
Decentralized and Adaptive K -Means
Clustering for Non-IID Data Using

HyperLogLog Counters

Amira Soliman1(B), Sarunas Girdzijauskas1, Mohamed-Rafik Bouguelia2,
Sepideh Pashami2, and Slawomir Nowaczyk2

1 RISE SICS, Stockholm, Sweden
{aaeh,sarunasg}@kth.se

2 Halmstad University, Halmstad, Sweden
{mohamed-rafik.bouguelia,sepideh.pashami,slawomir.nowaczyk}@hh.se

Abstract. The data shared over the Internet tends to originate from
ubiquitous and autonomous sources such as mobile phones, fitness track-
ers, and IoT devices. Centralized and federated machine learning solu-
tions represent the predominant way of providing smart services for users.
However, moving data to central location for analysis causes not only
many privacy concerns, but also communication overhead. Therefore, in
certain situations machine learning models need to be trained in a col-
laborative and decentralized manner, similar to the way the data is origi-
nally generated without requiring any central authority for data or model
aggregation. This paper presents a decentralized and adaptive k -means
algorithm that clusters data from multiple sources organized in peer-to-
peer networks. Our algorithm allows peers to reach an approximation
of the global model without sharing any raw data. Most importantly,
we address the challenge of decentralized clustering with skewed non-
IID data and asynchronous computations by integrating HyperLogLog
counters with k -means algorithm. Furthermore, our clustering algorithm
allows nodes to individually determine the number of clusters that fits
their local data. Results using synthetic and real-world datasets show
that our algorithm outperforms state-of-the-art decentralized k -means
algorithms achieving accuracy gain that is up-to 36%.

1 Introduction

The predominant way of using machine learning (ML) involves collecting data
to a centralized repository often in communication costly and privacy-invasive
manner. Therefore, Federated Learning (FL) has been introduced as an alterna-
tive distributed and privacy-friendly approach. FL allows users to train models
locally on their devices using their sensitive data, and communicate intermediate
model updates to a central server without the need to centrally store the data
[13]. Specifically, users start by contacting the central server and downloading
the learning algorithm and a global model, that is common to all users. The
algorithm trains its model locally on each device using user private data and
c© Springer Nature Switzerland AG 2020
H. W. Lauw et al. (Eds.): PAKDD 2020, LNAI 12084, pp. 343–355, 2020.
https://doi.org/10.1007/978-3-030-47426-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47426-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-47426-3_27

344 A. Soliman et al.

computes update to the current global model. Afterwards, the new updates on
the learning parameters obtained from the algorithm on the device of each user
are sent to the central server for aggregation. The server integrates the new
learning parameters and sends the aggregated global model back to each user.
These interactions with the central server are repeated till reaching convergence.
This distributed approach for model computation diminishes the need for central
storage of raw data, hence, computation becomes distributed among users and
their personal data never leaves their devices.

FL can work very efficiently in many scenarios. The principal advantage of
FL is the decoupling of global model training from the need for direct access to
the raw data. However, FL has issues that can be related to system and data
challenges. Scalability of FL is a major system challenge, especially in use-cases
involving a large number of users (e.g., thousands of users) using and improving
the global model at the same point. Additionally, data skewness represents one
of the main data challenges for FL, since the data is fully distributed and is
generated according to behaviours of participating users. Generating a single
global model that accumulates all user behaviours might not produce the best
model for particular categories of the users. Specifically, global averaging model
enforces a bias towards the behavioural patterns provided by the majority of
users, while suppressing the patterns of less significant users [20,21].

It is important for distributed ML and FL to ensure that the training data is
uniformly distributed (i.e., IID sampling that represents independent and identi-
cal random sampling) so that any resulting model represents unbiased estimate
of the expected model parameters. However, with a huge number of users partic-
ipating in the training of a FL model, there is no control over size and statistical
properties of training data used at each device. Thus, it is unrealistic to assume
that the data produced by many different users will always be IID data. Specifi-
cally, data points generated by users can be quite different as data on each node
can be driven using different phenomena. Therefore, two randomly selected users
are likely to compute very different updates. This leads to a statistical standpoint
where assumptions need to be made for non-IID data [13].

Recently, Peer-to-Peer (P2P) systems have been used as underlying commu-
nication frameworks to provide decentralized ML algorithms. The overall system
can be thought of as a connected undirected graph with n vertices each repre-
senting a node. These nodes can be allowed to communicate randomly with any
other node in the network, which shapes the underlying topology to a random
graph [5,12,18,22]. Also, the communication among nodes can be restricted to
enforce a specific underlying graph topology, for example the communication can
be only allowed for friendship ties in social networks or among geographically
co-located IoT devices [1,20,21].

In this paper, we present a P2P k -means clustering algorithm. The general
k -means algorithm takes input as an integer k and a set of m data points with
d dimensions in R

d. The goal is to cluster these data points by finding k cen-
ters that minimize the sum of the squared distances between each point and the
closest center to which it can be assigned to form a cluster [14,15]. Finding an

Decentralized Adaptive K-Means Using Hyperloglog Counters 345

exact solution to the k -means problem is known to be NP-hard, therefore exist-
ing algorithms adopt incremental optimization strategies [4,14]. Our proposed
algorithm extends the general k -means algorithm and allows nodes having dis-
tributed data to cooperate in P2P fashion to reach a clustering consensus using
their solitary local data and leverage models from others peers.

Our P2P k -means algorithm executes in iterations, such that in each iteration
nodes compute an approximation of the new centroids in a decentralized man-
ner by collaboratively exchanging their local estimations and applying weighted
averaging. Updating the centroids using weighted averaging function takes into
account the number of data points that a node used to calculate its centroids.
The more data points used in calculating a centroid, the higher the weight asso-
ciated with this centroid while applying the averaging function. Differently form
existing FL and general P2P k -means algorithms, our proposed algorithm deals
with skewed data distributions as well as asynchronous updates of the cluster
centroids. We allow nodes to have different pace in executing the exchange iter-
ations, such that some nodes can be more actively engaged than others.

The active nodes can make the system biased toward the properties of their
local data. Additionally, these nodes execute exchanges more often which makes
their data to be over-represented when applying the weighted averaging function
[8]. Naiive weighted averaging function fails to keep track of unique data points
represented by a centroid, consequently it keeps accumulating the number of
data points owned by active nodes each time they are engaged in an exchanging
round. Therefore, our clustering algorithm employs HyperLogLog counters to
correctly approximate the total number of data points used in calculating the
centroids [6]. HyperLogLog is a probabilistic data structure, which provides a
reasonable approximation of cardinality estimation. We integrate HyperLogLog
counters so that nodes can keep track of distinct data points used so far in
model training, hence allow our clustering algorithm to correctly approximate
the number of data points in the network. Therefore, our clustering algorithm
can operate under asynchronous computations and prevent model aggregation
from being biased towards peers interacting with high frequency.

Decentralized data generation makes imbalanced data and missing classes
imperative. The data is expected to be highly skewed due to the heterogeneous
nature of participating nodes. A lot of work has been done for solving class
imbalance and missing classes using data resampling, however most of these
methods require access to the whole data, which is not applicable in decentralized
systems [17]. To address these challenges, our clustering algorithm incorporates
two different techniques to allow nodes decide the proper number of clusters
that fit their local data. Particularly, when two nodes try to merge their local
models represented by their centroids, our merging function applies k -means on
centroids to group every pair of centroids that are close to each other. Then, our
first approach to adaptively fix the number of cluster applies Bradley, Fayyad
and Reina (BFR) algorithm to further merge the closest clusters together [19].
We provide another merging function using MinHash algorithm [3].

346 A. Soliman et al.

Our contributions can be described as follows: 1) We provide a decentralized
P2P k -means algorithm that can successfully handle skewed and non-IID
data distribution among the participating nodes. 2) We provide a computa-
tional environment participating nodes to asynchronously compute cluster-
ing consensus in P2P networks. 3) We provide a novel adaptive k-means
clustering algorithm that allow nodes to individually determine the number of
clusters that fits their local data. 4) We provide experimental evaluation of the
proposed decentralized and adaptive k -means algorithm using multiple synthetic
as well as real-world dataset. The results show that our algorithm outperforms
state-of-the-art decentralized M-Means algorithms achieving accuracy gain that
is up to 36%.

The paper is organized as follows: in Sect. 2 and Sect. 3, we present an
overview of existing centralized, distributed as well as P2P k -means algorithms.
Section 4 introduces our proposed methods for P2P Adaptive k -means clustering
algorithm. Section 5 shows the experimental evaluation of our proposed algo-
rithm compared to the state-of-the-art P2P k -means algorithms. Finally, Sect. 6
concludes our paper.

2 Background

Clustering is a technique that is used to partition elements in a dataset such
that similar elements are assigned to same cluster while elements with different
properties are assigned to different clusters. One of the earliest clustering tech-
niques in the literature is the k -means clustering method [14,15]. Given a set
X = {x1...xn} of m samples in R

d, the k -means problem is to find the minimum
variance clustering of the dataset into k clusters with centroids C, such that the
following potential function is minimized,

φ =
1
m

∑

x∈X

min
c∈C

‖x − c‖2 . (1)

Identifying these centroids implicitly defines the cluster to which each sample
is assigned. Each data point is mapped to the cluster with the nearest mean,
serving as a representation of the cluster. As defined, finding an exact solution
to the k -means problem even for k = 2 is NP-hard [4].

The k -means algorithm starts by randomly choosing k points in the vector
representation space of input data, these points serve as the initial centroids of
the clusters. Afterwards, all samples are each assigned to the centroid they are
closest to. Then, for each cluster a new centroid is computed by averaging the
feature vectors of all samples that are assigned to it. The process of assigning
samples and recomputing centroids is repeated until the process converges.

3 Related Work

Several distributed k -means algorithms have been proposed to cluster datasets
that are distributed over different locations. These algorithms assume that there

Decentralized Adaptive K-Means Using Hyperloglog Counters 347

is a central coordinator that communicates with all other nodes in the distributed
system. The clustering goal is to partition the distributed dataset, into k clusters
consistent with the global clustering that can be obtained using the centralized
algorithm. Some of these algorithms perform the process of computing the cen-
troids of the clusters in a distributed manner using averaging techniques. The
main idea is to generate centroids of local data at each computing node, then
transmit them to the central coordinator which computes the average [7,23].
Other algorithms generate summaries of local data at each node and send them
to the central coordinator to perform the clustering algorithm using the collected
summaries [10,11].

Decentralized clustering on distributed data using P2P has been studied
recently. Some solutions introduce distributed k -means algorithms that construct
a global set of artificial points to act as a proxy for the entire dataset [1,16].
There are some solutions that consider P2P random networks and work in static
settings, however they are aimed at computing basic average of centroids. Fellus
et al. [5] propose a decentralized k -means algorithm which executes in commu-
nication rounds, and in each round nodes compute an approximation of the new
centroids in a distributed manner.

It is clear that both distributed and decentralized k -means can be efficiently
solved using collaborative averaging as well as summarizing techniques. However,
the calculation of local approximation only succeed when the data is not skewed.
As aforementioned, our main focus is to provide a decentralized P2P k -means
method to handle non-IID data as well as asynchronous computations.

4 Decentralized K -Means

In P2P k -means, we consider a set of n nodes V = {vi, 1 ≤ i ≤ n} which can
communicate randomly with each other. On each node vi there is a local set of
data points Pi ⊆ R

d, and the global dataset is P =
⋃n

i=1 Pi. The goal is to find
a set of k centers which optimize cost function defined in (1) in a decentralized
manner while preserving theoretical guarantees for approximating clustering cost
without exchanging the local data among nodes.

4.1 General P2P K -Means Algorithms and Their Limitations

In the beginning, we want to emphasize on the limitations of general methods
in case of asynchronous scenarios with non-IID data distribution. General P2P
k -means methods apply the steps of k -means while using the local data points
available at each node after all nodes agree on the set of initial centroids. Then,
each node performs the exchange procedure by selecting a random peer form the
network to which it sends the computed centroids. We introduce two examples to
further explain the consequences of update procedure. First, we consider a P2P
network with number of nodes n = 3, such that nodes n1, n2, and n3, have data
points with sizes equal to 30, 60, 90 data points, respectively. Also, we assume
that the number of clusters equals to 3.

348 A. Soliman et al.

Example 1. We assume that every node has data points from the three clusters,
where each cluster is represented by one third of the number of points at each
node (i.e. n1 has 10 data points in each cluster, n2 has 20, etc.). Node n1 is the
only active node to perform exchange iterations. Thus, n2 and n3 are going to
apply the update operation as described in Algorithm (1). The update function
applies simple averaging and treats the centroids generated by n1 equally with
the centroids of other peers, though for example n3 uses more data points in
computing its centroids. Accordingly, if the data owned by n1 is not represen-
tative of the data owned by other peers, n1 is causing deviation for the general
clustering model, though it owns only less than 17% of total data points in the
system.

Algorithm 1. Update for k -means at node ni with centroids from nj

Local centroids c
(i)
k : c

(i)
1 , c

(i)
2 , ..., c

(i)
k

Procedure Update(c
(j)
k)

for k ← 1 to K do

1 c
(i)
k ← 1

2

(
c
(i)
k + c

(j)
k

)

2 KM-Clustering()

Before illustrating our second example, we want to briefly describe how
weighted averaging can be executed in instead of non-weighting averaging. The
centroid weight is going to be proportional to the number of data points used
to calculate it. In this case, the update function takes an extra input that tells
the number of data points belong to each cluster, i.e., nodes exchange the num-
ber of data points used to compute each centroid. For further exchange rounds,
nodes have to update their counters to keep track of the number of data points
used so far in generating the current centroids. Thus, nodes need to continuously
accumulate the number of data points used to compute the centroids after every
update operation.

Example 2. We assume that n3 has a missing class, so the data points belong
in two clusters not three. However, k -means algorithm splits the points into 3
clusters according to the input k = 3. Consider n3 to be the active node in
the first exchange round, so it exchanges its centroids with the number of their
associated data points to n1 and n2. Then, n1 and n2 perform weighted averaging
and update their centroids and increase their counters with data points from
n3. In the second exchange round, n1 and n2 are engaged together in exchange
iteration. Now, when n1 updates its centroids again using centroids of n2, number
of data points used in weighted averaging is going to reflect what n3 owns twice,
as centroids of n2 and n1 both count data points of n3. Accordingly, data points
owned by n3 are going to be overrepresented, adding to this the fact that its
centroids are not correct in representing the three clusters expected in the global
model.

Decentralized Adaptive K-Means Using Hyperloglog Counters 349

4.2 P2P K -Means with HyperLogLog Counters

HyperLogLog (HLL) counters are extremely useful for big data as they dramat-
ically decrease the amount of memory needed to approximate the exact cardi-
nality estimation compared to other data structures [6]. HLL counters hash the
input data into a bit sequence, while making sure that the hashing function
distributes bits as evenly and uniformly as possible in the hashing space. Then,
HLL counters encodes the generated hash representation of the input in their bit
sequence. Regardless of how many times a particular value appears in the input,
it is going to be hashed to the same value, hence encoded only once in the HLL
bit sequence. The cardinality is estimated by calculating the maximum number
of leading zeros in the binary representation of the generated bit sequence. If the
maximum number of leading zeros observed is n, an estimate for the number of
distinct elements in the input set is expected to be 2n.

Algorithm 2. Generate HyperLogLog function for k -means at node ni

Procedure GenerateHLL((hll)
(i)
k)

foreach x ∈ Xi do
1 c ← clusterID (x)

2 hll
(i)
c .append (x)

3 for k ← 1 to K do

4 if k �= c then hll
(i)
k .remove (x)

Interestingly, HLL counters have the property that they can be merged by
combining their bit sequences [9], such that generated representation contains
the elements encoded in the two HLL counters. In our clustering algorithms
we integrate HLL counters to address the limitations of general P2P k -means
methods as described in the previous two examples. We start by executing a
regular k -means at each node to generate the centroids using the local data.
Afterwards, we create a HLL counter per cluster at each node as described in
Algorithm (2). The bit sequence of each HLL encodes the hash representation
of the data points belonging to that cluster.

When nodes get engaged in an exchange round, they communicate their
computed centroids as well as HLL counters representing data seen so for in
computing the centroids. We use HLL counters to estimate the number of unique
data points for each centroid. The update function executes first a regular k -
means to find out the centroids to be merged, as shown in Algorithm (3), lines 1:2.
We consider applying k -means instead of directly performing weighted averaging
procedure as a first step to handle data skewness, such that two local centroids
might be closer to each other and better being merged than combing them
with worse options computed by other peers. We perform weighted averaging
procedure using the estimated cardinalities as shown in lines 5:9. Lastly, nodes
update their previous HLL counters by merging them with the received HLL
counters, as described in line 10.

350 A. Soliman et al.

Algorithm 3. HyperLogLog update for k -means at node ni

Procedure Update(c
(j)
k , (hll)

(j)
k)

1 centroids ← c
(i)
k ∪ c

(j)
k ; hllall ← (hll)

(i)
k ∪ (hll)

(j)
k

2 cent merge ← KMeans (centroids, k) // identify centroid pairs

3 i ← 0; a ← 0 ; b ← 0
4 for m ∈ cent merge do

/* m is a pair indicating centroids to be merged */

5 cardx ← cardinality (hllall[m[0]]); cardy ← cardinality (hllall[m[1]])
6 hllun ← merge (hllall[m[0]], hllall[m[1]]); cardun ← cardinality (hllun)
7 if cardun < (cardx + cardy) then

8 if cardx > cardy then a ← cardx
cardun

; b ← 1 − a

else b ← cardy
cardun

; a ← 1 − b

else a ← cardx
cardun

; b ← cardy
cardun

9 c
(i)
i ← a × centroids[m[0]] + b × centroids[m[1]]

10 hll
(i)
i ← hll un ; i ← i + 1

11 KM-Clustering()

4.3 Adaptive Number of Clusters at Each Node

In our algorithm we provide two functions to adaptively detect the number of
clusters at each node. Our first approach applies merging function using MinHash
algorithm [3]. MinHash is widely used to estimate how similar two sets of points
are. In our clustering algorithm, we create bit sequences similar to ones of HLL
counters that encode data points using the MinHash algorithm. Having such
bit sequences per cluster, nodes can evaluate how their data points are similar
to data points used in other peers to calculate the centroids before performing
the merge function. If there is an overlap in the MinHash bit sequences, then
the centroids can be merged, otherwise no overlap indicates the clusters are not
similar. Interestingly, this indicates that one of the nodes might not have the
correct clustering results due to missing classes, and by adopting the centroids
from the other node without changing them it can fix the cluster memberships
of its local data.

Our second approach is implemeted using BFR algorithm [19] to further
merge the closest clusters together. We use BFR algorithm to computes the sum
and sum of squares of each cluster in order to compute the standard deviation
of points belonging to this cluster. The criterion for further merges can be deter-
mined by the gain in terms of cluster variance (i.e. lower value) after combining
the data points in one cluster. The variance of merging the two clusters can still
be computed using the sum and sum of squares of individual clusters.

5 Evaluation

We proceed with evaluating the performance of proposed clustering algorithm
by comparing it with the state-of-the-art P2P k -means algorithms. We have

Decentralized Adaptive K-Means Using Hyperloglog Counters 351

implemented the competitor algorithms according to implementation provided
by the original authors using C++. For each method we have used their default
settings for the parameters as introduced by each algorithm. To evaluate the
clustering accuracy, we have used the F1 score measure that is computed as har-
monic mean of precision and recall. Precision reflects mixing of different ground-
truth clusters into the extracted ones. Moreover, recall reflects the goodness of
grouping nodes that belong to the same ground-truth cluster.

5.1 K -Means Clustering Algorithms

We use the name DKM as an identifier of our P2P k -means clustering algorithm.
The first method we use for comparison is cent that represents a centralized
version of k -means algorithm. Then, we have fedps that is implemeted as a
distributed version of k -means using FL paradigm, such that there is a dedicated
centralized node responsible for model aggregation for other nodes in the system.
The third method is agml, a dicentralized version of P2P k -means that allows
nodes to exchage summaries representing their local data, then apply clustering
using generated summaries [5]. Also, we implemented gdc as a P2P k -means
algothim that that allows nodes to generate and exchange a global set of artificial
points to act as a proxy for the entire dataset [16]. Finally, we use golf that is
a P2P k -means implemented using gossip protocol [2].

5.2 Datasets

We have performed the comparison using some real-world as well as synthetic
benchmark datasets available from UCI Machine Learning1 and Fundamental
clustering problem suite2.

Real-World Datasets: We use Daily and Sports Activities as well as PAMAP2
datasets. These two datasets comprise motion sensor data of some daily and
sports activities each performed by different persons in their own style. Our
objective is to cluster these activities into 3 categories: 1) low intense activities
such as sitting and standing, 2) moderate activities such as walking or running
on a treadmill, and 3) intense activities such as rowing and cycling. The first
dataset contains 9,120 data points, while the second one contains 27,582 data
points. We used 2D representation of the data.

Synthetic Datasets: We use Energy Time and S1 datasets that are generating
as Gaussian clusters. The first dataset contains 4,096 data points into 2 Gaussian
clusters. The second dataset has 5,000 data points clustered into 15 Gaussian
clusters.

1 https://archive.ics.uci.edu/ml/datasets.php?format=&task=clu.
2 https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data.

https://archive.ics.uci.edu/ml/datasets.php?format=&task=clu
https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data

352 A. Soliman et al.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(a) Sync/IID

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(b) Sync/non-IID

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(c) Async/IID

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(d) Async/non-IID

Fig. 1. Evaluation using daily and sports activities dataset.

5.3 Skewed Data and Asynchronous Computations

For the following experiments, we create a P2P network with 100 nodes. Each
node has its own local data repository and can communicate with any random
subset of peers in the network. For IID test cases, we evenly distribute the
training sets among the peers. Also, we distribute the data in non-IID manner,
such that allow one third of the nodes to obtain 50% of the data points per each
cluster, whereas the remaining data points are distributed randomly among the
remaining nodes.

We also create some highly unbalanced distribution, in which one third of
the nodes in the network have missing classes among their allocated data points.
Additionally, we create asynchronous computation scenario by assign nodes dif-
ferent speed to perform the exchange rounds. We split the network randomly
in three parts, the first part remains idle, the second part performs only one
exchange per computation round, while the last set are actively participating by
performing up to three exchanges in one round.

Figure 1 shows the evaluation of different P2P methods using the first dataset.
As show, we report the accuracy in different use-cases: first (a) when we have IID
data distribution and synchronous computation when all nodes have the same
exchange pace. Then (b) when data becomes non-IID distributed. In (c) and
(d) cases, we report the accuracy in case of asynchronous computations when
data is distributed in IID and non-IID manner. The results confirm that general
P2P methods work when data is uniformly distributed and nodes update their
centroids with the same frequencies.

Decentralized Adaptive K-Means Using Hyperloglog Counters 353

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(a) PAMAP2 (Async/IID)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(b) PAMAP2 (Async/non-IID)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(c) EnergyTime (Async/IID)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
AC

CU
RA

CY

ROUNDS

cent fedps agml gdc golf DKM

(d) EnergyTime (Async/non-IID)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(e) S1 (Async/IID)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AC
CU

RA
CY

ROUNDS

cent fedps agml gdc golf DKM

(f) S1 (Async/non-IID)

Fig. 2. Evaluation using PAMAP2, EnergyTime, and S1 datasets in the cases of asyn-
chronous computations.

Figure 2 reports the results of the remaining datasets in asynchronous com-
putation scenarios. Results using PAMAP2, EnergyTime, and S1 confirm that
our algorithm (DKM) is the only method capable of achieving accuracy com-
parable to the centralized version when we explore the expected real-world case
scenarios of having non-IID data and asynchronous computations, while other
methods fail to achieve acceptable accuracy.

6 Conclusion

This paper presents a novel decentralized as well as adaptive k -means clustering
algorithm that is highly beneficial for dynamic and fully distributed environ-
ments. Our main contribution is to provide a decentralized k -means method
for skewed data distribution and asynchronous computations in P2P networks.

354 A. Soliman et al.

We integrate HyperLogLog counters with our k -means algorithm to efficiently
handle data skewness in such dynamic execution environment. Furthermore, our
clustering algorithm allows nodes to individually determine the number of clus-
ters that fits their local data. Our experimental evaluation confirms the ability
of our algorithm to adapt to difficult scenarios in which existing P2P k -means
methods fail to generate acceptable results.

Acknowledgements. This research has been conducted within the “BIDAF: A Big
Data Analytics Framework for a Smart Society” (http://bidaf.sics.se/) project funded
by the Swedish Knowledge Foundation.

References

1. Balcan, M.F., Ehrlich, S., Liang, Y.: Distributed k-means and k-median clustering
on general topologies. In: Advances in Neural Information Processing Systems, pp.
1995–2003 (2013)

2. Berta, Á., Hegedűs, I., Ormándi, R.: Lightning fast asynchronous distributed k-
means clustering (2014)

3. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171),
pp. 21–29. IEEE (1997)

4. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs
via the singular value decomposition. Mach. Learn. 56(1–3), 9–33 (2004)

5. Fellus, J, Picard, D., Gosselin, P.-H.: Decentralized k-means using randomized
gossip protocols for clustering large datasets. In: 2013 IEEE 13th International
Conference on Data Mining Workshops, pp. 599–606. IEEE (2013)

6. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: HyperLogLog: the analysis of
a near-optimal cardinality estimation algorithm. In: Discrete Mathematics and
Theoretical Computer Science, pp. 137–156 (2007)

7. Forman, G., Zhang, B.: Distributed data clustering can be efficient and exact.
SIGKDD Explor. 2(2), 34–38 (2000)

8. Giaretta, L., Girdzijauskas, Š.: Gossip learning: off the beaten path. In: IEEE
International Conference on Big Data (IEEE Big Data 2019), Los Angeles, CA,
USA, 9–12 December 2019, p. 2019 (2019)

9. Heule, S., Nunkesser, M., Hall, A.: Hyperloglog in practice: algorithmic engineering
of a state of the art cardinality estimation algorithm. In: Proceedings of the 16th
International Conference on Extending Database Technology, pp. 683–692. ACM
(2013)

10. Januzaj, E., Kriegel, H.-P., Pfeifle, M.: Towards effective and efficient distributed
clustering. In: Workshop on Clustering Large Data Sets (ICDM 2003) (2003)

11. Kargupta, H., Huang, W., Sivakumar, K., Johnson, E.: Distributed clustering using
collective principal component analysis. Knowl. Inf. Syst. 3(4), 422–448 (2001)

12. Khelghatdoust, M., Girdzijauskas, S.: Short: gossip-based sampling in social over-
lays. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 335–340.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09581-3 26

13. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimiza-
tion: distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527 (2016)

http://bidaf.sics.se/
https://doi.org/10.1007/978-3-319-09581-3_26
http://arxiv.org/abs/1610.02527

Decentralized Adaptive K-Means Using Hyperloglog Counters 355

14. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

15. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

16. Mashayekhi, H., Habibi, J., Khalafbeigi, T., Voulgaris, S., Van Steen, M.: GDClus-
ter: a general decentralized clustering algorithm. IEEE Trans. Knowl. Data Eng.
27(7), 1892–1905 (2015)

17. Nguyen, G.H., Bouzerdoum, A., Phung, S.L.: Learning pattern classification tasks
with imbalanced data sets. In: Yin, P.-Y. (ed.) Pattern Recognition. IntechOpen,
Rijeka (2009)

18. Ormándi, R., Hegedűs, I., Jelasity, M.: Gossip learning with linear models on fully
distributed data. Concurrency Comput. Pract. Experience 25(4), 556–571 (2013)

19. Rajaraman, A., David Ullman, J.: Mining of Massive Datasets. Cambridge Uni-
versity Press, Cambridge (2011)

20. Soliman, A., Bahri, L., Carminati, B., Ferrari, E., Girdzijauskas, S.: DIVa: decen-
tralized identity validation for social networks. In: Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining 2015, pp. 383–391. ACM (2015)

21. Soliman, A., Bahri, L., Girdzijauskas, S., Carminati, B., Ferrari, E.: CADIVa: coop-
erative and adaptive decentralized identity validation model for social networks.
Soc. Network Anal. Min. 6(1), 36 (2016)

22. Soliman, A., Girdzijauskas, S.: DLSAS: distributed large-scale anti-spam frame-
work for decentralized online social networks. In: 2016 IEEE 2nd International
Conference on Collaboration and Internet Computing (CIC), pp. 363–372. IEEE
(2016)

23. Tasoulis, D.K., Vrahatis, M.N.: Unsupervised distributed clustering. In: Parallel
and Distributed Computing and Networks, pp. 347–351 (2004)

	Decentralized and Adaptive K-Means Clustering for Non-IID Data Using HyperLogLog Counters
	1 Introduction
	2 Background
	3 Related Work
	4 Decentralized K-Means
	4.1 General P2P K-Means Algorithms and Their Limitations
	4.2 P2P K-Means with HyperLogLog Counters
	4.3 Adaptive Number of Clusters at Each Node

	5 Evaluation
	5.1 K-Means Clustering Algorithms
	5.2 Datasets
	5.3 Skewed Data and Asynchronous Computations

	6 Conclusion
	References

