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Abstract: Microgrids can deploy traditional and/or renewable power sources to support 

remote sites. Utilizing renewable power sources requires more complicated control strategies 

to achieve acceptable power quality and maintain grid stability. In this research, we assume 

that the grid stability problem is already solved. As a next step, we focus on how the power 

can be dispatched from multiple power sources for improved grid efficiency. Isolated 

microgrids frequently require reconfigurations because of the grid expansion or component 

failures. Therefore, the control strategies ideally should be implemented in a plug-and-play 

fashion. Moreover, these strategies ideally require no pre-knowledge of the grid structure, 

and as little communication with neighboring power sources as possible. The control 

objective is to minimize a cost function that can be adjusted to reflect the desire to minimize 

energy cost and/or losses. An algorithm is designed to satisfy a derived necessary condition 

of function optimality. Such conditions are obtained by formulating Lagrange functions. An 

equivalent grid model approximates the grid structure which was later confirmed to represent 

the grid behavior adequately. For decentralized operations, we execute the distributed control 

sequentially using a simple token communication protocol. The performance of the 

combined system identification-Lagrange function minimization algorithm is demonstrated 

through simulations. 
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1. Introduction 

Distributed renewable power sources are being deployed at a rapid pace. They promise lower 

environmental impacts, a reduced carbon footprint, and enhanced energy diversity and security [1–6]. 

These new power sources are frequently installed in rural areas far away from the main electrical grid, 

and sometimes forming microgrids [7–10]. The distributed power sources typically include solar cells, 

wind turbines, fuel cells, and are commonly augmented by traditional power sources such as diesel 

engines with generators. Depending on the setup, energy storage systems in the form of batteries or 

plug-in vehicles may be included [11–16]. 

In microgrid applications, the grid architecture may change more often and thus the overall integration 

concept needs to be more flexible to accommodate scalability and expandability [17]. The network 

should also be robust against issues unique to microgrids such as frequent and relatively strong 

perturbations in power supply and demand. The microgrid control systems thus ideally are decentralized, 

use simple yet robust control algorithms, and do not require much communication. In addition, the 

controller should not rely on a priori knowledge of the grid structure. Because of these requirements, 

each component should have adequate local intelligence and needs a local processor [18]. 

Electricity grid control is guided by two main objectives. The primary one is demand-supply balance, 

which has a short time horizon—the mismatch needs to be contained within predefined threshold at every 

instant. The secondary objective is economic dispatch, which has a longer time horizon. Given a certain 

total grid load, the supplies can be redistributed to reduce overall generation cost or losses by redistributing 

the power generations. This redistribution process does not need to happen very quickly. 

To achieve a demand-supply balance in microgrids, power electronic devices control the operations 

of generators. These devices incorporate droop characteristics that respond to locally monitored 

frequency and voltage. In the literature, control strategies to maintain demand-supply balance are 

frequently based on conventional droop characteristics [19–23]. This study also utilizes conventional 

droops for the demand-supply balance, which can be implemented in a plug-and-play fashion. 

Moreover, they are compatible with the control strategies of high voltage lines and rotational 

generators. With advances in wireless communications, it becomes possible for information to be 

transmitted and shared. This research, therefore, studies control algorithms that use droop information 

solely, as well as algorithms that use a small amount of communications. 

The main focus of our research—economic dispatch—is achieved by a long-horizon control strategy, 

achieving maximum efficiency of overall grid operations. Most existing approaches [24–28] require a 

high computational load, are centralized, and need full knowledge of the grid structure and operating 

conditions. Researchers, in trying to reduce the computational burden, have explored many online 

economic dispatch strategies for microgrids. These include minimizing the fuel consumption of a 

microgrid having local heat demands [29], performing an economic dispatch for a microgrid considering 

renewable energy cost [30], and using a mesh-adaptive direct search method to minimize fuel and 
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maintenance costs [31]. However, these methods are still centralized and a priori knowledge of the grid 

structure is required. Microgrids must be scalable and they are subject to frequent “power source 

failures” (intermittent renewable power sources). Therefore, decentralized concepts are preferred. 

Researchers have proposed several approaches to decentralized power dispatch strategies.  

De Brabandere [32] presented an optimal power dispatch strategy that requires sharing the marginal cost 

of each power source. This is carried out through iterative and random communication. Tanaka [33] 

designed a decentralized control strategy extracted from off-line optimization results. This control design 

approach, however, requires a priori knowledge of the grid structure and, if the grid structure changes, 

extensive computations are required. Cagnano [34] suggested an online optimal reactive power control 

strategy that does not requires a priori knowledge of the grid structure. Implementation, however, 

requires extensive communications. In this research, we focus on a decentralized power control 

approach that requires little communication and no a priori knowledge of the grid structure. Past 

microgrid control work has mainly focused on improving the power quality under fluctuations in 

generation and load, faults of micro power sources, and low-voltage ride-through. This research, 

targeting grid efficiency and robustness, addresses a different but equally important problem. 

The rest of this paper is organized as follows: the control concept is described in Section 2, and the 

necessary conditions for the minimum cost are derived in Section 3. A decentralized control algorithm 

is developed using the necessary conditions in Section 4. The control algorithm is evaluated through 

simulations in Section 5. Finally, Section 6 presents our conclusions. 

2. Control Concept 

In the islanded microgrid illustrated in Figure 1a, when the terminal voltage values of the power sources 

are fixed, the control variables are the power outputs of the power sources. By allocating the power outputs 

while keeping the total demand and total supply balanced, the controller can be tuned to minimize a cost 

function that include distribution power loss, generation cost, or both. The cost function depends on the 

active power outputs of the power sources as well as the grid configuration and distribution line impedance 

values. A meaningful optimal problem is to allocate the power outputs that satisfy the condition for the 

minimum cost. The necessary condition for the minimum cost, as what has been found in similar problems, 

is that the marginal costs of all control variables should be the same [35]. 

Figure 1. (a) Conceptual structure of an islanded microgrid with multiple sources and 

loads; (b) The equivalent 3-bus model of the microgrid. The symbols in black are 

measured and the symbols in red are unknowns. Vb is a lumped quantity that represents the 

equivalent voltage of the rest of buses. 
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To support plug-and-play functionality and a decentralized operation, the controller should not 

require a priori knowledge of the grid structure nor direct access to the measurement signals of all 

power sources. The controller at a power source is thus assumed to have access only to local 

measurement signals plus a small quantity of information transmitted through communications. Each 

distributed controller collocated with a power source perceives the overall microgrid system as a 3-bus 

system consisting of, as shown in Figure 1b, itself, another power source, and a single load—a highly 

simplified model of the grid. The controller first identifies the parameters of the perceived grid system 

and then uses the identified model to evaluate the marginal cost. The controllers then make proper 

adjustments so that the marginal cost evaluated at each controller converges to the same value. 

3. Optimal Control Problem 

3.1. Problem Formulation 

For a general microgrid shown in Figure 1a, the cost function to be minimized is assumed to be a 

function of active powers and distribution power losses, as shown in Equation (1). The function Ck(Pk) 

in the first term is the generation cost for active power Pk of the kth power source. The second term is 

the distribution power loss which is calculated from the total power generation (positive) and the total 

demand (negative). The parameter α is a weighting factor. The voltage of each power source is 

assumed to be given and the active power Pk are the control variables manipulated to achieve 

optimality. The equality constraints are the power flow equations and the power balance equations at 

the demand buses. The cost function is expressed as follows: 

1 1 1

min ( ) (1 )
N N N M

k k k k
k k k N

C P P Pα α
+

= = = +

  + − +  
  

  
P

 (1)

Subject to the following constraints: 

( , ), ( , ), 1, 2, ,k k k kP f Q g k N M= = = +δ V δ V   (2)

,d D d DP P Q Q= =  (3)

where: 

1

( , )
N M

d k
k N

P P
+

= +

=  δ V  

1

( , )
N M

d k
k N

Q Q
+

= +

=  δ V  

1

N M

D Dk
k N

P P
+

= +

=   

1

N M

D Dk
k N

Q Q
+

= +

=   

:kf active power equation  

:kg reactive power equation  

1 2{ , , , }:N MP P P active power+=P   

2 3{ , , , }:N M voltage phase angleδ δ δ +=δ   
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1 2{ , , , } :N MV V V given voltage magnitude+=V   
:DkP given active power demand  

: .DkQ given reactive power demand  

The constraints in Equation (3) are less demanding than balancing the individual power demand, 

therefore the resulting optimality conditions are still necessary. 

3.2. Necessary Conditions for the Minimum Cost 

We can derive necessary conditions for the minimum cost of Equation (1) using Lagrange 

multipliers. The Lagrangian function is defined as: 

( ) ( )1 2
1 1

( ) (1 )
N N

k k k D d D d D
k k

J C P P P P P Q Qα α λ λ
= =

  = + − + + − + −  
  

   (4)

where λ1 and λ2 are Lagrange multipliers. The control variables are: 

1 2{ , , , }NP P P=P   (5)

The necessary conditions for minimal J are as follows: 

1

( )
(1 ) 0, 1, ,k k d

k k k

C P PJ
for k N

P P P
α α λ∂ ∂∂ = + − + = =

∂ ∂ ∂
  (6)

1

0d D

J
P P

λ
∂ = − =
∂

 (7)

2

0d D

J
Q P

λ
∂ = − =
∂

 (8)

From Equation (6): 

1

1
, 1, ,

( )
(1 )

d

k

k k

k

P
P

for k N
C P

P
λα α

∂
∂ = − =∂ + −

∂

  (9)

or: 

1 2( ) ( ) ( ) ( )Nt t t tμ μ μ μ= = = =  (10)

where: 

1

1
( ) , 1, , , ( ) ( )

( )
(1 )

d
N

k
k k

k k k

k

P

P
t for k N t t

C P N
P

μ μ μ
α α =

∂
∂≡ = =∂ + −

∂

  (11)

The condition shown in Equation (10) has the following physical meaning: the rated marginal cost 

evaluated at each controller must be equal for the optimal condition to be satisfied. 
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4. Decentralized Controller Design 

4.1. Controller Design 

The goal of the controller is to satisfy the condition shown in Equation (10). This is achieved by 

driving all the individual power sources toward the average value of the marginal costs of all nodes. 
Defining semi-positive definite functions that represent the distance between ( )k tμ  and ( )tμ  as follows: 

( )21
( ) ( ) ( )

2k kE t t tμ μ= −  (12)

the condition for the minimum cost, Equation (10), is rewritten: 

1 2( ) ( ) ( ) 0NE t E t E t= = = =  (13)

Therefore, the controller’s goal is: 

lim ( ) 0,k
t

E t k
→∞

= ∀  (14)

While we know it is not true, we assume that ( ) 0t tμ∂ ∂ ≈ , given the fact that the power nodes 

make their corrections toward the mean, and their actions are largely cancelled by each other. Then the 

time derivative of Equation (12) becomes: 

( )( ) ( )
( ) ( )k k

k

E t t
t t

t t

μ μ μ∂ ∂= −
∂ ∂

 (15)

If we choose a control law: 

( )
1

( )
( ) ( )k k

k
k

P t
t t

t P

μ μ μ
−

 ∂ ∂= − − ∂ ∂ 
 (16)

then: 

( )( ) ( )
( ) ( )k k k

k
k

t t P
t t

t P t

μ μ μ μ∂ ∂ ∂= = − −
∂ ∂ ∂

 (17)

From Equation (15), this control laws leads to: 

( )2( )
( ) ( ) 0k

k

E t
t t

t
μ μ∂ = − − ≤

∂
 (18)

If we choose a control law: which means that Ek(t) will decrease and ( )k tμ  will approach ( )tμ . 

4.2. Controller Robustness Analysis 

The dynamics of the marginal cost, Equation (17), is exponentially stable when ( ) 0t tμ∂ ∂ = . 

However, when ( )tμ  is time varying, we need to analyze the stability more rigorously. Considering 

that ( )tμ is the average value of all ( )k tμ , ( )tμ changes more slowly than ( )k tμ , i.e., ( )tμ  is small. 

In this case, the stability of the time-varying system can be proven by using Theorem 9.3 in [36]. We 
can then conclude that ( ) ( )k t tμ μ−  is uniformly, ultimately bounded. Theorem 9.3 in [36] is 

summarized as follows: 
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For a system, ( , ( )), ( )x f x u t u t ε= ≤  , suppose (i) f(x,u) is locally Lipschitz; (ii) f(x,u) = 0 has 

roots x = h(u), and h u L∂ ∂ ≤  holds for all u. For the frozen equilibrium point x = h(a), if we define  

z = x − h(a), where a is a fixed and stable equilibrium point, then we can rewrite the dynamics as 
[ ( ), ] ( , )z f z h a a g z a= + ≡  Assume that we can find a Lyapunov function V(z,α) that satisfies  

the conditions: 

2 2 2 2

1 2 3 4 5( , ) , ( , ) , ,
V V V

c z V z a c z g z a c z c z c z
z z a

∂ ∂ ∂≤ ≤ ≤ − ≤ ≤
∂ ∂ ∂

 (19)

Now, if we consider a change of variable z = x − h(u), then the original system becomes: 

( , )
h

z g z u u
u

∂= −
∂
  (20)

For the new system, if: 

1 3

2 5 4 5/

c c r

c c r c L c
ε ≤ ×

+
 (21)

then for all 1 2(0) /z r c c< , the solutions of Equation (20) are uniformly ultimately bounded by: 

2 4

1 3 2 5( )

c c L

c c c c

ε
ε−

 (22)

Applying this known Theorem to our case, we can see that if we set ( )a tμ=  and 2( , ) 0.5V z a z= , 

then all the parameters can be determined as follows: c1 = c2 = 0.5, c3 = c4 = 1, c5 = 0, and L = 1. Using 

these parameters, we can show that the solution of the system dynamics, Equation (17), is bounded by: 

( ) ( )k t tμ μ ε− ≤  (23)

which means that if ( )tμ  is time varying, then ( )k tμ  will approach ( )tμ with a steady state error, the 

value of which depends on the bound of ( )tμ . If we choose the power control law: 

( )
1

( ) ( )
( ) ( )k k

k
k k

P t t
t t

t P P

μ μ μ μ
−

 ∂ ∂ ∂= − − − ∂ ∂ ∂ 
 (24)

the implementation of which requires ( ) kt Pμ∂ ∂ , which, if available, results in zero steady state error 

when ( )tμ  is time invariant. However, calculating ( ) kt Pμ∂ ∂  at each distributed controller requires 

complete information of cost as well as the grid structure, which counters the idea of plug-and-play 

and decentralized implementation. Therefore, we cannot use Equation (24). Instead, we implement the 

control law Equation (16), which can be implemented locally. 

4.3. Equivalent Grid Model Identification 

To implement the control law, Equation (16), we need to compute ( )k tμ  and know ( )tμ , the later 

requires transmitting ( )k tμ  to all other nodes through a communication network. Calculating ( )k tμ  

requires knowledge of grid structure due to the partial derivative term, d kP P∂ ∂ . While this term is not 

directly available, it can be approximated if we represent the grid by an equivalent 3-bus model shown 
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in Figure 1b. The equivalent 3-bus model is sufficient to calculate d kP P∂ ∂ , because calculating the 

partial derivative term requires the relationship only between the active power output of the kth power 

source and the total active power demand. 

Identification of the equivalent 3-bus model of an arbitrary grid requires the local measurement 

[Pa(t), Qa(t), and Va(t)] and transmitted information [Pb(t), Qb(t), Pc(t), and Qc(t)]. At any given time,  

to determine an equivalent 3-bus model, we need to identify 6 parameters (the resistance and the 

reactance of three lines) and a variable (the equivalent voltage of Bus b, Vb), as shown in Figure 1b. 

Because we have three independent equations, as shown in Equation (27) and seven unknowns, we 

cannot uniquely determine the parameters and the variable. Therefore, we accumulate measurements 

for three time steps, which makes nine independent equations with nine unknowns [six line parameters 

and Vb(t − 2Δt), Vb(t − Δt), and Vb(t)]. 

In this time-lapsed solution, the nine unknowns can be solved from a nonlinear optimization 

problem, as follows: 
2

,
min ( , )m

X
Y Y X

θ
θ−  (25)

where: 
[ ( 2 ), ( ), ( )]T

m m m mY y t t y t t y t= − Δ − Δ
 ( ) [ ( ), ( ), ( )]m a a by t P t Q t Q t=

 
[ ( 2 ), ( ), ( )]b b bX V t t V t t V t= − Δ − Δ

 [ , , , , , ]ab bc ca ab bc caR R R X X Xθ =

 
( (1), , 2 )

( , ) ( (2), , )

( (3), , )

y X t t

Y X y X t t

y X t

θ
θ θ

θ

− Δ 
 = − Δ 
  

 ( , , ) [ ( , , ), ( , , ), ( , , )]T
a a by x t p x t q x t q x tθ θ θ θ=

 
R and X are line resistance and reactance, respectively. The three elements of y(x, θ, t) are 

determined by the following equations: 

( )
( )
( )

( ( ), , ) Re ( ( ), , )

( ( ), , ) Im ( ( ), , )

( ( ), , ) Im ( ( ), , )

a b a b

a b a b

b b b b

p V t t S V t t

q V t t S V t t

q V t t S V t t

θ θ
θ θ
θ θ

=

=

=

 (26)

under the equality constraints: 

( )
( )
( )

( ) Re ( ( ), , )

( ) Re ( ( ), , )

( ) Im ( ( ), , )

b b b

c c b

c c b

P t S V t t

P t S V t t

Q t S V t t

θ
θ
θ

=

=

=

 (27)

where: 

( ) ( ) ( ) ( )
( ( ), , ) ( ) a b a c

a b a
ab ca

V t V t V t V t
S V t t V t

Z Z
θ

 − −= + 
 

   
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( ) ( ) ( ) ( )
( ( ), , ) ( ) b a b c

b b b
ab bc

V t V t V t V t
S V t t V t

Z Z
θ

 − −= + 
 

   

 

( ) ( ) ( ) ( )
( ( ), , ) ( ) c b c a

c b c
bc ca

V t V t V t V t
S V t t V t

Z Z
θ

 − −= + 
 

   
 

( ) ( )

( )

( ) ( ) ;  ( ) ( )

( ) ( ) ;  

a b

c

j t j t
a a b b

j t
c c ab ab ab

V t V t e V t V t e

V t V t e Z R jX

δ δ

δ

= =

= = +

 



 

,bc bc bc ca ca caZ R jX Z R jX= + = +  

The control law, Equation (16), is implemented in a decentralized way at each power source 

sequentially. It requires four pieces of information. The first and second pieces are the active and 

reactive powers generated by all the generators. The third piece is the marginal cost, μk. The last piece 

is a token. Only the power source that has the token can adjust its power output. The other power 

sources that do not have the token adjust their power output to mitigate frequency drooping using a 

standard proportional control strategy. The flow chart of the control algorithm is shown in Figure 2, 

and the sequential control concept is shown in Figure 3. 

Figure 2. Flow chart of the control algorithm. The variables are defined as follows: tcount is 

the time counter; Δt is the time step; and, T is the control time span. 
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Figure 3. Conceptual control sequences of the decentralized control algorithm. Note that, 

at each time step, only one power source is controlled by the control law Equation (14), 

and the other power sources are governed by frequency drooping. Δt is a time step and T is 

a control time span. 

 

5. Simulation Results and Discussion 

The performance and flexibility of the control algorithm are assessed through three simulation 

cases. We created an imagined microgrid with five buses for the first and second cases (Cases 1 and 2); 

the corresponding grid model is shown in Figure 4. The distribution line parameters and initial 

conditions are listed in Tables 1 and 2. The cost parameters are listed in Table 3. The last case, Case 3, 

has six power sources in a 9-bus microgrid shown in Figure 5, and the parameters for the case are 

described later. For the all cases, the true minimum cost and optimal power outputs were computed by 

offline computation to provide the reference.  

Figure 4. (a) Grid model programmed in Matlab/Simulink® Simpowersystems; (b) Detailed 

view of the power source block. The power dispatch control algorithm is located in the 

“High Level Control” block. 
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Figure 5. Grid model with six power sources and nine buses. 

 

Table 1. Grid parameters. 

Symbol Value Unit Description 

R12, R14, R15 0.1 pu Line resistance 
R13 0.15 pu Line resistance 

X12, X14, X15 0.01 pu Line reactance 
X13 0.015 pu Line reactance 

The base voltage is 110 V, the base power is 60 kW. 

Table 2. Initial conditions for simulation. 

Symbol Value Unit Description 

PL3, PL4 0.35, 0.3 pu Active power demand at Buses 3 and 4, constant 
QL3, QL4 0.07, 0.06 pu Reactive power demand at Buses 3 and 4, constant 

PG1 0.3341 pu Active power from power source 1 
PG2 0.3068 pu Active power from power source 2 
PG5 0.1206 pu Active power from power source 5 
V1 1.0 pu Voltages of Bus 1, constant 
V2 1.02 pu Voltages of Bus 2, constant 
V5 1.015 pu Voltages of Bus 5, constant 

The base voltage is 110 V; the base power is 60 kW. As the controllers are engaged, PG1, PG2, and PG5 vary. 
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Table 3. Cost parameters for simulation. 

Cases α C1(P1) C2(P2) C5(P5) 

Case 1 0.5 0.05 × P1 0.0525 × P2 0.055 × P3 
Case 2 0.0 - - - 

In Case 1, the weighting factor α is set to 0.5, to minimize the combination of the generation cost 

and distribution losses. This represents the situations when the power sources consume different types 

of fuels or have different efficiencies. Figure 6a shows the performance of the decentralized power 

control algorithm. The first plot shows power outputs from all power sources in solid lines and their 

optimal values in dashed lines. The second plot shows the rated marginal cost μk defined in Equation (11). 

The last plot shows the cost compared to the minimum cost calculated by off-line optimization. The 

optimal power flow solution (P1opt, P2opt P5opt in the top plot) shows that the power from Power  

Source 1 is the highsest and from Power Source 5 is the lowest. This is because the line resistance from 

Power Source 1 to the load buses is the lowsest (0.1 pu) and the generating cost of Power Souce 1 is 

the lowest. To minimize the generation cost and the distribution loss, the controllers allocate the 

highest power output to Power Souce 1. Each controller moves its marginal cost toward the averaged 

marginal cost. We can see that the three marginal values finally convege to a common value and the 

power outputs also move toward the optimal values. 

In Case 2, the weighting factor α is set to zero and thus all the generating costs are ignored, 

resulting in a distribution loss minimization problem. This case represents the case with zero or very 

low generating cost, such as solar panels. Figure 6b shows the performance of the decentralized power 

control algorithm. Because the line resistence, from Power Source 1 to the load buses is the lowest, 

Power Source 1 provides highest power to the load buses. 

Figure 6. (a) Performance of the decentralized control algorithm of Case 1;  

(b) Performance of the decentralized control algorithm of Case 2. 
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In the two cases above, each controller moves its marginal cost toward the averaged marginal cost. 

The marginal costs fluctuate significantly and finally converge to a negative value. The positive 

marginal cost (μk > 0) means that the total cost increases as the local power increases, which happens 

when its power ouputs are too high and thus the power loss is excessive. Therefore, every controller 

tries to minimize the rated marginal cost and implicit negotiation occurs through broadcating their 

marginal cost. The equilibrium or minimal cost is achieved when every controll has equal marginal 

cost. The cost is reduced significantly with time. The cost, however, does not converge to the 

minimum cost completely. This is because the maginal costs are not exactly the same. This is the 
performance limitation analyzed in Section IV, the analysis of which shows that ( ) ( )μ μ−k t t may have 

an error due to error in model identification and ( )μ t  is time-varying. 

The scalability and flexibility of the control algorithm are tested using Case 3, which has a very 

different grid configuration. Figure 7 shows a microgrid with nine buses. In this case, α is set as zero 

and thus all the generating costs are ignored, resulting in a distribution loss minimization problem. As 

shown in Figure 7, the control concept based on the three-bus approximation still works well even 

when the actual grid is a lot more complicated, which seems to show that it has some robustness in 

working in expanded grid structure. 

Figure 7. Performance of the decentralized control algorithm of Case 3. 
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communicated: power generated at each node, and a token to ensure only one power node is active at 

any given moment. The control law is derived from the necessary conditions for the minimum cost, 

and each node works to reduce its deviation from the average marginal cost it perceives. The algorithm 

does not require a priori knowledge of the grid structure. This is achieved by using a 3-bus model to 

represent the overall grid, and through system identification, each power node has a perceived grid 

behavior. Computer-based simulation showed that the algorithm works well both for a 5-node 

microgrid and a 9-node grid. 
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