
Decentralized Algorithm for Randomized Task

Allocation in Fog Computing Systems

Slad̄ana Jošilo and György Dán

School of Electrical Engineering and Computer Science

KTH, Royal Institute of Technology, Stockholm, Sweden E-mail: {josilo, gyuri}@kth.se

Abstract—Fog computing is identified as a key enabler
for using various emerging applications by battery powered
and computationally constrained devices. In this paper, we
consider devices that aim at improving their performance
by choosing to offload their computational tasks to nearby
devices or to an edge cloud. We develop a game theoretical
model of the problem, and we use variational inequality
theory to compute an equilibrium task allocation in static
mixed strategies. Based on the computed equilibrium strat-
egy, we develop a decentralized algorithm for allocating the
computational tasks among nearby devices and the edge
cloud. We use extensive simulations to provide insight into the
performance of the proposed algorithm, and we compare its
performance with the performance of a myopic best response
algorithm that requires global knowledge of the system state.
Despite the fact that the proposed algorithm relies on average
system parameters only, our results show that it provides
good system performance close to that of the myopic best
response algorithm.

Index terms— computation offloading, fog computing,

Nash equilibria, decentralized algorithms

I. INTRODUCTION

Fog computing is widely recognized as a key component

of 5G networks and an enabler of the Internet of Things

(IoT) [1], [2]. The concept of fog computing extends

the traditional centralized cloud computing architecture by

allowing devices not only to use computing and storage

resources of centralized clouds, but also resources dis-

tributed across the network including the resources of each

other and resources located at the network edge [3].

Traditional centralized cloud computing allows devices

to offload the computation to a cloud infrastructure with

significant computational power [4],[5], [6]. Cloud offload-

ing may indeed accelerate the execution of applications,

but it may suffer from high communication delays, on

the one hand due to the contention of devices for radio

spectrum, on the other hand due to the remoteness of

the cloud infrastructure. Thus, traditional centralized cloud

computing may not be able to meet the delay requirements

of emerging IoT applications [7], [8], [9], [10].

Fog computing addresses this problem by allowing

collaborative computation offloading among nearby de-

vices and distributed cloud resources close to the network

edge [11]. The benefits of collaborative computation of-

floading are twofold. First, collaboration among devices

can make use of device-to-device (D2D) communication,

and thereby it can improve spectral efficiency and free

up radio resources for other purposes [12], [13], [14].

Second, the proximity of devices to each other can enable
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low communication delays. Thus, fog computing allows to

explore the tradeoff between traditional centralized cloud

offloading, which ensures low computing time, but may

suffer from high communication delay, and collaborative

computation offloading, which ensures low communica-

tion delay, but may involve higher computing times.

One of the main challenges facing the design of fog

computing systems is how to manage fog resources ef-

ficiently. Compared to traditional centralized cloud com-

puting, where a device only needs to decide whether to

offload the computation of a task, in the case of fog

computing the number of offloading choices increases with

the number of devices. Furthermore, today’s devices are

heterogeneous in terms of computational capabilities, in

terms of what tasks they have to execute and how often.

At the same time, some devices may be autonomous, and

hence they would be interested in minimizing their own

perceived completion times. Therefore, developing low

complexity algorithms for efficient task allocation among

nearby devices is an inherently challenging problem.

In this paper we address this problem by considering a

fog computing system, where devices can choose either to

perform their computation locally, to offload the compu-

tation to a nearby device, or to offload the computation to

an edge cloud. We provide a game theoretical model of

the completion time minimization problem. We show that

an equilibrium task allocation in static mixed strategies

always exists, i.e., if devices can choose at random whether

to offload, and where to offload. Based on the game

theoretical model we propose a decentralized algorithm

that relies on average system parameters, and allocates

the tasks according to a Nash equilibrium in static mixed

strategies. We use the algorithm to address the important

question whether efficient task allocation is feasible using

an algorithm that requires low signaling overhead, and

we compare the performance achieved by the proposed

algorithm with the performance of a myopic best response

algorithm that requires global knowledge of the system

state. Our results show that the proposed decentralized

algorithm, despite significantly lower signaling overhead,

provides good system performance close to that of the

myopic best response algorithm.

The rest of the paper is organized as follows. We

present the system model in Section II. We present two

algorithms in Sections III and IV. In Section V we present

numerical results and in Section VI we review related

work. Section VII concludes the paper.
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Fig. 1. Fog computing system that consists of 6 devices and an edge
cloud.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a fog computing system that consists of

a set N = {1, 2, ..., N} of devices, and an edge cloud.

Device i ∈ N generates a sequence (ti,1, ti,2, . . .) of

computational tasks. We consider that the size Di,k (e.g.,

in bytes) of task ti,k of device i can be modeled by a

random variable Di, and the number of CPU cycles Li,k

required to perform the task by a random variable Li.

According to results reported in [15], [16], [17] the number

Xi of CPU cycles per data bit can be approximated by a

Gamma distribution, and thus we can model the relation

between Li and Di as Li = DiXi. Furthermore, assuming

that the first moment Xi and the second moment 2Xi

of Xi can be estimated based on the past, the statistics

of the number of CPU cycles required to perform the

task of device i can be easily obtained. Similar to other

works [18], [19], [20], we assume that the task arrival

process of device i can be modeled by a Poisson process

with arrival intensity λi.

For each task ti,k device i can decide whether to

perform the task locally, to offload it to a device j ∈
N \ {i} or to an edge cloud. Thus, device i chooses

a member of the set N ∪ {0}, where 0 corresponds

to the edge cloud. We allow for randomized policies,

and we denote by pi,j(k) the probability that device i
assigns its task ti,k to j ∈ N ∪ {0}, and we define the

probability vector pi(k) = {pi,0(k), pi,1(k), ..., pi,N (k)},
where

∑

j∈N∪{0} pi,j(k) = 1. Finally, we denote by P
the set of probability distributions over N ∪ {0}, i.e.,

pi(k) ∈ P .

The above fog computing system relies on the assump-

tion that all devices faithfully execute the tasks offloaded

to them. To ensure this, the devices need to be incentivized

to collaborate in executing each others’ computational

tasks, as discussed in [21]. The collaboration among

devices in fog computing systems can be ensured with an

adequate incentive scheme similar to those used in peer-

to-peer systems [22], [23], [24]. These schemes ensure

the collaboration among the peers through the reputation-

based trust supporting mechanism. In the context of fog

computing systems, the mechanism would result in an

incentive scheme in which only devices that process

offloaded tasks themselves are entitled to offload the tasks.

A. Communication model

We consider that the devices communicate using an

orthogonal frequency division multiple access (OFDMA)

framework in which there is an assignment of subcarriers

to pairs of communicating nodes [25], [26]. Furthermore,

we consider that devices use dedicated bandwidth re-

sources, i.e. node-to-node pairs do not share the bandwidth

with each other and with the other cellular users [25]. This

can be implemented by assigning an orthogonal subcarrier

per transmission direction for each pair of communicating

nodes, resulting in N ×N subcarriers in total. We denote

the transmission rate from device i to device j by Ri,j ,

and the transmission rate from device i to the edge cloud

through a base station by Ri,0. Each device maintains N
transmission queues, i.e., N−1 queues for transmitting to

devices j ∈ N \ {i} and one for transmitting to the edge

cloud, and the tasks are transmitted in FIFO order.

We consider that the time T t
i,j(k) needed to transmit a

task ti,k from device i to j ∈ N ∪ {0} is proportional to

its size Di,k, and is given by

T t
i,j(k) = Di,k/Ri,j .

Furthermore, the time T d
i,j(k) needed to deliver the input

data Di,k from device i to j ∈ N ∪ {0} is the sum of the

transmission time T t
i,j(k) and of the waiting time (if any).

Similar to other works [27], [28], [29], [30], we consider

that the time needed to transmit the results of the compu-

tation back to the device is negligible. This assumption is

justified for many applications including face and object

recognition, and anomaly detection, where the size of the

result of the computation is much smaller than the size of

the input data.

Observe that our system model can accommodate sys-

tems in which certain devices i ∈ N only serve for

performing the computational tasks of others, by setting

the arrival intensity λi = 0. These devices can be con-

sidered as micro-data centers located at the network edge,

whose function in fog computing systems is to perform

the computational tasks of the other devices [31], [32].

Furthermore, our system model can accommodate systems

in which certain devices j ∈ N are not supposed to

perform the computational tasks of others, by setting the

transmission rates Ri,j from the other devices i ∈ N \{j}
to device j to low enough values.

Figure 1 illustrates a fog computing system that consists

of six devices and one edge cloud; device 1 and device

2 offload their tasks through a base station to the cloud

server, device 4 offloads its tasks to device 2, device 5
offloads its task to device 3 that serves as a micro-data

center, and device 6 performs computation locally.

B. Computation model

To model the time that is needed to compute a task

in a device i, we consider that each device i maintains

one execution queue with tasks served in FIFO order.

We denote by Fi the computational capability of device

i. Unlike devices, the cloud server has a large number

of processors with computational capability F0 each, and

we assume that computing in the edge cloud begins

immediately upon arrival of a task.

Similar to common practice [21], [27] we consider that

the time T c
i,j(k) needed to compute a task ti,k, on j ∈

N ∪ {0} is proportional to its complexity Li,k, and is

given by

T c
i,j(k) = Li,k/Fj .
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Fig. 2. Fog computing system modeled as a queuing network.

Furthermore, the execution time T e
i,j(k) of a task ti,k on

device j is the sum of the computation time T c
i,j(k) and of

the waiting time (if any). Figure 2 illustrates the queuing

model of a computation offloading system.

C. Problem formulation

We define the cost Ci of device i as the mean comple-

tion time of its tasks. Given a sequence (ti,1, ti,2, . . .) of

computational tasks, we can thus express the cost Ci as

Ci = lim
K→∞

1

K

[ K
∑

k=1

(

pi,i(k)T
e
i,i(k) (1)

+
∑

j∈N\{i}∪{0}
pi,j(k)

(

T d
i,j(k) + T e

i,j(k)
)

)]

.

Since the devices are autonomous, we consider that each

device aims at minimizing its cost by solving

minCi s.t. (2)

pi(k) ∈ P. (3)

Since devices’ decisions affect each other, the devices play

a dynamic non-cooperative game, and we refer to the game

as the multi user computation offloading game (MCOG).

The game is closest to an undiscounted stochastic game

with countably infinite state space, but the system state

evolves according to a semi-Markov chain (instead of a

Markov chain, depending on the distribution of Di and

Li) and payoffs (the completion times) are unbounded. We

are not aware of existence results for Markov equilibria for

this class of problem, and even for the case when the state

evolves according to a Markov chain with countable state

space and unbounded payoffs, there are only a few results

on the existence of equilibria in Markov strategies [33],

[34], [35].

D. Decentralized solution supported by a centralized entity

Since fog computing architecture is decentralized in na-

ture, and devices in fog computing systems are expected to

be autonomous [11], [36] we are interested in developing

decentralized algorithms that will allow devices to make

their offloading decisions locally. Motivated by widely

considered hierarchical fog computing architectures [37],

[38], we consider that there is a single central entity

with a high level of hierarchy that collects and stores the

information about the fog computing system. The entity

pi(k) = MyopicBestResponse(ti,k)

1: pi,j(k) = 0, ∀j ∈ N ∪ {0}
2: /* Estimate completion time of ti,k in ∀j∈N∪{0} */

3: for j = 0, . . . , N do

4: if j = i then

5: ECompleteT (j) = T e
i,j(k)

6: else

7: ECompleteT (j) = T d
i,j(k) + T e

i,j(k)
8: end if

9: end for

10: /* Make a greedy decision */

11: i′ ← argmin
{j∈N∪{0}

ECompleteT (j)

12: pi,i′(k) = 1
13: return pi(k)

Fig. 3. Pseudo code of myopic best response.

need not be a single physical entity, but a single logically

centralized entity that can handle high loads and can be

resilient to failure.

Furthermore, we consider that the entity periodically

sends the needed information to the devices and thus

supports them in making their offloading decisions. Intu-

itively, more information about the system state will allow

devices to make better offloading decisions, but at the cost

of increased signaling overhead. Therefore, one important

objective when developing decentralized algorithms for

allocating the computational tasks is to achieve good

system performance at the cost of an acceptable signaling

overhead. With this in mind, in what follows we propose

and discuss two decentralized solutions for the MCOG

problem in the form of a Markov strategy and in static

mixed strategies, respectively.

III. MYOPIC BEST RESPONSE

The first algorithm we consider, called Myopic Best

Response (MBR), requires global knowledge of the system

state, but decisions are made locally at the devices. Similar

to the WaterFilling algorithm proposed in [39], in the MBR

algorithm every device i makes a decision based on a

myopic best response strategy, i.e., every device i chooses

a node j ∈ N ∪{0} that minimizes the completion time of

its task ti,k, given the instantaneous state of the queuing

network. The pseudo-code for computing the myopic best

response strategy is shown in Figure 3. Note that since the

devices make their decisions based on the instantaneous

states of the queues, they do not take into account the tasks

that may arrive to the other devices’ execution queues

while transmitting a task. Futhermore, if the devices’

execution queues were stable if all devices perform all

tasks locally, then under the MBR algorithm the queue

lengths do not grow unbounded since each device chooses

the destination node based on the instantaneous state of the

queues.

Note that if we define the system state upon the arrival

of task ti,k as the number of jobs in the transmission

and execution queues, then the devices’ decisions depend

on the instantaneous system state only, and hence the

myopic best response is a Markov strategy for the MCOG.

Nonetheless, it is not necessarily a Markov perfect equi-

librium.
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Fig. 4. State transition diagram of the semi-Markov process induced by
the offloading decisions for the single device case (N = 1).

In a system with N devices we have N×N transmission

queues and N+1 execution queues, and we can thus model

the system as an N×(N+1)+1 dimensional semi-Markov

process.

Example 1. Figure 4 shows the state transition diagram

for a single device, i.e., N = 1, which is three di-

mensional. We use the triplet (nl, nt, n0) to denote the

system state, where nl, nt and n0 stand for the number

of tasks in the local execution queue, number of tasks in

the transmission queue and the number of tasks in the

cloud server, respectively. Since N = 1, a device only

needs to decide whether to offload the computation to the

edge cloud or to perform the computation locally and

hence the transition intensities from state (nl, nt, n0) to

state (nl, nt + 1, n0) and from state (nl, nt, n0) to state

(nl + 1, nt, n0) are (1− p1,1)λ1 and p1,1λ1, respectively.

In the case of computation offloading, the task with size

D1 and complexity L1 needs to be transmitted to the

edge cloud at rate R1,0 and executed with computational

capability F0 and thus the transition intensities from state

(nl, nt, n0) to state (nl, nt − 1, n0 + 1) and from state

(nl, nt, n0) to state (nl, nt, n0 − 1) are µT
1,0 = D1/R1,0

and µE
1,0 = n0L1/F0, respectively. Finally, in the case of

local execution the task with complexity L1 needs to be

executed locally with local computational capability F1

and hence the transition intensity from state (nl, nt, n0)
to state (nl − 1, nt, n0) is µE

1 = L1/F1.

A significant detriment of the MBR algorithm is its

signaling overhead, as it requires global information about

the system state upon the arrival of each task. To reduce

the signaling requirements, in what follows we propose an

algorithm that is based on a strategy that relies on average

system parameters only.

IV. EQUILIBRIUM IN STATIC MIXED STRATEGIES

As a practical alternative to the MBR algorithm, in this

section we propose a decentralized algorithm, which we

refer to as the Static Mixed Nash Equilibrium (SM-NE) al-

gorithm. The algorithm is based on an equilibrium (pi)i∈N

in static mixed strategies, that is, device i chooses the node

where to execute an arriving task at random according

to the probability vector pi, which is the same for all

tasks. For computing a static mixed strategy, it is enough

for a device to know the average task arrival intensities,

transmission rates, and the first and second moments of the

task size and the task complexity distribution. Therefore,

the SM-NE algorithm requires significantly less signaling

than the MBR algorithm.

In order to compute an equilibrium strategy, we start

with expressing the (approximate) equilibrium cost of

device i as a function of strategy profile (pi)i∈N , i.e.,

the mean completion time of its tasks in steady state.

Throughout the section we denote by Di and 2Di the first

and the second moment of Di, respectively, and by Li and
2Li the first and the second moment of Li, respectively.

A. Transmission time in steady state

Since tasks arrive to each device as a Poisson process

and we aim for a constant probability vector pi as a

solution, the arrival processes to the transmission queues

are Poisson processes. If the transmission queues are

sufficiently large, we can approximate them as infinite,

similar to [20], and thus we can model each transmission

queue as an M/G/1 system. Let us denote by T t
i,j and

2T t
i,j the mean and the second moment of the time needed

to transmit a task from device i to j ∈ N \{i}∪ {0},
respectively. Then the mean time T d

i,j needed to deliver

the input data from device i to j∈N\{i}∪{0} is the sum

of the mean waiting time in the transmission queue and

the mean transmission time T t
i,j , and can be expressed

as

T d
i,j =

pi,jλ
2
iT

t
i,j

2(1− pi,jλiT t
i,j)

+ T t
i,j , (4)

and the queue is stable as long as the offered load ρti,j =

pi,jλiT t
i,j < 1.

B. Computation time in steady state

Observe that if the input data size Di follows an expo-

nential distribution, then departures from the transmission

queues can be modeled by a Poisson process, and thus

tasks arrive to the devices’ execution queues according to a

Poisson process. In what follows we use the approximation

that the tasks arrive according to a Poisson process even if

Di is not exponentially distributed. Furthermore, following

common practice [40], [19], for analytical tractability we

approximate the execution queues as being infinite. This

approximation is reasonable if the queues are sufficiently

large. These two approximations allow us to model the

execution queue of each device as an M/G/1 system,

and the edge cloud as an M/G/∞ system.

Let us denote by T c
i,j and 2T c

i,j the mean and the

second moment of the time needed to compute device i’s
task on j ∈ N ∪ {0}, respectively. Then the mean time

T e
i,j that device j ∈ N needs to complete the execution

of device i’s task is the sum of the mean waiting time in

the execution queue and the mean computation time T c
i,j ,

and can be expressed as

T e
i,j =

∑

i′∈N pi′,jλ
2
i′T

c
i′,j

2(1−∑

i′∈N pi′,jλi′T c
i′,j)

+ T c
i,j , (5)

and the queue is stable as long the offered load ρej =
∑

i′∈N pi′,jλi′T c
i′,j < 1.

Since computing in the edge cloud begins immediately

upon arrival of a task, the mean time T e
i,0 that the cloud

needs to complete the execution of device i’s task is equal

to the mean computation time T c
i,0, i.e.,

T e
i,0 = Li/F0. (6)
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C. Existence of Static Mixed Strategy Equilibrium

We can rewrite (1) to express the cost Ci of device i in

steady state as a function of (pi)i∈N ,

Ci(pi, p−i) = pi,iT e
i,i+

∑

j∈N\{i}∪{0}
pi,j

(

T d
i,j+T e

i,j

)

,

where we use p−i to denote the strategies of all devices

except device i.

Observe that static mixed strategy profile (pi)i∈N of

the devices has to ensure that the entire system is stable in

steady state, and we assume that the load is such that there

is at least one strategy profile that satisfies the stability

condition of the entire system. Now, we can define the set

of feasible strategies of device i as the set of probability

vectors that ensure stability of the transmission and the

execution queues

Ki(p−i)={pi∈P|ρti,j≤St, ρ
e
i′≤St, ∀j∈N \{i}∪{0}, ∀i′},

where 0 < St < 1 is the stability threshold associated

with the transmission and the execution queues.

Note that due to the stability constraints the set of

feasible strategies Ki(p−i) of device i depends on the

other devices’ strategies, and we are interested in whether

there is a strategy profile (p∗i )i∈N , such that

Ci(p
∗
i , p

∗
−i) ≤ Ci(pi, p

∗
−i), ∀pi ∈ Ki(p

∗
−i).

We are now ready to formulate the first main result of

the section.

Theorem 1. The MCOG has at least one equilibrium in

static mixed strategies.

In the rest of this subsection we use variational inequal-

ity (VI) theory to prove the theorem and for computing

an equilibrium. For a given set K ⊆ R
n and a function

F : K → R
n, the V I(K, F ) problem is the problem of

finding a point x∗ ∈ K such that F (x∗)T (x − x∗) ≥ 0,

for ∀x ∈ K. We define the set K as

K={(pi)i∈N|pi∈P, ρti,j≤St, ρ
e
i ≤St, j∈N \{i}∪{0},∀i}.

Before we prove the theorem, in the following we

formulate an important result concerning the cost function

Ci(pi, p−i).

Lemma 1. Ci(pi, p−i) is a convex function of pi for any

fixed p−i and (pi, p−i) ∈ K.

Proof. For notational convenience let us start the proof

with introducing a few shorthand notations,

γi,j = pi,jλ
2
iT

t
i,j , δi =

∑

j∈N

pj,iλ
2
jT

c
j,i,

ǫi,j = 1− ρti,j , ζi = 1− ρei .

Using this notation we expand the cost Ci(pi, p−i) as

Ci(pi, p−i) =pi,i
( δi
2ζi

+T c
i,i

)

+pi,0
( γi,0
2ǫi,0

+T t
i,0 + T c

i,0

)

+
∑

j∈N\{i}

pi,j
( γi,j
2ǫi,j

+T t
i,j +

δj
2ζj

+ T c
i,j

)

.

To prove convexity we proceed with expressing the first

order derivatives hi,j =
∂Ci(pi,p−i)

∂pi,j
,

hi,0 = T t
i,0+T c

i,0+
γi,0
2ǫi,0

+ pi,0λi

(

2T t
i,0

2ǫi,0
+
T t

i,0γi,0
2ǫ2i,0

)

,

hi,i = T c
i,i +

δi
2ζi

+ pi,iλi

(

2T c
i,i

2ζi
+

T c
i,iδi
2ζ2i

)

,

hi,j |j 6=i
= T t

i,j + T c
i,j +

γi,j
2ǫi,j

+
δj
2ζj

+ pi,jλi

(

2T t
i,j

2ǫi,j
+

2T c
i,j

2ζj
+

T t
i,jγi,j
2ǫ2i,j

+
T c

i,jδj
2ζ2j

)

.

We can now express the Hessian matrix

Hi(pi, p−i)=











hi
i,0 0 . . . 0
0 hi

i,1 . . . 0
...

...
. . .

...

0 0 . . . hi
i,N











,

where hi
i,j =

∂2Ci(pi,p−i)
∂p2

i,j

, and

hi
i,0 =

λi

ǫi,0

(2
T t

i,0 +
γi,0T

t
i,0

ǫi,0

)(

1 + pi,0
λiT

t
i,0

ǫi,0

)

,

hi
i,i =

λi

ζi

(2
T c

i,i +
δiT

c
i,i

ζi

)(

1 + pi,i
λiT

c
i,i

ζi

)

,

hi
i,j

∣

∣

j 6=i
=

λi

ǫi,j

(2
T t

i,j +
γi,jT

t
i,j

ǫi,j

)(

1 + pi,j
λiT

t
i,j

ǫi,j

)

+

λi

ζj

(2
T c

i,j +
δjT

c
i,j

ζj

)(

1 + pi,j
λiT

c
i,j

ζj

)

.

Observe that all diagonal elements of Hi(pi, p−i) are

nonnegative, and thus the Hessian matrix Hi(pi, p−i) is

positive semidefinite on K, which implies convexity.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us define the generalized Nash

equilibrium problem Γs =< N , (P)i∈N , (Ci)i∈N >,

subject to (pi)i∈N ∈ K. Γs is a strategic game, in which

each device i ∈ N plays a mixed strategy pi ∈ Ki(p−i),
and aims at minimizing its cost Ci by solving

min
pi

Ci(pi, p−i) s.t. (7)

pi ∈ Ki(p−i). (8)

Clearly, a pure strategy Nash equilibrium (p∗i )i∈N of Γs

is an equilibrium of the MCOG in static mixed strategies,

as

Ci(p
∗
i , p

∗
−i) ≤ Ci(pi, p

∗
−i), ∀pi ∈ Ki(p

∗
−i).

We thus have to prove that Γs has a pure strategy Nash

equilibrium.

To do so, let us first define the function

F =







∇p1
C1(p1, p−1)

...

∇pN
CN (pN , p−N )






,
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where ∇pi
Ci(pi, p−i) is the gradient vector given by

∇pi
Ci(pi, p−i) =











hi,0

hi,1

...

hi,N











.

We prove the theorem in two steps based on the VI(K, F )

problem, which corresponds to Γs.

First, we prove that the solution set of the VI(K, F )

problem is nonempty and compact. Since the first order

derivatives hi,j are rational functions, the function F is

infinitely differentiable at every point in K, and hence it

is continuous on K. Furthermore, the set K is compact and

convex. Hence, the solution set of the VI(K, F ) problem

is nonempty and compact (Corollary 2.2.5 in [41]).

Second, we prove that any solution of the VI(K, F )

problem is an equilibrium of the MCOG. Since the func-

tion F is continuous on K, it follows that Ci(pi, p−i)
is continuously differentiable on K. Furthermore, by

Lemma 1 we know that Ci(pi, p−i) is a convex function.

Therefore, any solution of the VI(K, F ) problem is a

pure strategy Nash equilibrium of Γs [42], and is thus

an equilibrium in static mixed strategies of MCOG. This

proves the theorem.

Theorem 1 guarantees that the MCOG possesses at least

one equilibrium in static mixed strategies, according to

which the SM-NE algorithm allocates the tasks among the

devices and the edge cloud. The next important question is

whether there is an efficient algorithm for solving the VI

problem, and hence for computing an equilibrium (p∗i )i∈N

of the MCOG in static mixed strategies.

In what follows we show that an equilibrium can

be computed efficiently under certain conditions. To do

so, we show that the function F is monotone if the

execution queue of each device can be modeled by an

M/M/1 system and all task arrival intensities are equal.

Monotonicity of F is a sufficient condition for various

algorithms proposed for solving VIs [43], e.g., for the

Solodov-Tseng Projection-Contraction (ST-PC) method.

Theorem 2. If the task sizes and complexities are expo-

nentially distributed, arrival intensities λi = λ and

λmax
j∈N

T c
j,i ≤

1− St

N
, ∀i ∈ N ,

then the function F is monotone.

The proof is given in Appendix A.

Note that the sufficient condition provided by Theo-

rem 2 ensures stability of all execution queues in the

worst case scenario, i.e., when T c
j,i = maxj∈N T c

j,i for

all devices. This condition is, however, not necessary for

function F to be monotone in realistic scenarios. In fact,

our simulations showed that the ST-PC method converges

to an equilibrium for various considered scenarios.

V. NUMERICAL RESULTS

In what follows we show simulation results obtained

using an event driven simulator, in which we implemented

the MBR and SM-NE algorithms. For the ST-PC method

we set pi,i = 1, ∀i ∈ N as starting point, which

corresponds to the strategy profile in which each device

performs all tasks locally. The ST-PC method stops when

the norm of the difference of two successive iterations is

less than 10−4.

Similar to [44], [45], we placed the devices at random

on a regular grid with 104 points defined over a square

area of 1km× 1km, and we placed the edge cloud at the

center of the grid as in [44]. Unless otherwise noted, we

consider that the wired link latency τc incurred during

communication with the cloud server can be neglected

since the cloud is located in close proximity of de-

vices [46]. For simplicity, we consider a static bandwidth

assignment for the simulations; we assign a bandwidth of

Bi,j = 5 MHz for communication between device i and

device j [47], [48], and for the device to cloud bandwidth

assignment we consider two scenarios. In the elastic

scenario the bandwidth Bi,0 assigned for communication

between device i and the edge cloud is independent of

the number of devices. In the fixed scenario the devices

share a fixed amount of bandwidth B0 when they want to

offload a task to the edge cloud, and the bandwidth Bi,0

scales directly proportional with the number of devices,

i.e., Bi,0 = 1
N
B0. We consider that the channel gain of

device i to a node j ∈ N \{i}∪{0} is proportional to d−α
i,j ,

where di,j is the distance between device i and node j, and

α is the path loss exponent, which we set to 4 according

to the path loss model in urban and suburban areas [49].

We set the data transmit power P t
i of every device i to

0.4 W according to [50] and given the bandwidth Bi,j

available for the communication between nodes i and j
we calculate the noise power Pn as Pn = Bi,jN0, where

N0 = 1.38065 × 10−23T is the spectral density for the

termal noise at the temperature T = 290K. Finally, we

calculate the transmission rate Ri,j from device i to node

j ∈ N \ {i} ∪ {0} as Ri,j = Bi,j log2(1 + P t
i d

−α
i,j /Pn).

The input data size Di follows a uniform distribution

on [adi , b
d
i ], where adi and bdi are uniformly distributed on

[0.1, 1.4] Mb and on [2.2, 3.4] Mb, respectively. The arrival

intensity λi of the tasks of device i is uniformly dis-

tributed on [0.01, 0.03] tasks/s, and the stability threshold

is St = 0.6. Note that for the above set of parameters the

maximum arrival intensity does not satisfy the sufficient

condition of Theorem 2 already for N = 20 devices. Yet,

our evaluation shows that the ST-PC method converges

even for larger instances of the problem.

The computational capability Fi of device i is drawn

from a continuous uniform distribution on [1, 4] GHz,

while the computation capability of the edge cloud is

F0 = 64 GHz [51]. The task complexity Li follows a uni-

form distribution on [ali, b
l
i], where ali and bli are uniformly

distributed on [0.2, 0.5] Gcycles and [0.7, 1] Gcycles, re-

spectively.

We use three algorithms as a basis for comparison.

The first algorithm computes the socially optimal static

mixed strategy profile (p̄i)i∈N that minimizes the system

cost C = 1
N

∑

i∈N Ci, i.e., (p̄i)i∈N = argmin(pi)i∈N
C.

We refer to this algorithm as the Static Mixed Optimal

(SM-OPT) algorithm. The second algorithm considers that

the devices are allowed to offload the tasks to the edge

cloud only (i.e., pi,i + pi,0 = 1), and we refer to this

algorithm as the Static Mixed Cloud Nash Equilibrium

(SMC-NE) algorithm. The third algorithm considers that
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all devices perform local execution (i.e., pi,i = 1). Further-

more, we define the performance gain of an algorithm as

the ratio between the system cost reached when all devices

perform local execution and the system cost reached by

the algorithm. For the SM-OPT algorithm the results

are shown only up to 30 or 35 devices, because the

computation of the socially optimal strategy profile was

computationally infeasible for larger problem instances.

The results shown in all figures are the averages of 50

simulations, together with 95% confidence intervals.

A. Performance gain

We start with evaluating the performance gain as a

function of the number of devices. Figure 5 shows the

performance gain for the MBR, SM-NE, SM-OPT and

SMC-NE algorithms as a function of the number of

devices for the two scenarios of device to cloud bandwidth

assignment. For the elastic scenario Bi,0 = 0.2 MHz

and Bi,0 = 1.25 MHz, and for the fixed scenario B0 =
12.5 MHz.

The results show that the SM-NE and the SM-OPT

algorithms perform close to the MBR algorithm, despite

the fact that they are based on average system parame-

ters only. We can also observe that when the device to

cloud bandwidth is low (about 0.2 MHz), SMC-NE does

not provide significant gain compared to local execution

(the performance gain is close to one for all values of

N ). On the contrary, the MBR, SM-NE and SM-OPT

algorithms, which allow collaborative offloading, provide

a performance gain of about 50%, and the gain slightly

increases with the number of devices. The reason for the

slight increase of the gain is that when there are more

devices, devices are closer to each other on average, which

allows higher transmission rates between devices.

Compared to the case when Bi,0 = 0.2 MHz, the results

for Bi,0 = 1.25 MHz show that all algorithms achieve

very high performance gains (up to 300%). Furthermore,

the performance gain of the SMC-NE algorithm is similar

to that of the SM-NE and the SM-OPT algorithms, while

the MBR algorithm performs slightly better. The reason is

that for high device to cloud bandwidth in the static mixed

equilibrium most devices offload to the edge cloud, as on

average it is best to do so, even if given the instantaneous

system state it may be better to offload to a device,

as done by the MBR algorithm. Furthermore, unlike for

Bi,0 = 0.2 MHz, for Bi,0 = 1.25 MHz the performance

gain becomes fairly insensitive to the number of devices,

which is again due to the increased reliance on the cloud

resources for computation offloading.

The results are fairly different for the fixed device to

cloud bandwidth assignment scenario, as in this scenario

the number of devices affects the device to cloud band-

width. In this scenario collaboration among the devices

improves the system performance (SMC-NE vs. SM-NE

algorithms). We can also observe that as N increases, the

curves for fixed scenario approach the curves for the elastic

scenario for Bi,0 = 0.2 MHz. This is due to that for large

values of N the device to cloud bandwidth Bi,0 becomes

low and the devices offload more to each other than to the

edge cloud.

Finally, the results show that the gap between the SM-

NE and the SM-OPT algorithms is almost negligible for

all scenarios, and hence we can conclude that the price of

stability of the MCOG game in static mixed strategies is

close to one.

B. Impact of cloud availability

In order to analyse the impact of the possibility to

offload to the edge cloud, in the following we vary the

bandwidth Bi,0 between 0.2 MHz and 5.2 MHz.

Figure 6 shows the average and the median performance

gain for the MBR, SM-NE, SM-OPT and SMC-NE algo-

rithms as a function of the device to cloud bandwidth for 8
devices placed over a square area of 0.5km×0.5km, for 30
devices placed over a square area of 1km× 1km, and for

60 devices placed over a square area of 1.41km×1.41km.

Note that the three scenarios have approximately the same

density of devices. We first observe that the median per-

formance gain is almost equal to the average performance

gain for all algorithms and for all considered scenarios,

which suggests that distribution of the completion times of

the tasks is approximately symmetrical. The figure shows

that the performance gain achieved by the algorithms in-

creases with the bandwidth Bi,0. Furthermore, we observe

that the gap between the algorithms decreases as the device

to cloud bandwidth increases, and for reasonably high

bandwidths the SM-NE algorithm performs almost equally

well as the MBR algorithm. The results also show that

collaboration among the devices has highest impact on

the system performance when the bandwidth Bi,0 is low,

and for Bi,0 = 1.2 MHz offloading to the edge cloud
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only (SMC-NE) is as good as the SM-NE and SM-OPT

algorithms.

Comparing the performance for different sized areas we

observe that the performance gain decreases as the size of

the area increases, which is due to that the devices are

closer to the cloud server on average in a smaller area.

C. Impact of cloud remoteness

In order to evaluate the impact of the cloud access

latency, in the following we vary the latency τc between

0 s and 0.4 s. A low latency (0ms ≤ τc < 20ms)

would correspond to the case of an edge cloud or a home

gateway, a moderate latency (20ms ≤ τc < 100ms) would

correspond to an edge cloud located deeper in the network

(e.g., metro network), and high latency (100ms ≤ τc)

would correspond to remote cloud servers.

In Figure 7 we show the average performance gain

as a function of the latency τc for the MBR, SM-NE,

SM-OPT and SMC-NE algorithms in a fog computing

system that serves N = 30 devices, each of them assigned

a bandwidth of Bi,0 = 1.25 MHz for communication with

the cloud. The figure shows that the performance gain of

all algorithms decreases as the latency to the cloud server

increases. Furthermore, we observe that the performance

gain of the SMC-NE algorithm approaches one, as in the

case of a high latency it is better for most of devices

to perform the computation locally. On the contrary, the

performance gain of the MBR, SM-NE and SM-OPT

algorithms remains slightly above 1.5 even for high values

of the latency (τc ≥ 300ms), which additionally confirms

that devices can decrease the average completion times of

their tasks through collaboration even in systems where

they cannot entirely rely on the cloud resources.

D. Performance gain perceived per device

In order to evaluate the performance gain perceived per

device, we use the notion of ex-ante and ex-post individual

rationality. These are important in situations when the

devices are allowed to decide whether or not to partic-

ipate in the collaboration before and after learning their

types (i.e., the exact size and complexity of their tasks),

respectively. The results in Figure 5 show that on average

the devices benefit from collaboration, as the performance

gain is greater than one, and hence collaboration among

the devices is ex-ante individually rational. In order to

investigate whether collaboration among the devices is ex-

post individually rational, in Figure 8 we plot the CDF

of the performance gain for the elastic device to cloud

bandwidth assignment scenario with 30 devices and for

Bi,0 = 0.2 MHz, Bi,0 = 0.8 MHz, and Bi,0 = 1.25 MHz.

The results for Bi,0 = 0.2 MHz show that the SMC-NE

algorithm is ex-post individually rational, as devices al-

ways gain compared to local computation. At the same

time, the SM-NE and MBR algorithms achieve a per-

formance gain below one for a small fraction of the

devices, and hence collaboration among devices is not ex-

post individually rational. On the contrary, the results for

Bi,0 = 0.8 MHz show that the MBR algorithm is ex-post

individually rational, since the performance gain of every

device is larger than one, but the SM-NE is not. Finally,

the results for Bi,0 = 1.25 MHz show that all algorithms

ensure that every device achieves a performance gain at

least one, and hence for Bi,0 = 1.25 MHz collaboration

among devices is ex-post individually rational using all

algorithms.

The above results show that collaboration among the

devices is ex-post individually rational only if sufficient

bandwidth is provided for communication to the edge

cloud. Thus, if ex-post individual rationality is important

then the device to cloud bandwidth has to be managed

appropriately.

E. Utilization ratio of collaboration among devices

In order to evaluate the impact of collaboration on

the system performance, we consider the ratio of the

tasks executed at different nodes in the system. To obtain

this ratio, we simulated stochastic task arrivals over a

period of 104s. We recorded the Nt tasks generated

in the system during this period, and for an algorithm

A ∈ {MBR, SM-NE, SM-OPT} we recorded NA
l and NA

c ,

the number of tasks executed locally and the number of

tasks executed in the edge cloud, respectively. Figure 9

shows the ratio
NA

l

Nt
of the tasks executed locally, and the

ratio
Nt−NA

c

Nt
of the tasks executed either locally or at one

of the other devices for the MBR, SM-NE and SM-OPT

algorithms as a function of the number of devices for

Bi,0 = 1
N
12.5 MHz.

The results in Figure 9 show that for N = 10, i.e., when

the bandwidth assigned to each device for communication

with the edge cloud is 1.25 MHz, the devices offload

more tasks to the edge cloud in the case of the SM-NE

and SM-OPT algorithms than in the case of the MBR

algorithm, which coincides with the observation made in
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Figure 5 for Bi,0 = 1.25 MHz. On the contrary, when

N ≥ 20 the devices offload more tasks to the edge

cloud in the case of the MBR algorithm than in the

case of the SM-NE and SM-OPT algorithms that achieve

approximately the same performance. Furthermore, we

observe that while the ratio of the tasks executed locally

increases up to 30 users and remains constant for more

devices, the ratio of the tasks executed either locally or

at one of the other devices continues to increase with

the number of devices for all algorithms. These results

confirm the observation made for Bi,0 = 1
N
12.5 MHz in

Figure 5 that the collaboration among the devices improves

the system performance.

F. Computational efficiency of the SM-NE algorithm

Recall that the SM-NE algorithm is based on the static

mixed strategy equilibrium, and that the SM-OPT algo-

rithm is based on the socially optimal static mixed strategy

profile. In order to assess the computational efficiency of

the SM-NE algorithm we measured the time needed to

compute a static mixed strategy equilibrium by the ST-PC

method and the time needed to compute a socially optimal

static mixed strategy profile by the quasi-Newton method.

Figure 10 shows the measured times as a function of the

number of devices. We observe that the time needed to

compute the socially optimal static mixed strategy profile

increases exponentially with the number of devices at a

fairly high rate, and already for 30 devices it is more than

an order of magnitude faster to compute a static mixed

strategy equilibrium than to compute the socially optimal

static mixed strategy profile. Therefore, we conclude that

the SM-NE algorithm, which is based on an equilibrium in

static mixed strategies, is a computationally efficient solu-

tion for medium to large scale collaborative computation

offloading systems.

VI. RELATED WORK

There is a large body of work on augmenting the

execution of computationally intensive applications using

cloud resources [52], [53], [54], [55], [27], [56]. In [52] the

authors studied the problem of maximizing the throughput

of mobile data stream applications through partitioning,

and proposed a genetic algorithm as a solution. The

authors in [53] considered multiple QoS factors in a 2-

tiered cloud infrastructure, and proposed a heuristic for

minimizing the users’ cost. In [54] the authors proposed

an iterative algorithm that minimizes the users’ overall

energy consumption, while meeting latency constraints.

The authors in [55] considered the joint optimization of the

offloading decisions, and the allocation of communication

and computation resources, proved the NP-hardness of

the problem and proposed a heuristic offloading deci-

sion algorithm for minimizing the completion time and

the energy consumption of devices. The authors in [27]

considered a single wireless link and an elastic cloud,

provided a game theoretic treatment of the problem of

minimizing completion time and showed that the game is

a potential game. The authors in [56] considered multiple

wireless links, elastic and non-elastic cloud, provided a

game theoretic analysis of the problem and proposed

a polynomial complexity algorithm for computing an

equilibrium allocation. In [19] the authors considered a

three-tier cloud architecture with stochastic task arrivals,

provided a game theoretical formulation of the problem,

and used a variational inequality to prove the existence

of a solution and to provide a distributed algorithm for

computing an equilibrium. Unlike these works, we allow

devices to offload computations to each other as well.

A few recent works considered augmenting the execu-

tion of computationally intensive applications using the

computational power of nearby devices in a collaborative

way [57], [58], [59], [18], [39]. The authors in [57]

modeled the collaboration among mobile devices as a

coalition game, and proposed a heuristic method for

solving a 0 − 1 integer quadratic programing problem

that minimizes the overall energy consumption. In [58]

the authors formulated the resource allocation problem

among neighboring mobile devices as a multi-objective

optimization that aims to minimize the completion times

of the tasks as well as the overall energy consumption,

and as a solution proposed a two-stage approach based on

enumerating Pareto optimal solutions. In [59] the authors

formulated the problem of maximizing the probability of

computing tasks before their deadlines through mobility-

assisted opportunistic computation offloading as a convex

optimization problem, and used the barrier method to solve

the problem. The authors in [18] considered a collabo-

rative cloudlet that consists of devices that can perform

shared offloading, and proposed two heuristic allocation

algorithms that minimize the average relative usage of all

the nodes in the cloudet. The authors in [39] proposed

an architecture that enables a mobile device to remotely

access computational resources on other mobile devices,

and proposed two greedy algorithms that require complete
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information about devices’ states, for minimizing the job

completion time and the energy consumption, respectively.

Our work differs from these works, as we consider com-

putation offloading to an edge cloud and nearby devices,

and provide a non-cooperative game theoretic treatment of

the problem.

Only a few recent works considered the computation

offloading problem in fog computing systems [60], [61],

[62], [63]. The authors in [60] considered a fog computing

system in which the tasks can be performed locally at

the devices, at a fog node or at a remote cloud server,

and proposed a suboptimal algorithm for computing the

offloading decisions and allocating resources with the ob-

jective to minimize the delay and the energy consumption

of devices. In [61] the authors considered a fog computing

system, where devices may offload their computation to

small cell access points that provide computation and

storage capacities, and designed a heuristic for a joint

optimization of radio and computational resources with the

objective of minimizing the energy consumption. Unlike

this work, we consider stochastic task arrivals, and we

provide a game theoretical treatment of the completion

time minimization problem. In [62] authors formulated the

power consumption-delay tradeoff problem in fog comput-

ing system that consists of a set of fog devices and a set of

cloud servers, and proposed a heuristic for allocating the

workload among fog devices and cloud servers. In [63]

the authors considered the joint optimization problem

of task allocation and task image placement in a fog

computing system that consists of a set of storage srevers,

a set of computation servers and a set of users, and pro-

posed a low-complexity three-stage algorithm for the task

completion time minimization problem. Our work differs

from these works, as we consider heterogeneous compu-

tational tasks, and our queueing system model captures

the contention for both communication and computational

resources.

To the best of our knowledge ours is the first work

based on a game theoretical analysis that proposes a

decentralized algorithm with low signaling overhead for

solving the completion time minimization problem in fog

computing systems.

VII. CONCLUSION

We have provided a game theoretical analysis of a fog

computing system. We proposed an efficient decentralized

algorithm based on an equilibrium task allocation in static

mixed strategies. We compared the performance achieved

by the proposed algorithm that relies on average system

parameters with the performance of a myopic best re-

sponse algorithm that requires global knowledge of the

system state. Our numerical results show that the proposed

algorithm achieves good system performance, close to that

of the myopic best response algorithm, and could be a

possible solution for coordinating collaborative computa-

tion offloading with low signaling overhead. There is a

number of interesting extensions of our model. First, one

could consider a communication model in which devices

share the bandwidth with each other. Another direction is

to consider the energy cost of offloading, e.g., use it as a

constraint for offloading optimization.

APPENDIX

A. Proof of Theorem 2

Observe that if λi = λ then the cost Ci can equivalently

be defined as Ni = λCi, i.e., the number of tasks in the

system. Furthermore, since task complexities are assumed

to be exponentially distributed, the execution queues are

M/M/1 systems. We can thus rewrite T e
i,j as

T e
i,j =

T c
i,j

1− ρej
, (9)

and the cost Ni(pi, p−i) of device i as

Ni(pi, p−i) =pi,iλ
T c

i,i

ζi
+pi,0λ

( γi,0
2ǫi,0

+T t
i,0 + T c

i,0

)

+
∑

j∈N\{i}

pi,jλ
( γi,j
2ǫi,j

+T t
i,j +

T c
i,j

ζj

)

.

Next, we express the first order derivatives hi,j of

Ni(pi, p−i) as

hi,0=λ
(

T t
i,0+T c

i,0+
γi,0
2ǫi,0

)

+pi,0λ
2
(

2T t
i,0

2ǫi,0
+
T t

i,0γi,0
2ǫ2i,0

)

,

hi,i = λ
T c

i,i

ζi
+ pi,iλ

2
T c

2

i,i

ζ2i
,

hi,j |j 6=i
= λ

(

T t
i,j +

γi,j
2ǫi,j

+
T c

i,j

ζj

)

+ pi,jλ
2
(

2T t
i,j

2ǫi,j
+

T t
i,jγi,j
2ǫ2i,j

+
T c

2

i,j

ζ2j

)

.

In order to prove the monotonicity of the function F in

what follows we show that the Jacobian J of F is positive

semidefinite. The Jacobian J has the following structure






























h1
1,0 0 ... 0 0 0 ... 0 ... 0 0 ... 0

0 h1
1,1 ... 0 0 h1

2,1 ... 0 ... 0 h1
N,1 ... 0

...
...

. . .
...

...
...

. . .
... ...

...
. . .

...
0 0 ... h1

1,N 0 0 ... h1
2,N ... 0 0 ... h1

N,N

...
...

0 0 ... 0 0 0 ... 0 ... hN
N,0 0 ... 0

0 hN
1,1 ... 0 0 hN

2,1 ... 0 ... 0 hN
N,1 ... 0

...
...

. . .
...

...
...

. . .
... ...

...
. . .

...
0 0 ... hN

1,N 0 0 ... hN
2,N ... 0 0 ... hN

N,N































,

where the second order derivatives can be expressed as

hi
i,0 =

λ2

ǫi,0

(2
T t

i,0 +
γi,0T t

i,0

ǫi,0

)(

1 + pi,0
λT t

i,0

ǫi,0

)

hi
i,i =

(

λT c
i,i

ζi

)2
(

2 + 2
λ

ζi
pi,iT c

i,i

)

,

hi
i,j

∣

∣

j 6=i
=

(

λT c
i,j

ζj

)2
(

2 + 2
λ

ζj
pi,jT c

i,j

)

+ ht
i,j ,

where ht
i,j =

λ2

ǫi,j

(2
T t

i,j +
γi,jT t

i,j

ǫi,j

)(

1 + pi,j
λT t

i,j

ǫi,j

)

,

and

hi
i′,j

∣

∣

i′ 6=i
=

λT c
i,jλT c

i′,j

ζ2j

(

1 + 2
λ

ζj
pi,jT c

i,j

)

.
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Reordering the rows and columns, the Jacobian J can be

rewritten as

J =











C 0 . . . 0
0 M1 . . . 0
...

...
. . .

...

0 0 . . . MN











,

where

C =











h1
1,0 0 . . . 0
0 h2

2,0 . . . 0
...

...
. . .

...

0 0 . . . hN
N,0











,Mi =











h1
1,i h

1
2,i . . . h

1
N,i

h2
1,i h

2
2,i . . . h

2
N,i

...
...

. . .
...

hN
1,i h

N
2,i . . . h

N
N,i











.

Observe that all diagonal elements of C are nonnegative,

and thus the matrix C is positive definite. In order to

show that J is positive semidefinite we have to show that

the symmetric matrix Ms
i = 1

2 (M
T
i + Mi) is positive

semidefinite.

The diagonal elements dhs
j,i of Ms

i are given by

dhs
j,i

∣

∣

j=i
=

(

λT c
i,i

ζi

)2
(

2 + 2
λ

ζi
pi,iT c

i,i

)

,

dhs
j,i

∣

∣

j 6=i
=

(

λT c
j,i

ζi

)2
(

2 + 2
λ

ζi
pj,iT c

j,i

)

+ ht
j,i,

where ht
j,i =

λ2

ǫj,i

(2
T t

j,i +
γj,iT t

j,i

ǫj,i

)(

1 + pj,i
λT t

j,i

ǫj,i

)

,

and the off-diagonal elements ohs
j,i =

1
2 (h

i
j,i + hj

i,i)
∣

∣

∣

j 6=i

are given by

ohs
j,i =

λT c
i,iλT c

j,i

ζ2i

(

1 +
λ

ζi
(pi,iT c

i,i + pj,iT c
j,i)

)

Let us define the vector T c
i =(T c

1,i T c
2,i . . . T c

N,i)
T

and matrix T t
i

T t
i =

(

diag(ht
j,i)|j∈N\{i}

0

0 0

)

.

Furthermore, let us define matrix T p
i as











p1,iT c
1,i

p1,iT
c
1,i+p2,iT

c
2,i

2
...

p1,iT
c
1,i+pN,iT

c
N,i

2

p2,iT
c
2,i+p1,iT

c
1,i

2
p2,iT c

2,i ...
p2,iT

c
2,i+pN,iT

c
N,i

2

...
...

. . .
...

pN,iT
c
N,i+p1,iT

c
1,i

2

pN,iT
c
N,i+p2,iT

c
2,i

2
... pN,iT c

N,i











.

Now, matrix Mi can be rewritten as

Mi =
λ2

ζ2i

(

T c
i T c

T

i ◦
(

I + E +
2λ

ζi
T p
i

))

+ T t
i,

where ◦ denotes the Hadamard product, i.e., the

component-wise product of two matrices.

It is well known that the identity I and unit E matrices

are positive definite, while positive definiteness of matrix

T c
i T c

T

i follows from the definition. Observe that matrix

T t
i is positive semidefinite as well, since it is a diagonal

matrix with non-negative elements. Since the sum of two

positive semidefinite matrices is positive semidefinite and

the Hadamard product of two positive semidefinite matri-

ces is also positive semidefinite [64], the proof reduces to

showing that matrix I+E+ 2λ
ζi
T p
i is positive semidefinite.

To do so, we will show that the minimum eigenvalue of

the matrix 2λ
ζi
T p
i is greater than or equal to −1. To do

so, let us denote by e the all-ones vector and define the

vector tpi = (p1,iT c
1,i p2,iT c

2,i . . . pN,iT c
N,i). Now, we

can express matrix T p
i as

T p
i =

1

2

(

tpi e
T + e(tpi )

T
)

.

The characteristic polynomial of the symmetric matrix T p
i

is given by [65]

kN−2

2

(

k2 − 2(eT tpi )k + (eT tpi )
2 −N‖tpi ‖2

)

.

We observe that T p
i has N − 2 zero eigenvalues, and

one non-negative and one non-positive eigenvalue given by

k+ =
(

eT tpi+
√
N‖tpi ‖

)

/2 and k− =
(

eT tpi−
√
N‖tpi ‖

)

/2,

respectively. Therefore, the minimum eigenvalue of the

matrix 2λ
ζi
T p
i is greater than −1 if

λ

ζi

(
√
N‖tpi ‖ − eT tpi

)

≤ 1. (10)

Since tpi is a vector with non-negative elements, we

have that eT tpi ≥ ‖tpi ‖ and it also holds that ‖tpi ‖ ≤√
N maxj∈N tj,i. Therefore, the following inequalities

hold

λ

ζi

(
√
N‖tpi ‖ − eT tpi

)

≤ λ

ζi

(
√
N max

j∈N
tj,i(
√
N − 1)

)

≤ Nλ

ζi
max
j∈N

tj,i ≤
Nλ

ζi
max
j∈N

T c
j,i.

Since ρei ≤ St, we have that ζi ≥ 1− St, and therefore

Nλ

ζi
max
j∈N

T c
j,i ≤

Nλ

1− St

max
j∈N

T c
j,i. (11)

Based on (11) a sufficient condition for (10) is that

λmaxj∈N T c
j,i ≤ 1−St

N
. This proves the theorem.
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