
 Open access Journal Article DOI:10.1145/2168260.2168261

Decentralized approaches for self-adaptation in agent organizations — Source link

Ramachandra Kota, Nicholas Gibbins, Nicholas R. Jennings

Institutions: University of Southampton

Published on: 04 May 2012 - Formal Methods

Topics: Autonomous agent and Autonomic computing

Related papers:

 The vision of autonomic computing

 Multiagent reinforcement learning and self-organization in a network of agents

 Using the MOISE+ for a cooperative framework of MAS reorganisation

 Agent-organized networks for dynamic team formation

 Self-organization in multi-agent systems

Share this paper:

View more about this paper here: https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-
2yq060f14b

https://typeset.io/
https://www.doi.org/10.1145/2168260.2168261
https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-2yq060f14b
https://typeset.io/authors/ramachandra-kota-2189e6uisw
https://typeset.io/authors/nicholas-gibbins-5996fto88f
https://typeset.io/authors/nicholas-r-jennings-2ty5iqhysm
https://typeset.io/institutions/university-of-southampton-s7o42wnf
https://typeset.io/conferences/formal-methods-1wyj191i
https://typeset.io/topics/autonomous-agent-5ldmb1m5
https://typeset.io/topics/autonomic-computing-18ku7ev4
https://typeset.io/papers/the-vision-of-autonomic-computing-oufkhpilif
https://typeset.io/papers/multiagent-reinforcement-learning-and-self-organization-in-a-4oqw0t7dm6
https://typeset.io/papers/using-the-moise-for-a-cooperative-framework-of-mas-24lfpqht14
https://typeset.io/papers/agent-organized-networks-for-dynamic-team-formation-426lu3lh57
https://typeset.io/papers/self-organization-in-multi-agent-systems-1rmwgludi5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-2yq060f14b
https://twitter.com/intent/tweet?text=Decentralized%20approaches%20for%20self-adaptation%20in%20agent%20organizations&url=https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-2yq060f14b
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-2yq060f14b
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-2yq060f14b
https://typeset.io/papers/decentralized-approaches-for-self-adaptation-in-agent-2yq060f14b

Decentralised Approaches for Self-Adaptation in

Agent Organisations

RAMACHANDRA KOTA, NICHOLAS GIBBINS and NICHOLAS R. JENNINGS

University of Southampton

Self-organising multi-agent systems provide a suitable paradigm for developing autonomic comput-
ing systems that manage themselves. Towards this goal, we demonstrate a robust, decentralised
approach for structural adaptation in explicitly modelled problem solving agent organisations.
Based on self-organisation principles, our method enables the autonomous agents to modify their
structural relations to achieve a better allocation of tasks in a simulated task-solving environment.
Specifically, the agents reason about when and how to adapt using only their history of interac-
tions as guidance. We empirically show that, in a wide range of closed, open, static and dynamic
scenarios, the performance of organisations using our method is close (70 − 90%) to that of an
idealised centralised allocation method and is considerably better (10 − 60%) than the current
state of the art decentralised approaches.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Autonomic computing, Self-Organisation, Adaptation, Or-
ganisation Structure, Agent Organisation

1. INTRODUCTION

Autonomic systems that are capable of self-management have been advocated as
a solution to the problem of maintaining modern, large and complex computing
systems [Kephart and Chess 2003]. Within this context, we contend that self-
organising multi-agent systems provide a suitable paradigm to develop these au-
tonomic systems, because such self-organising systems can arrange and re-arrange
their structure autonomously, without any external control, in order to adapt to
changing requirements and environmental conditions. Furthermore, such adapta-
tion needs to be performed in a decentralised fashion, so that the ensuing system
is robust against failures; again, a characteristic that fits with the multi-agent

This article is a significantly extended version of a previous paper— Kota, R., Gibbins, N.
and Jennings, N. R. (2009) Self-Organising Agent Organisations. In: Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09), 10-15
May, 2009, Budapest, Hungary.

Authors’ address: IAM Research Group, School of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom.
Email: {rck05r,nmg,nrj}@ecs.soton.ac.uk.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20XX ACM 0000-0000/20XX/0000-0001 $5.00

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX, Pages 1–36.

2 · Kota et al.

paradigm [Tesauro et al. 2004]. With this motivation, this paper explores the area
of self-organisation in systems of autonomous agents, and particularly focuses on
adaptation of the structure in agent organisations.

In more detail, self-organisation is here viewed as the mechanism or the process

enabling the system to change its organisation without explicit external command

during its execution time [Di Marzo Serugendo et al. 2005]. In particular, any
self-organising system is expected to have the following properties: (i) no external
control (all of the adaptation process is initiated internally and only changes the
internal state of the system) (ii) dynamic operation (the system is expected to evolve
with time; self-organisation is a continuous process) and (iii) no central control
(the organisation is maintained only through local interactions of the individual
components with no central [internal or external to the system] guidance). Building
on this, we argue that the presence of appropriate self-organisation principles in a
distributed computing system can make the system autonomic. In this vein, De
Wolf and Holvoet [2003] recommend that agent-based modelling is best suited to
build such systems. Here, we are primarily interested in multi-agent systems that
act as cooperative problem-solving organisations (i.e. those comprising cooperative
autonomous agents that receive inputs, perform tasks and return results)1 because
they clearly act as an abstract model of the distributed systems. Hence, we focus on
developing self-organisation techniques for such agent organisations. Moreover, we
believe decentralised structural adaptation is the most appropriate way of achieving
self-organisation in agent organisations. Here, the structure of an organisation is a
manifestation of the relations between the agents, which, in turn, determine their
interactions. Consequently, adapting the structure involves changing the agent
relations, and thereby, redirecting their interactions.

To make it clear, consider a sample scenario of the interconnected network of a
university as a form of autonomic grid computing system. Being a university, it
contains various labs with their own specialised computing systems, as part of the
overlaying network of the university. For example, a computer in the geography lab
might contain specialised software for analysing GIS maps, while that in graphics
lab can render high quality images. Now, these computers providing different ser-
vices, will need to interact with each other to perform complex tasks (say, creating
detailed city maps by analysing GIS data). Moreover, as these individual comput-
ers are controlled by different people in different labs, the respective loads on them,
at any time, cannot be known or predicted. Also, some might go offline when they
are disconnected, some might be upgraded and so on. Hence, the computers need
to continuously adapt their interactions with others in the university network to
keep up with the changes and, at the same time, optimise the overall performance.

To illustrate further, let us focus on only a few computers in the GIS labs and
the graphics labs, as depicted in Figure 1(a). Initially, computer Y2 is working

1The problem solving part of this definition is in contrast to organisations that just provide
guidelines to be obeyed by agents participating in the organisation to achieve their individual goals
(see, for example, [Sierra et al. 2004]). Specifically, these organisations do not have any particular
goals to achieve, but only act as regulating authorities. Thus, they do not look to accomplish any
defined tasks, and cannot be mapped onto distributed computing systems. The cooperative part
of the definition is in contrast to those comprising self-interested and often competing agents, like
in virtual organisations [Norman et al. 2004].

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 3

Graphics LabsGIS Labs

relation
transmission

Y2

Y1

X3

X2

X1

(a) Initial configuration

Graphics LabsGIS Labs

Online Offline

Y2

Y1

X2

X1

X3

(b) X3 goes offline, Y2 redirects queries

Graphics LabsGIS Labs

Y2

Y1

X2

X1

X3

(c) Y2 and X1 adapt by forming a relation

Graphics LabsGIS Labs

Y2

Y1

X2

X1

X3

(d) Structure after Y2’s project changes

Fig. 1. An example of structural adaptation

on some project involving the city Seoul, whose GIS information is present in X3.
Thus, Y2 maintains relations with Y1 and X3. Similarly, Y1 and X1 have a relation
and so on. However, X3 was switched off by its owner when she went on vacation,
as in Figure 1(b). Then, Y2 left with no other resort, starts enquiring for its GIS
information from Y1 who then redirects the queries to its relation X1 and sends back
the information to Y2. In such circumstances, Y2 and X1 should realise this and start
maintaining a relation directly between them to reduce both the computation load
and memory usage on Y1, also saving bandwidth and resulting in a faster passage
of the information considering that the GIS data, which tends to be huge, need not
be copied to Y1 in between (see Figure 1(c)). With time, that Seoul based project
comes to an end and Y1 is then being used for a new project relating to SaoPaolo.
This GIS information is not present with X1, but resides with X2. Thus, instead
of interacting indirectly via X1, Y2 and X2 should then form a direct relation. At
the same time, Y2 and X1 should realise that their interactions are not frequent
anymore and dissolve their relation, as shown in Figure 1(d). Thus, structural
adaptation is especially critical in situations where it can help the organisation
cope with both internal changes and those in the external environment.

In this context, Mathieu et al. [2002] suggest that an adaptation method is im-
portant to improve the performance (in terms of costs and task completion times)
of organisations, though they do not actually provide such a method. Furthermore,
autonomic systems are expected to be deployed in uncertain and changing envi-
ronments where neither the components, their characteristics nor the tasks facing
the system will remain constant. In more detail, the system will be expected to
continue performing well in scenarios where agents might be added or removed from
the organisation, the properties of the existing agents might be changed with time
(they might start providing new services, lose services or gain more resources), and

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

4 · Kota et al.

similarly, the characteristics of the task stream (the type and rate of tasks) might
also vary with time. In such cases, structural adaptation will enable the agents
to reorganise their interactions to better suit the changed circumstances. Thus,
structural adaptation is especially critical in such situations as it can help the or-
ganisation cope with both internal changes and those in the external environment.

Moreover, as the adaptation process itself will require some computation, meta-
reasoning is also needed by the agents to decide ‘whether to adapt’ (in addition
to ‘how to adapt’) or to continue performing the tasks without adaptation. As
a sample scenario, consider our earlier example. Y2 has limited computational
resources (processor cycles and memory) available to it. Given that it has to process
a continuous stream of tasks for its projects, it has to make the best possible
use of the resources for a good performance (in terms of tasks completed for the
project). In addition to those computational tasks, we have seen that Y2 also
needs to maintain the best set of relations to help in its task allocation. This
evaluation and modification of relations (structural adaptation) by Y2 takes up
its resources as well. Y2 will have to balance its limited resources between doing
its actual tasks and this adaptation reasoning. Therefore, it becomes imperative
for Y2 to choose smartly between when to evaluate the structure for adaptation
and when to continue with the current structure (that is, the current relations)
without evaluation, thereby needing meta-reasoning. Now, such meta-reasoning
in a multi-agent systems context has been shown to be particularly important for
resource-bounded agents in uncertain environments [Raja and Lesser 2004]. Thus,
we believe it is an important issue that needs to be addressed in our context because
we also deal with agents adapting in the face of limited computational resources
and present in dynamic environments where the tasks and agent properties are
unpredictably changing with time.

Against this background, we present a novel structural adaptation method for
problem-solving agent organisations. Following self-organisation principles, the
method is a decentralised and continuous process that is followed by every agent to
decide on when and how to adapt its relations, based only on locally available in-
formation. Moreover, the adaptation method only involves changing the structural
relations between the agents and does not need the agents to change their internal
properties like services/skills or capacities and neither does it need new agents to
be added, or existing agents to be removed from the system. Therefore, it can even
be applied to scenarios where such modifications to the agents are not permitted to
the adaptation mechanism. Thus, our mechanism can serve as a self-management
tool similar to those envisioned in autonomic systems.

Our adaptation method enables pairs of agents to continuously and locally reeval-
uate their inter-relations on the basis of their past interactions. Using the method,
every pair of agents can calculate the utility of the possible relations between them
and choose the most beneficial one. Additionally, the agents are also able to decide
when to initiate such calculation and with which other agents. Furthermore, the
organisations can be open and dynamic as well. In such systems, agents might be
entering or leaving the system and/or their properties changing with time, thereby,
representing distributed systems in which resources are added, removed, updated
or changed as time goes on. In this context, our method also aids the agents to

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 5

adapt in these open organisations. Using simple principles based on the current
context of the existing agents, newer agents are easily assimilated into the struc-
ture by the method. Similarly, agents in dynamic organisations are able to adapt
the structure to the quickly changing circumstances by associating time-decaying
weights to the past interactions while calculating utilities. Here, it is important
to note that our focus is not on distributed task allocation. Rather, it is on the
underlying structure that the agents use while allocating and executing tasks. In
this way, our work enables the agents to adapt their structure towards optimising
the efficiency of task completion, and is independent of the actual task allocation
algorithms that the agents might employ.

In summary, our method can be seen to extend the state of the art in terms of
structural adaptation mechanisms for agent organisations by being the first that is
generically applicable to models with a broad range of inter-agent relations and by
addressing the meta-reasoning aspects of adaptation in a completely decentralised
fashion. It is also the first adaptation method that is suitable for open and dynamic
organisations where the agents and their internal characteristics are changing with
time. Finally, we advance the state of the art by providing a self-organisation
inspired approach for decentralised adaptation in formally specified organisations
(as opposed to structure-less systems like swarms and ant-colonies).

In the next section, we review the existing literature relevant to the problem
at hand. We follow it with a description of the model of a problem-solving agent
organisation that will act as the abstract platform on which to base our adaptation
mechanism (Section 3). By using such a generic platform, instead of focusing
on a particular existing system, we can develop a general method that can be
applied to a wide variety of applications. We first present the fundamentals of
our adaptation process in Section 4 and then show how to extend it for open and
dynamic scenarios. Then, we demonstrate the effectiveness of our approach through
experimental evaluation in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK

Self-organisation can be generated in multi-agent systems in several ways [Di Marzo
Serugendo et al. 2006; Bernon et al. 2006]. For example, it may emerge from stig-
mergic (indirect coordination through traces left in the environment) or reinforce-
ment mechanisms in agents [Mano et al. 2006] or it can arise from the locally coop-
erative actions of the agents [Capera et al. 2003a;2003b]. To date, however, most of
the self-organisation mechanisms are not applicable to an explicitly modelled agent
organisation because, being based on reactive agents interacting in unstructured
ways, they cannot easily be incorporated into agents that are working towards
organisational goals. The few mechanisms that do consider agent organisations
are usually centralised in nature, requiring a few specialised agents to manage the
adaptation process for all the agents. For example, Hubner et al. [2004] present
a ‘controlled reorganisation’ mechanism which is a top-down approach in which a
specialised group of agents perform the reorganisation process for the whole organ-
isation. Therefore, it is neither decentralised nor continuous. Similarly, Bou et al.
[2006] present a centralised reorganisation mechanism in which the central author-
ity named ‘autonomic electronic institution’ modifies the norms of the institution

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

6 · Kota et al.

to achieve institutional goals. Thus, this work does not focus on the organisation
structure. A centralised mechanism that involves the organisation structure is pre-
sented by Hoogendoorn [2007] where a maxflow network based approach is used
to identify bottlenecks in the organisation, the corresponding agents or nodes are
replicated, and new structural links are added to connect them to the organisation.
It also aims to improve the capacity of the organisation by adding links and nodes,
but does not attempt to optimise by removing redundant links or nodes.

In contrast, Horling et al. [2001] suggest a somewhat distributed method (using
a central blackboard). However, their approach involves a diagnostic subsystem
for detecting faults in the organisation that map to some fixed pre-designed reor-
ganisation steps. But, such a method is not applicable when all the states of the
system cannot be anticipated by the designer. Similar drawbacks also exist with
the approach presented by Wang and Liang [2006] in which the transformation of
organisation structure occurs by agents shifting between roles on the basis of some
pre-defined rules corresponding to different scenarios. Finally, a method called
organisation self-design [Ishida et al. 1992; Kamboj and Decker 2007] achieves self-
organisation by dynamically spawning and merging agents in response to the chang-
ing requirements. However, since agent-based development of autonomic systems
involves modelling the individual components as agents, changing the characteris-
tics of these components may not be possible on all occasions due to physical and
accessibility limitations (e.g data-centres located in remote places cannot easily be
replicated). Moreover we are interested in adapting the inter-agent interactions,
rather than changing the agents internally (for the reasons detailed in Section 1).

A self-organisation approach that has been successfully applied in a multi-agent
system is demonstrated by Schlegel and Kowalczyk [2007]. They tackle the problem
of resource allocation by proposing a distributed algorithm that does not require
any central controller. Their agents attempt to optimise their task allocations to
servers by forecasting the future task load on the servers on the basis of the history
of server utilisation, obtained from the completed tasks at those servers. On the
basis of the forecasts on each of the servers, the agent chooses the server with the
maximum capacity forecasted. In this way, efficient resource allocation emerges
from the indirect interactions between the agents (as the agents only interact with
the servers). The major difference between their work and ours is that, in their
work, the agents do not interact directly and take all decisions independently; while
in our model, the agents need to interact with each other to collectively decide about
their relations. Furthermore, in this case, the self-organisation process influences
the task allocations on a case-to-case basis, while we require self-organisation at
the higher level of agent relations that, in turn, influence the task allocations.

On similar lines, Gershenson [2007] demonstrates a self-organisation approach for
the problem of task assignment in agent networks. An agent, that receives a task,
needs to send out some dependency requests to its neighbouring agents. The self-
organisation process works by first identifying the agent (say ax) with the longest
queue. Then, among the agents dependent on ax, the one with the largest waiting
period (say ay) chooses another agent (one with the shortest queue) (az) to replace
ax as its neighbour. Therefore, the global knowledge of the queues of every agent
is required in this method, which is not always a valid assumption.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 7

Additionally, there has been some work using self-organisation in agent systems
using a ‘holonic’ architecture. The methods are based on holarchies; hierarchies
made up of holons. Holons are entities that can exist independently or can join
with other holons to form bigger holons. Holons dynamically altering the hol-
archy, according to changes in the environment, forms the basis of self-organisation
[Bongaerts 1998; Fischer 2005]. For example, Hilaire et al. [2008] use a holonic
architecture for decentralised decision making in the agent system. However, such
holarchy based approaches require a strict hierarchy between the groups of holons.
Also, while this approach helps the agents in decision making regarding the tasks,
it does not assist with reasoning about the structure itself.

As stated in Section 1, we seek a method that enables the agents to self-organise
in distributed systems that have to operate in highly dynamic environments. Now,
such an approach is presented by Forestiero et al. [2008] for information dissemina-
tion in a dynamic grid computing system. In their case, agents travel through the
grid replicating information and discovering new resources based on some biology-
inspired algorithms. However, their method is specifically applicable to resource
discovery and update only, while we seek a self-organisation approach for the very
different problem of structural adaptation. Nevertheless the usefulness of a self-
organisation mechanism in a dynamic environment is amply demonstrated by their
work. More specifically, we seek a mechanism that will enable the agents to locally
adapt the structure in a dynamic environment. Such methods are generally de-
veloped for peer-to-peer systems or networks. To this end, Biskupski et al. [2007]
survey the existing self-organising methods for such systems by comparing them
against their model of agent-based self-organisation. Specifically, their localised
mechanisms incorporate concepts of feedback, local evaluation functions and decay.
Although our domain is more complex, as it deals with agent organisations (rather
than networks) which contain several possible types of relations or links between
agents influencing both task allocation and load balancing in the organisation, the
ideas of feedback, decay and local evaluation functions are useful to us too. Thus,
we will be including these basic ideas into the design of our approach.

Just like the P2P networks, social networks [Watts 2001; Jackson and Watts 2002]
also provide a suitable domain to investigate structural adaptation methods. In this
vein, Gaston and desJardins [2005] focus on agent networks, which comprise a set
of agents with some undirected acquaintance links between them. Their work deals
with agent-based rewiring of the links in order to improve dynamic team formation,
thus somewhat resembling structural adaptation in organisations. However, their
model assumes that only one type of relation exists in the system, and that the
number of relations possessed by an agent has no effect on its computational re-
sources. Under these assumptions, their methods always result in scale-free network
structures, which are unrealistic in cases when agents have to expend resources for
managing and delegating tasks based on their relations. Glinton et al. [2008] im-
proved over this approach by limiting the number of links at an agent and using a
token-based adaptation approach for a better spread of links across the network.
As they state, their algorithm randomly walks a token from an agent wanting to

change its links to an agent to which a link would be potentially beneficial. However,

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

8 · Kota et al.

the model was still restricted to single link-type2, ignored load due to the existing
links and also the meta-reasoning aspects of adaptation. Nevertheless, as this is
the latest and also the most relevant work that comes close to our requirements, we
have implemented this and compared its performance against ours. Another work
on similar lines, by Abdallah and Lesser [2007], deals with task allocation in agent
networks. They use the ‘Weighted Policy Learner’ algorithm for learning task allo-
cation where agents are connected to each other via a network. These agents use the
information gained from the learning mechanism to guide each other into changing
their set of neighbours, thereby reorganising the network. However, as in the above
work, their network supports only one type of link. Moreover, every type of task
has its own separate agent network. Hence, the method is not required to adapt
the same network when faced with various kinds of tasks. Also, since the number
of incoming or outgoing links of an agent is assumed to not affect its resources, an
agent is able to form a link to another agent without requiring the consent of the
other agent. Such an assumption is not always valid and more generic organisation
models would require that two agents agree on the relation between them. Finally,
the fact that an agent’s resources might be expended by the reorganisation process
is also ignored.

Finally, as suggested in Section 1, if the adaptation process also requires com-
putation, meta-reasoning is needed by the agents to decide whether and when to
adapt. Meta-reasoning, in general, has been explored in a multi-agent systems con-
text [Alexander et al. 2007; Hogg and Jennings 2001], but has not previously been
applied to self-organisation scenarios. In particular, Conitzer [2008] emphasises
that generic meta-reasoning problems tend to be computationally hard and it is
more productive to focus on individually solving the particular cases where meta-
reasoning is required. With this knowledge, we seek to only solve our particular
meta-reasoning problem and thereby our approach may or may not be applicable
to other meta-reasoning scenarios.

3. THE ORGANISATION MODEL

In this section, we present our organisation framework by first describing the task
model and a basic organisation representation. Next, we discuss the modelling of
open and dynamic organisation before detailing the mechanism for measuring an
organisation’s performance.

Organisation modelling involves modelling the agents comprising the organisa-
tion, the organisational characteristics, and the task environment. There are several
existing frameworks for such modelling in the literature [Dignum 2003; Vazquez-
Salceda et al. 2005; Sierra et al. 2004; Deloach et al. 2008]. However, we mainly
build on the ideas presented by Jin and Levitt [1996], Ferber and Gutknecht [1998]
and Hannoun et al. [2000]. A preliminary version of the consolidated model was
presented by Kota et al. [2008]. However, here we extend it by making the organ-
isation open and dynamic (see Section 3.2). Moreover, the evaluation mechanism
(Section 3.3) has been made more intuitive and realistic than before. In this con-

2Having only a single link-type makes all inter-agent links homogeneous, thereby restricting the
model by not allow for any kind of classification of the links on the basis of any characteristics
like say, amount of interaction or speed of interaction

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 9

get census(census-data,3)

draw city(graphics,12)

transport flow(gis-analyser,11)

analyse census(stat-analyser,9)

geo map(gis-analyser,20)

leaf node SIs

(a) Task structure

peer peer

() services of self

{ } accm. sets of subrs

[] services of peers

acqt acqt

subrsupr

(gis-analyser){{census-data},{gis-analyser,graphics,stat-analyser}}[]

[gis-analyser,graphics]
(census-data){} {gis-analyser,graphics}[]

geo2

geo1

socl stat
(stat-analyser)

(gis-analyser,graphics){}[census-data]

(b) Organisation structure

Fig. 2. Representation of an example task and organisation

text, it should be noted that our contribution is the adaptation method and not
the organisation model per se. Furthermore, although our adaptation method is
demonstrated using this particular organisation model, it can be equally well ap-
plied to other organisation models, if desired.

3.1 Fundamentals of the Model

In our model, the agent organisation comprises a group of problem solving, cooper-
ative agents situated in a task environment. By problem solving, we mean agents
that receive certain input tasks to achieve, execute these tasks and return the
outcomes. Correspondingly, the task environment presents a continuous dynamic
stream of tasks that have to be performed. In addition, the environment also has
costs associated with passing messages between the agents (communication) and
changing their relations (reorganisation).

In more detail, the tasks are modelled as workflows composed of a set of service
instances (SI), each of which specifies the particular service and the amount of
computation required (defined in terms of the number of units that need to be
available at the agent executing it). These SIs need to be executed following a
precedence order which is specified in the form of dependency links between the
SIs. This dependency structure is modelled as a tree. The execution of a task
begins at the root node and the task is deemed complete when all its nodes have
been executed, terminating at the leaf nodes. Figure 2(a) shows an example task
composed of five SIs each requiring a particular service and a specified amount of
computation. The required order of execution is shown by the dependency links
between the SIs. That is, geo map needs to be executed first, followed by its child
nodes, draw city and get census (which are executed in any order or even in parallel).

The organisation consists of a set of agents A that provide these services. Every
agent is capable of a set of services and possesses a fixed computational capacity.
Thus, an agent is of the form ax = 〈Sx, Lx〉 where Sx ⊆ S (S is the complete set
of services provided by the organisation) and Lx is the agent’s capacity defined

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

10 · Kota et al.

in terms of available computational units in a time step (these are consumed by
the SIs as they are executed). Tasks enter the system at random time-steps and
their processing should start immediately. The processing of a task begins with
the assignment of the root SI to some agent. The agent that executes a particular
SI is, then, also responsible for the allocation of the subsequent dependent SIs (as
specified by the task structure) to agents capable of those services. Thus, the agents
have to perform two kinds of actions: (i) execution and (ii) allocation. Consider
an agent executing SI geo map in Figure 2(a). After completing the execution,
that agent needs to find and allocate appropriate agents to execute draw city and
get census, the dependent SIs. Moreover, every action has a load associated with it.
The load incurred for the execution of a SI is equal to the computational amount
specified in its description, while the load due to allocation (called management
load) depends on the relations of that agent (will be explained later). As every agent
has a limited computational capacity, an agent will perform the required actions
on a first-come first-served basis, in a single time-step, as long as the cumulative
load (for the time-step) on the agent is less than its capacity. If the load reaches
the capacity and there are actions still to be performed, these remaining actions
will be deferred to the next time-step and so on.

As described earlier, agents need to interact with one another for the allocation of
the SIs. These interactions are regulated by the structure of the organisation. This
structure is based on the relationships between the agents. The type of relationship
can be categorised into different levels. We consider the following: (i) stranger,
not aware of each other (ii) acquaintance, knowing about the presence of, but no
interaction, (iii) peer, low frequency of interaction, and (iv) superior-subordinate,
high frequency of interaction. It is clear that a higher level relation (like superior-
subordinate) contains the properties of the lower level (like being acquaintances of
each other) in addition to some more characteristics (like the superior knowing the
services being provided by the subordinate and delegating SIs to it)3. Therefore,
the relation between any two agents can exist in only one of these states at a
time. In particular, the type of relation present between two agents determines the
information that they hold about each other and the interactions allowed between
them. We can distinguish between the various relations as follows:

—An agent possesses information about the services that it provides, the services
provided directly by its peers and the accumulated service sets of its subordi-
nates. The accumulated service set (AccmSet) of an agent is the union of its
own service set and the accumulated service sets of its subordinates recursively.
Thus, the agent is aware of the services that can be obtained from the sub-graphs
of agents rooted at each of its subordinates, though it might not know exactly
which particular agent is capable of the service.

—During the allocation of a SI, an agent will always try to perform the SI by
itself if it is capable of the service and has available computational capacity.
Otherwise, it will delegate it to one of its subordinates (which contains the service
in its accumulated service set). If there are no suitable subordinates (none of the

3In this view, the stranger relation represents the fact that both agents belong to the organisation
(though they don’t know each other), thus it is at a lower level than acquaintance relation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 11

subordinate sub-graphs are capable of that service) and it is capable of the service
itself (but did not initially assign to self because its capacity is filled), then it will
add the SI to its task waiting queue for execution. However, if it is not capable
of the service (and nor are its subordinates), it will try to delegate the SI to its
peers. If it is unable to do so either (no peer is capable of the service) it will pass
it back to one of its superiors (who will have to find some other subordinate or
peer for delegation).

Therefore, an agent mostly delegates SIs to its subordinates and seldom to its
peers. Thus, the structure of the organisation influences the allocation of SIs among
the agents. Moreover, the number of relations of an agent contributes to the man-
agement load that it incurs for its allocation actions, since an agent will have to sift
through its relations while allocating a SI. Therefore, an agent with many relations
will incur more management load per allocation action than an agent with fewer
relations. Also, a subordinate will tend to cause management load more often than
a peer because an agent will search its peers only after searching through its sub-
ordinates and not finding a capable agent. As all the agents in the organisation
are cooperative and work selflessly for the organisation, an agent willingly accepts
all SIs delegated by its superiors or peers. Note that, to avoid an infinite loop of
delegation, the superior-subordinate (also called authority) relations are not per-
mitted to have cycles. Also, the relations are mutual between the agents, that is
for any relation existing between two agents, both the concerned agents respect it.
In total, the authority relations impose the hierarchical structure in the organisa-
tion while the peer relations enable the otherwise disconnected agents to interact
closely. These types of relationships are sufficient to describe the different kinds of
interactions possible in a task-allocation setting. Moreover, having such multiple
types of relations to select from (rather than just a single link-type) enables the
agents to classify their links with the other agents, thereby providing more richness
to the model and also helping them reason about their interactions more easily.
Nevertheless, the types of relations described here are just canonical structures.
For example, there could be an additional relation, say manager, which is like the
authority relationship but in this, the superior is also aware of the current work-load
on the subordinates and thus can delegate SIs more wisely. Using our organisation
model, we also abstract away the complex interaction problems relating to issues
like service negotiation, trust and coordination. We do so to focus on the essence
of self-organisation and to isolate its impact on system performance.

Figure 2(b) shows an example organisation. The services that an agent provides
is shown beside it in parenthesis. The services that an agent can seek from its
subordinates, the AccmSet, is shown in curly braces, while the services that it can
seek from its peers are shown in square brackets.

3.2 Open and Dynamic Organisations

Given an organisation, the agents in it can remain unchanged over its existence, or
they might change with time. For example, new agents might enter the organisation
and/or some existing agents might leave. In this way, the organisation can be open.
Moreover, even within a given agent, the properties can change with time. It might,
for example, start providing new services and/or lose previous services. Thus, the

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

12 · Kota et al.

organisation can be dynamic. In contrast, organisations in which the set of agents is
constant are called as closed and those in which the agent properties do not change
are considered static. Thus an organisation can be closed or open and, in addition,
be static or dynamic. Up to now, our description of the organisation model is
sufficient to represent closed and static organisations. Thus, in the following, we
discuss how to extend it to model open and dynamic organisations.

—Open Organisations: For this kind of organisations, the set of agents A changes
with time. In particular, we focus on those organisations that have some perma-
nent agents to begin with (similar to closed) and some temporary agents who join
later, at specified ‘start-times’, and also leave the organisation at the expiration
of their ‘life-times’. We look at these types of open systems initially because in
them, the service set S of an organisation can be kept constant (the temporary
agents will offer services chosen from the same S as the permanent ones). In this
way, our method can focus solely on the changes to the overall capacity (resulting
from the temporary agents) instead of the service discovery aspect that might
have been needed. Consequently, these open organisations represent distributed
systems in which additional resources might be added to tackle the workload and
withdrawn later on (as discussed in Section 1).

—Dynamic Organisations: In these organisations, the properties of the agents
are changing with time. As described earlier, in our model, an agent ax has a
service set Sx that it provides. Since, Sx ⊆ S, the services (si, sj . . .) belonging
to Sx can change with time. In particular, we look at scenarios, where the agents
start with their respective service sets and then, additional services (from S) are
added to these sets with time (either gradually or suddenly). Similarly, we also
look at scenarios where services are removed from the service sets of the agents
with time. The way we generate these dynamic organisations is explained, in
detail in Section 5.1.

3.3 Organisational Performance Evaluation

The performance of a computing system denotes how well it performs its tasks. In
terms of an agent organisation, the performance measure can be abstracted to the
profit obtained by it. In our model, the profit is simply the sum of the rewards
gained from the completion of tasks when the incurred costs have been subtracted.
In more detail, the cost of the organisation is based on the amount of resources
consumed by the agents, in addition to their computational capacities. In our
case, this translates to the cost of sending messages (communication) and the cost
of changing relations (reorganisation) between the agents. Thus, the cost of the
organisation is:

costORG = C.
∑

ax∈A

cx + D.d (1)

where C is the communication cost coefficient representing the cost of sending one
message between two agents and D is the reorganisation cost coefficient representing
the cost of changing a relation. cx is the number of messages sent by agent ax and
d is the number of relations changed in the organisation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 13

As stated earlier, agents have limited capacities and their computational load
cannot increase beyond this capacity. The load lx on agent ax in a given time-step
is:

lx =
∑

sii∈WxE

pi + M
∑

sij∈WxF

mj,x + R.rx (2)

—pi is the amount of computation expended by ax for executing SI sii (determined
by the task description of the SI sii)

—mj,x is the number of relations considered by ax while allocating SI sij

—WxE
is the set of SIs (possibly belonging to several tasks) being executed by ax

—WxF
is the set of SIs being allocated by ax

—M is the ‘management load’ coefficient denoting the computation expended by
an agent to consider one of its relations while allocating a single SI

—R is the ‘reorganisation load’ coefficient, denoting the amount of computational
units consumed by an agent while reasoning about reorganisation with another
agent

—rx is the number of agents that ax initiated reorganisation deliberation in that
time-step.

In this way, M represents the computational complexity resulting from the relations
of an agent. If an agent has more relations, it will need more computation for
allocating an SI. The increase in computation caused by one relation at an agent
is given by M . Depending on the domain, the value of M can be fixed and be
the same for all agents, irrespective of their relations, or can be agent-specific and
also vary depending on the number of relations at the agent (perhaps increasing
exponentially as number of relations increase). Similarly, R is used to represent
the excess load caused by reasoning about reorganisation. Since, the load lx of ax

cannot exceed its capacity Lx, any excess SIs will be waiting for their turn, thus
delaying the completion time of the tasks.

The rewards obtained by the organisation depend on the speed of completion
of tasks. In particular, a task w completed on time accrues the maximum reward
which is the sum of the computation amounts of all its SIs. For delayed tasks, this
reward degrades linearly with the extra time taken until it reaches 0:

rewardw =

|siw |
∑

i=0

pi − (ttaken
w − treqd

w) (3)

where siw is its set of SIs, ttaken
w represents the actual time taken for completing

the task, while treqd
w is the minimum time needed. Thus, the total reward obtained

by the organisation is the sum of the rewards of the individual tasks completed by
the organisation: rewardORG =

∑

w∈W rewardw where W is the set of all tasks.
The organisation’s performance is measured by its profit:

profitORG = rewardORG − costORG (4)

Thus, for higher profits, the reward should be maximised, while the cost needs to
be minimised. It is important to note that the agents only have a local view of the
organisation. They are not aware of all the tasks coming in to the organisation (only

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

14 · Kota et al.

those SIs allocated to them and the immediately dependent SIs of those allocated
SIs) and neither are they aware of the load on the other agents. In spite of this
incomplete information, they need to cooperate with each other to maximise the
organisation profit by maintaining the most useful relations which lead to faster
allocation and execution of tasks.

4. STRUCTURAL ADAPTATION

This section details our work on developing a self-organisation based structural
adaptation method that can be employed continually by all the agents in a problem-
solving organisation. The aim of the adaptation method is to improve the perfor-
mance of the organisation. Our adaptation method is based on the agents forging
and dissolving their relations with other agents, thereby modifying the organisa-
tion structure. It uses only the history of agent interactions since we do not assume
that agents possess any information about the tasks coming in the future. In this
section, we first present the basics of the method and how it is to be applied by the
agents in an organisation. Following that, we show how to extend it to deal with
open and dynamic organisations.

We present the fundamental mechanism, in a pseudocode form in Algorithm 1,
for how an agent ax should reorganise at a given time-step. The first component
(line 1) refers to the meta-reasoning aspect of choosing the particular acquaintances
for initiating the reorganisation process. The second component (lines 3–9) explains
how it should adapt its relation with one such acquaintance ay.

1 Chosen← selected from the acquaintances set of ax;
2 foreach ay ∈ Chosen do
3 Actions← possible actions(x, y);
4 Ux,y ← ∅;
5 foreach e ∈ Actions do
6 Ue ← calculate utilityx,y(e);
7 Ux,y ← Ux,y

⋃

Ue;
end

8 ebest ← argMax(Ux,y);
9 take action ebest with ay;

end

Algorithm 1: Adaptation algorithm in terms of agent ax

We formulate this part using a decision theoretic approach since it provides us
with a simple and suitable methodology for representing adaptation in terms of
actions and utilities. We denote the actions available to a pair of agents as those
changing the relation between them. Consequently, the set of actions available to
a pair depends on their relation (line 3). In our model, for every pair of agents
that are not strangers4, the relation between them has to be in one of the states—

4The stranger relation is not considered as a state because if the pair of agents do not know each
other, then they cannot seek to adapt their relation. Getting to know about strangers is an issue
of service-discovery and is out of the scope of this work. Similarly, two acquaintances can only

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 15

ayax

4. ay supr of ax

relation state
action
supr-subr
peer
acqt

1(iii)no action

ax ay

ax ay

3. ay peer of ax

1. ay acqt of ax

2. ay subr of ax

ayax

4(ii)rem subr

3(ii)rem peer+

2(iii)no action

3(i)rem peer

3(iii)no action

2(i)rem subr

4(i)rem subr+
form subr

form subr
1(ii)form subr

1(i)form peer

2(ii)rem subr+
form peer

4(iii)no action

Fig. 3. State transition diagram

acquaintance relation, peer relation or authority relation. For each of these states,
there are 3 possible choices of action available to the agents as shown in Figure 3.
For example, action 1(ii) (form subrx,y) denotes that ax and ay take the action of
making ay a subordinate of ax and transition from state 1 to 2. A transition from
state 2 to 4 is not needed because it is equivalent to the transition from 4 to 2, by
interchanging ax and ay. Similarly, transitions from 1 to 4 or between 3 and 45 are
not required. If there were more types of relations in the organisation model, there
would be correspondingly more states and transitions to represent them. However
the essence of the adaptation method will remain the same.

As can be seen, the transition actions are composed of four atomic types—
form peer, rem peer, form subr and rem subr, which translate to forging and dis-
solving the peer or authority relations (as agents are acquaintances of each other,
by default). The actions are mutually exclusive and can be performed if the relation
between the agents is in the requisite state (as explained later). Obviously, each of
these actions has to be jointly performed by the two agents involved in changing
the relation. Furthermore, the actions are deterministic (there is no uncertainty
regarding the outcome of an action which is the formation or deletion of a link;
only the utility of the outcome is not pre-determined). The utility of performing
an action (Ue in line 6) is given by value function V (also called an ordinal utility
function) associated with the relation. Since our environment is characterised by
various factors, like the costs and the load on the agents, V will have multiple at-
tributes to represent them. In terms of two agents, ax and ay, the five attributes

become strangers by forgetting knowledge or memory of each other– again out of scope of this
work
5In state 4, when az is an indirect superior of ax via ay , it is not possible for ax to have az as its
subordinate (since cycles are not permitted). Hence, it dissolves its relation with its immediate
superior in the authority chain ay and goes to state 1 w.r.t ay and then forms a relation with az .

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

16 · Kota et al.

that will constitute V are: (i) change to the load on ax, (ii) change to the load on
ay, (iii) change to the load on other agents of the organisation, (iv) change to the
communication cost and (v) reorganisation cost. Moreover, this set of attributes
exhibits mutual preferential independence (MPI). That is, while every attribute
is important, it does not affect the way the rest of the attributes are compared.
Therefore, V can be represented simply as a sum of the functions pertaining to the
individual attributes:

V = ∆loadx + ∆loady + ∆loadOA + ∆costcomm + ∆costreorg (5)

In this way, depending on the state, the agents jointly calculate the expected utilities
for the possible actions using the value function (which are stored in Ux,y at line
7), and then choose the action giving the maximum expected utility (line 8). Being
cooperative, the agents do not have conflicts as the value corresponds to the social
utility of the relation to the organisation and not to the individual agents. The
evaluation for no action will always be 0 as it does not result in any change to
the expected load or cost of the organisation. The evaluation for the rest of the
actions is obtained from Equation 5. In the case of the composite actions (like
rem subr+form peer) the value will simply be the sum of the individual evaluations
of the comprising actions. Moreover, since any action will be taken jointly by the
two agents involved, even the evaluation is jointly conducted by the agents with
each of them supplying those attribute values accessible to them.

To understand further, let us look at the utility calculation (Equation 5) for the
action form subrx,y when ax and ay are just acquaintances (state 1). Here, ∆loadx,
representing the estimated change to the load on ax, is calculated by considering
that a new subordinate ay will lead to an increase in the management load on ax

every time it tries to allocate a SI. This is quantified as:

∆loadx = −M ∗Asgx,total ∗ filledx(ttotal
x)/ttotal

x (6)

where Asgx,total denotes the total number of SIs allocated by ax, ttotal
x denotes the

total number of time-steps that ax has been in existence, while filledx(ttotal
x) rep-

resents the number among those that ax’s capacity was filled with load and some
SIs were pending. By multiplying this value with M , it represents the additional
load that would have been put on ax had ay been a subordinate of ax since the be-
ginning. The negative sign indicates that this value represents an addition to load,
and thereby, a decrease in utility. In a similar fashion, the second term, ∆loady,
is calculated by estimating the possible increase in the load on ay had ax been its
superior since the beginning. For the third term, ∆loadOA, the estimation is carried
out by assuming that, had ay been a subordinate of ax, all those allocations that
started at ax and ended at ay via a delegation chain involving other agents, would
have been allocated directly. Therefore, the load on the intermediary agents would
have been less (this value can be calculated by ax as it gets back information about
the delegation chain of each of the SI allocated by it). Similarly, the fourth term,
∆costcomm, is also estimated, while the last term, the reorganisation cost (−D) is
a known constant (the minus sign, again signifies a decrease in utility). A detailed
explanation of the utility calculation, along with the corresponding equations, is
available in Section 4.1.1 in Kota [2009]. In this way, using our mechanism, every
pair of agents can jointly evaluate the utility for taking any of the possible actions

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 17

towards changing their relation, at any time-step. Being cooperative, the agents
do not have conflicts as the value corresponds to the utility of the relation to the
organisation and not to the individual agents. In a similar context, Sims et al.
[2003] show that adaptation among cooperative agents which use this kind of social
utility through sharing of values performs better than self-utility based methods.
Thus, this continuous adaptation of the relations helps in the better allocation of
SIs amongst the agents as they will maintain relations with only those agents with
whom they require frequent interactions. It is evident that the adaptation method
does not need the information about the tasks, but only the resultant agent inter-
actions. Therefore, the method is independent of the task model and allocation
mechanisms. Hence, our adaptation method will work for a more constrained or re-
laxed task model, as long as the information about their personal agent-interactions
is available to the respective agents.

4.1 Meta-Reasoning

Now, we focus on how an agent can decide which acquaintances to choose for
initiating the above detailed adaptation process. In the ideal scenario, at line 1
in Algorithm 1, all acquaintances of an agent will be chosen for reasoning about
adaptation. However, as the computation required for these utility calculations and
reasoning depends on R (Section 3.3), it need not be negligible and might exhaust
the computational capacities of the agent that, otherwise, would have been spent on
task related actions (allocation and execution). Thus, when R cannot be ignored,
an agent will have to smartly select the acquaintances for Chosen in line 1. Thus,
effective meta-reasoning emerges as an important aspect of the adaptation process.

In our case, this problem boils down to the following— at any given time-step,
an agent should decide on how many and which agents to select for initiating re-
organisation procedures. This can be viewed as a form of the well-known coupon

collector’s problem [Motwani and Raghavan 1995] and, therefore, we explore a sim-
ple randomised approach that is typically used for such problems. In the coupon
collector’s problem, there are n types of coupons and an infinite number of coupons
for each type. At each trial, a coupon is chosen at random. We can map this
problem to our scenario by considering every agent to be the collector, and all its
acquaintances (including the peers, superiors and subordinates) as the coupons.
Also, in our case, there can be several trials in a single time-step.

Now, if X is the number of trials such that at least one coupon of each type
is collected, then the expectation of X is: E(X) = nln(n) + O(n) [Motwani and
Raghavan 1995]. This assures us that even when chosen randomly, on average,
all acquaintances of an agent will be picked up for reorganisation deliberation in
a given period of time (for 20 acquaintances, this translates to approximately 80
trials). Therefore, an agent can just randomly choose k acquaintances at a time-
step (in line 1). Moreover, this k can be varied according to the situation. When
an agent has free capacity that will otherwise be wasted, k should be such that the
whole of the remaining capacity is utilised for reorganisation. However, even when
the agent is overloaded, reorganisation might be necessary. On such occasions, k is
based on the percentage of successful reorganisations in the previous time-step. In

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

18 · Kota et al.

more detail, at a time t, k is determined as:

kt = max

1 minimum limit

(Lx − lx)/R based on free-capacity

acqtsx ∗ changedx,t−1/kt−1 success ratio in prev. iteration

(7)

where acqtsx represents the number of acquaintances of ax, changedx,t−1 denotes
the number of relations of ax changed in the previous time-step, and kt−1 is the k
value used in the previous time-step. The minimum possible value of k is limited
to 1, so that at least one acquaintance is considered for reorganisation in any time-
step. In this way, free capacity is never wasted and, at the same time, an agent
will carry out reorganisation even when it has a huge number of pending SIs by
adapting k according to its need for reorganisation.

As described in Section 3.2, organisations can be open and/or dynamic in nature.
However, our method, detailed until now, might not work well for such organisa-
tions. This is because, in open and dynamic organisations, some of the assumptions
of the method will be invalidated. For example, a new agent entering the system
will not have any past interactions with the existing agents, thereby resulting in
zero value for some of the attributes of the value function. Similarly, when the
service set of an agent changes, all of its past interactions will not provide the best
picture for its usefulness in the future to other agents. Therefore, now we extend
our adaptation method so that it performs well even in such open and dynamic
organisations.

4.2 Open Organisations

When a new agent joins the organisation, it needs to be assimilated into the struc-
ture by the existing ones. However, for an agent to form a relation with a new agent,
it has to be able to predict how useful that new agent will be and in what type of
relation. This is not straightforward as there are no past interactions with the new
agent on which to base any utility calculations (as required by our method). There-
fore, the agent is faced with an explore versus exploit trade-off: whether to explore

by forming an authority or a peer relation with a new agent, or to reorganise with
the past agents only by exploiting the known information about them. This choice
could be tackled by employing specially designed ‘explorer agents’, whose sole task
is to monitor the performance of all the agents (including the new ones)[Maximilien
and Singh 2005]. However, we do not use such an approach because it requires spe-
cial agents and that contradicts our self-organisation principles. Thus, our intention
is to imbibe the adaptation method into the task-solving agents without needing
any external help.

Against this background, we find that a context-based exploration strategy is well
suited to our problem. The agent looks at its context to decide whether to explore
or not. For determining this context, we use the same intuition that is behind the
well-known ‘Win or Learn Fast’ [Bowling and Veloso 2001] strategy. The WoLF
principle is— ‘learn quickly while losing, slowly while winning’. We use the same
basis for differentiating the context at the agents: an agent can either be considered
winning (if it has unused capacity) or losing (when it has a pending queue of SIs).
Therefore, an agent that is not overloaded will only follow Algorithm 1 by ignoring

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 19

the new agents joining the system. However, an agent with pending SIs will actively
seek new subordinates to be able to improve its delegation of SIs. This addition to
the fundamental method is presented as a pseudocode in Algorithm 2.

1 if WxP
6= ∅ then // Set of pending SIs of ax

2 s← arg-MaxOccuring{WxP
} AND /∈ AccmSetx;

3 As ← agents providing service s;
4 ay ← randomly chosen from As;
5 form subrx,y;

end

Algorithm 2: In terms of agent ax applying WoLF

In more detail, an agent, when overloaded (checking in line 1), identifies which
particular service occurs the most in its waiting list that is not supplied by any
of its current subordinates (line 2). Then, in line 3, it searches through all of its
acquaintances (including the newly entered agents) for those offering that particular
service. Finally, in lines 4–5, it forms a superior-subordinate relation with one such
randomly chosen agent6. As a result, new agents will be assimilated quickly by the
existing agents into the structure. Moreover, these new agents will end up forming
the relations where they are most needed, thereby leading to a more equitable
distribution of load across the organisation. In addition, a new agent offering
services which are not much in demand, will be ignored (as the agents offering
those services are winning anyway) and thus not add any unnecessary management
load. In contrast, when an agent leaves, the others can easily reorganise using the
method in Algorithm 1 without needing any such additional step.

This approach is useful because the agent is aware of its current context (how
quickly it is able to perform the SIs it is receiving) and drawbacks (which services it
needs help with) and therefore the exploration is not random but directed (seeking
only those acquaintances that can provide these overloaded services). The reverse,
in which non-overloaded agents seek to form new relations with incoming agents,
is not productive because the relations at these agents are already sufficient for
them to allocate and execute SIs efficiently. Thus adding more relations will only
increase their management load and delay tasks with unnecessary delegation with-
out providing any additional benefits. On the same lines, it is also not required
for the agents to seek help with services that are already being provided by their
existing subordinates. This is because the agent can delegate the SIs to these sub-
ordinates, without overloading itself, and it is for the subordinates to seek help
if required. In these scenarios, if the subordinate is further delegating the SIs to
its own subordinates, then the fundamental method itself, by design, enables the
agents to recognise this and adapt accordingly (thereby, reducing the chains of del-
egation). In summary, for open organisations, the adaptation method includes this

6ay is chosen randomly as otherwise the decision process will involve interacting and exchanging
utilities with all qualifying acquaintances, thus using up more computational capacity at ax while
it is already overloaded.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

20 · Kota et al.

context-based exploration strategy, inspired by the ‘WoLF’ principle, in addition
to the fundamental method.

4.3 Dynamic Organisations

As explained in Section 3.2, the dynamism of the organisations is caused by the
changing service sets of agents. As agents gain new services and/or lose old ones,
the relations should be changed accordingly to reflect the changed circumstances.
However, our adaptation method is based on all the past interactions between the
agents. The method of using the whole history of interactions as guidance for
calculating utilities during adaptation might not be the most suitable approach
when the agents’ service sets are changing, because the kind of interactions that
they require might also change.

An obvious approach seems to be to partition utilities on the basis of the services,
by grouping the interactions by their services. But such an approach doesn’t work
because an agent losing a service doesn’t exclude it from being able to provide the
service via its subordinates and so on (this approach and its fallibility is explained in
detail in Section 4.2.2 in Kota [2009]). In contrast, the extension presented earlier
(Section 4.2) is somewhat useful for dynamic organisations as well, particularly
when agents are gaining new services. In more detail, when some agents gain new
services, they can be treated as ‘new agents’ with respect to those services and thus
considered for forming subordinate relations by the ‘losing’ or overloaded agents,
just as described earlier in Algorithm 2. However, the method is not helpful when
agents might be losing services. Moreover, even for the former case of agents gaining
services, just using this method will not be sufficient. This is because the agents
are already burdened with the whole history of interactions when their service sets
were different. Therefore, they might not be able to form the best relations for the
changed circumstances despite actively seeking specific-service-providing relations
using the method.

A more successful approach is to give weights to the past agent interactions de-
pending on the time elapsed since they actually took place. This makes the adap-
tation more responsive to changing scenarios. By recent interactions contributing
more to the utility function than the older ones, the adaptation will reflect the
latest scenario rather than the summary of the whole scenario until then. Thus, it
will be suitable for dynamic environments in which the kind of required interactions
will be changing with time.

In more detail, in the fundamental method, the values for the terms in Equation 5
are obtained by summing up the relevant agent interactions. During this summa-
tion, all interactions were given the same importance. However, in this extended
method, weights are assigned to the individual interactions on basis of how far in
the past they had occurred. That is, the most recent interaction will have the max-
imum weight and the older interactions will have lesser weights correspondingly.
This decrease in weights will be given by a ‘decay function’. The rate of decay can
be tuned according to the rate of dynamism of the organisation. A highly dynamic
organisation (where agents are losing and gaining services at a fast rate) should
have a steeper decay function than an organisation with a slower rate of change.

The pseudocode for this method is presented in Algorithm 3. In more detail,
Interactions (line 1) contains the set of all relevant interactions, for that particular

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 21

1 Interactions← set of relevant interactions;
2 total ← 0;
3 timecurrent ← current time;
4 foreach I ∈ Interactions do
5 total← total + I.value ∗Decay(timecurrent, I.time);

end
6 return total
Algorithm 3: for calculating the value of a term while evaluating the value
function

Decay(timecurrent, I.time)
1 window ← time-window size;
2 if I.time ≤ (timecurrent − window) then
3 return 0;

else
4 return (I.time− (timecurrent − window))/window

end

Algorithm 4: linear decay function within a time window

Decay(timecurrent, I.time)
1 return e−λ∗(timecurrent−I.time); // λ can be adjusted

Algorithm 5: exponential decay function

attribute, that need to be summarised. While summing them up, each interaction
is multiplied by its corresponding weight which is obtained from the decay function
(line 5). We show two sample decay functions in Algorithms 4 and 5 for organisa-
tions changing at a slow and a fast rate respectively. In the linear decay function
(Algorithm 4), only those interactions that occurred within the given time window
are considered and the assigned weights decrease linearly based on how old they
are. In the exponential decay function (Algorithm 5), the weight value decreases
exponentially depending on how old the interactions are. These are two examples
of the decay function that can be used for dynamic organisations. The linear decay
function will suffice for moderately dynamic organisations while highly dynamic
organisations might need exponential decay.

The advantage of this approach of using the decay function is that it forces the
agents to learn at a faster rate, thus reflecting the increased dynamism of these
kinds of scenarios. At the same time, it does not make any additional assump-
tions and is not specifically dependent on the type of changes to the organisation
(like changing services or capacities). In this context, it is clear that this decay-
ing weights approach is on the same lines as a fixed rate reinforcement learning
method. However, a principled Q-learning approach was found wanting when we
experimented with it. Specifically, being based on some reward mechanism, it is
unable to recognise the explicit connection between performance and agent interac-
tions. Furthermore, as this setting puts forth an extremely large-scale multi-agent
RL problem (a learner is required for each possible pairing of agents), Q-learning

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

22 · Kota et al.

Table I. Mapping of the organisation type to algorithm required
Org. Type Closed Open

Static fundamental method fundamental method + exploration (WoLF inspired)

Dynamic fundamental method with decaying weights + exploration (WoLF inspired)

is not able to learn useful action-state values despite trying various learning rates
and other parameters.

In this section, we have first presented the basics of our adaptation method suit-
able for closed static organisations. Then, we discussed the extension and modifica-
tions required for the method to function well in open and dynamic organisations.
This section is succinctly summarised by Table I.

5. EXPERIMENTAL EVALUATION

We demonstrate the effectiveness of our self-organisation based adaptation method
through experimental evaluation. We first describe the setup used for the exper-
iments and then present the obtained results. First we discuss the results of the
experiments on static closed organisations (Section 5.2) and then for static open
organisations (Section 5.3). Later on, we move onto dynamic closed (Section 5.4)
and dynamic open organisations (Section 5.5).

5.1 Experimental Setup

We use the organisation model described in Section 3 as our simulation platform.
However, we make the assumption that all agents are at least acquainted with each
other by default. Therefore, no two agents will be strangers. We do this so to be
able to focus solely on evaluating the structural adaptation method and isolate it
from being affected by the service discovery aspects. For ease of reference, we refer
to our fundamental method (without the subsequent enhancements) as k-Adapt.
Its extension using context-based exploration, inspired by the WoLF principle, as
discussed in Section 4.2, is called wolf-k-Adapt. Similarly, the modified method
presented in Section 4.3 is referred to as decay-adapt. Finally, the method in-
corporating both the exploration strategy and the decay mechanism is referred to
as wolf-decay-Adapt. Note that, the decay function used by decay-Adapt and
wolf-decay-Adapt is linear (presented in Algorithm 4). We have conducted ex-
periments by using the exponential decay function (Algorithm 5) and found the
resulting trends to be broadly similar. This is because, for our simulations with
their low time durations, there is not a marked difference between the linear and
exponential functions when the other parameters (window size and decay constant)
are adjusted properly to suit the environment. To determine the effectiveness of
our approach, we compare its performance with two intuitive methods— Central

and Random, that act as the benchmarks. Moreover, to compare with the current
state of the art, we modify the token-based agent network adaptation method pre-
sented by Glinton et al. [2008] so that it is suitable for agent organisations and
use it for comparison as well. As mentioned earlier in Section 2, this is the latest
and most relevant work dealing with adaptation in agent-networks or organisations
in a decentralised fashion. Similarly, we compare with a few other variations of
k-Adapt to show the importance of all the components of our algorithm. All of

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 23

these methods are described below:

Central: This is a centralised allocation mechanism containing a central repository
that maintains information about the service sets and loads of all the agents in the
organisation, and is accessible without cost to any agent. The agents do not need
to maintain any relations; whenever an agent needs to allocate a SI, it looks up
the repository seeking the most suitable agent (capable of the service and having
maximum free capacity at the time) and allocates to it. Thus, all allocations are
one-step direct delegations, and the agents do not use up any capacity for allocation.
This method gives an upper bound on the performance of an organisation, but is
not a practical or robust solution to the problem because it involves maintaining an
up-to-date and exhaustive central repository with costless and instantaneous access
to all agents.

Random: In terms of the k-Adapt method (Algorithm 1), this strategy involves
an agent randomly choosing some of its acquaintances for adaptation (line 1), and
then randomly choosing a reorganisation action (line 8). Nevertheless, the rate
of change is adjusted so that the amount of reorganisation is roughly equal to
that caused by our method (so that the performance of Random is not affected by
the aggregation of reorganisation cost). Moreover, the number of relations in the
organisation is maintained at a moderate level by varying the probability of forming
or dissolving a relation. The probability to form a relation by an agent is set as
being inversely proportional to the existing number of relations of that kind at the
agent. Hence, an agent with very few subordinates has a higher chance of forming
an additional superior-subordinate relation than an agent with more subordinates
and vice versa. In the same way, an agent with more peers has higher probability
of dissolving a peer relation than an agent with less peers and so on. This enables
the organisation to be always reasonably connected. Thus, this method represents
a random structural adaptation strategy which does not involve any reasoning (and
therefore R = 0 for it) and constitutes the lower bound.

Token: Glinton et al. [2008] use a token-based algorithm for decentralised adapta-
tion of links in a task-solving agent network. However, as we discussed in Section 2,
their method is not directly applicable to our domain since it only enables the agents
to form or delete links, but does not let them to choose between different types of
links (or relation-types, as in an organisation). Therefore, to fit it into our problem
domain, we created two versions of their method: In Token-all, the agents use
the same set of tokens, irrespective of the relation-types, for adaptation. At the
time of forming/dissolving a relation, they randomly choose the type of relation
to modify. Whereas in Token-type, the agents use a different set of tokens for
each relation type. Therefore, the adaptation process for each of the relation-types
runs independently of the others, though, making sure that there are no conflicts.
We use both these versions of their approach for comparison. The token-based
algorithm also contains several parameters like TTL (time-to-live of the token) and
MAX DEGREE (maximum links allowed at an agent) which we fine-tuned after
extensive analyses to obtain the best possible performance and present those results.

free-Adapt: For this method, the reorganisation load coefficient R is set to 0. It
represents the case when the reorganisation can be considered resource-free. Thus,
it is the same as k-Adapt but differs only in line 1, where all the acquaintances

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

24 · Kota et al.

are chosen for reorganisation instead of just k. This makes it a theoretical upper
bound for the performance of k-Adapt.

all-Adapt: Same as free-Adapt, differing only in R, which is set to the same value
as in k-Adapt and not 0. While the profit obtained by the organisation (profitORG

in Equation 4) represents the organisation’s performance, there are two independent
simulation variables that are of interest– (i) distribution of services across agents
and (ii) similarity across tasks. Next we discuss them.

Distribution of services across agents: The degree of heterogeneity of the
agents in the organisation depends on the distribution of services across them.
This is a relevant parameter because the significance of the organisation structure
is greater when the agents are heterogeneous. In such a case, an efficient structure
will need to connect every agent with all those agents providing services relevant
to it and alongside help in load distribution. In contrast, for homogeneous agents,
load distribution is the only feature that can be influenced by the structure. We
distributed the services among the agents using a parameter called service proba-
bility (SP). That is, an agent ax is allocated a service si with a probability SP .
Thus, when SP is 0, every agent is capable of a unique service only (as every agent
should offer at least one service and every service should be offered by at least one
agent). When it is 1, every agent is capable of every service. Since, the services are
allocated on the basis of a probability, there is always randomness in the way they
are allocated to the agents.

In static organisations, the service sets of the agents are unchanging across a
simulation run. Hence, in our experiments for static organisations, we vary SP
from 0 to 0.5 only (since we verified that beyond 0.5, when the agents are quite
homogeneous, the structures did not influence the performance significantly). How-
ever, in dynamic organisations, SP will be changing within a simulation run as the
agents gain or lose services. Now, agents can gain or lose services gradually or sud-
denly. Moreover, they might initially lose services and then start gaining them and
vice versa. To capture these various scenarios, we vary SP in the following ways
in our experiments— (i) SP increases from 0 to 0.25 at a uniform rate and vice
versa, (ii) SP increases at a uniform rate from 0 to 0.25 and then decreases back
to 0 and vice versa (iii) SP changes suddenly from 0 to 0.25 midway through the
simulation and the other way round. We implement this variation in SP by adding
or removing (depending on the case) services from the service sets of the agents at
time-steps randomly chosen from a uniform distribution (except in case (iii) where
it is midway at t = 2000), so that the resultant service distribution conforms to
the required value. When an agent loses a service, it is forced to reallocate the SIs
in its queue requiring that service and waiting for execution to appropriate related
agents as it can no longer perform those SIs itself.

Similarity between tasks: The other simulation parameter of importance is
the kind of tasks entering the system. The tasks presented to the organisation
over the period of a simulation run may be completely unrelated to each other or
they may have some common SIs and dependency links. This is interesting be-
cause, when tasks are similar, the organisation structure should be able to adapt to
the recurring task structures, thereby increasing the efficiency of the organisation.
Moreover, the presence of similarities in the tasks is an existing phenomenon in

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 25

the real world faced by computing systems. For our experiments, we determine the
similarity between the tasks belonging to a simulation run on the basis of what we
call patterns ; stereotypical task components used to represent frequently occurring
combinations of SIs and dependency links. Like tasks, patterns are also composed
of SIs, but are generally smaller in size. Instead of creating tasks by randomly gen-
erating SIs and creating dependency links between them, tasks can be constituted
by connecting some patterns by creating dependency links between the SIs belong-
ing to the patterns. In this way, the dependencies between the SIs may follow some
frequent orderings (resulting from the dependencies internal to a pattern occurring
in several tasks) and some random dependencies (due to the dependencies created
between the patterns). Thus, this method of generation enables us to control the
similarity between the tasks using the number of patterns (NoP) as the parame-
ter. In our experiments, we consider two scenarios: (i) completely dissimilar tasks
(NoP = ∞) and (ii) highly similar tasks (NoP = 5). In addition to these, the
set of patterns being used within a simulation run can also be varied to represent
changing characteristics of the task environment. Experiments based on this are
detailed in Section 5.2.5 of Kota [2009].

All our experiments comprise 1000 simulation runs for every data point to achieve
statistically significant results. All the results are shown with 95% confidence inter-
vals (the errors bars are very close to the marking symbol in the graphs), obtained
by multiplying the standard error by 1.96 (z-test). For every simulation, the set
of agents and services is first generated and then the services are assigned to the
agents on the basis of SP . Next, the set of tasks is generated using NoP . In our
experiments, we use a maximum of 25 initial agents in the organisation. We have
conducted other experiments with bigger numbers of agents (reaching up to 100)
and found similar trends as shown here (some sample results can be found in Section
A.3 of Kota [2009]). Also, static organisations face 1500 tasks over 2000 time-steps
to constitute one simulation run, while dynamic organisations face 3000 tasks over
4000 time-steps for one simulation run. We provided more simulation time for dy-
namic organisations so that it is sufficient for the changes in the organisation (like
changing service sets or task pattern sets) to take place. The tasks arrive at an
uniform rate, and are assigned to randomly chosen agents in the organisation (those
then have to initiate the allocation process for the respective tasks). We do not
consider any hot-spots for arrival of tasks because those scenarios are captured by
the settings containing similar tasks and heterogeneous agents as, in these settings,
the particular agents providing those recurring services act as hot-spots since they
end up being swamped with the SIs that make up the patterns.

Moreover, we set the total number of services (|S|) equal to the number of agents
|A| (though the distribution will vary according to SP). Furthermore, we set C
at 0.25 and M at 0.5 (so that any allocation process will take up at least half
a computational unit). Also, we set R at 0.25 and D at 1. The values of these
coefficients are explicitly considered by our adaptation method as part of the utility
calculations and, therefore, we did not find any interesting trends by varying them
over time or over simulations. The maximum size of a pattern is limited to 8 so
that, on average, three patterns are required to compose a task (which can have a
maximum of 25 SIs). We observed broadly similar patterns with other parameter

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

26 · Kota et al.

settings.
Finally, the set of agents A, is kept constant for closed organisations, while for the

open ones, a randomly chosen number of temporary agents are added, as described
in Section 3. The results shown here are of experiments where the start-times and
life-times are chosen from a uniform distribution. However, we also conducted ex-
periments with a combination of distributions for start-times (uniform and normal)
and life-times (normal and geometric) and found the resultant trends to be similar.

We present the results in terms of the percentage of the maximum profit that is
obtained by the organisation (averaged over the 1000 simulation runs as described
above). The maximum profit is given by the profit obtained by Central as it
represents the theoretical upper bound. For static organisations, the results are
presented as graphs plotting the profit obtained for the methods over an increasing
SP along the x-axis (increasing the homogeneity of agents). However, for dynamic
organisations, SP itself varies within a simulation run. Therefore, the results are
presented in a table format for each of the scenarios depicting a particular kind of
variance in SP . We also look at the characteristics of the structures being generated
by the adaptation method. We present results measuring the connectivity between
the agents in terms of the different relations and also the density of relations at the
agents in terms of the degree of the relations at the agents. We also looked at other
metrics but did not find any general trends.

5.2 Results for Static Closed Organisations

Observing the results for static closed organisations, we find that in both the scenar-
ios with dissimilar (Figure 4(a)) and similar tasks (Figure 4(b)), k-Adapt performs
consistently better than Random, Token-all and Token-type. The difference in
their performance narrows down (from the peak of 40% of profit to 10%) as the
similarity of agents increases. This is because a smart method is correspondingly
less useful when all the agents are homogeneous, as the significance of the structure
itself diminishes. As the agents become homogeneous and everyone can provide
most of the services, the task allocation problem reduces to a load distribution
problem. In this case, random policies will perform well too because the incoming
load (or tasks in our case) is also randomly distributed amongst the agents. Also,
we see that k-Adapt and free-Adapt perform better when SP = 0 than for slightly
higher values of SP because, as SP increases and more agents are capable of a given
service, Central continues performing perfect allocations (as it has up-to-date in-
formation about loads on all agents), while the agents in the organisations using
our method have no way of knowing which relations have free capacities. However,
the performance increases for higher values of SP because the average capacity
available for any given service becomes larger as agents are capable of more ser-
vices, thus leading to better task completion times. This is also the reason why
Random, Token-all and Token-type improve with increasing SP . It is also no-
ticeable that Token-type improves at a faster rate than Token-all. This supports
our contention that when different types of relations (or links) are possible between
the agents, considering them distinctly during adaptation provides a better perfor-
mance. We also conducted experiments by varying R from 0 to 0.9 (see Figure 4(c))
and found that the fall in the performance of k-Adapt is gradual and minimal, while
it is drastic in all-Adapt. In fact, for higher values of R, the profit of all-Adapt

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 27

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Dissimilar (NoP=∞)

k-Adapt
Random

free-Adapt
all-Adapt
Token-all

Token-type

(a) Profit facing Dissimilar Tasks

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Similar (NoP=5)

k-Adapt
Random

free-Adapt
all-Adapt
Token-all

Token-type

(b) Profit facing Similar Tasks

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
 o

f M
ax

im
um

 P
ro

fit

Reorganisation Coefficient R

% of Maximum Profit vs R when Tasks are Similar (NoP=5)

k-Adapt
all-adapt

free-Adapt

(c) Profit as R increases

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f T
ot

al
 R

el
at

io
ns

Service Probability

% of Total Relations vs SP

k-Adapt All (NoP=∞)
k-Adapt All (NoP=5)

Random All
Token-all All

Token-type All

(d) Connectivity of Resultant Structures

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f R
el

at
io

ns

Service Probability

% of Relations vs SP when Tasks are Dissimilar (NoP=∞)

k-Adapt All
k-Adapt Peer
k-Adapt Auth

Random All
Random Peer
Random Auth

(e) Relations Connectivity (Dissimilar
Tasks)

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f R
el

at
io

ns

Service Probability

% of Relations vs SP when Tasks are Similar (NoP=5)

k-Adapt All
k-Adapt Peer
k-Adapt Auth

Random All
Random Peer
Random Auth

(f) Relations Connectivity (Similar Tasks)

Fig. 4. Static Closed Organisations

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

28 · Kota et al.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

 0

 10

 20

 30

 40

 50
%

 o
f T

ot
al

 A
ge

nt
s

fo
r

S
P

=
0.

5

%
 o

f T
ot

al
 A

ge
nt

s
fo

r
S

P
=

0

Degree of Relations at Agents (% of maximum possible)

Distribution of Degree across Agents when Tasks are Dissimilar (NoP=∞)

All, SP=0
Peer, SP=0
Subr, SP=0
Supr, SP=0
All, SP=0.5

Peer, SP=0.5
Subr, SP=0.5
Supr, SP=0.5

(a) Facing Dissimilar Tasks

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

 0

 10

 20

 30

 40

 50

%
 o

f T
ot

al
 A

ge
nt

s
fo

r
S

P
=

0.
5

%
 o

f T
ot

al
 A

ge
nt

s
fo

r
S

P
=

0

Degree of Relations at Agents (% of maximum possible)

Distribution of Degree across Agents when Tasks are Similar (NoP=5)

All, SP=0
Peer, SP=0
Subr, SP=0
Supr, SP=0
All, SP=0.5

Peer, SP=0.5
Subr, SP=0.5
Supr, SP=0.5

(b) Facing Similar Tasks

Fig. 5. Distribution of Agents across Relation Density

goes below 0, meaning the cost is more than the reward obtained. This shows
that meta-reasoning is a crucial aspect in an adaptation process and cannot be
ignored. Moreover, we see that the performance of k-Adapt is always close to that
of free-Adapt, thus confirming the efficacy of our meta-reasoning approach. We
conducted another set of experiments to observe the resultant structures generated
by our method and some of the comparison methods. In particular, Figure 4(d)
shows the average connectivity of the structures, produced by the various methods,
at the end of simulation. The connectivity is measured as a percentage of the re-
lations present in the organisation to the total number of relations possible (100%
= total possible relations = |A|.(|A| − 1)/2). We find that average connectivity for
Random and the Token methods remains the same at different values of SP . In fact,
it does not vary significantly between similar and dissimilar tasks either (we have
shown the average here). These trends are expected because all three of them do
not take into account either SP or task similarity for changing relations. In con-
trast, we see the connectivity of k-Adapt decreases significantly as SP increases, in
the case of dissimilar tasks. This shows that, with increasing SP , k-Adapt realises
that a lesser number of relations are required at an agent. As agents are able to
provide more services on average, lower number of relations will be sufficient for
an agent to allocate SIs, of all the required service-types, efficiently. Such a drastic
reduction doesn’t happen in the case of similar tasks because only a few services
are demanded most of the time, and k-Adapt enables the agents to form relations
with only those agents that are providing these frequently occurring services. The
distribution of agents providing these specific in-demand services doesn’t increase
as rapidly with increasing SP as in the dissimilar case where all services are re-
quired almost uniformly. The breakup of the connectivity in terms of the different
types of relations is shown in Figures 4(e) and 4(f). For dissimilar tasks, we see
that while the total number of relations decrease with increasing SP , the number
of authority (superior-subordinate) relations first increases before decreasing again.
This happens because when SP is low, but not 0, some agents provide more ser-
vices than others. Therefore, these agents are required more often than others for

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 29

SI delegation, leading to them being sought as subordinates by the others (instead
of being peers). This leads to an increase in authority relations. Hence, there is also
a matching reduction in number of peer relations. However, with a further increase
in SP , most agents are able to provide most of the services, thereby reducing the
need for any relations at all. This doesn’t occur in the case of similar tasks for the
same reasons as detailed earlier.

Continuing the analysis of the resultant structures, Figures 5(a) and 5(b) gives us
a glimpse into the distribution of the relations within the agents. Specifically, the
x-axis represents the % of degree at the agent (100% = the agent is connected to all
other agents in the organisation), while the y-axis denotes the frequency distribution
in terms of the % of agents in the organisation. The most important observation is
that our adaptation method ensures that the relations are not concentrated at any
particular agents— that is, no hubs, as per in scale-free networks, are formed. It is
also interesting to note that in dissimilar tasks, when SP = 0, most of the agents are
linked directly with 60-80% of the other agents, while when SP = 0.5 most agents
link with only 15-40% of the other agents (the ‘All’ curves in the graphs). This
difference doesn’t exist for similar tasks because agents learn to form links with only
the agents providing the frequently occurring services (as also described earlier). It
is also evident that most of the agents have very few superior-subordinate relations
(0 − 25%) in all cases, thus showing the method enables the agents to form only
those relations that are necessary, thereby leading to better efficiency in allocation.

5.3 Results for Static Open Organisations

In the case of static open organisations, we find that wolf-k-Adapt performs con-
siderably better than Random, Token-all and Token-type when tasks are both
dissimilar (Figure 6(a)) and similar (Figure 6(b)). More importantly, k-Adapt,
which does not make use of exploration based on the WoLF principle, degrades
rapidly as the similarity between agents increases. This shows that the context-
based exploration is very useful for assimilating new agents into the organisation
and maintaining the performance.

Furthermore, Figure 6(c) gives us an insight into what is happening to the organ-
isation when the agents are added and removed. For this experiment, we fixed the
start-time at 500 and life-time at 1000 for the temporary agents. The graph shows
the sum of the computations of all pending SIs in the organisation (left y-axis)
across the time duration of the simulation, and shows the corresponding reorgani-
sation rate in terms of the number of relations changed in a time-step (right y-axis).
For these experiments, we fixed SP = 0.20 and NoP = 0. We observe a gradual
fall in the load starting at time=500 corresponding to when temporary agents are
added. Also at time=1500, there is a quick drop and immediate increase because,
when the temporary agents leave, the SIs pending at them are reassigned to the
permanent agents. This reassignment requires at least a time-step after which only
they are visible as pending load again. Also, the rate of growth of pending load
is higher once the agents leave (as seen by the higher gradient). Looking at the
reorganisation rate, we find that it is high in the beginning and then settles down to
an almost uniform rate. Later, there is a sudden jump in the rate when the agents
are added and this gradually falls back to the earlier value at around time=700.
This shows that our adaptation process is able to reach its earlier stable state in

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

30 · Kota et al.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Dissimilar (NoP=∞)

wolf-k-Adapt
Random

free-Adapt
k-Adapt

Token-all
Token-type

(a) Profit facing Dissimilar Tasks

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5

%
 o

f M
ax

im
um

 P
ro

fit

Service Probability

% of Maximum Profit vs SP when Tasks are Similar (NoP=5)

wolf-k-Adapt
Random

free-Adapt
k-Adapt

Token-all
Token-type

(b) Profit facing Similar Tasks

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

 0

 0.4

 0.8

 1.2

 1.6

T
ot

al
 P

en
di

ng
 L

oa
d

in
 th

e
O

rg

A
vg

 R
eo

rg
. R

at
e

of
 th

e
O

rg

Time

Load of Pending Tasks and Reorganisation Rate vs Time

temp agents
added

temp agents
removed

Pending Load

Reorg Rate

(c) Pending Load & Reorg. Rate

Fig. 6. Static Open Organisations

reasonable time. As expected, we also find another blip in the rate when the agents
are removed. This time, it settles much more quickly as the permanent agents are
able to easily reform the older structure that existed prior to the addition of the
temporary agents.

5.4 Results for Dynamic Closed Organisations

We see that for dynamic closed organisations, wolf-decay-Adapt consistently per-
forms significantly better than the other methods in both the scenarios with dis-
similar (Table II) and similar (Table III) tasks. It is notable that for dissimilar
tasks, wolf-decay-Adapt is able to reach 90% of the maximum profit which is 5-
10% better than wolf-k-Adapt and 15% better than Random, while being around
35-40% better than the Token methods. In this context, we also observe that
the performance of wolf-k-Adapt when the service probability SP (introduced in
Section 5.1) is reduced is worse than when SP is increased. This is because in
organisations using wolf-k-Adapt, the agents form relations on the basis of all of
their past allocations. However, when the agents start losing services, some of those

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 31

Table II. Profit for Dynamic Closed Organisations with Dissimilar Tasks

SP variance wolf-decay-
Adapt

wolf-k-
Adapt

Random Token-all Token-type

0 → 0.25 (gradually) 93.55%
(±0.30)

88.65%
(±0.35)

76.23%
(±0.46)

46.38%
(±1.33)

58.60%
(±0.95)

0.25 → 0 (gradually) 88.26%
(±0.40)

77.93%
(±0.45)

72.42%
(±0.56)

42.19%
(±1.36)

50.24%
(±0.90)

0 → 0.25 → 0
(gradually)

92.13%
(±0.33)

86.52%
(±0.37)

74.85%
(±0.49)

44.89%
(±1.33)

54.71%
(±0.95)

0.25 → 0 → 0.25
(gradually)

90.43%
(±0.33)

80.96%
(±0.39)

74.68%
(±0.49)

45.43%
(±1.36)

57.73%
(±0.92)

0 → 0.25 (suddenly at
t = 2000)

91.85%
(±0.32)

87.34%
(±0.37)

74.27%
(±0.48)

44.15%
(±1.37)

48.72%
(±1.02)

0.25 → 0 (suddenly at
t = 2000)

90.72%
(±0.32)

80.44%
(±0.40)

74.80%
(±0.49)

51.67%
(±1.17)

53.58%
(±0.78)

Table III. Profit for Dynamic Closed Organisations with Similar Tasks
SP variance wolf-decay-

Adapt
wolf-k-
Adapt

Random Token-all Token-type

0 → 0.25 (gradually) 74.78%

(±1.01)

69.99%

(±1.07)

55.72%

(±1.09)

28.65%

(±1.42)

40.40%

(±1.21)

0.25 → 0 (gradually) 78.80%
(±1.01)

67.73%
(±1.04)

46.99%
(±0.99)

22.67%
(±1.29)

31.84%
(±0.99)

0 → 0.25 → 0
(gradually)

76.52%
(±1.04)

70.81%
(±1.05)

53.71%
(±1.03)

29.09%
(±1.34)

38.45%
(±1.14)

0.25 → 0 → 0.25
(gradually)

76.27%
(±0.99)

66.36%
(±1.03)

50.64%
(±1.05)

26.87%
(±1.36)

35.12%
(±1.08)

0 → 0.25 (suddenly at
t = 2000)

76.32%
(±1.02)

71.38%
(±1.02)

51.31%
(±1.08)

22.73%
(±1.39)

27.91%
(±1.17)

0.25 → 0 (suddenly at
t = 2000)

82.11%
(±0.97)

71.15%
(±0.98)

50.15%
(±0.96)

32.76%
(±1.19)

35.53%
(±0.90)

allocations are no longer possible. However the agents continue to maintain the re-
lations due to the burden of the long history, thereby reducing their efficiency. This
is not the case with increasing SP where agents gain services because, allocations
that happened in the past will still be possible. Of course, newer kinds of alloca-
tions will also be possible which wolf-decay-Adapt is capable of identifying much
more quickly than wolf-k-Adapt by giving more weight to recent interactions.

In these set of results and also in all of the following, we find that the performance
of all the methods is better for dissimilar tasks than similar ones. This is because,
for similar tasks, the load is high on the particular agents providing those more
frequent services and this load cannot be distributed as equitably by the agents
with their local views as the Central method can with its global view. In a similar
vein, we also notice that the gap in the performance between the ‘adapt’ methods
and Random or ‘Token’ methods is much more for similar than dissimilar tasks.
This reinforces our assertion that our adaptation approach is able to identify the
patterns across tasks (when they occur) and adapt the structure according to them
in an emergent fashion (since the agents are only adapting locally). Another in-
teresting phenomenon to observe is that varying SP gradually over the simulation

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

32 · Kota et al.

Table IV. Profit for Dynamic Open Organisations with Dissimilar Tasks
SP variance 0 → 0.25 (gradually) 0.25 → 0 (gradually)

wolf-decay-Adapt 92.85%(±0.33) 87.71%(±0.42)

wolf-k-Adapt 87.90%(±0.38) 77.04%(±0.48)

decay-Adapt 79.05%(±0.36) 78.87%(±0.44)

Random 72.63%(±0.51) 68.95%(±0.61)

Token-all 26.00%(±1.48) 20.23%(±1.43)

Token-type 59.68%(±0.91) 43.53%(±0.81)

Table V. Profit for Dynamic Open Organisations with Similar Tasks
SP variance 0 → 0.25 (gradually) 0.25 → 0 (gradually)

wolf-decay-Adapt 75.41%(±1.08) 78.84%(±1.02)

wolf-k-Adapt 70.85%(±1.10) 67.77%(±1.05)

decay-Adapt 61.30%(±0.80) 65.60%(±0.99)

Random 50.00%(±1.09) 40.98%(±0.99)

Token-all 17.68%(±1.45) 13.62%(±1.30)

Token-type 37.98%(±1.22) 26.52%(±0.88)

or suddenly in the middle of the simulation does not affect the performance of any
of the methods significantly. We believe this is because the effects of agents gain-
ing/losing services slowly over the total time period averages out to result in the
same kind of performance when agents are gaining/losing all of the services only at
the middle of the time period.

5.5 Results for Dynamic Open Organisations

For dynamic open organisations, we observe that wolf-decay-Adapt significantly
outperforms the other methods in all cases for both dissimilar (Table IV) and similar
(Table V) tasks. In more detail, wolf-decay-Adapt is better than wolf-k-Adapt

by 5 to 10% depending on whether SP is increasing or decreasing. This variance in
the performance of wolf-k-Adapt can be explained in the same way as in dynamic
closed organisations (Table II) discussed above. wolf-decay-Adapt is consistently
10-14% better than decay-Adapt and and 20-35% better than Random. This shows
that both the extensions (detailed in Sections 4.2 and 4.3) are critical for a good
performance in these organisations with agents moving in and out and changing
properties. It can also be observed that both Token-all and Token-type perform
much worse than in earlier cases, thus showing that they are not able to handle
the increased changes to the system resulting from both the openness and the
dynamism.

In summary, we find that, on average, our adaptation method performs at 80%
of the omniscient centralised allocation method. Furthermore, on average, it is
20% better than a random reorganisation approach (reaching up to a maximum
of 45%). More importantly, it is 40% better on average than the Token based
methods (reaching a maximum of 60%). The results for open and dynamic organi-
sations show that the respective enhancements, context-based exploration inspired
by the WoLF principle and decaying weights, are crucial for maintaining the perfor-
mance. We see that, on average, the performance of the method with the respective
enhancement is 8% better than without it.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 33

6. CONCLUSIONS

This paper addresses the problem of developing decentralised structural adaptation
methods for problem solving agent organisations based on the paradigm of self
organisation. More specifically, using a simple organisation model as a framework,
we presented a structural adaptation method that can be applied individually and
locally by all the agents in order to improve the organisation’s performance. In
agent organisations, the structure is defined by the relations between the agents
and a particular relation existing between two agents affects both the involved
agents. Therefore, using our method, a pair of agents jointly estimate the utility of
changing their inter-relation and take the appropriate action accordingly. Moreover,
our method also enables an agent to meta-reason about when and with whom to
initiate this adaptation deliberation. Additionally, we extend our method so that
it performs well even in open organisations which have agents moving in and out
of the system. The extension enables poorly performing agents to actively seek
out suitable relations among the new agents entering the system and then delegate
some of their excess load to them. We also modified our method to tackle dynamic
organisations wherein the properties of the agents might be changing with time.
For such dynamic scenarios, the weights associated with the past interactions of
the agents (during utility calculations) decay with time. Therefore, more recent
interactions contribute more to the utility than older ones, thus helping the agents
keep up with the changes to the agent properties.

We experimentally evaluated our approach by varying interesting parameters like
heterogeneity of agents and similarity of tasks, and the openness and dynamism of
the organisations. We found that our method performs at 80% (average) of a
centralised omniscient method while the current decentralised agent-network adap-
tation methods only manage to reach 40% (average). Both the enhancements to our
basic method, context-based exploration and decaying weights, are found useful for
maintaining the good performance in the face of open and dynamic organisations.

It is evident that our adaptation method works purely by redirecting agent in-
teractions, thereby, changing the organisation structure. A key advantage of this
approach is that it does not entail any modifications to the agents themselves or
their internal characteristics. Therefore, it is applicable even in situations where the
internal properties of the agents (like computation capacity or services provided)
in the organisations cannot be altered by the adaptation method. Moreover, the
method inherently takes into account the cost of adaptation and the cost of reason-
ing about adaptation in addition to the achievable improvement to the organisation
through adaptation. This makes it suitable for any kind of environment as long
as the constants of the environment are known. Since the adaptation method is
purely agent-based, decentralised and continuous over time, it satisfies the princi-
ples of self-organisation discussed in Section 1. Also, having been developed on an
abstract organisation platform, the method is generic and applicable to cooperative
multi-agent systems requiring sustained inter-agent interactions for achieving task
objectives in a resource-constrained environment. It is useful if these interactions
are resource-intensive and are regulated by some kind of an organisation structure.

The above mentioned characteristics mean that our adaptation method can be
used by the individual components of a distributed computing system to manage

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

34 · Kota et al.

themselves as it will enable them to continuously adapt their interactions with the
other components in the system in a local and robust fashion. Hence, the work doc-
umented in this paper demonstrates a simple and robust, decentralised approach
for continuous self-adaptation of problem solving agent organisations, thereby pro-
viding an important component for the development of autonomic systems.

Though our organisation model was sufficient to serve as a platform for devel-
oping the adaptation method, it also provides some avenues for future work. For
example, currently the performance is measured by cost and task completion times
and does not take into account aspects like quality of service and does not limit
other resources like memory and network bandwidth. Extending the model to in-
corporate these features might throw up more challenges to the adaptation method,
like optimising against different types of constraints concurrently or improving from
among the different set of performance measures available.

In a similar vein, our adaptation method makes no assumptions about knowing
anything about the dynamism of the system. It functions solely on the history of
interactions and does not make use of any information (if available) about the kind
of tasks that might be coming in the future or the kind of changes expected in
the organisation’s agents. We plan to extend our method such that the agents can
adapt proactively when such information is available to them. For example, if they
are provided with a probability distribution of the kind of task patterns expected
to be seen in the future, it can be taken into account during adaptation so that the
organisation structure is better prepared to handle these tasks.

By focusing on an abstract model, we have managed to develop a generic adapta-
tion method and tested it empirically in a similarly generic fashion. Nevertheless,
the applicability of the adaptation methods also needs to be tested in real-life
scenarios. Though autonomic systems are not prevalent as yet, there exist grid sys-
tems that perform extensive work-flow based tasks like large-scale complex scientific
calculations or supply-chain and procurement processes for large businesses. The
adaptation method could be incorporated in any such suitable distributed comput-
ing system and verified whether it helps in improving the performance. Doing this
will not only reaffirm the results presented here, but also possibly uncover newer
challenges that might crop up during the deployment in the real-life systems.

REFERENCES

Abdallah, S. and Lesser, V. 2007. Multiagent Reinforcement Learning and Self-Organization in
a Network of Agents. In Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (Aamas ’07). IFAAMAS, Honolulu, 172–179.

Alexander, G., Raja, A., Durfee, E. H., and Musliner, D. J. 2007. Design paradigms for
meta-control in multi-agent systems. In Proceedings of the Workshop on Metareasoning in
Agent-based Systems at AAMAS 2007. Honolulu, USA, 92–103.

Bernon, C., Chevrier, V., Hilaire, V., and Marrow, P. 2006. Applications of self-organising
multi-agents systems: An initial framework of comparison . Informatica 30, 1, 73–82.

Biskupski, B., Dowling, J., and Sacha, J. 2007. Properties and mechanisms of self-organizing
manet and p2p systems. ACM Transactions on Autonomous and Adaptive Systems 2, 1, 1.

Bongaerts, L. 1998. Integration of scheduling and control in holonic manufacturing systems.
Ph.D. thesis, PMA/K.U. Leuven.

Bou, E., Lopez-Sanchez, M., and Rodriguez-Aguilar, J. A. 2006. Self-configuration in auto-
nomic electronic institutions. In Coordination, Organization, Institutions and Norms in Agent
Systems Workshop at ECAI ’06. Trentino, Italy, 1–9.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

Decentralised Approaches for Self-Adaptation in Agent Organisations · 35

Bowling, M. and Veloso, M. 2001. Rational and convergent learning in stochastic games. In

Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI ’01).
Seattle, USA, 1021–1026.

Capera, D., George, J.-P., Gleizes, M.-P., and Glize, P. 2003. The AMAS theory for com-
plex problem solving based on self-organizing cooperative agents. In Proceedings of the 12th
International Workshop on Enabling Technologies (WETICE ’03). IEEE Computer Society,
Washington, DC, USA, 383.

Capera, D., Gleizes, M. P., and Glize, P. 2003. Self-organizing agents for mechanical design.
In Engineering Self-Organising Systems. LNCS, vol. 2977. Springer, 169–185.

Conitzer, V. 2008. Metareasoning as a formal computational problem. In Proceedings of the
Workshop on Metareasoning: Thinking about Thinking at AAAI ’08. Chicago, USA.

De Wolf, T. and Holvoet, T. 2003. Towards autonomic computing: agent-based modelling,
dynamical systems analysis, and decentralised control. In Proceedings of the 1st International
Workshop on Autonomic Computing Principles and Architectures. Banff, Canada, 10–20.

Deloach, S. A., Oyenan, W. H., and Matson, E. T. 2008. A capabilities-based model for
adaptive organizations. Autonomous Agents and Multi-Agent Systems 16, 1, 13–56.

Di Marzo Serugendo, G., Gleizes, M.-P., and Karageorgos, A. 2005. Self-organization in
multi-agent systems. The Knowledge Engineering Review 20, 2, 165–189.

Di Marzo Serugendo, G., Gleizes, M.-P., and Karageorgos, A. 2006. Self-organisation and
emergence in multi-agent systems: An overview. Informatica 30, 1, 45–54.

Dignum, V. 2003. A model for organizational interaction: based on agents, founded in logic.
Ph.D. thesis, Proefschrift Universiteit Utrecht.

Ferber, J. and Gutknecht, O. 1998. A meta-model for the analysis and design of organizations
in multi-agent systems. In Proceedings of the 3rd International Conference on Multi Agent
Systems (ICMAS ’98). IEEE Computer Society, Washington, DC, USA, 128–135.

Fischer, K. 2005. Self-organisation in holonic multiagent systems. In Mechanizing Mathematical
Reasoning. Vol. 2605. Springer, 543–563.

Forestiero, A., Mastroianni, C., and Spezzano, G. 2008. A self-organizing grid featuring
bio-inspired algorithms. ACM Transactions on Autonomous and Adaptive Systems 3, 2, 1–37.

Gaston, M. E. and desJardins, M. 2005. Agent-organized networks for dynamic team formation.
In Proceedings of the 4th International Joint Conference on Autonomous agents and multiagent
systems (AAMAS ’05). ACM, New York, NY, USA, 230–237.

Gershenson, C. 2007. Design and control of self-organizing systems. Ph.D. thesis, Vrije Univer-
siteit Brussel.

Glinton, R., Sycara, K. P., and Scerri, P. 2008. Agent organized networks redux. In Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelligence. AAAI Press, Chicago, 83–88.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. 2000. Moise: An organizational
model for multi-agent systems. In Proceedings of the International Joint Conference, 7th Ibero-
American Conference on AI, 15th Brazilian Symposium on AI (IBERAMIA/SBIA ’2000).
LNAI, vol. 1952. Springer-Verlag, Berlin, 152–161.

Hilaire, V., Koukam, A., and Rodriguez, S. 2008. An adaptative agent architecture for holonic
multi-agent systems. ACM Transactions on Autonomous and Adaptive Systems 3, 1, 1–24.

Hogg, L. M. and Jennings, N. R. 2001. Socially intelligent reasoning for autonomous agents.
IEEE Transactions on Systems, Man and Cybernetics, Part A 31, 5 (Sep), 381–393.

Hoogendoorn, M. 2007. Adaptation of organizational models for multi-agent systems based on
max flow networks. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI ’07). AAAI Press, Hyderabad, India, 1321–1326.

Horling, B., Benyo, B., and Lesser, V. 2001. Using self-diagnosis to adapt organizational struc-
tures. In Proceedings of the fifth international conference on Autonomous agents (AGENTS
’01). ACM Press, New York, NY, USA, 529–536.

Hubner, J. F., Sichman, J. S., and Boissier, O. 2004. Using the MOISE+ for a cooperative
framework of MAS reorganisation. In Proceedings of the 17th Brazilian Symposium on Artificial
Intelligence (SBIA’04). Vol. 3171. Springer, Berlin, 506–515.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

36 · Kota et al.

Ishida, T., Gasser, L., and Yokoo, M. 1992. Organization self-design of distributed production

systems. IEEE Transactions on Knowledge and Data Engineering 4, 2, 123–134.

Jackson, M. O. and Watts, A. 2002. The evolution of social and economic networks. Journal
of Economic Theory 106, 2, 265 – 295.

Jin, Y. and Levitt, R. E. 1996. The virtual design team: A computational model of project
organizations. Computational & Mathematical Organization Theory 2, 171–196(26).

Kamboj, S. and Decker, K. S. 2007. Organizational self-design in semi-dynamic environments.
In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS ’07). Honolulu, USA, 1220–1227.

Kephart, J. O. and Chess, D. M. 2003. The vision of autonomic computing. IEEE Com-
puter 36, 1, 41–50.

Kota, R. 2009. Self-adapting agent organisations.

Kota, R., Gibbins, N., and Jennings, N. R. 2008. Decentralised structural adaptation in agent
organisations. In Proceedings of the Workshop on Organised Adaptation in Multi-Agent Sys-
tems at AAMAS ’08. 1–16.

Mano, J.-P., Bourjot, C., Lopardo, G., and Glize, P. 2006. Bio-inspired mechanisms for
artificial self-organised systems. Informatica 30, 1, 55–62.

Mathieu, P., Routier, J.-C., and Secq, Y. 2002. Principles for dynamic multi-agent orga-
nizations. In Proceedings of the 5th Pacific Rim International Workshop on Multi Agents.
Springer-Verlag, London, UK, 109–122.

Maximilien, E. M. and Singh, M. P. 2005. Multiagent system for dynamic web services selection.
In Proceedings of 1st Workshop on Service-Oriented Computing and Agent-Based Engineering
(SOCABE) at AAMAS ’05. Utrecht, Netherlands, 25–29.

Motwani, R. and Raghavan, P. 1995. Randomized algorithms. Cambridge University Press.

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., Dang, V. D., Nguyen,

T. D., Deora, V., Shao, J., Gray, A., and Fiddian, N. 2004. Agent-based formation of
virtual organisations. International Journal of Knowledge Based Systems 17, 2-4, 103–111.

Raja, A. and Lesser, V. 2004. Meta-level reasoning in deliberative agents. In Proceedings of
the Intelligent Agent Technology (IAT ’04), IEEE/WIC/ACM International Conference. IEEE
Computer Society, Washington, USA, 141–147.

Schlegel, T. and Kowalczyk, R. 2007. Towards self-organising agent-based resource allocation
in a multi-server environment. In Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems (AAMAS ’07). ACM, Honolulu, USA, 1–8.

Sierra, C., Rodriguez-Aguilar, J. A., Noriega, P., Esteva, M., and Arcos, J. L. 2004.
Engineering multi-agent systems as electronic institutions. UPGRADE The European Journal
for the Informatics Professional V, 4, 33–39.

Sims, M., Goldman, C., and Lesser, V. 2003. Self-Organization through Bottom-up Coalition
Formation. In Proceedings of 2nd International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS ’03). ACM Press, Melbourne, AUS, 867–874.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., Kephart, J. O.,
and White, S. R. 2004. A multi-agent systems approach to autonomic computing. In Proceed-
ings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’04). IEEE Computer Society, Washington, DC, USA, 464–471.

Vazquez-Salceda, J., Dignum, V., and Dignum, F. 2005. Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11, 3, 307–360.

Wang, Z. and Liang, X. 2006. A graph based simulation of reorganization in multi-agent sys-
tems. In Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent
Technology (IAT ’06). IEEE Computer Society, Washington, DC, USA, 129–132.

Watts, A. 2001. A dynamic model of network formation. Games and Economic Behavior 34, 2,
331 – 341.

Received XXXX; accepted XXXX

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. X, XX 20XX.

