zero and all the results to follow still hold).
Representing the unknown dynamics with an RBNN, we see

�i(xi) =F� xi; A
�
� + �k + w� (26)

�i(xi) =F� xi; A
�
� + �k + w� : (27)

The parameters forF� (xi; A
�
� ) are defined by

A�� = arg min
A 2


sup
x 2S

jF� (xi; A� )� �u j (28)

while the parameters forF�(xi; A�� ) are defined by

A�� = arg min
A 2


sup
x 2S

jF� (xi; A� )� �u j (29)

where the representation errors for�u and�u are defined byw�
andw� , respectively. The bounds on the representation errors are
given by jw� j � W� and jw� j � W� for someW� > 0 and
W� > 0. The subspaceSx is a compact set through which the state
trajectory for theith subsystem may travel. The subspaces
� and

� are compact convex sets which contain the feasible parameter
sets forA�� andA�� , respectively. The components of the isolated
subsystem dynamics are approximated by RBNN’s so that

�̂i(xi) =F� (xi; A� (t)) + �k (xi) (30)

�̂i(xi) =F� (xi; A� (t)) + �k (xi) (31)

whereA� (t) andA� (t) will be updated on-line in an attempt to
identify the isolated system dynamics.

An adaptive algorithm is used to estimateA�� and A�� with
A� andA� , respectively. Parameter error vectors are defined as
�� = A� � A�� and �� = A� � A�� . Using the current
estimate for theith subsystem with no interconnections, a certainty
equivalence control term for theith subsystem is defined as

ui = ��̂i(xi) + �i=�̂i(xi) (32)

assuming that̂�i(xi) is bounded away from zero (this may be ensured
using a projection algorithm). Let

�i = r
(d )
i + ki;d �1e

(d �1)
i + � � �+ ki; 0ei

+ a� (t) sgn eee>i Pibi + a� (t)eee>i Pibi=2

+ aw� (t) sgn eee>i Pibiui (33)

where the adaptive parametersa� (t); a� (t), and aw� (t) are
yet to be defined. The terma� sgn(eee>i Pibi) is used to reject
unknown disturbances, while the terma� eee>i Pibi=2 is used to
compensate for unknown effects from the interconnections. In ad-
dition, a� sgn(eee>i Pibiui) has been included to compensate for the
representation errorw� . The control assumptions for the indirect
adaptive controller are summarized as follows.
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Assumption 5—Control:If xi 2 Ln1 , then�k ; �k 2 L1. The
representation errorsw� andw� are bounded, i.e.,jw� j � W�

and jw� j � W� for someW� > 0 andW� > 0. A projection
algorithm is used to ensure that̂�i(xi) > �0 .

Proceeding in a similar manner to the direct case, we have

e
(d )
i =(�̂i(xi)� �i(xi)) + (�̂i(xi)� �i(xi))ui

��i(x1; � � � ; xm)� ki; d �1e
(d �1)
i

� � � � � ki; 0ei � a� sgn eee>i Pibi

� a� eee>i Pibi=2� aw� sgn eee>i Pibiui (34)

and

_eeei =�ieeei + bi (�̂i(xi)� �i(xi)) + (�̂i(xi)� �i(xi))ui

��i(x1; � � � ; xm)� a� sgn eee>i Pibi

� a� eee>i Pibi=2� aw� sgn eee>i Pibiui

where�i andbi are as defined for the direct adaptive case.
The identifier errors may be expressed as

�̂i(xi)� �i(xi) =�>� �� � w� (35)

�̂i(xi)� �i(xi) =�>� �� � w� (36)

where w� and w� are representation errors. At this point, we
also define the total parameter identification error for the isolated
subsystem dynamics as��� = [�>� ; �>� ]> with the total regressor
as ��� = [�>� ; �>� ui]

>.
The following update laws are now defined for the decentralized

indirect adaptive controller:

_Ai = � ��� ��� eee
>

i Pibi (37)

_aw� = �w� eee>i Pibiui (38)

_a� = �� eee>i Pibi (39)

_a� = �� eee>i Pibi
2

(40)

where ��� ; �w� ; �� , and �� are fixed adaptive gains. The
parameter update law for the isolated system identifier (37) is used to
estimate the dynamics of the subsystem under control. The update law
(38) is designed to compensate for the effects of the representation
errorw� , while the update laws (39) and (40) are used to stabilize
the subsystem by estimating the effects of the interconnections and
w� . The parameter error associated with the representation errorw�

is defined as�w� = aw� �W� , while �� and�� are as defined
for the direct case. The adaptive parameters are initialized such that
aw� (0) � 0; a� (0) � 0, anda� (0) � 0 so thataw� (t); a� (t);
a� (t) remain positive.

Theorem 2: Given the decentralized system with subsystems
satisfying Assumption 1, interconnections satisfying Assumption 3,
and controllers satisfying Assumption 5, then the control law (32)
with adaptation laws (37)–(40) will ensure that, fori = 1; � � � ; m:

1) the subsystem output and its derivatives,yi; � � � ; y
(d �1)
i , are

bounded;
2) each control signal is bounded, i.e.,ui 2 L1;
3) the magnitude of each output error,jeij, decreases asymptoti-

cally to zero, i.e.,limt!1 jeij = 0;
4) limt!1 j _A�� j = 0; limt!1 j _aw� j = 0; limt!1 j _a� j = 0,

and limt!1 j _a� j = 0.

Proof: Consider the following Lyapunov-type function for the
ith subsystem:

vi =eee>i Pieeei +
1

���
�>�� ��� +

1

��
�2� +

1

2��
�2� +

1

�w�
�2w�

(41)

where eachPi 2 d �d is a positive definite and symmetric matrix.
From the definition of�� ; �� , and�w� , we use a similar approach
to the direct case to obtain

_vi = � eee>i Rieeei + 2eee>i Pibi[�w� � w� ui ��i(x1; � � � ; xm)]

� 2��i eee
>

i Pibi � ��i e>i Pibi
2

� 2W� eee>i Pibiui : (42)

Choosing��i = W� + ~��i ensures thateee>i Pibi[w� + ~�i(t)] �
��i jeee

>
i Pibij. Also eee>i Pibiw� ui � W� jeee>i Pibiuij so that

_vi � �eee>i Rieeei � ��i eee>i Pibi
2
� 2eee>i Pibi�i(x1; � � � ; xm): (43)

We require each��i > 0, then complete the squares to obtain
_vi � �eee>i Rieeei + (1=��i )�

2
i (x1; � � � ; xm):

Now consider the composite system Lyapunov candidateV =
m

i=1 civi, where eachci > 0. Taking the derivate ofV gives

_V �

m

i=1

ci ��min(Ri)jeij
2
2 +

1

��i
�>�i�

>

i � (44)

where�min(Ri) is the real part of the eigenvalue ofRi with the
minimum magnitude. DefineK� = [��; � � � ; ��] 2 m. Let D =
diagfc1�min(R1); � � � ; cm�min(Rm)g andM = m

i=1 ci�i�
>
i , so

that _V � ��>A�, whereA = D� 1
�
M . Then for some sufficiently

large�� > 0, the matrixA is positive definite. The remainder of the
theorem follows as for the direct adaptive case beginning with (24).

Remark 4: The results obtained here are again semiglobal due to
the definition of the RBNN’s with global results obtained in the case
whereSx = n for i = 1; � � � ; m.

Remark 5: Notice that for the indirect adaptive controller, we
haveui a function of �i and �i a function of sgn(ui) due to the
aw� (t) sgn(eee>i Pibiui) term in (33). For implementation purposes,
it is possible to bias the controller output so thatui only takes on
positive values so that�i and thusui may be easily calculated. This
is analogous to considering the controller output to be positive values
passed out of an analog-to-digital board, while the scaling and biasing
of the actuator are considered to be part of the plant dynamics. If,
for a particular application and choice of the RBNN’s, we may set
W� = 0, then it is possible to letaw� (t) = 0 so that�i = r

(d )
i +

ki;d �1e
(d �1)
i +� � �+ki;0ei+a� (t) sgn(eee>i Pibi)+a� (t)eee>i Pibi=2,

thus eliminating any dependence uponui.
Remark 6: The indirect adaptive controller does require a projec-

tion algorithm to ensure that the control signal is well defined for all
time. This may be easily achieved for RBNN’s with adjustable output
weights using a weighted average radial basis calculation since the
output of the RBNN is then no less than the value of the smallest
weight.

Remark 7: The indirect adaptive control routine does not make
any requirements upon the rate of change of the input gain for each
subsystem. In addition, we did not need to know the interconnection
strengths, representation errors, or bounds on�i(t). Because of the
functional approximation properties of RBNN’s, the functional form
of the subsystem dynamics does not need to be known.

VI. SIMULATIONS

Within this section, we will present illustrative examples for
both the direct and indirect approaches. While the approach could
be applied to intervehicle spacing regulation in a platoon of an
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Fig. 1. Two inverted pendulums connected by a spring.

Fig. 2. Control of the pendulums using the a proportional feedback controller (usinguk ).

automated highway system, since that system fits the assumptions
of our framework [16], instead we study the control of two inverted
pendulums connected by a spring as shown in Fig. 1. Each pendulum
may be positioned by a torque inputui applied by a servomotor at
its base. It is assumed that both�i and _�i (angular position and rate)
are available to theith controller fori = 1; 2.

The equations which describe the motion of the pendulums are
defined by

_x1; 1 =x1; 2 (45)

_x1; 2 =
m1gr

J1
�

kr2

4J1
sin(x1; 1) +

kr

2J1
(l� b)

+
u1

J1
+

kr2

4J1
sin(x2; 1) (46)

_x2; 1 =x2; 2 (47)

_x2; 2 =
m2gr

J2
�

kr2

4J2
sin(x2; 1)�

kr

2J2
(l� b)

+
u2

J2
+

kr2

4J2
sin(x1; 2) (48)

where�1 = x1; 1 and�2 = x2; 1 are the angular displacements of the
pendulums from vertical. The parametersm1 = 2 kg andm2 = 2:5
kg are the pendulum end masses,J1 = 0:5 kg andJ2 = 0:625 kg
are the moments of inertia,k = 100 N/m is the spring constant of
the connecting spring,r = 0:5 m is the pendulum height,l = 0:5 m
is the natural length of the spring, andg = 9:81 m/s2 is gravitational
acceleration. The distance between the pendulum hinges is defined
as b = 0:4 m, where, in this example,b < l so that the pendulums
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Fig. 3. Control of the pendulums using the proposed direct adaptive decentralized technique.

Fig. 4. Control of the pendulums using the proposed indirect adaptive decentralized technique.

repel one another when both are in the upright position. It is easy to
see that the pendulum equations of motion fit (4).

Here we will attempt to drive the angular positions to zero,
so that ei = ��i [i.e., ri(t) = 0]. We will first demonstrate
that simple decentralized proportional feedback controllers appear to
stabilize the system. Choosingui = 20ei for i = 1; 2, we find that
the pendulums appear to be stabilized, but exhibit relatively large

oscillatory behavior due to the lack of damping as shown in Fig. 2.
Selectinguk = 20ei, it is possible to augment the proportional
controllers with the decentralized direct adaptive controllers to help
regulate the system. Here we choose to input�i=� and �i=5 to the
ith RBNN controller with centers evenly spaced between [�1, 1] for
the �i=5 input and [�1, 1] for the �i=� input with �i = 1. The
inputs were normalized because the RBNN definition considers�
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as a constant. Thus scaling the inputs ensures that the RBNN basis
function’s size of influence will be appropriate for each input. Using
10 centers for each input dimension yields a total of 100 adjustable
parameters for each RBNN with a weighted average formulation. We
additionally chose�i = 2000; �� = 10; �� = 10 and each�i so
that L̂(s) = s2 + 4s+ 4 has roots at (�2, �2). The performance of
direct adaptive controller is shown in Fig. 3.

Next, we apply the indirect adaptive scheme using weighted
average RBNN’s for the inverted pendulum example. Rather than
choosing someuk , we may now choose�k and �k if desired.
Here we let�k = 0 and�k = 1. Since the control gains are simply
constants for this example (i.e., the control inputs are multiplied by
constants1=J1 and1=J2 for u1 andu2, respectively) we letW� = 0
for i = 1; 2. This choice is valid since an RBNN may exactly
approximate a constant. This implies that we may setaw� (t) = 0
to simplify the control law. In addition, a projection algorithm was
used to ensure thatF� + �k � 0:1. This is done using a projection
algorithm such that each weight forF� remains greater than�0:9 so
thatF� > �0:9 when using a weighted average RBNN. We chose
�i=� as the input forF� andF� with 20 centers evenly spaced
between [�1, 1]. With �i = 200; �� = 2, and�� = 2, the output
trajectories for the inverted pendulums are shown in Fig. 4.

VII. CONCLUDING REMARKS

Within this paper, we presented direct and indirect adaptive control
schemes appropriate for a class of interconnected nonlinear systems
using radial basis neural networks. Using an on-line approximation
approach, we have been able to relax the linear in the parameter
requirements of traditional nonlinear decentralized adaptive control
without considering the dynamic uncertainty as part of the inter-
connections or disturbances. Semiglobal asymptotic stability results
were obtained with global results achieved by placing additional
assumptions upon the RBNN’s.

Although the adaptive schemes presented here relax the linear
in the parameter requirements for subsystems, there are distinct
disadvantages associated with the on-line approximation approach
to decentralized control. 1) The schemes presented here do not nec-
essarily identify physically meaningful parameters, which schemes
for linear in the parameter subsystems might do. Often, however, the
parameters identified using traditional approaches are a combination
of a number of physical parameters so that it may be difficult to
extract useful information about the subsystems. 2) Even though we
have shown asymptotic stability for the tracking errors, we have
made no guarantee about convergence of the controller parameters
to their ideal values (e.g.,Au may not converge toA�

u ). This
may not be a concern in cases where stable control is the primary
objective as it is here. 3) The approaches here may require a large
number of adjustable parameters for each RBNN due to the curse
of dimensionality associated with RBNN’s which are linear in the

parameters. If using a decentralized approach was decided based
upon computational overhead, then there may be circumstances for
which other less computationally intensive approaches would be more
appropriate.
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