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Abstract

A decentralized, adaptive control law is presented to drive a network of mobile robots to an optimal

sensing configuration. The control law is adaptive in that it uses sensor measurements to learn the distri-

bution of sensory information in the environment. It is decentralized in that it requires only information

local to each robot. The controller is then improved upon by introducing a consensus algorithm to

propagate sensory information from every robot throughout the network. Convergence and consensus of

parameters is proven with a Lyapunov-type proof. The controller with and without consensus is demon-

strated in numerical simulations. These techniques are suggestive of broader applications of adaptive

control methodologies to decentralized control problems in unknown dynamic environments.

1 Introduction

We are interested in robot group control strategies that are fully decentralized over the group, adaptive
to changes in the environment and the group, provably convergent, and practically feasible. This paper
describes such a control strategy.

We present a decentralized controller that causes a network of robots to spread out over an environment
while aggregating in areas of high sensory interest. Furthermore, the robots do not know beforehand where
are the areas of sensory interest, but they learn this information on-line from sensor measurements. The
control strategy can be thought of as proceeding simultaneously in two spaces. In the space of robot positions,
the robots move to minimize a cost function representing the collective sensing cost of the network, similarly
to the control law in [Cortés et al., 2004]. At the same time, in a high-dimensional parameter space, each
robot adapts a parameter vector to learn1 the distribution of sensory information in the environment. The
robots eventually reach a near-optimal configuration, and if their paths are sufficiently rich, they reach an
optimal configuration. An overview of the control strategy is shown in Figure 1.

Our controller can be used by groups of robots to carry out tasks such as environmental monitoring
and clean-up, automatic surveillance of rooms, buildings, or towns, or search and rescue. For example,
consider a team of water-borne robots charged with cleaning up an oil spill. Our controller allows the robots
to distribute themselves over the spill, learn the areas where the spill is most severe and concentrate their
efforts on those areas, without neglecting the areas where the spill is not as severe. Similarly, a group of aerial
robots can be deployed with our controller to monitor human activity over a town. Using our controller,
they can learn the areas where most human activity takes place (the market, for instance), and concentrate
their coverage on those areas, while still providing coverage to less active areas. This behavior can be used to
deliver adaptive wireless connectivity or mobile phone coverage to the people in the town. Any application
in which a group of automated mobile agents is required to provide collective sensing over an environment
can benefit from the proposed control law.

∗Mac Schwager and Daniela Rus are with the Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA 02139,
Email: schwager@mit.edu, rus@csail.mit.edu.

†Jean-Jacques Slotine is with the Nonlinear Systems Lab, MIT, Cambridge, MA 02139, Email: jjs@mit.edu.
1We will use the words learning and adaptation interchangeably. Learning and adaptation are specifically meant in the

sense of parameter tuning, as in adaptive control, rather than the broader meaning often used in Biology and Bio-inspired
applications.
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The most important feature of our controller is that the robots learn a representation of the sensing
environment in closed-loop, in a provably stable way. We first describe a learning law in which each robot
uses only its own sensor measurements. We then include a consensus term in the learning law to couple
the learning among neighboring robots. The main effect of this coupling is that sensor measurements from
any one robot propagate around the network to be used by all robots. All robots eventually learn the same
function incorporating all the sensor measurements collected by all the robots.

Figure 1: An overview of the decentralized control scheme is shown. The robots, at positions pi, pj , and
pk, spread out over the environment, Q, to reach optimal final positions. Simultaneously, each robot adapts
a parameter vector (âi, âj , and âk) to build an approximation of the sensory environment. The parameter
vectors for neighboring robots are coupled in such a way that their final value, a, is the same for all robots
in the network.

1.1 Relation to Previous Work

We use the notion of an optimal sensing configuration developed in [Cortés et al., 2004]. This work itself
adapted concepts from locational optimization [Weber, 1929,Drezner, 1995], which is the study of optimally
placing industrial facilities. This, in turn, derives from a classical problem of finding geometric median
points, which has been attributed to Fermat. Similar frameworks have been used for muli-robot problems in
a stochastic setting, for example [Arsie and Frazzoli, 2007], however the problem we consider is a determinis-
tic one. There are also a number of other notions of mult-robot sensory coverage (e.g. [Choset, 2001,Latimer
IV et al., 2002,Butler and Rus, 2004,Ögren et al., 2004]), but we choose to adopt the locational optimization
approach for its interesting possibilities for analysis and its compatibility with existing ideas in adaptive
control [Narendra and Annaswamy, 1989, Sastry and Bodson, 1989, Slotine and Li, 1991]. Our emphasis in
this paper is on incorporating learning to enable optimal coverage of an unfamiliar environment. [Arsie and
Frazzoli, 2007] This is in contrast to [Cortés et al., 2004] and other papers that use the same optimization
framework (e.g. [Salapaka et al., 2003,Cortés et al., 2005,Pimenta et al., 2008a]) in which the distribution
of sensory information in the environment is required to be known a priori by all robots. This a priori
requirement was first relaxed in [Schwager et al., 2006] by introducing a controller with a simple memory-
less approximation from sensor measurements. The controller was demonstrated in hardware experiments,
though a stability proof was not found. In the present work we remove this a priori requirement by intro-
ducing an adaptive controller inspired by the architecture in [Sanner and Slotine, 1992]. The results in this
paper elaborate and improve upon our previous works [Schwager et al., 2007,Schwager et al., 2008b].

It is found that when each robot uses only its own sensor measurements to learn the distribution of sensory
information, learning performance can be sluggish. We address this problem by including a consensus
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term2 in the parameter adaptation law. Consensus phenomena have been studied in many fields, and
appear ubiquitously in biological systems of all scales. However, they have only recently yielded to rigorous
mathematical treatment; first in the distributed and parallel computing community [Tsitsiklis, 1984,Tsitsiklis
et al., 1986,Bertsekas and Tsitsiklis, 1989,Bertsekas and Tsitsiklis, 2007] in discrete time, and more recently
in the controls community in continuous time [Jadbabaie et al., 2003,Olfati-Saber and Murray, 2004,Wang
and Slotine, 2004,Blondel et al., 2005,Wang and Slotine, 2006,Cucker and Smale, 2007]. In the present work,
consensus is used to learn the distribution of sensory information in the environment in a decentralized way
by propagating sensor measurements of each robot around the network. This is similar to distributed filtering
techniques that have recently been introduced, for example in [Lynch et al., 2008,Zhang and Leonard, 2008],
though in contrast to those works, we are concerned with maintaining provable stability of the combined
learning and control system. Consensus improves the quality and speed of learning, which in turn causes
the robots to converge more quickly to their optimal positions.

In short, the main contributions of this work are to (1) provide a controller that uses parameter adapta-
tion to accomplish coverage without a priori knowledge of the sensory environment, and (2) incorporate a
consensus term within the parameter adaptation law to propagate sensory information among the robots in
the network. Using a Lyapunov-like proof, we show that the control law causes the network to converge to
a near-optimal sensing configuration (Theorems 1 and 2), and if the robots’ paths are sufficiently rich, the
network will converge to an optimal configuration (Corollaries 1 and 2). The dynamics and the environment
are assumed to exist in a deterministic setting throughout this work, as is typical in adaptive control.

We set up the problem, provide some background on the results of locational optimization, and state the
main assumptions and definitions in Section 2. We present the basic controller and prove convergence to a
near-optimal coverage configuration in Section 3. Section 4 introduces the parameter consensus controller
and Section 5 discusses and compares parameter convergence rates for the basic and consensus controllers.
Alternative stable adaptation laws are discussed in Section 6. Section 7 describes the results of numerical
simulations, and conclusions are given in Section 8. We prove two lemmas in Appendix A and give tables of
mathematical symbols in Appendix B.

2 Problem Set-up

Let there be n robots in a bounded, convex environment Q ⊂ R
N . An arbitrary point in Q is denoted q,

the position of the ith robot is denoted pi ∈ Q. Let {V1, ..., Vn} be the Voronoi partition of Q, for which the
robot positions are the generator points. Specifically,

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i}

(henceforth, ‖ · ‖ is used to denote the ℓ2-norm). The robots are assumed to have some physical extent,
therefore no two robots can be at the same position at the same time, pi(t) 6= pj(t) ∀i 6= j.

Define the sensory function to be a continuous function φ : Q 7→ R>0 (where R>0 is the set of strictly
positive real numbers). The sensory function should be thought of as a weighting of importance over Q. We
want to have many robots where φ(q) is large, and few where it is small. The function φ(q) is not known
by the robots in the network, but the robots have sensors that can measure φ(pi) at the robot’s position pi.
The precise definition of the sensory function depends on the desired application. In an application in which
a team of robots are used to clean up an oil spill, an appropriate choice for the sensory function would be the
concentration of the oil as a function of position in the environment. For a human surveillance application in
which robots use audio sensors, φ(q) may be chosen to be the intensity of the frequency range corresponding
to the human voice.

Finally, let the unreliability of the robot’s sensors be defined by a quadratic function 1
2‖q − pi‖

2. Specif-
ically, 1

2‖q − pi‖2 describes how unreliable is the measurement of the information at q by a sensor at pi.

2The phenomenon of decentralized consensus is known by many names including flocking, herding, swarming, agreement,
rendezvous, gossip algorithms, and oscillator synchronization. All of these are, at root, the same phenomenon—convergence of
the states of a group of dynamical systems to a common final vector (or manifold) through local coupling.
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2.1 Locational Optimization

In this section, we state the basic definitions and results from locational optimization that will be useful in
this work. More thorough discussions can be found in [Cortés et al., 2004,Schwager et al., 2006].

We can formulate the cost incurred by the network sensing over the region, Q, as

H(p1, . . . , pn) =

n
∑

i=1

∫

Vi

1

2
‖q − pi‖

2φ(q) dq. (1)

Notice that unreliable sensing is expensive and high values of the sensory function, φ(q), are also expensive.
Qualitatively, a low value of H corresponds to a good configuration for sensory coverage of the environment
Q.

Next we define three properties analogous to mass-moments of rigid bodies. The mass, first moment,
and centroid of a Voronoi region Vi are defined as

MVi
=

∫

Vi

φ(q) dq, LVi
=

∫

Vi

qφ(q) dq, and CVi
= LVi

/MVi
, (2)

respectively. Note that φ(q) strictly positive imply both MVi
> 0 and CVi

∈ Vi\∂Vi (CVi
is in the interior

of Vi). Thus MVi
and CVi

have properties intrinsic to physical masses and centroids. The moments and the
Voronoi regions themselves depend on the robot positions. Remarkably, despite this dependency, a standard
result from locational optimization [Drezner, 1995] is that

∂H

∂pi

= −

∫

Vi

(q − pi)φ(q) dq = −MVi
(CVi

− pi). (3)

Equation (3) implies that critical points of H correspond to the configurations such that pi = CVi
∀i, that

is, each agent is located at the centroid of its Voronoi region. It is also known that all such points are local
minima. This brings us to the concept of optimal coverage summarized in the following definition.

Definition 1 (Optimal Coverage Configuration) A robot network is said to be in a (locally) optimal
coverage configuration if every robot is positioned at the centroid of its Voronoi region, pi = CVi

∀i.

We restrict ourselves to looking at local minima of H in this paper. Global optimization of (1) is known to
be difficult (NP-hard for a given discrete representation of φ(q)) even in the centralized case. Thus when
we refer to an optimal coverage configuration we mean a locally optimal one. Variations on the control law
which attempt to find global minima through exploration are discussed in [Salapaka et al., 2003, Schwager
et al., 2008a].

2.2 Assumptions and Definitions

In this section, we describe some of our implicit assumptions that are common in either mulit-robot control,
or adaptive control. We comment on the restrictiveness of these assumptions before formally stating one
main assumption and several definitions which will be leveraged in our analysis.

Firstly, we assume that the robots have integrator dynamics

ṗi = ui, (4)

where ui is the control input. We can equivalently assume there is a low-level controller in place to can-
cel existing dynamics and enforce (4). Higher order dynamics can be accommodated, but the resulting
complication obscures the main result.

We assume the robots also are able to compute their own Voronoi cell, Vi = {q | ‖q − pi‖ ≤ ‖q − pj‖}.
This is common in the literature [Salapaka et al., 2003,Cortés et al., 2004,Pimenta et al., 2008a], though it
presents a practical conundrum. One does not know beforehand how far away the farthest Voronoi neighbor

4



will be, thus this assumption cannot be translated into a communication range constraint (aside from the
conservative requirement for each robot to have a communication range as large as the diameter of Q). In
practice, only Voronoi neighbors within a certain distance will be in communication, in which case results can
be derived, though with considerable complication [Cortés et al., 2005]. Indeed, the results of [Cortés et al.,
2005] suggest that performance degrades gracefully with decreasing communication range among robots.

Also, as mentioned previously, we assume the sensory function φ(q) is static for the purposes of our
analysis. The principle of timescale separation commonly used in control system analyses suggest that our
results will apply to a φ(q) that varies slowly compared to the dynamics of the robots and the controller.
Explicitly taking into account a time changing φ(q) results in significant analytical complications and is
a topic of ongoing research. An analysis for a time-varying sensory function without adaptation is given
in [Pimenta et al., 2008b].

We consider relaxing the above assumptions to be important future work, but it is tangential to the
main contribution of this work. More central to this work, we make one important assumption regarding the
sensory function φ(q). We use a basis function approximation scheme for each robot to represent the sensory
function φ(q). Let K : Q 7→ R

m
>0 be a vector of bounded, continuous basis functions (or features). Each

robot has these functions available for computation. The sensory function approximation for robot i is given
by φ̂i(q, t) = K(q)T âi(t), where âi(t) is a parameter vector that is tuned according to an adaptation law
which we will describe in Section 3. Figure 2 shows a graphical representation of this function approximation
scheme. For our analysis, we require that the following assumption holds.

Figure 2: The sensory function approximation is illustrated in this simplified 2-D schematic. The true
sensory function is represented by φ(q) and robot i’s approximation of the sensory function is φ̂i(q). The
basis function vector K(q) is shown as three Gaussians (dashed curves), and the parameter vector âi denotes
the weighting of each Gaussian.

Assumption 1 (Matching Conditions) There exists and ideal parameter vector a ∈ R
m such that

φ(q) = K(q)T a, (5)

and a is unknown to the robots. Furthermore,

a ≥ 1amin (6)

where amin ∈ R>0 is a lower bound known by each robot.

We mean the symbols >, <,≥ and ≤ to apply element-wise for vectors, and 1 is the vector of 1’s. Require-
ments such as Assumption 1 are common for adaptive controllers. In theory, the assumption is not limiting
since any function (with some smoothness requirements) over a bounded domain can be approximated ar-
bitrarily well by some set of basis functions [Sanner and Slotine, 1992]. In practice, however, designing
a suitable set of basis functions requires application-specific expertise. We will comment further on this
assumption in Section 3, Remark 1.

There is a variety of basis function families to chose from for K(q). We use Gaussians in our simulations,
but other options include wavelets, sigmoids, and splines. Gaussian basis functions have a computational
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advantage over non-local basis functions because, in any discrete representation, they have compact support.
To compute the value of the network at a location φ̂i(q), or to tune the weights of the network âi with new
data, one has only to consider Gaussians in a region around the point of interest.

Next, let the moment approximations using φ̂i(q, t) be given by

M̂Vi
(t) =

∫

Vi

φ̂i(q, t) dq, L̂Vi
(t) =

∫

Vi

qφ̂i(q, t) dq, and ĈVi
(t) = L̂Vi

(t)/M̂Vi
(t), (7)

and, the parameter error by
ãi(t) = âi(t) − a, (8)

and notice the relation
φ̂i(q, t) − φ(q) = K(q)T ãi(t). (9)

In order to compress the notation, we introduce the shorthand Ki(t) = K(pi(t)) for the value of the basis
function vector at the position of robot i, and φi(t) = φ(pi(t)) for the value of the sensory function at the
position of robot i. As previously stated, robot i can measure φi with its sensors. We will also commonly
refer to quantities without explicitly writing their arguments. However, we may include arguments in some
instances to avoid ambiguity.

The function approximation framework described above brings us to another concept of optimality for
coverage.

Definition 2 (Near-Optimal Coverage Configuration) A robot network is said to be in a near-optimal
coverage configuration if each robot is positioned at the estimated centroid of its Voronoi region, pi = ĈVi

∀i.

Finally, we distinguish between two qualities of function approximations.

Definition 3 (Globally True Approximation) A robot is said to have a globally true (or just true) ap-
proximation of the sensory function if its approximation is equal to the actual sensory function at every point
of its domain, φ̂i(q) = φ(q) ∀q ∈ Q.

Definition 4 (Locally True Approximation) A robot is said to have a locally true approximation of the
sensory function over a subset Ω ⊂ Q if its approximation is equal to the true function at every point in the
subset, φ̂i(q) = φ(q) ∀q ∈ Ω.

In light of the above definitions, if the parameter error is zero, ãi = 0, then robot i has a true approximation
of the sensory function. Also, if ãi = 0 ∀i, then a near-optimal coverage configuration is also optimal. An
overview of the geometrical objects involved in our set-up is shown in Figure 3.

3 Decentralized Adaptive Control Law

We want a controller to drive the robots to an optimal configuration, that is, we want to position them at
their Voronoi centroids. We emphasize that it is not easy to position a robot at its Voronoi centroid because
(1) the robot does not know the sensory function φ(q) which is required to calculate its centroid, and (2) the
centroid moves as a nonlinear function of the robot’s position. To overcome the first problem, our controller
learns an approximation of the centroid on-line. To overcome the second problem, our controller causes each
robot to pursue its estimated centroid. We will prove that the robots achieve a near-optimal configuration,
and that every robot learns a locally true approximation of the sensory function (Theorem 1). Furthermore,
if a robot’s path is sufficiently rich, it achieves a globally true approximation, and if every robots’ path is
sufficiently rich, the robots reach an optimal configuration (Corollary 1).

We propose to use the control law
ui = K(ĈVi

− pi), (10)

where K is a (potentially time-varying) uniformly positive definite control gain matrix, which may have a
skew-symmetric component to encourage exploration as in [Schwager et al., 2008a]. The environment Q
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Figure 3: A graphical overview of the quantities involved in the controller is shown. The robots move to
cover a bounded, convex environment Q their positions are pi, and they each have a Voronoi region Vi with
a true centroid CVi

and an estimated centroid ĈVi
. The true centroid is determined using a sensory function

φ(q), which indicates the relative importance of points q in Q. The robots do not know φ(q), so they calculate

an estimated centroid using an approximation φ̂i(q) learned from sensor measurements of φ(q).

is required to be convex so that the control law is feasible, that is, the robots never attempt to cross the
boundaries of Q. Since ĈVi

∈ Vi ⊂ Q and pi ∈ Q, by convexity, the segment connecting the two is in Q.
Since the robots have integrator dynamics (4), they will stay within the union of these segments over time,
pi(t) ∈ ∪τ>0(CVi

(τ) − pi(τ)), and therefore remain in the environment Q.
The parameters âi used to calculate ĈVi

are adjusted according to a set of adaptation laws which are
introduced below. First, we define two quantities,

Λi(t) =

∫ t

0

w(τ)Ki(τ)Ki(τ)T dτ, and λi(t) =

∫ t

0

w(τ)Ki(τ)φi(τ) dτ. (11)

These can be calculated differentially by robot i using Λ̇i = w(t)KiKT
i , and λ̇i = w(t)Kiφi, with zero initial

conditions. The function w(t) ≥ 0 determines a data collection weighting. We require that it is integrable
(belongs to L1), and continuous (belongs to C0). Define another quantity

Fi =

∫

Vi
K(q)(q − pi)

T dqK
∫

Vi
(q − pi)K(q)T dq

∫

Vi
φ̂i(q) dq

. (12)

Notice that Fi is a positive semi-definite matrix. It can also be computed by robot i as it does not require
any knowledge of the true parameter vector, a. The adaptation law for âi is now defined as

˙̂aprei
= −Fiâi − γ(Λiâi − λi), (13)

where γ ∈ R>0 is a learning rate gain. The two terms in (13) have an intuitive interpretation. The first term
compensates for uncertainty in the centroid position estimate. The second term carries out a gradient descent
to minimize the sensory function error φ̃i(pi) integrated over time. The gradient descent interpretation is
explored more in Section 6. We stress that a decentralized implementation requires that each robot adapts
its own parameter vector using local information available to it. If one were interested, instead, in designing
a centralized adaptation law, one could simply use a common parameter vector that is adapted using the
information from all robots.

Equation (13) is the main adaptation law, however the controller (10) has a singularity at âi = 0 (since
M̂Vi

is in the denominator of ĈVi
). For this reason we prevent the parameters from dropping below amin > 0
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using a parameter projection [Slotine and Coetsee, 1986]

˙̂ai = Γ( ˙̂aprei
− Iproji

˙̂aprei
), (14)

where Γ ∈ R
m×m is a diagonal, positive definite adaptation gain matrix, and the diagonal matrix Iproji is

defined element-wise as

Iproji(j) =







0 for âi(j) > amin

0 for âi(j) = amin and ˙̂aprei
(j) ≥ 0

1 otherwise,
(15)

where (j) denotes the jth element for a vector and the jth diagonal element for a matrix.
The controller described above will be referred to as the basic controller, and its behavior is formalized

in the following theorem.

Theorem 1 (Basic Convergence) Under Assumption 1, the network of robots with dynamics (4), control
law (10), and adaptation law (13,14) converges to a near-optimal coverage configuration. Furthermore, each
robot converges to a locally true approximation of the sensory function over the set Ωi = {pi(τ) | τ ≥
0, w(τ) > 0}, made up of all points on the robot’s trajectory with positive weighting.

Proof
We will define a lower-bounded, Lyapunov-like function and show that its time derivative is non-

increasing. This will imply that it reaches a limit. Furthermore, the time derivative is uniformly continuous,
so by Barbalat’s lemma3 [Barbălat, 1959,Popov, 1973] it approaches zero. The quantities ‖ĈVi

(t) − pi(t)‖
and w(τ)φ̃i(pi(τ), t)2, 0 ≥ τ ≥ t, will be included in the time derivative of this function, thereby implying

pi(t) → ĈVi
(t), and φ̂i(q, t) → φ(q) ∀q ∈ Ωi for all i.

Define a Lyapunov-like function

V = H +
n

∑

i=1

1

2
ãT

i Γ−1ãi, (16)

which incorporates the sensing cost H, and is quadratic in the parameter errors ãi. Note that the sensing cost
H is computed with the actual sensory function φ(q), so it inherently incorporates function approximation
errors as well. V is bounded below by zero since H is a sum of integrals of strictly positive functions, and
the quadratic parameter error terms are each bounded below by zero.

Taking the time derivative of V along the trajectories of the system gives

V̇ =

n
∑

i=1

[

∂H

∂pi

T

ṗi + ãT
i Γ−1 ˙̃ai

]

,

and substituting from (3) and noticing that ˙̃ai = ˙̂ai yields

V̇ =

n
∑

i=1

[

−

∫

Vi

(q − pi)
T φ(q) dqṗi + ãT

i Γ−1 ˙̂ai

]

.

Using (9) to substitute for φ(q) gives

V̇ =

n
∑

i=1

[

−

∫

Vi

(q − pi)
T φ̂i dqṗi +

∫

Vi

ãT
i K(q)(q − pi)

T dqṗi + ãT
i Γ−1 ˙̂ai

]

.

Substituting for ṗi with (4) and (10), and moving ãi out of the second integral (since it is not a function of
q) leads to

V̇ =

n
∑

i=1

[

−M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) + ãT
i

∫

Vi

K(q)(q − pi)
T dq(ĈVi

− pi) + ãT
i Γ−1 ˙̂ai

]

.

3We cannot use the more typical LaSalle invariance theorem because our system is time-varying due to the data weighting
function w(t).
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Expanding (ĈVi
− pi) in the second term, and substituting for ˙̂ai with (14) gives

V̇ =

n
∑

i=1

[

−M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) + ãT
i Fiâi − ãT

i Fiâi − ãT
i γ(Λiâi − λi) − ãT

i Iproji
˙̂aprei

]

.

Now we can expand (Λiâi − λi), noting that λi =
∫ t

0
w(τ)Ki(KT

i a) dτ , to get

V̇ = −
n

∑

i=1

[

M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) + ãT
i γ

∫ t

0

w(τ)KiK
T
i ãi(t) dτ + ãT

i Iproji
˙̂aprei

]

,

and, finally, bringing ãT
i inside the integral (it is not a function of τ , though it is a function of t) results in

V̇ = −
n

∑

i=1

[

M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) + γ

∫ t

0

w(τ)(Ki(τ)T ãi(t))
2 dτ + ãT

i Iproji
˙̂aprei

]

, (17)

Inside the sum, the first and second terms are clearly non-negative. We focus momentarily on the third
term. Expanding it as a sum of scalar terms, we see that the jth scalar term is of the form

ãi(j)Iproji(j)
˙̂aprei

(j). (18)

From (15), if âi(j) > amin, or âi(j) = amin and ˙̂aprei
(j) ≥ 0, then Iproji(j) = 0 and the term vanishes.

Now, in the case âi(j) = amin and ˙̂aprei
(j) < 0, we have ãi(j) = âi(j) − a(j) ≤ 0 (from Assumption 1).

Furthermore, Iproji(j) = 1 and ˙̂aprei
(j) < 0 implies that the term is non-negative. In all cases, then, each

term of the form (18) is non-negative, and all three terms inside the sum in (17) are non-negative. Thus
V̇ ≤ 0.

We have that V is lower bounded and V̇ ≤ 0, so V approaches a limit. We establish the uniform
continuity of V̇ in Lemma 1 in Appendix A, so by Barbalat’s lemma limt→∞ V̇ = 0. From (17), this implies
limt→∞ ‖pi(t) − ĈVi

(t)‖ = 0 ∀i from the first term in the sum, so the network converges to a near-optimal
coverage configuration.

Furthermore, from Ki(τ)T ãi(t) = φ̂i(pi(τ), t) − φ(pi(τ)), we have from the second term of(17)

lim
t→∞

∫ t

0

w(τ)(φ̂i(pi(τ), t) − φ(pi(τ)))2 dτ = 0 ∀i = 1, . . . , n. (19)

Now notice that the integrand in (19) is non-negative, therefore it must converge to zero for all τ except on
a set of Lesbegue measure zero. Suppose the integrand is greater than zero at some point τ . The integrand
is continuous (since Ki(t), âi(t), and φi(t) are), so if it is greater than zero at τ , it is greater than zero in a
neighborhood of non-zero measure around it, (τ − ǫ, τ + ǫ), for some ǫ > 0, which is a contradiction. Thus,

we have φ̂i(q, t) → φ(q) ∀q ∈ Ωi and ∀i. �

In [Schwager et al., 2008a] the following extension to the above theorem was derived. We restate it here
to give a more thorough characterization the controller’s behavior.

Corollary 1 (Sufficient Richness for Basic Controller) In addition to the conditions for Theorem 1,
if the robots’ paths are such that the matrix limt→∞ Λi(t) is positive definite ∀i, the network converges to
an optimal coverage configuration, and each robot converges to a globally true approximation of the sensory
function, φ(q).

Proof
Consider the second term in (17). Move the two ãi(t) outside of the integral (since they are not a function

of τ) to get

γãi(t)
T

[
∫ t

0

w(τ)KiK
T
i dτ

]

ãi(t) = γãi(t)
T Λi(t)ãi(t).
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Since V̇ → 0, if limt→∞ Λi(t) is positive definite (we know the limit exists because K(q) is bounded and
w(t) ∈ L1), then ãi(t) → 0. This implies that robot i converges to a globally true approximation of the
sensory function, φ(q). Furthermore, if limt→∞ Λi(t) > 0 ∀i, then ĈVi

= CVi
∀i, so the network converges

to an optimal coverage configuration. �

Remark 1 One may wonder how the controller will behave if Assumption 1 fails, so that there is no ideal
parameter vector a that will exactly reconstruct φ(q) from the basis functions. Indeed, this will be the case
in any real-world scenario. Such a question requires a robustness analysis that is beyond the scope of this
paper, but analyses of robustness for centralized adaptive controllers can be found, for example, in [Sanner
and Slotine, 1992] and most texts on adaptive control (e.g. [Narendra and Annaswamy, 1989, Sastry and
Bodson, 1989,Slotine and Li, 1991]). It is observed in numerical simulations that the adaptation law finds

a parameter to make φ̂i(q) as close as possible to φ(q), where closeness is measured by the integral of the
squared difference, as described in Section 6.

Remark 2 One may also wonder how the controller behaves with time varying sensory functions φ(q, t). It
can be expected from existing results for centralized adaptive controllers, that our controller will track sensory
functions that change slowly with respect to the rate of adaptation of the parameters. The ability to track
a time varying sensory function can be enhanced by using a forgetting factor in the data weighting function
w(t) as described in Section 6.3.

Remark 3 As an alternative to our controller, one may propose a two-part strategy in which robots explore
until they have learned the sensory function well enough, and then move to cover the environment. This
seems likely to work, but how would one implement it in a distributed fashion? Specifically, do all robots
switch to coverage mode simultaneously? If so, how do they agree on a time? If not, how does the system
behave when some robots are in explore mode and some in coverage mode? Our strategy essentially combines
the exploration and coverage into one continuous controller avoiding these problems.We again highlight the
fact that the control gain K can be designed with a time-varying component, as in [Schwager et al., 2008a],
to encourage exploration and improve learning.

4 Parameter Consensus

In this section we first state some elementary properties of graph Laplacians, then use these properties to
prove convergence and consensus of a modified adaptive control law. The controller from (3) is modified so
that the adaptation laws among Voronoi neighbors are coupled with a weighting proportional to the length of
their shared Voronoi edge. Adaptation and consensus were also combined in [Ögren et al., 2004] and [Wang
and Slotine, 2006], however in those works consensus was used to align the velocities of agents, not to help
in the parameter adaptation process itself. Our use of consensus is more related to the recent algorithms for
distributed filtering described in [Lynch et al., 2008] and [Zhang and Leonard, 2008].

4.1 Graph Laplacians

An undirected graph G = (V, E) is defined by a set of indexed vertices V = {v1, . . . , vn} and a set of edges
E = {e1, . . . , enE

}, ei = {vj , vk}. In the context of our application, a graph is induced in which each agent is
identified with a vertex, and an edge exists between any two agents that are Voronoi neighbors. This graph
is that of the Delaunay triangulation. Consider a function l : V ×V 7→ R such that l(vi, vj) = 0 ∀(vi, vj) 6∈ E
and l(vi, vj) > 0 ∀(vi, vj) ∈ E. We call l(vi, vj) a weighting over the graph G, and for shorthand we write
lij = l(vi, vj). Next consider the weighted graph Laplacian matrix L, whose terms are given by

L(i, j) =

{

−lij for i 6= j
∑n

j=1 lij for i = j.

10



Loosely, a graph is connected if there exists a set of edges that defines a path between any two vertices.
The graph of any triangulation is connected, specifically, the graph is connected in our application. It is
well known [Godsil and Royle, 2004] that for a connected graph, the weighted graph Laplacian is positive
semi-definite, L ≥ 0, and it has exactly one zero eigenvalue, with the associated eigenvector 1 = [1, . . . , 1]T .
In particular, L1 = 1T L = 0, and xT Lx > 0, ∀x 6= c1, c ∈ R. These properties will be important in what
follows.

4.2 Consensus Learning Law

We add a term to the parameter adaptation law in (13) to couple the adaptation of parameters between
neighboring agents. Let the new adaptation law be given by

˙̂aprei
= −Fiâi − γ (Λiâi − λi) − ζ

n
∑

j=1

lij(âi − âj), (20)

where lij is a weighting over the Delaunay communication graph between two robots i and j and ζ ∈ R>0,
is a positive gain. The projection remains the same as in (14), namely

˙̂ai = Γ( ˙̂aprei
− Iproji

˙̂aprei
).

A number of different weightings lij are conceivable, but here we propose that lij be equal to the length
(area for N = 3, or volume for N > 3) of the shared Voronoi edge of robots i and j,

lij = |Vi ∩ Vj |. (21)

Notice that lij ≥ 0 and lij = 0 if and only if i and j are not Voronoi neighbors, so lij is a valid weighting over
the Delaunay communication graph as described in Section 4.1. This weighting is natural since one would
want a robot to be influenced by its neighbor in proportion to its neighbor’s proximity. This form of lij will
also provide for a simple analysis since it maintains the continuity of the right hand side of (20), which is
required for using Barbalat’s lemma.

Theorem 2 (Convergence with Parameter Consensus) Under the conditions of Theorem 1, using the
parameter adaptation law (20), the network of robots converge to a near-optimal coverage configuration.
Furthermore, each robot converges to a locally true approximation of the sensory function over the set all
points on every robot’s trajectory with positive weighting, Ω = ∪n

j=1Ωj. Additionally,

lim
t→∞

(âi − âj) = 0 ∀i, j ∈ {1, . . . , n}. (22)

Proof
We will use the same method as in the proof of Theorem 1, adding the extra term for parameter coupling.

It will be shown that this term is non-positive. The claims of the proof follow as before from Barbalat’s
lemma.

Define V to be (16), which leads to

V̇ = −
n

∑

i=1

[

M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) + γ

∫ t

0

w(τ)(Ki(τ)T ãi(t))
2 dτ + ãT

i Iproji
˙̂aprei

]

−

n
∑

i=1

ãT
i ζ

n
∑

j=1

lij(âi − âj). (23)

We have already shown that the three terms inside the first sum are non-negative. Now consider the
parameter coupling term. We can rewrite this term using the graph Laplacian defined in Section 4.1 as

n
∑

i=1

ãT
i ζ

n
∑

j=1

lij(âi − âj) = ζ

m
∑

j=1

α̃T
j Lα̂j ,
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where αj = a(j)1, α̂j = [â1(j) · · · ân(j)]T , and α̃j = α̂j − αj . Recall the ideal parameter vector
a = [a(1) · · · a(j) · · · a(m)]T , and the parameter estimate for each agent
âi = [âi(1) · · · âi(j) · · · âi(m)]T . We have simply regrouped the parameters by introducing the αj

notation. From Section 4.1 we saw that αT
j L = a(j)1T L = 0. This gives

ζ

m
∑

j=1

α̃T
j Lα̂j = ζ

m
∑

j=1

α̂T
j Lα̂j ≥ 0,

since L ≥ 0. Thus V̇ ≤ 0.
Lemma 2 establishes the uniform continuity of V̇ for this controller. We can therefore use Barbalat’s

lemma to conclude that V̇ → 0. As before this implies the two claims of Theorem 1. Since the graph Laplacian
is positive semi-definite, and âi(j) ≥ amin, limt→∞ α̂T

j Lα̂j = 0 ⇒ limt→∞ α̂j = afinal(j)1 ∀j ∈ {1, . . . , m},
where afinal ∈ R

m is some undetermined vector, which is the common final value of the parameters for all of
the agents. The consensus assertion (22) follows.

Finally, recall the fact that for robot j, φ̂j(q) → φ(q) over Ωj , but âi → âj , therefore φ̂i(q) → φ(q) over

Ωj . This is true for all robots i and j, therefore φ̂i → φ(q) over Ω = ∪n
j=1Ωj for all i. �

Corollary 2 (Sufficient Richness for Consensus Controller) In addition to the conditions for Theo-
rem 2, if the robots’ paths are such that

∫

Ω
K(q)K(q)T dq is positive definite, the network converges to an

optimal coverage configuration, and each robot converges to a globally true approximation of the sensory
function, φ(q).

Proof
Since φ̂i(q, t) → φ(q) over Ω, we have ãi(∞)TK(q)K(q)T ãi(∞) = 0 over Ω, where ãi(∞) is shorthand for

limt→∞ ãi(t). Then

0 =

∫

Ω

ãi(∞)TK(q)K(q)T ãi(∞)dq = ãi(∞)T

∫

Ω

K(q)K(q)T dq ãi(∞)

Therefore if
∫

Ω
K(q)K(q)T dq > 0, then ãi(∞) = 0. This is true for all i �

Remark 4 The condition of Corollary 2 is less strict than that of Corollary 1 because only the union of all
the robots’ paths has to be sufficiently rich, not each path individually. This means it is easier to achieve an
optimal configuration with the consensus controller.

Remark 5 Another commonly used weighting for algorithms over communication graphs is

lij =

{

1 for j ∈ Ni

0 for j 6∈ Ni,

where Ni is the set of indices of neighbors of i, as was proposed in [Schwager et al., 2008b]. In this case,
stability can be proved, but with considerable complication in the analysis, since V̇ is not continuous. Even
so, recent extensions of Barbalat’s lemma to differential inclusions from [Ryan, 1998,Logemann and Ryan,
2004] (and applied to flocking systems in [Tanner et al., 2007]) can be used to prove the same result as in
Theorem 2.

Remark 6 Introducing parameter coupling increases parameter convergence rates and makes the controller
equations better conditioned for numerical integration, as will be discussed in Section 7. However there is
a cost in increased communication overhead. In a discrete-time implementation of the controller in which
parameters and robot positions are represented finitely with b bits, a robot will have to transmit (m + 2)b
bits and receive |Ni|(m + 2)b bits per time step. While for the basic controller, each robot must transmit 2b
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and receive 2|Ni|b bits per time step. This may or may not represent a significant communication overhead,
depending upon b and the speed of the control loop. In hardware experiments we have found this to be a
negligible communication cost. Note that although discretization is necessary for a practical implementation,
it does not affect the essential phenomenon of consensus, as shown in [Kashyap et al., 2007,Frasca et al.,
2008].

5 Parameter Convergence Analysis

As a separate matter from the asymptotic convergence in Theorem 1 and Theorem 2, one may wonder how
quickly parameters converge to their final values. In this section we show that parameter convergence is
not exponential, though given sufficiently rich trajectories it can be shown to converge exponentially to an
arbitrarily small error. The rate of this convergence is shown to be faster for the controller with parameter
consensus than for the basic controller. We neglect the projection operation, as the non-smooth switching
considerably complicates the convergence analysis.

From (13) and (14), neglecting the projection, but including the adaptation gain matrix Γ, we have

˙̂ai = −Γ(Fiâi + γ(Λiâi − λi)),

which can be written as

˙̃ai = −ΓγΛi(t)ãi − ΓFiâi, (24)

leading to

d

dt
‖ãi‖ = −

γãT
i ΓΛi(t)ãi

‖ãi‖
−

ãT
i ΓFiâi

‖ãi‖
. (25)

Let λmini
(t) ≥ 0 be the minimum eigenvalue of ΓΛi(t) (we know it is real-valued and non-negative since

Λi(t) is symmetric positive semi-definite). Then we have

d

dt
‖ãi‖ ≤ −γλmini

(t)‖ãi‖ + ‖ΓFiâi‖. (26)

Now consider the signal ‖ΓFiâi‖. We proved in Theorem 1 that ‖ĈVi
− pi‖ → 0 and all other quantities

in ΓFiâi are bounded for all i, therefore ‖ΓFiâi‖ → 0. Also, λmini
(0) = 0, and λmini

(t) is a nondecreasing
function of time. Suppose at some time T , robot i has a sufficiently rich trajectory (so that Λi(T ) is positive
definite, as in Corollary 1), then λmini

(t) > λmini
(T ) > 0 ∀t ≥ T . Then from (26), ‖ãi‖ will decay faster than

an exponentially stable first order system driven by ‖ΓFiâi‖. Finally, the gains Γ and γ can be set so that
‖ΓFiâi‖ is arbitrarily small compared to γλmini

without affecting stability. Thus, if the robot’s trajectory is
sufficiently rich, exponentially fast convergence to an arbitrarily small parameter error can be achieved.

Now we consider a similar rate analysis for the controller with parameter consensus. In this case, because
the parameters are coupled among robots, we must consider the evolution of all the robots’ parameters
together. Let

Ã = [ãT
1 · · · ãT

n ]T .

be a concatenated vector consisting of all the robots’ parameter errors. Also, define the block diagonal
matrices F = diagn

i=1(ΓFi), Λ = diagn
i=1(ΓΛi), and the generalized graph Laplacian matrix

L =







Γ(1)L(1, 1)Im · · · L(1, n)Im

...
. . .

...
L(n, 1)Im · · · Γ(n)L(n, n)Im






.
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The eigenvalues of L are the same as those of ΓL, but each eigenvalue has multiplicity m. As for a typical
graph Laplacian, L is positive semi-definite. The coupled dynamics of the parameters over the network can
be written

˙̃A = −(γΛ + ζL)Ã − FÂ, (27)

with Â defined in the obvious way. Notice the similarity in form between (24) and (27). Following the same
type of derivation as before we find

d

dt
‖Ã‖ ≤ −λmin(t)‖Ã‖ + ‖FÂ‖, (28)

where λmin(t) ≥ 0 is the minimum eigenvalue of γΛ(t) + ζL(t). Again, it is real-valued and non-negative
since γΛ(t) + ζL(t) is symmetric positive semi-definite.

As before, the signal ‖FÂ‖ → 0. If after some time T , mineig(Λ(T )) > 0 then λmin(t) ≥ mineig(Λ(t)) > 0
∀t ≥ T and the network’s trajectory is sufficiently rich. Then from (25), ‖Ã‖ will decay at least as fast as
an exponentially stable first order system driven by ‖FÂ‖. Finally, the gains Γ, γ, and ζ can be set so that
‖FÂ‖ is arbitrarily small compared to γΛ(t)+ ζL(t) without affecting stability. Thus, if the robot network’s
trajectory is sufficiently rich, exponentially fast convergence to an arbitrarily small parameter error can be
achieved for the whole network.

To compare with the performance of the basic controller consider that γΛ(t) ≤ γΛ(t) + ζL(t). Therefore
the minimum eigenvalue for the consensus controller is always at least as large as that for the basic controller
implying convergence is at least as fast. In practice, as we will see in Section 7, parameter convergence is
orders of magnitude faster for the consensus controller.

6 Alternative Learning Laws

The adaptation law for parameter tuning (13) can be written more generally as

˙̂ai = −Fiâi + fi(pi, Vi, âi, t), (29)

where we have dropped the projection operation for clarity. There is considerable freedom in choosing the
learning function fi(·). We are constrained only by our ability to find a suitable Lyapunov-like function to
accommodate Barbalat’s lemma.

6.1 Gradient Laws

The form of fi(·) chosen in Section 3 can be called a gradient law, since

fi = −
∂

∂âi

[

1

2
γ

∫ t

0

w(τ)(φ̂i − φi)
2 dτ

]

. (30)

The parameter vector follows the negative gradient of the Least Squares cost function, seeking a minimum.
Another possible learning law is to follow the gradient, given by

fi = −
∂

∂âi

[

1

2
γw(τ)(φ̂i − φi)

2

]

= −γw(t)Ki(K
T
i âi − φi). (31)

Using the same Lyapunov function as before, it can be verified that this learning law results in a near-optimal
coverage configuration.

These two gradient laws can be combined to give

fi = −γ
[

w(t)Ki(K
T
i âi − φi) + (Λiâi − λi)

]

, (32)
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which is, in fact, equivalent to the first law with a weighting function wc(t, τ) = δ(t − τ)w(t) + w(τ), where
δ(t−τ) is the delta-Dirac function (we can make w(·) a function of t, and τ with minimal consequences to the
convergence proof). The same Lyapunov-like function can be used, such that the resulting time derivative is

V̇ = −
n

∑

i=1

[

M̂Vi
(ĈVi

− pi)
T K(ĈVi

− pi) + ãT
i Iproji

˙̂aprei
+

γãT
i

[

w(t)KiK
T
i + Λi

]

ãi

]

,

leading to the same convergence claims as in Theorem 1 and Corollary 1.

6.2 Recursive Least Squares Laws

Another interesting possibility for a learning law is the continuous-time Recursive Least Squares method.
This law can be interpreted as continuously solving the Least Squares minimization problem recursively as
new data is acquired. Let

J =
1

2

∫ t

0

w(τ)(φ̂i − φi)
2 dτ

be the standard Least Squares cost function with a data weighting function w(τ). Then, taking the gradient
with respect to âi and setting to zero we find

Λi(t)âi = λi(t).

If the matrix Λi(t) is full rank, we can pre-multiply both sides by its inverse to solve the Least Squares
problem. However, we seek a recursive expression, so taking the time derivative we obtain

˙̂ai = −Pi(t)w(t)Ki(K
T
i âi − φi), where Pi(t) = Λi(t)

−1.

Using an identity from vector calculus, Pi can be computed differentially by Ṗi = −Piw(t)KiKT
i Pi, but

the initial conditions are ill defined. Instead, we must use some nonzero initial condition, Pi0, with the
differential equation Ṗi = −Piw(t)KiKT

i Pi, to give the approximation

Pi = Λ−1
i + Pi0. (33)

The initial condition can be interpreted as the inverse covariance of our prior knowledge of the parameter
values. We should choose this to be small if we have no idea of the ideal parameter values when setting
initial conditions.

Before we can apply the Recursive Least Squares law to our controller, there is one additional complication
that must be dealt with. We can no longer use the same projection operator to prevent the singularity when
M̂Vi

= 0. However, it is possible to formulate a different stable controller that eliminates this singularity
altogether. This formulation also has the advantage that it no longer requires a(j) > amin ∀j in Assumption
1. We can use the controller

ui = K(L̂Vi
− M̂Vi

pi), (34)

with the adaptation law

˙̂ai = −Pi

[

M̂Vi
Fiâi + w(t)Ki(K

T
i âi − φi)

]

(35)

to approximate the Recursive Least Squares law. Asymptotic convergence can be proven for this case by
using the Lyapunov function

V = H +

n
∑

i=1

1

2
ãT

i P−1
i ãi, (36)
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which leads to

V̇ = −
n

∑

i=1

[

kM̂2
Vi

(ĈVi
− pi)

T K(ĈVi
− pi) +

1

2
ãT

i

[

w(t)KiK
T
i

]

ãi

]

,

Note that the only difference in the Lyapunov function is that Γ has been replaced with the time-varying
quantity Pi.

We can also formulate a learning law analogous to the combined gradient law (32) as

˙̂ai = −Pi

(

M̂Vi
Fiâi +

1

2
w(t)Ki(K

T
i âi − φi) + (Λiâi − λi)

)

, (37)

with Λi and λi defined as before. The same Lyapunov function can be used (36), resulting in

V̇ = −
n

∑

i=1

[

kM̂2
Vi

(ĈVi
− pi)

T K(ĈVi
− pi) + ãT

i Λiãi

]

.

Interestingly, the integral terms (those involving Λi and λi) of the learning law in (37) have a gradient
interpretation. Taking just those terms we have

fi = −Pi(Λiâi − λi)

= −ãi + Pi0Λiãi

= −
∂

∂âi

(

1

2
ãT

i ãi

)

+ Pi0Λiãi,

(38)

so the law approximates the gradient of the squared parameter error. The last term on the right hand side
arises from the mismatch in initial conditions between Pi and Λi.

The combination of Least Squares and gradient learning apparent in this law is quite similar to the
Composite Adaptation described in [Slotine and Li, 1989,Slotine and Li, 1991]. In fact, if one identifies the
prediction error as KT

i âi − φi and the tracking error as Λi − λiφi we have composite adaptation (except, of
course, for the term containing Fi, which is required for the stability proof).

Unfortunately, it is found that the equations resulting from the Least Squares formulation are difficult
to solve numerically, often causing robots to jump outside of the environment Q, which then corrupts the
Voronoi calculation. Alleviating this problem is a matter of ongoing research.

6.3 Data Weighting Functions

The form of the function w(·) can be designed to encourage parameter convergence. One obvious choice is to

make w(τ) a square wave, such that data is not incorporated into
∫ t

0
w(τ)KiKT

i dτ after some fixed time. This
can be generalized to an exponential decay, w(τ) = exp(−τ), or a decaying sigmoid w(τ) = 1/2(erf(c−t)+1).
Many other options exist.

One option for w(·) is w(τ) = ‖ṗi‖2, since the rate at which new data is collected is directly dependent
upon the rate of travel of the robot. This weighting, in a sense, normalizes the effects of the rate of travel so
that all new data is incorporated with equal weighting. Likewise, when the robot comes to a stop, the value
of φ(pi) at the stopped position does not overwhelm the learning law. This seems to make good sense, but
there is an analytical technicality: to ensure that Λi and λi remain bounded we have to prove that ṗi ∈ L2.
In practice, we can set w(τ) = ‖ṗi‖2 up to some fixed time, after which it is zero.

We can also set w(t, τ) = exp{−(t − τ)}, which turns the integrators Λi, Pi, and λi into first order
systems. This essentially introduces a forgetting factor into the learning law which has the advantage of
being able to track slowly varying sensory distributions. Forgetting factors can have other significant benefits
such as improving parameter convergence rates and allowing the flexibility to reject certain frequencies of
noise in the error signal. A thorough discussion of forgetting factors can be found in [Slotine and Li, 1991],
Section 8.7.
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7 Numerical Simulations

7.1 Practical Algorithm

A practical method for implementing the proposed control law on a network of robots is detailed in Algo-
rithm 1. Notice that the control law in (10) and adaptation law in (14) both require the computation of
integrals over Vi, thus robot i must be able to re-calculate its Voronoi region at each time step. Several
algorithms exist for computing Vi in a distributed fashion, for example those given in [Cortés et al., 2004,Li
and Rus, 2005].

Algorithm 1 Adaptive Coverage Control Algorithm

Require: Each robot can compute its Voronoi region
Require: φ(q) can be parameterized as in (5)
Require: a is lower bounded as in (6)

Initialize Λi, λi to zero, and âi(j) to amin

loop
Compute the robot’s Voronoi region
Compute ĈVi

according to (7)
Update âi according to (14)
Update Λi and λi according to (11)
Apply control input ui = −K(ĈVi

− pi)
end loop

Algorithm 1 is distributed, adaptive, and requires only communication between robots that are Voronoi
neighbors. The time complexity of the distributed Voronoi region computation for one robot is linear in
the number of robots, n. The time complexity of computing the discretized integral ĈVi

can be found to
be linear in the size of the discretization grid, and linear in the number of basis functions, m. Therefore,
Algorithm 1 can be used on teams of large robots, on teams of small robots such as [McLurkin, 2004], or
on mobile sensor network nodes with limited computation and storage capabilities such as the mobile Mica
Motes described by [Sibley et al., 2002].

7.2 Implementation

Simulations were carried out in a Matlab environment. The dynamics in (4) with the control law in (10),
and the adaptation laws in (14) (with (13) for the basic controller and (20) for the consensus controller)
for a group of n = 20 robots were integrated forward in time. A numerical solver with a fixed-time-step
of .01s was used to integrate the equations. The environment Q was taken to be the unit square. The
sensory function, φ(q), was parameterized as a linear combination of nine Gaussians. In particular, for
K = [ K(1) · · · K(9) ]T , each component, K(j), was implemented as

K(j) =
1

2πσ2
j

exp−
(q − µj)

2

2σ2
j

, (39)

where σj = .18. The unit square was divided into an even 3 × 3 grid and each µj was chosen so that
one of the nine Gaussians was centered at the middle of each grid square. The parameters were chosen as
a = [100 amin · · · amin 100]T , with amin = .1 so that only the lower left and upper right Gaussians
contributed significantly to the value of φ(q), producing a bimodal distribution.

The robots in the network were started from random initial positions. Each robot used a copy of the
Gaussians described above for K(q). The estimated parameters âi for each robot were started at a value of
amin, and Λi and λi were each started at zero. The gains used by the robots were K = 3I2, Γ = I9, γ = 300
and ζ = 0 for the basic controller, and γ = 100 and ζ = 50 for the consensus controller. In practice, the
first integral term in the adaptive law (13) seems to have little effect on the performance of the controller.
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Choosing Γ small and γ comparatively large puts more weight on the second term, which is responsible
for integrating measurements of φ(pi) into the parameters. The spatial integrals in (7) and (13) required
for the control law were computed by discretizing each Voronoi region Vi into a 7 × 7 grid and summing
contributions of the integrand over the grid. Voronoi regions were computed using a decentralized algorithm
similar to the one in [Cortés et al., 2004].

7.3 Simulation Results

Figure 4 shows the positions of the robots in the network over the course of a simulation run for the
parameter consensus controller (left column) and the basic controller (right column). The centers of the
two contributing Gaussian functions are marked with ×s. It is apparent from the final configurations that
the consensus controller caused the robots to group more tightly around the Gaussian peaks than the basic
controller. The somewhat jagged trajectories are caused by the discrete nature of the spatial integration
procedure used to compute the control law.

Figure 5(a) shows that both controllers converge to a near-optimal configuration—one in which every
robot is located at the estimated centroid of its Voronoi region, in accordance with Theorem 1. However, the
true position error also converged to zero for the consensus controller, indicating that it achieved an optimal
coverage configuration, as shown in Figure 5(b). The basic controller did not reach an optimal coverage
configuration. Furthermore, convergence was so much faster for the consensus controller that we have to use
a logarithmic time scale to display both curves on the same plot. Again, the somewhat jagged time history
is a result of the discretized spatial integral computation over the Voronoi region.

The Figure 6(a) demonstrates that a locally true sensory function approximation is achieved for each
robot over Ωi = {pi(τ) | τ ≥ 0, w(τ) > 0}, the set of points along the robot’s trajectory with positive
weighting. The plot shows the integral in (19) as a function of time averaged over all the robots in the
network converging asymptotically to zero. The disagreement among the parameter values of robots is
shown in the right of Figure 6(b). The parameters were initialized to amin for all robots, so this value starts
from zero in both cases. However, the consensus controller causes the parameters to reach consensus, while
for the basic controller the parameters do not converge to a common value.

Figure 7(a) shows that the consensus controller obtained a lower value of the Lyapunov function at
a faster rate than the basic controller, indicating both a lower-cost configuration and a better function
approximation. In fact, Figure 7(b) shows that the parameter errors ‖ãi‖ actually converged to zero for the
consensus controller, so the conditions for Corollary 2 were met. This was also evidenced in Figure 5(b)
since the true position error converged to zero. For the basic controller, on the other hand, the parameters
did not converge to the true parameters.

8 Conclusion

In this work we described a decentralized control law for positioning a network of robots optimally for sensing
in their environment. The controller used an adaptive control architecture to learn a parameterized model of
the sensory distribution in the environment while seeking an optimal coverage configuration. The controller
was proven to cause the robots to move to the estimated centroids of their Voronoi regions, while also
causing their estimate of the sensory distribution to improve over time. Parameter coupling was introduced
in the adaptation laws to increase parameter convergence rates and cause the robots’ parameters to achieve
a common final value. The control law was demonstrated in numerical simulations of a group of 20 robots
sensing over an environment with a bimodal Gaussian distribution of sensory information.

We expect that the techniques used in this paper will find broader application beyond the problem chosen
here. It appears that consensus algorithms could be a fundamental and practical tool for enabling distributed
learning, and have compelling parallels with distributed learning mechanisms in biological systems. We hope
that our approach will yield fruitful combinations of adaptive control and decentralized control to produce
engineered agents that can cooperate with one another while gathering information from their environment
to proceed toward a common goal.
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Figure 4: Simulation results for the parameter consensus controller are shown in the left column (4(a), 4(c),
and 4(e)), and for the basic controller in the right column (4(b), 4(d), and 4(f)). The Gaussian centers of
φ(q) are marked by the x’s.
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Figure 5: The estimated position error, ‖ĈVi
− pi‖, and the true position error, ‖CVi

− pi‖ averaged over all
the robots in the network is shown for the network of 20 robots for both the basic and parameter consensus
controllers. The true position error converges to zero only for the parameter consensus controller, 5(b).
However, in accordance with Theorem 1, the estimated error converges to zero in both cases, 5(a). Note the
logarithmic time scale.
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Figure 6: The integrated sensory function error, namely
∫ t

0 w(τ)(Kiãi)
2 dτ , averaged over all the robots is

shown for the basic and consensus controllers in 6(a). The plot demonstrates that each robot converges to a
locally true function approximation over all points along its trajectory with positive weighting, w(τ) > 0, as
asserted in Theorem 1. The quantity

∑n

i=1 âT
i

∑n

j=1(âi − âj) is shown in 6(b), representing a measure of the
disagreement of parameters among robots. The disagreement converges to zero for the consensus controller,
as asserted in Theorem 2, but does not converge for the basic controller.
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Figure 7: The Lyapunov function is shown in 7(a) for both the basic and parameter consensus controllers.
Notice that the parameter consensus controller results in a faster decrease and a lower final value of the
function. The normed parameter error ‖ãi‖ averaged over all robots is shown in 7(b). The parameter error
converges to zero with the consensus controller indicating that the robot trajectories were sufficiently rich.

Appendix A

Lemma 1 (Uniform Continuity for Basic Controller) For the basic controller, V̇ is uniformly contin-
uous.

Proof
We will bound the time derivatives of a number of quantities. A bounded derivative is sufficient for

uniform continuity. Firstly, notice that ĈVi
, pi ∈ Vi ⊂ Q, so ĈVi

and pi are bounded, which implies ṗi =
K(ĈVi

− pi) is bounded. Consider terms of the form

d

dt

(
∫

Vi

f(q, t) dq

)

where f(q, t) is a bounded function with a bounded time derivative d
dt

f(q, t). We have

d

dt

(
∫

Vi

f(q, t) dq

)

=

∫

Vi

df(q, t)

dt
dq +

∫

∂Vi

f(q, t)nT
∂Vi

n
∑

j=1

∂(∂Vi)

∂pj

ṗj dq, (40)

where ∂Vi is the boundary of Vi and nT
∂Vi

is the outward facing normal of the boundary. Now ∂(∂Vi)
∂pj

is

bounded for all j, ṗj was already shown to be bounded, and f(q, t) is bounded by assumption, therefore
d/dt(

∫

Vi
f(q, t) dq) is bounded.

Notice that
˙̂

CVi
is composed of terms of this form, so it is bounded. Therefore p̈i = K(

˙̂
CVi

− ṗi) is
bounded, and ṗi is uniformly continuous.

Now consider

V̇ =
n

∑

i=1

[

−

∫

Vi

(q − pi)
T φ(q) dq ṗi + ãT

i Γ−1 ˙̂ai

]

.

The first term inside the sum is uniformly continuous since it is the product of two quantities which were
already shown to have bounded time derivatives, namely

∫

Vi
(q − pi)

T φ(q) dq (an integral of the form (40))

and ṗi. Now consider the second term in the sum. It is continuous in time since ˙̂ai is continuous. Expanding
it using (14) and (13) as

ãT
i Γ−1(Iproji − I)(Fiâi + γ(Λiâi − λi))
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shows that it is not differentiable where the matrix Iproji switches. However, the switching condition (15) is

such that ˙̂ai(t) is not differentiable only at isolated points on the domain [0,∞). Also, at all points where
it is differentiable, its time derivative is uniformly bounded (since ˙̂ai and the integrands of Λi and λi are
bounded, and Fi is composed of the kind of integral terms of the form (40)). This implies that ãT

i Γ−1 ˙̂a is
uniformly continuous. We conclude that V̇ is uniformly continuous. �

Lemma 2 (Uniform Continuity for Consensus Controller) For the consensus controller, V̇ is uni-
formly continuous.

Proof
We have

V̇ =

n
∑

i=1

[

−

∫

Vi

(q − pi)
T φ(q) dq ṗi + ãT

i Γ−1 ˙̂ai

]

,

therefore the reasoning of the proof of Lemma 1 applies as long as ˙̂ai can be shown to be uniformly continuous.
But ˙̂ai only differs from the basic controller in the presence of the term

ζ

n
∑

j=1

lij(âi − âj).

The Voronoi edge length, lij , is a continuous function of pk, k ∈ {1, . . . , n}. Furthermore, where it is
differentiable, it has uniformly bounded derivatives. It was shown in the proof of Lemma 1 that ṗk is
bounded, so similarly to ˙̂ai, the points at which lij(p1(t), . . . , pn(t)) is not differentiable are isolated points

on [0,∞). Therefore lij is uniformly continuous in time. All other terms in ˙̂aprei
were previously shown to

be uniformly continuous, so ˙̂aprei
is uniformly continuous. As shown in the proof of Lemma 1, the projection

operation preserves uniform continuity, therefore ˙̂ai is uniformly continuous. �

Appendix B

This section contains tables of the symbols used in this work.

Table of symbols of primary importance
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Symbol Description

Q convex bounded environment which the robots are to cover
q an arbitrary point in Q
pi position of robot i
Vi Voronoi region of robot i

φ(q) sensory function
φi(t) the value of the sensory function at a robot position, φ(pi(t))

φ̂i(q, t) robot i’s approximation of φ(q)
K(q) vector of basis functions for the sensory function, φ(q) = K(q)T a
Ki(t) the value of the basis functions at a robot position, K(pi(t))

a ideal parameter vector for the sensory function, φ(q) = K(q)T a
amin a positive lower bound on the elements of a
âi(t) robot i’s parameters
lij weighting between parameters for robots i and j

ãi(t) robot i’s parameter error, âi(t) − a
MVi

mass of Vi

M̂Vi
(t) approximation of MVi

LVi
first mass moment of Vi

L̂Vi
(t) approximation of LVi

CVi
centroid of Vi

ĈVi
(t) approximation of CVi

H(p1, . . . , pn) locational cost function
ui control input
Λi weighted integral of basis functions vector over robot trajectory
λi weighted integral of sensory measurements over robot trajectory

w(t) data weighting function
V Lyapunov function
Ni neighbor set of robot i
L graph Laplacian of the robot network
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Table of symbols of secondary importance
Symbol Description

n number of robots in the network
N number of dimensions of the space in which the robots exist
m number of parameters
Ωi the set of points in the trajectory of pi(t) with positive weighting, w(t) > 0
Ω union of all Ωi

K positive definite control gain matrix
Fi term in Lyapunov proof resulting from imperfect sensory approximation

˙̂aprei
time derivative of robot i’s parameters before projection

γ adaptive gain for learning law
Γ diagonal, positive definite adaptation gain matrix

Iproji matrix for implementing parameter projection
G a graph
V vertex set of a graph
vi a vertex in a graph
E edge set of a graph
ei an edge in a graph
nE number of edges in a graph
A adjacency matrix of a graph
c an arbitrary real constant
ζ positive consensus gain
αj vector containing the jth parameter of each robot
T some fixed time

λmini
the minimum eigenvalue of Λi(t)

Ã vector containing the parameter errors of all robots

Â vector containing the parameter estimates of all robots
F block diagonal matrix with ΓFi on each block
Λ block diagonal matrix with ΓΛi on each block
L generalized graph Laplacian for the network of robots

λmin minimum eigenvalue of γΛ + ζL
fi(pi, Vi, âi, t) a general learning law

f(q, t) a general function of position and time
Pi an approximation of Λ−1

i

Pi0 the initial condition for Pi

σj standard deviation of the jth Gaussian basis function
µj mean of the jth Gaussian basis function
∂Vi boundary of Vi

n∂Vi
outward facing unit normal vector along ∂Vi

J the least squares cost function
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