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Decentralized Adaptive Control of Nonlinear strengths. Using radial basis neural networks to approximate unknown
Systems Using Radial Basis Neural Networks functions on-line allows us to extend the results in [16] to include the
case of both parametric and dynamic uncertainty. A direct adaptive

Jeffrey T. Spooner and Kevin M. Passino approach approximates unknown control laws required to stabi-

lize each subsystem, while an indirect approach is provided which
identifies the isolated subsystem dynamics to produce a stabilizing

) controller. Both approaches ensure asymptotic tracking using onl
neural network controllers are presented for a class of interconnected pp ymp 9 9 y

nonlinear systems. The feedback and adaptation mechanisms for each Iocallfeedback signals. . . .
subsystem depend only upon local measurements to provide asymptotic ~ This correspondence is organized as follows. In Section Il, an
tracking of a reference trajectory. Due to the functional approximation —overview of radial basis neural networks is given. In Section Il
capabiliies of radial basis neural networks, the dynamics for each the details of the problem statement for the decentralized system are

subsystem are not required to be linear in a set of unknown coefficients . . .
as is typically required in decentralized adaptive schemes. In addition, presented. The adaptive algorithms for each subsystem using only

each subsystem is able to adaptively compensate for disturbances andlocal i-nformiation are presented and Composite system stability is
interconnections with unknown bounds. established in Sections IV and V for the direct and indirect cases,

respectively. Simulation examples are given in Section VI, while
concluding remarks are provided in Section VII.

Abstract—Stable direct and indirect decentralized adaptive radial basis

. INTRODUCTION

Decentralized control systems often arise from either the physical
inability for subsystem information exchange or the lack of computing
capabilities required for a single central controller. Furthermore, A radial basis neural network (RBNN) is made up of a collection
the difficulty of, and uncertainty in, measuring parameter values parallel processing units called nodes. The output oftih@ode is
within a large-scale system may call for adaptive techniques. Singefined by a Gaussian functian(z) = exp(—|z — ¢;|*/o7), where
these restrictions encompass a large group of applications, a varietg R" is the input to the network;; is the center of théth node,
of decentralized adaptive techniques have been developed. Maaledlis; is its size of influence. The output of a radial basis network,
reference adaptive control (MRAC) based designs for decentralized= F(x, 4), may simply be calculated by either a weighted sum
systems have been studied in [1]-[3] for the continuous time case that

Il. RADIAL BASIS NEURAL NETWORKS

and in [4] for the discrete time case. These approaches, however, are P
limited to decentralized systems with linear subsystems and possibly Fla, A) =" aizi(x) 1)
nonlinear interconnections. Decentralized adaptive controllers for i=1

robotic manipulators were presented in [5] and [6], while a schergg by a weighted average
for nonlinear subsystems with a special class of interconnections was
presented in [7]. It was shown in [8] that it is possible to provide

hsi

. . . . L a;z; (x)
stable tracking in decentralized systems which contain uncertainties / e (
which are bounded by polynomials with known order. These previous Fla, A) = =—— (2
results consider subsystems which are linear in a set of unknown zi(x)
parameters, or consider the uncertainties to be contained within i=1
tbhoeur(]:g/ggmlcs describing the subsystem interconnections which are... 4 _ [a1.---. a,]T is a vector of network weights.

VYe notice that (1) and (2) may be rewritten &z, A) =

On-line function approximation approaches have been successf%yc(X) where ¢(X) is a set of radial basis functions defined
applied to a wide variety of control problems, in particular in the are& CT(JU’) — [,l(ﬂt) .-+, z,(x)] for the weighted sum, (1), and
) = [z , zp(a » (1),

of nonlinear adaptive control of SISO systems (see [9]-[13] forexams '\ _ "y " _ P (). for th iahted
ples). On-line function approximation approaches adjust paramet ?(’L) 1), - zp(@))/ 2oz #i(), for the weighted average

within 2 univergal approximator (suc.h as a fuzzy. system or negraéiven a single RBNN, it is possible to approximate a wide variety
network) to estimate unknown nonlinearities which may desc”%‘?functions simply by making different choices fdr. In particular,

plant dynamics or a desired control law. Universal approximatohsthere are a sufficient number of nodes within the network, then
possess the property that, given an appropriate approximator SUUCIYIE, o oxists somel* such that

it is possible to represent continuous nonlinearities over a compact
space with arbitrary accuracy as described in [14] and [15]. This sup |F(z, A") — f(2)| < W
means that entire classes of nonlinearities may be represented with a TE€5s
single approximator structure using different parameter choices. whereS, is a compact set, and” > 0 is a finite constant provided
In this correspondence, we exploit the function approximatiof(z) is continuous [17]. This lets us expregéz) = F(x, A*) +
capabilities of radial basis functions to provide asymptotic tracking(z) with |w(z)] < W whenz € S.. Notice that even though
given a class of nonlinear subsystems with unknown interconnectiRBNN’s are linear in a set of adjustable parameters, we may, e.g.,
Manuscript received July 15, 1997; revised August 17, 1998. Recommené"éﬂorm.(lmate a functiorf () = a + ms(bi—r ¥) which is not Illnear
by Guest Editors, M. Lemmon and A. Michel. In"an independent set of paramet@rsb] ' . Thus we are using an
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membership centers [9], Takagi—Sugeno fuzzy systems [13], CMAfatoon of an automated highway system. In this correspondence, we

networks, among others. show that it is satisfied for the control of two inverted pendulums
connected by a spring. It should be noted that if the interconnections
ll. A CLASS OF DECENTRALIZED SYSTEMS satisfy [6:(-)] < 370, 7i.jly,l2 (which is the case for many

mechanical systems), theéfi (-)| < 25y vivi(leslz + [rjl2) where
y, = [y, "7 andr; = [ren -, )T which satisfies
& = filwr, 0, wm) + gilwi)uy 3) Assumption 3 provided eack is bounded.

yi =hi(ze, -y Tm)

Here we consider each subsystéinto be SISO such that

. . . . IV. DIRECT ADAPTIVE CONTROL
wherex; € R™ is the state vector; € R is the input, and;; € R is

the output ofS;. We assume that the functioffs(), ¢:(-) € R" and Because state information about tile subsystem is only available
hi(-) € R,i =1, ---, m are smooth. If each sut;system has stronfgr theith controller, a standard feedback linearizing control law may

relative degreel;, then the output dynamics may be rewritten as not be defined for the composite system, even if the plant dynamics
are known. Ideally we may, however, define a controller which

tde) 3 (e s 4 A (F. @ p” . .

y,( = ai(wi) + filwi)ui + Ailt, w1, -+, wm) (4)  compensates for the dynamics of each isolated subsystem. For the
where y'"*) is the dith time derivative ofy; [16]. Here we are ith isolated subsystem, a feedback linearizing controller is defined by
assuming that the influence of the other subsystémsj # i, is i (i vs) = —ai(ws) +vilt) _ o (204, i) + Uk, (5)

represented by the\;(¢,z1,...,zn,) term in (4). We also assume Bi(xq)

that for somejo, > 0, we have/(x;) > fo, so that the control \ here the signat; will be defined belowy.., (x:, v;) is the unknown
gain is bounded away from zero (for convenience we assume tatiion of the control law that is smooth in its arguments, and
Bi(xi) > 0_)' . ui, (x;) is a known part of the control which is assumed to be
Assumption 1—Plant:The plant can be defined by (3) and transye|| defineda priori. The termuy, is included to allowa priori
formed to (4) with input gain bounded By < jo, < fi(xi) < f1;-  control knowledge into the decentralized controller design. The ideal
The zero dynamics for each subsystem are exponentially attractiyg-antralized control function (5) may be represented by an RBNN
[18]. The ith subsystem input gain rate of change is bounded Wr other approximation structuref.., such that
|8:(x:)] < B; whereB; € R is a finite constant defined later in !
Theorem 1. ui = Fuy (i, vis AL )+ u, (23) + wa, (06, 0:) (6)
The tracking error forS; is defined bye; = 7 — yi. OUr \yhere the vector of ideal control parameters is defined as
objective is to design an adaptive control system for each subsystem
which will cause the outpuy; of a relative degreel; subsystem A% =arg min sup 1P (26, 0, Aus) = s (20, 05)
S; to track a desired output trajectomy (i.e., ¢; — 0) in the ~ ™ A€ |0ie 80, vieS,, re T
presence of interconnections and unknown disturbances, using only @)
local measurements. The desired output trajectory may be defined by
a signal external to the control system so that the firsderivatives SO thatw.,(xi, v;) is the representation error which arises when
of the ith subsystem’s reference signal may be measured, or by u, (i, i) is represented by an RBNN of finite size. From the uni-
a reference model, with relative degree greater than or equd! toversal approximation property, we know that for a given approximator
which characterizes the desired performance. This requirement legdigcture, there exists;,, such thatjw.,| < W., for some finite

to the following assumption. W., > 0. The subspaces$.. and S,, are defined as the compact
Assumption 2—Reference ModéThe desired output trajectory Sets through which the state trajectories for ttte subsystem and

and its derivativesr;, - - -, ,.l(dﬁ for the ith subsystemS; are vi may travel. The subspade,, is the convex compact set which

measurable and bounded. contains feasible parameter sets gy, . The stability proof to follow

Let the scalarsy; ; quantify the “strength” of the interconnec-Will establish bounds forS., and 5.,. The following assumption
tions and the output error vector for thth subsystem be defined Summarizes the controller requirements.

by e; = [es, -+, /""V]T. It is assumed that the interconnec- Assumption 4—Controlif w; € L2, then ux, € Leo. AlsO,
tions satisfy Ai (a1, -+, xm) = 6:(t) + 8i(a1, -+, om), Where assume that the representation ewrqr, (x;, v;) is bounded by some
i (ar, s )| < 7 v slejle and 8i(t) € Loo. Let ©F = Wy > 0, i€ fwy, (i vi)| < W,

(sup(6,(t)) — inf(6.(t)))/2 be a measure of the variation 6f(t) An adaptive algorithm will be define_d to estimate,, with 4,,,.
and; = (sup[f:(t)] + inf(#;(¢)))/2 be a measure of the centerThese estimates are then used to define the control law as
position off;(f). We may thus let; () = 4; + 6(#) for somef; (t), wi = Fu(2iy vis Au,) + un, (:) ®)
where [0;| < ©7F, with ©] assumed to be bounded. Also,df is ) ) )
nonzero, we may absom into a;(x;) within (4) as an unknown WhereF..(wi, vi, Au,) is the RBNN used to approximate an ideal
bias since it is not dependent upon the other subsystem states. §@Riroller for theith subsystem. A parameter error vector is defined
assumptions for the interconnections are summarized as follows. 88 ¢u; = A, — Ay, for each subsystem.

Assumption 3—Interconnectionghe interconnections satisfy (d"_f) is desired (Tfitl)the output error of théh subsystem follow
, e+ kia;—e;”" 7 + -+ + kioei = 0, where the coefficients
Ailrr, ooy am) = 0i(1) + 8i(r1, oy ) are picked so that eadhi(s) = s" +k; 4,—15"" 7'+ -+ + ki o has
where its roots in the open left-half plane (is Hurwitz). The error dynamics

m for the ith subsystem may be expressed as
[6i(er, -y )| < ZV"J'@]'Z and #i(t) € Lo ) =D () = Bilwiui — Ag(w, <oy ).
j=1

This assumption on the interconnections can be satisfied by a var\f%dmg and subtracting’; (;)u;” and using the definition of; in

of decentralized nonlinear systems. For instance, in [16] it is showr’ we obtain
to be satisfied for an intervehicle spacing regulation problem in aef.d” = 7-50’” = Bi(ax)ui —ui] —vi(t) — Ai(zi, -+, 2). (9)
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Let ag,(t) anda,,(t) be scalar time functions and shortly). Taking the time derivative of; yields

vi =1 kil 4o ke + an, (1) b= (P AT P e _QCiTPibiAv(u L Tm)
L . . . . (A ? y m
_Sgn(ei ) an.(H)el P /2. ,(i,(",,) Bi (i)
_ elTP,;e,;/f?(:L',;) L2 2 (5 b . QelTP,;b,;
where P, € R%*% is a positive definite matrix defined by a 37 (i) g T Bala)
Lyapunov matrix equation and € R/ is a vector. These will both . (—ﬂ;(:m)[uz —u] — ap, sgn (e?l—’,'bl) - a%.eiTPibi/2>
be defined shortly. Using the definition of, the error dynamics . ! !
may be expressed as 4= 2 b0, ¢o 4= b, éh . (15)
B1:m0; B, :

C— Aes A —BA e Mus —u¥l — e Tpy. . . . - . L _
€ = Aiei +b’( Bilwi)lui — ui] — as, bbn(e" PZbZ) Slnce eachA; is negative definite, given some positive definite
— aw el Pbif2 — Aj(ar, .rm)) (10) R;, thereTexits a unique symmetric positive definffe satisfying
PA; +A{ P, = —R,, a Lyapunov matrix equation.

where Sincedu, = Au,, ¢o, = ap,, anddy,; = a.,, using the definition
0 1 0 0 of the adaptlve laws (15) may be written as
—_el R.e: 2et Pb-
(.) 0 1 0 b = fiei 2,81 ibi Ay, -y am)
A= : : : : Bi(xi) Bi(a:)
0 0 0 . 1 _ e,;TPL'el'B(;L'l') i , QGTRIH
—kijo —kix —kio - —kia,—1 B2 () 51, o Bilx)
andb; = [0,0,---,0,1" € R". : (ﬁi(wi)wui — as; sgn(ezTPibi) - ameTPz'bi/2)
In the analysis to follow, we will use the fact that — u; = 1 T 2
46;2(;117- — W, where + ﬁTd)Ki (6;‘ Pibi) . (16)
T = OFu,(iy viy Au,) Sincel/B:, < 1/8i(x;), anday, > 0, a., > 0 we have
T 0A., .
p —e] Rie;  2e] Pb; A N e?Piei,H(mi)
with |w,,,| < W,,,. Consider the following update laws: bi < Gi(z)  Bi(zo) (1, -0 wm) = T Bz
: o* * 2
Au; =1u;Cusel Pibi (11) +2¢] Pobiw., — 230' - g' (e,TPvai) .
Pl P15
a0, =, (12) )
9 If we choose®;] = 3,,07 /5, + 31, W.,, then the inequality
) - i i Wy
(e, =Nee, (ei Pibi) (13)
ol Pib; *
_ _ei B ) el P, < 20 e (18)
wheren,, > 0, ng, > 0, andn,, > 0,7 =1, ---, m are adaptation Bizi) B,

gains. The update law (11) is used to estimate the dynamics ,0
the subsystem under control, while the update laws (12) and (
are used to stabilize the subsystem by estimating the effects of the, —e; Rie; Kl (T 2 e Pbibi(wy, -, Tm)
interconnections. Both (12) and (13) increase monotonically and we * < “Bi(mi) B, ( ' Pb') - Bi(x:)

1hé3lds Substituting (18) in (17) yields

require thatas, (0), a.,(0) > 0 so a projection algorithm may be e Piesfiar)

required to ensure that they do not become unnecessarily large. — . (29)
Theorem 1: Given the decentralized system with reference mod- B2 (i)

els satisfying Assumption 2, subsystems satisfying Assumption IL,is possible to setx! = 0 and uselM-matrix techniques to

interconnections satisfying Assumption 3, and controllers satisfyirgtermine sufficient conditions for system stability [19]. Due to the
Assumption 4, then the control law (8) with adaptation laws (11)-(18bnservativeness of th&/-matrix techniques, however, the resulting
will ensure that fofi = 1, - -+, m if B; < (80, Amin(R:)/Amax(P%)) composite system stability results are very restrictive for systems

then: with relative degreel; > 1. Here, we complete the squares (in an
1) the subsystem outputs and their derivatives, -, y{*'~", analogous manner to [2]) to obtain
are bounded; T 5 T
2) each control signal is bounded, i.e;,+ ui, € Loo; i < _? Re 4 Db (f}z Zm) A'““Sf‘??l“ “ (20)
3) the magnitude of each output errfr;|, decreases asymptoti- Pila:) w107 (i) p (i)
cally to zero, i.e.limi—o [e:| = 0; where eachs; > 0 and Amax(P) denotes the maximum eigenvalue
4) limg—co |Au;| = 0, imy oo |as,| = 0, andlim; oo |dn;| = of P.
0; Now consider the composite system Lyapunov candidate=
where R; is defined below. Yo, civi, where each; > 0. Taking the derivative of” and using

Proof: Consider the following Lyapunov-type function for the(20) and Assumption 3 gives
ith subsystem:

T y m 2
T e & Re; B, N
e, Pe; 1 T 1 2 1 9 V< Z ci 2 + Z visles e
v; = — — Gy, Ou; + 5 Op, he 14 . Bi(x:) RKYB2(x) \ 4
v ,3L(-EL) Nu, (’)“z@ 2 + ,317'7]97' @97 + Qﬁlgnh‘i th ( ) i=1 ( ) =1
)\ulax pi Bi@:ei
wheredy, = ag, — OF, ¢n, = a., — &}, and eachP; € R *% is + %} @1)
a positive definite and symmetric matri®) andx; will be defined AN
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Since3""", 7i,jlejla = x T, wherex = [lei]s, -+, lem|2] " and
i =[v.1, % ml ., (21) may be written as
e — )\max(Pi)Bi |ei|%
- < 7 _)\111111 7 -
Fede (P + R ) 00
SCTRLS ) (22)
KB () '

where Amin (R;) is the real part of the eigenvalue &f; with the
minimum magnitude. Require th&; < fo, Amin(Ri)/Amax(F;) SO
that —Awin (Ri) + Amax(Pi)Bi/Bo, < —ei, where eack; > 0 is

2053

V. INDIRECT ADAPTIVE CONTROL

The direct adaptive decentralized control law was defined using an
RBNN with adjustable parameters to approximate For the indirect
case, however, an identifier will be used to approximate the isolated
system dynamics so that a feedback linearizing controller may be
defined based on the certainty equivalence principle. We will first
represent the isolated system dynamics (4)ds:) = v, +ax, (i)
and gi(x;) = fBu, + Bk, (xi), wherea,, and 3., represent the
unknown dynamics, while;,, andjy, represent the known dynamics
(which can be equal to zero and all the results to follow still hold).
Representing the unknown dynamics with an RBNN, we see

some finite constant. This gives us

. ” —F'|8'|§ B, T T ai(wi) = Fa, (:E’:’ ‘427') + g + Wy (26)
V<> c,-|: Bz T K*BZE;L’I') x Il x] (23) Bixi) = Fp, (i, A, ) + Br, + wg,. (27)
=1 i [
Define K* = [k}, ---, k). Let k] = x*, i = 1, ---, m for The parameters faF,, (z;, A%,) are defined by

some0 < k", define
D = diag{cie1 /B1. -+

Al

a;

min
A, €90,

9 07776777,/{31,%}

and M = S ¢, 0D /33, so thatV < —x ' Ay, where
A = D — (1/xk")M. Then for some sufficiently large” > 0, while the parameters faFs(x:, Aj,) are defined by
the matrix A is positive definite. This diagonal dominance property
may be established using Gershgorin’s Theorem [20]. Now define

[X’* — [,{*7 cenl K*]T c R™ as

= arg sup

zy; ES’IZ.

|]:ai(=75i-/AO/i) — Quy |:| (28)

min

Az = arg
? Ap, €Qp,

sup |Fg, (@i, Ag,) — Bu, |:| (29)

Ty eS"‘i

K" = arg min
K*eR™
0<K™

. X 1 T P .
{I‘ K*: A= D - — Mis positive def'n't'%' where the representation errors for, and .., are defined byu.,
and wg,, respectively. The bounds on the representation errors are
given by |wa,| < Wa, and |wg,| < Wy, for someW,, > 0 and

Wy, > 0. The subspac$.., is a compact set through which the state

(24)
There exists sufficiently large™ such thatA, defined by (24), is . .
positive definite, which implies that’ € £.., and thus|x|> € trajectory for theith subsystem may travel. The subspafis and

: . . . 3, are compact convex sets which contain the feasible parameter
L. Given bounded reference signals, Part 1 is established. With! B o * . .
sets forAZ, and 43, respectively. The components of the isolated

exponentially attractive zero dynamics, the states for each subsys e ; f )
) m dynami I roxim RBNN h
are bounded. Boundedness of the Lyapunov function thus ensutsfesSySte dynamics are approximated by $ 50 that

that u; + vy, € Lo SO Part 2 holds. Also Qi) = Fa (20, Aa, () + o, (27)

3'(1'7) = }—,37' (Iiﬂ ‘4/37' (f)) + /31\“7' (17)

(30)

/ XA dt < — / V dt 4 const (25) (31)
0

0

so that|x|. € L. Since all of the signals are well defined, weVhere 4., (f) and A, (#) will be updated on-line in an attempt to
also haveé;, € £% so thatd/dt|e:|» = e; &:/leil» < |e|. € Loo. Identify the _|solated system dynamics. _ _
Using Barbalat's Lemma, we thus establish that,_ |x|z = 0, An adaptive algorithm is used to estimat,, and A3, with
thus we are guaranteed asymptotically stable tracking for each of the: @nd As,, respectively. Parameter error vectors are defined as
subsystems so Part 3 holds. In addition, since each of the plant &hd = Ao, — Aa, and 63, = A, — Aj,. Using the current
control signals is bounded aith_ . |e;| = 0, convergence of the estimate for theth subsystem with no interconnections, a certainty
update law derivatives to zero is established by their definitidiis. €duivalence control term for thigh subsystem is defined as

Remark 1: The stability results are semiglobal in the sense that
they hold forz; € S., whereS.., is dependent upon the span of the
RBNN. In the case that the RBNN’s may approximate the feedback ) - . .
linearizing controller (5) globallyS., may be defined a&™ and assuming th_azﬁ,;(_az,;) is boynded away from zero (this may be ensured
S,. asR (rather than compact sets) so the results hold globally. USiNg @ projection algorithm). Let

Remark 2: The bound for the representation errbr,,., does not D g =1
need to be known for our choice of adaptation laws (all we needed vi=rg U E Ridi—e Tt ko
to know earlier was that it existed and we are guaranteed this). In + ag, (t) sgn (eiTPvai> + a.,(t)e; Pib;/2
addition, the magnitude of the interconnections are estimated on-line
to produce stable tracking.

Remark 3: The direct adaptive control scheme presented here does
require thatB; < o, Amin(R:)/Amax(F;). That is, the rate at which where the adaptive parametess. (¢), a.,(t), and a.z,(t) are
the control gain changes may influence the design of the update aetl to be defined. The ternas, sgu(e] Pib;) is used to reject
control laws through the choice & given some\ . For subsystems unknown disturbances, while the term..e; P;b;/2 is used to
with 3;(x;) a constant, then this requirement is always satisfied sincempensate for unknown effects from the interconnections. In ad-
B; = 0 is a valid choice. As the rate of change of the contrddition, as. sgu(e] P;b;u;) has been included to compensate for the
gain increases, however, this bound becomes more restrictive for thpresentation errowg,. The control assumptions for the indirect
control design. adaptive controller are summarized as follows.

U; = —(i’l‘(,Tl') + Vl'//f%i(l'l‘) (32)

+ awg,; (t) sgn (C,TPLbLU,L> (33)
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Assumption 5—Controlilf =; € L3¢, thenay,, 8k, € L. The Proof: Consider the following Lyapunov-type function for the
representation errors., andwg, are bounded, i.ejw.,| < W,, ith subsystem:
and|wg,| < Wy, for someW,,; > 0 andWjs, > 0. A projection 1 1 1
Ll ! 4 P v, =e, Pe; + S 3 bag, + — H2 + 2 4 »2
algorithm is used to ensure thaf(x;) > fo,. vi =¢€; L€ . Pap; Pobi e, 0 T o P g, P
Proceeding in a similar manner to the direct case, we have ! ! K . (41)
egdf) = (Qi(wi) — ai(ws)) + (Bilws) = Bi(wi))us where eachP; € R**% s a positive definite and symmetric matrix.
—Ai(@r, e wm) = kg, el TY From the definition oy, , ¢+, ande..s,, we use a similar approach

to the direct case to obtain
.
— - —ki0e; — ag, sgn(e,j P,;b,‘) - -
0i = —e; Riei + 2e; Pibi[—wa, —wp,ui — Aj(z1, -+, &m)]
T T
— aniel Pibi/2 = v, sen (el Pbiu, ) 34 ) >
;€ ) / Awp; SEN| €; u ( ) S (6711‘1%) _ 2”,,,,’3{ (42)

- 26? e;TPz'bi e,;TP,'biu,' .

and Choosing®! = W.., + O ensures thae, Pb;[wa, + 6,(t)] <
] . ; O; el Pb;|. Also e/ Pibiws,ui < Wi, |el Pib;u;| so that
e =Ne; +b; [(@z‘(«’l’z’) —ai(wi)) + (Bi(as) = Bi(as))u )
i < —e] Rie; — i} (e Pibi)” = 2e] Pbidi(wr, -+, wm). (43)
— Aj(x1, -+, Tm) — ag, sgn (e;rPibi)
We require eachs! > 0, then complete the squares to obtain

- czMeTPibi/Z — Gwg; sgn(e;rPibiui)] 0; < —e] Rie; + (1/6D)62 (21, -\ Tm).
Now consider the composite system Lyapunov candidate=
whereA; andb; are as defined for the direct adaptive case. >, civi, where each; > 0. Taking the derivate of” gives
The identifier errors may be expressed as ) m 1
V<> [—Auunmi)m@ +— Tl x (44)
di(zs) — ai(z;) = Q)L Co; — Way; (35) i=1 ki
Bilai) — Bilai) = o, Cor — wg, (36) where \,.i,(R;) is the real part of the eigenvalue &; with the
minimum magnitude. Defind(* = [*, .-+, k"] € R™. Let D =
where w,,, and w, are representation errors. At this point, weliag{ci Amin(R1), -+, ¢mAmin(Rm)} and M = 372 ;T\, so
also define the total parameter identification error for the isolatédatl” < —x " Ay, where4 = D— L A1. Then for some sufficiently
subsystem dynamics a@s.s, = [¢a., ¢4,]' with the total regressor largex™ > 0, the matrixA is positive definite. The remainder of the
as(ap, = [(IZ_, (} ui]T. theorem follows as for the direct adaptive case beginning with[(24).
The following update laws are now defined for the decentralized Remark 4: The results obtained here are again semiglobal due to
indirect adaptive controller: the definition of the RBNN'’s with global results obtained in the case
whereS,, = R" fori =1, ---, m.
Ai = — nap.Cap,el Pib; (37) Remark 5: Notice that for the indirect adaptive controller, we
. T havew; a function ofy; andv; a function ofsgn(w;) due to the
wp; = 1wy Pibivs (38) awp. (t)sgn(e] Pbiu;) term in (33). For implementation purposes,

(39) it is possible to bias the controller output so thatonly takes on

‘ positive values so that; and thusu; may be easily calculated. This

ey =, (e;Rb;)Z (40) is analogous to considering the controller output to be positive values
passed out of an analog-to-digital board, while the scaling and biasing

Where 5., 1ws,. m0,, and 7., are fixed adaptive gains. TheOf the actuator are considered to be part of the plant dynamics. If,

parameter update law for the isolated system identifier (37) is useJ% a particular application and choice of the RBNN's, we may set

V. — it i . — C— (d)
estimate the dynamics of the subsystem under control. The update B\Wﬁ - %}bﬁn itis possible to let.s, (1) = 0 so thatv: = ;" +

(38) is designed to compensate for the effects of the representatforti—1¢: "+ FkioeiFao (1) sen(el Pibi)+ax, (e Pibi/2,
errorws,, while the update laws (39) and (40) are used to stabiliZBUS €liminating any dependence upon _ _
the subsystem by estimating the effects of the interconnections andteémark 6: The indirect adaptive controller does require a projec-
w.,. The parameter error associated with the representatiomegror {ion algorithm to ensure that the control signal is well defined for all
is defined ashug, = aws, — Ws,, while ¢s, ande,, are as defined time. This may be easily achieved for RBNN'’s with adjustable output

for the direct case. The adaptive parameters are initialized such tWi9hts using a weighted average radial basis calculation since the
aws, (0) > 0, ag,(0) > 0, anda,,(0) > 0 so thataws, (). ag, (), OUIPUL of the RBNN is then no less than the value of the smallest
wp; = U, dg; Z Y, Ry = wp (), ag;\t),

ax, (t) remain positive. weight. - . .
Theorem 2: Given the decentralized system with subsystems Remark 7: The indirect adaptive control routine does not make
satisfying Assumption 1, interconnections satisfying Assumption 81 requirements upon the rate of change of the input gain for each

and controllers satisfying Assumption 5, then the control law (3§}Jbsystem. In addition_, we did not need to know the interconnection
with adaptation laws (37)~(40) will ensure that, foe 1, - -, m: strengths, representation errors, or bound¥gn). Because of the
(d;—1) functional approximation properties of RBNN'’s, the functional form

e; Pb;

o, =1,

1 g(‘i::;s;yswm output and its derivatives,- - -, y; € f the subsystem dynamics does not need to be known.
2) each control signal is bounded, i.e,, € L;
3) the magnitude of each output errds;|, decreases asymptoti- VI. SIMULATIONS
cally to zero, i.e.lim; . |e;| = 0; Within this section, we will present illustrative examples for

4) limy— oo |Aag;| = 0, limy— o |dwp, | = 0, lim;—o |ag,| = 0, both the direct and indirect approaches. While the approach could
and lim; .o |ax,| = O. be applied to intervehicle spacing regulation in a platoon of an
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| b |

Fig. 1. Two inverted pendulums connected by a spring.

0.3 T T 1 T T T ¥ ! !

time (sec)

Fig. 2. Control of the pendulums using the a proportional feedback controller (using

automated highway system, since that system fits the assumptions &2, =22 (47)

of our framework [16], instead we study the control of two inverted ] magr  kr2\ . Lr

pendulums gqnnected by a sprin.g as shown in Fig. 1. Each pendulum 2,2 = < T 4J2> sin(wz, 1) — E(l =)

may be positioned by a torque inpuf applied by a servomotor at " 2

its base. It is assumed that bathandd; (angular position and rate) + ]—2 + 5 sin(zy 2) (48)
g2 4.9

are available to théth controller fori = 1, 2.

The equations which describe the motion of the pendulums #&'€r€f1 = x1.1 andf, = =, , are the angular displacements of the
pendulums from vertical. The parameters = 2 kg andms = 2.5

defined by
) kg are the pendulum end massds,= 0.5 kg and.J, = 0.625 kg
T11 =712 (45)  are the moments of inertid, = 100 N/m is the spring constant of
P <m1gr _ ﬂ) in(n) + ke (=) the connecting spring; = 0.5 m is the pendulum height,= 0.5 m
. J 4.1y ’ 2.J, is the natural length of the spring, apd= 9.81 m/s’ is gravitational
w kr? acceleration. The distance between the pendulum hinges is defined

7 .
EAEYA sin(s, 1) (46)  asp = 0.4 m, where, in this examplé, < [ so that the pendulums
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Fig. 3. Control of the pendulums using the proposed direct adaptive decentralized technique.
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Fig. 4. Control of the pendulums using the proposed indirect adaptive decentralized technique.

repel one another when both are in the upright position. It is easydsecillatory behavior due to the lack of damping as shown in Fig. 2.

see that the pendulum equations of motion fit (4). Selectinguy, = 20e;, it is possible to augment the proportional
Here we will attempt to drive the angular positions to zera;ontrollers with the decentralized direct adaptive controllers to help

so thate; = —#0; [i.e., ri(¢#) = 0]. We will first demonstrate regulate the system. Here we choose to imhytr andv; /5 to the

that simple decentralized proportional feedback controllers appearito RBNN controller with centers evenly spaced betweef,[1] for

stabilize the system. Choosing = 20¢; for i = 1,2, we find that the v;/5 input and 1, 1] for the §; /= input with ¢; = 1. The

the pendulums appear to be stabilized, but exhibit relatively larggputs were normalized because the RBNN definition considers
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as a constant. Thus scaling the inputs ensures that the RBNN basisameters. If using a decentralized approach was decided based
function’s size of influence will be appropriate for each input. Usingpon computational overhead, then there may be circumstances for
10 centers for each input dimension yields a total of 100 adjustahidich other less computationally intensive approaches would be more
parameters for each RBNN with a weighted average formulation. Velppropriate.
additionally chose;; = 2000, ns, = 10, ., = 10 and each\; so
that L(s) = s® 4 4s + 4 has roots at-{2, —2). The performance of
direct adaptive controller is shown in Fig. 3. REFERENCES
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