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Abstract. We present the first decentralized multi-authority attribute-
based signature (DMA-ABS) scheme, in which no central authority and
no trusted setup are required. The proposed DMA-ABS scheme for a
large class of (non-monotone) predicates is fully secure (adaptive-predicate
unforgeable and perfectly private) under a standard assumption, the de-
cisional linear (DLIN) assumption, in the random oracle model. Our
DMA-ABS scheme is comparably as efficient as the most efficient ABS
scheme. As a by-product, this paper also presents an adaptively secure
DMA functional encryption (DMA-FE) scheme under the DLIN assump-
tion.

1 Introduction

1.1 Background

Recently a versatile and privacy-enhanced class of digital signatures have been
studied as attribute-based signatures (ABS) [11, 14, 18, 17, 21–24, 27, 30, 32]. A
signing (secret) key, skx, in ABS is parameterized by attribute x, and the ver-
ification is executed using public key pk and predicate (or policy) Υ . A mes-
sage m along with predicate Υ can be signed by signing key skx (i.e., signature
σ := Sig(skx,m, Υ )), if and only if x satisfies Υ . Signed message (m,Υ, σ) is ver-
ified by using public-key pk and predicate Υ , i.e., Ver(pk,m, Υ, σ) ∈ {0, 1}. The
privacy of a signer in this class of signatures requires that a signature (m,Υ, σ)
generated by skx (where x satisfies Υ ) release no information regarding x except
that x satisfies Υ .

There are many applications of ABS such as attribute-based messaging (ABM),
attribute-based authentication, trust-negotiation and leaking secrets (see [24] for
more details). For example, in a country (say country U), public comments on
a new government’s policy on scientific research are widely requested, especially
to a class of people who should be responsible or heavily related to this topic
from academia, government and industries. Comments from this class of people
are requested to be signed (authenticated) to prove that the comments are from
such people. In addition, the privacy of the people who send comments should
be ensured. So there are contradictory requirements on authentication and pri-
vacy. The concept of ABS provides a nice solution to this type of problems. For



example, a professor of University A sends a comment signed through ABS with
a predicate such that ((Affiliation = University A OR B OR C) AND (Position
= Professor OR Lecturer)) OR ((Affiliation = Government of Country U) AND
(Qualification = PhD)) OR ((Affiliation = Company X OR Y OR Z) AND (Position
= Chief Scientist OR Senior Manager)). A recipient of this signed comment can
confirm that the signer of this comment is from the class of people, and the pri-
vacy is also preserved since there are too many people who satisfy the predicate
and it is hard to identify the actual signer among so many possible signers due
to the privacy condition of ABS.

The basic concept of ABS, however, has a serious problem that only a single
authority exists in a system. Therefore, the single authority should issue to all
users their secret keys (certificates/credentials) associated with all attributes in
the system, i.e., all positions of all organizations (e.g., all positions of Universities
A, B and C, Governments of Countries U, V and W, and Companies X, Y and
Z). If the party is corrupted, the system will be totally broken.

To overcome the drawback, the concept of multi-authority (MA-)ABS, was
introduced [23, 24, 27], in which there are multiple authorities and each authority
is responsible for issuing a secret key associated with a category or sub-universe of
attributes, i.e., a user obtains several secret keys, each of which is issued by each
authority. For example, a professor of university A obtains a secret key (for the
position) from university A, a secret key for the citizenship from country U, and a
secret key for a consultant position from company X, where university A, country
U and company X are individual authorities. An important requirement for MA-
ABS is the security (unforgeability) against collusion attacks. For example, it is
required that a professor of university A, Alice, with a secret key for her position
and a student, Bob, with a secret key for his citizenship of country W cannot
collude to forge a signature endorsed by a professor of university A with the
citizenship of country W.

The existing MA-ABS schemes, however, still have a problem that a special
central authority is required in addition to multiple authorities regarding at-
tributes, and if the central authority is corrupted, the security (unforgeability)
of the system will be totally broken. As a typical example, we show in the full
version of this paper [26] that all MA-ABS schemes in [24] will be totally broken
if the central authority is corrupted.

Any MA-ABS scheme with no central authority, decentralized MA-ABS (DMA-
ABS) scheme, has not been proposed.

Recently, Lewko and Waters [20] presented the first DMA system for attribute-
based encryption (ABE) (but not for ABS). Their scheme, however, still has a
problem. It requires a trusted setup of a parameter, composite number N :=
p1p2p3 (p1, p2, p3 are primes) and a generator g1 of secret subgroup Gp1 . That
is, there exists a trapdoor, (p1, p2, p3), and the security of the system will not
be guaranteed by the security proof, if the trapdoor is compromised. In other
words, their system requires a trusted setup. A generic conversion method from
a composite-order-group-based system to a prime-order-group-based system has
been presented by Lewko [19] and it may be applicable to the DMA-ABE scheme.
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1.2 Our Results

– This paper proposes the first DMA-ABS scheme, which supports a large
class of relations, non-monotone access structures, in which no central au-
thority exists and no global coordination is required except for the setting
of a parameter for a prime order bilinear group and hash functions. Note
that parameters for a prime order bilinear group on supersingular and some
ordinary elliptic curves and specification of hash functions such as the SHA
families can be available from public documents, e.g., ISO and FIPS official
documents [16, 13] and [12], or can be included in the specification of the
scheme. That is, no trusted setup is necessary in the proposed DMA-ABS
system.
In the proposed DMA-ABS schemes, every process can be executed in a
decentralized manner; any party can become an authority and issue a (piece
of a) secret key to a user without interacting with any other party, and
each user obtains a (piece of a) secret key from the associated authority
without interacting with any other party. While enjoying such decentralized
processes, the proposed schemes are still secure against collusion attacks. i.e.,
multiple pieces issued to a user by different authorities can form a (collusion
resistant) single secret key, composed of the pieces, of the user.

– This paper also proposes a more general signature scheme, DMA func-
tional signature (FS) scheme, which supports more general predicates, non-
monotone access structures combined with inner-product relations [25]. The
proposed DMA-ABS scheme is a special case of the DMA-FS scheme, where
the underlying inner-product relations are specialized to be two-dimensional
inner-product relations for equality.
Remark: The general relations (non-monotone access structures combined
with inner-product relations [25]) supported by the proposed DMA-FS scheme
are: x := (�x1, . . . , �xi) ∈ F

n1+···+ni
q for verification, and Υ := (M̂, (�v1, . . . , �vi) ∈

F
n1+···+ni
q ) for a secret key. The component-wise inner-product relations

for attribute vector components, e.g., {�xt · �vt = 0 or not }t∈{1,...,i}, are
input to span program M̂ , and x satisfies Υ iff the truth-value vector of
(T(�x1 · �v1 = 0), . . . ,T(�xi · �vi = 0)) is accepted by span program M̂ . If the
DMA-FS is specialized to DMA-ABS, then nt := 2, i.e., �xt := (1, xt) and
�vt := (vt,−1), where �xt · �vt = 0 iff xt = vt.

– This paper proves that the proposed DMA-FS scheme is fully secure (adaptive-
predicate unforgeable and perfectly private in the DMA security model) un-
der the DLIN assumption in the random oracle model. It implies that the
proposed DMA-ABS scheme is fully secure under the DLIN assumption in
the random oracle model.

– The efficiency of the DMA-ABS scheme is comparable to those of the existing
ABS schemes (e.g., [24, 27]). See Table 1 in Section 4.5.

– Although the main aim of this paper is to propose the first DMA-ABS
scheme, there is a by-product, a new DMA-FE (or DMA-ABE) scheme,
which is an adaptively secure DMA-FE scheme without a trusted setup un-
der the DLIN assumption in the random oracle model.
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Our DMA-ABS scheme is considered to be a natural extension of ring signa-
tures [28, 29]. In ring signatures, no central authority and no trusted setup are
required and every process is fully distributed. Our DMA-ABS also requires no
central authority and no trusted setup and every process is fully distributed. In
other words, ring signatures are a very special case of our DMA-ABS where the
underlying predicate is just a disjunction and each authority is a user in a ring.
For many applications of ring signatures, our DMA-ABS is more suitable. For
example, in an application to whistle-blowing, an expose document on a financial
scandal to a newspaper company would be better to be endorsed by someone
with certain possible positions and qualifications related to the scandal than by
someone in a list of real persons.

1.3 Key Techniques

There are two major requirements for DMA-ABS, (collusion resistant) unforge-
ability and privacy in the decentralized multi-authority model. Our target is to
construct a DMA-ABS scheme that is secure (unforgeable and private in the
decentralized multi-authority model) under a standard assumption, the DLIN
assumption. It is a challenging task even in the random oracle model. For some
notations hereafter, see Section 1.5.

To realize such a DMA-ABS scheme, the top level strategy is based on Naor’s
paradigm [4], which is originally a conversion from identity-based encryption
(IBE) to (ordinary) digital signatures, but in our case, an encryption counter-
part, DMA-ABE, is converted to DMA-ABS. Therefore, DMA-ABE scheme is
designed first, and then DMA-ABS is constructed on it.

To construct a DMA-ABE (or more generally DMA-FE) scheme for this
purpose, we follow several established key ideas; dual pairing vector spaces
(DPVS) [25, 27], global identifier gid [9], (random oracle) hashing of gid [20],
dual system encryption [31, 20], and the linear transformation technique to pro-
duce (δ�xt, . . .)B∗

t
by using Xt (the master secret key of authority t) and δG :=

H(gid) ∈ G [27], which is essentially different from the technique using H(gid)
in [20] (see Section 4.3 for the details). Note that, although our design strat-
egy is based on Naor’s paradigm, this paper directly proves the security of the
proposed DMA-ABS scheme from the DLIN assumption.

A specific central space, V0 (t = 0), played an essential role in the security
proof (based on the dual system encryption technique) of previous ABS and ABE
(FS and FE) schemes in [25, 27]. No such a central space, however, is allowed in
our DMA setting, where only spaces, Vt (t = 1, . . .), generated by decentralized
authorities are available. A crucial part of the key techniques in our DMA-
ABS and DMA-ABE (DMA-FS and DMA-FE) schemes is to distribute the dual
system encryption trick for the central space in the previous schemes into all the
spaces.

More precisely, the secret-key and verification-text (where the negative term
case in the span program, i.e., ρ(i) = ¬(t, �vi), is used, for simplicity of expression)
are of the forms of (�xt, δ�xt, 0nt , 0nt , . . .)B∗

t
and (si�vi, s′i�vi, 0

nt , 0nt , . . .)Bt
, respec-

tively. Here, si and s′i are shares from an access structure with a signature.
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Subspaces with {si�vi} and {�xt} are used for verification (or decryption), and
subspaces with {s′i�vi} and {δ�xt} are for the distributed dual system encryption
trick. To execute the trick over the subspaces, we develop a new technique, swap
and conceptual change, in which 4-dimensional (in DMA-FS and DMA-FE, 2nt-
dimensional) hidden subspaces are employed for semi-functional forms of secret-
keys and verification-texts. In the previous dual system encryption tricks [25, 27],
the semi-functional form of secret-keys and verification-texts in a central space
V0 (t = 0) played a key role. In our distributed dual system encryption trick, the
left 2-dimensional subspaces in the 4-dimensional hidden subspaces are used for
a computational change of secret-keys from DLIN and a conceptual change on
key query restrictions. The right 2-dimensional subspaces are swapped with the
left ones through a computational change from DLIN, and these subspaces for
all Vt (t = 1, . . .) play the key role in a distributed manner that corresponds to
that of V0 (t = 0) in the previous schemes (see the full version [26]).

A new idea is also required to achieve the privacy condition for DMA-ABS,
since no privacy condition is required for DMA-ABE or included in Naor’s
paradigm. Moreover, a new re-randomization technique should be developed in
this paper to achieve the privacy of DMA-ABS, since the re-randomization tech-
nique for privacy in [27] is not effective in the DMA-ABS setting due to the fully
distributed structure (see Section 4.2).

For more details on the techniques in the security proofs of DMA-ABS, see
the full version [26].

1.4 Related Works

1. The mesh signatures [5] are a variation of ring signatures, where the predicate
is an access structure on a list of pairs comprising a message and public key
(mi, pki), and a valid mesh signature can be generated by a person who has
enough standard signatures σi on mi, each valid under pki, to satisfy the
given access structure.
A crucial difference between mesh signatures and DMA-ABS is the security
against the collusion of users. In mesh signatures, several users can collude
by pooling their signatures together and create signatures that none of them
could produce individually. That is, such collusion is considered to be legit-
imate in mesh signatures. In contrast, the security against collusion attacks
is one of the basic requirements in ABS and DMA-ABS.

2. Another related concept is anonymous credentials (ACs) [2, 3, 6–8, 10]. The
notion of ACs also provides a functionality for users to demonstrate anony-
mously possession of attributes, but the goals of ACs and (DMA-)ABS differ
in several points.
As described in [24], ACs and (DMA-)ABS aim at different goals: ACs target
very strong anonymity even in the registration phase, whereas under less
demanding anonymity requirements in the registration phase, (DMA-)ABS
aims to achieve more expressive functionalities, more efficient constructions
and new applications. In addition, (DMA-)ABS is a signature scheme and a
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simpler primitive compared with ACs. See the full version of this paper [26]
for more details.

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a vector representation over

Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn) and

�v = (v1, . . . , vn), �x·�v denotes the inner-product
∑n
i=1 xivi. The vector �0 is abused

as the zero vector in F
n
q for any n. XT denotes the transpose of matrix X. I� and

0� denote the �×� identity matrix and the �×� zero matrix, respectively. A bold
face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i =
1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and B

∗ :=
(b∗

1, . . . , b
∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i . For

a format of attribute vectors �n := (d;n1, . . . , nd) that indicates dimensions of

vector spaces, �et,j denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

nt−j︷ ︸︸ ︷
0 · · · 0) ∈ F

nt
q for

t = 1, . . . , d and j = 1, . . . , nt. GL(n,Fq) denotes the general linear group of
degree n over Fq.

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order

q, canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0),

and pairing e : V × V → GT . (Symbol e is abused as pairing for G and for V.)
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi,Hi) ∈ GT where x := (G1, . . . ,

GN ) ∈ V and y := (H1, . . . ,HN ) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
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e(G,G) �= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N)
and N ∈ N, and outputs a description of paramV := (q,V,GT ,A, e) with security
parameter λ and N -dimensional V. It can be constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see Appendix

A.2 in the full version of [25].

3 Non-Monotone Access Structures with Inner-Product
Relations

3.1 Span Programs and Non-Monotone Access Structures

Definition 3 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix M̂ := (M,ρ) where M is a (�×r) matrix
over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1,
. . . , ¬pn}. A span program accepts or rejects an input by the following criterion.
For every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting
of those rows whose labels are set to 1 by the input δ, i.e., either rows labeled
by some pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0.
(i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear
combination of the rows of Mδ gives the all one vector �1. (The row vector has
the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the posi-
tive literals {p1, . . . , pn}. Monotone span programs compute monotone functions.
(So, a span program in general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is �0. We now
introduce a non-monotone access structure with evaluating map γ by using the
inner-product of attribute vectors, that is employed in the proposed DMA-ABS
(and DMA-FS, DMA-FE) scheme.

Definition 4 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes,
each of which is expressed by a pair of sub-universe id and nt-dimensional vector,
i.e., (t, �v), where t ∈ {1, . . . , d} and �v ∈ F

nt
q \ {�0}.

We now define such an attribute to be a variable p of a span program M̂ :=
(M,ρ), i.e., p := (t, �v). An access structure S is a span program M̂ := (M,ρ)
along with variables p := (t, �v), p′ := (t′, �v′), . . ., i.e., S := (M,ρ) such that ρ :
{1, . . . , �} → {(t, �v), (t′, �v′), . . ., ¬(t, �v),¬(t′, �v′), . . .}. Let Γ be a set of attributes,
i.e., Γ := {(t, �xt) | �xt ∈ F

nt
q \ {�0}, 1 ≤ t ≤ d}, where t runs through some subset

of {1, . . . , d}, not necessarily the whole indices.
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When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span
program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = (t, �vi)] ∧[(t, �xt) ∈ Γ ] ∧[�vi · �xt = 0] or [ρ(i) = ¬(t, �vi)] ∧[(t, �xt) ∈ Γ ]
∧[�vi · �xt �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.

Remark 1 The simplest form of the inner-product relations in the above-mentioned
access structures, that is for ABS and ABE, is a special case when nt = 2
for all t ∈ {1, . . . , d}, and �x := (1, x) and �v := (v,−1). Hence, (t, �xt) :=
(t, (1, xt)) and (t, �vi) := (t, (vi,−1)), but we often denote them shortly by (t, xt)
and (t, vi). Then, S := (M,ρ) such that ρ : {1, . . . , �} → {(t, v), (t′, v′), . . .
¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for
span program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1
if [ρ(i) = (t, vi)] ∧[(t, xt) ∈ Γ ] ∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ ]
∧[vi �= xt]. Set γ(i) = 0 otherwise.

Remark 2 When a user has multiple attributes in a sub-universe (category) t,
we can employ dimension nt > 2. For instance, a professor (say Alice) in the
science faculty of a university is also a professor in the engineering faculty of this
university. If the attribute authority of this university manages sub-universe t :=
“faculties of this university”, Alice obtains a secret key for (t, �xt := (1,−(a +
b), ab) ∈ F

3
q) with a := “science” and b := “engineering” from the authority.

When a user verifies a signature for an access structure with a single negative
attribute ¬(t, “science”), the verification text is encoded as ¬(t, �vi := (a2, a, 1))
with a := “science”. Since �xt · �vi = 0, Alice cannot make a valid signature for
an access structure with the negative attribute ¬(t, “science”). For such a case
with nt > 2, see the full version [26] with our DMA-FS scheme.

We now construct a secret-sharing scheme for a span program.

Definition 5. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be �× r matrix. Let column vector �fT := (f1, . . . , fr)T
U← F

r
q . Then,

s0 := �1 · �fT =
∑r
k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)T :=

M · �fT is the vector of � shares of the secret s0 and the share si belongs to
ρ(i).

2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts
Γ , i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist
constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and∑
i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time

polynomial in the size of matrix M .
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4 Decentralized Multi-Authority Attribute-Based
Signatures (DMA-ABS)

4.1 Definitions for DMA-ABS

Definition 6 (Decentralized Multi-Authority ABS : DMA-ABS). A de-
centralized multi-authority ABS scheme consists of the following algorithms/protocols.

GSetup A party runs the algorithm GSetup(1λ) which outputs a global parameter
gparam. The party publishes gparam.

ASetup An attribute authority t (1 ≤ t ≤ d) who wishes to issue attributes runs
ASetup(gparam, t, nt) which outputs an attribute-authority public key apkt
and an attribute-authority secret key askt. The attribute authority t publishes
apkt and stores askt.

AttrGen When an attribute authority t issues user gid a secret key associated
with an attribute xt, it runs AttrGen(gparam, t, askt, gid, xt) that outputs
an attribute secret key uskgid,(t,xt). The attribute authority gives uskgid,(t,xt)

to the user.
Sig This is a randomized algorithm. A user signs message m with claim-predicate

(access structure) S := (M,ρ), only if there is a set of attributes Γ such
that S accepts Γ , the user has obtained a set of keys {uskgid,(t,xt) | (t, xt) ∈
Γ} from the attribute authorities. Then signature σ can be generated using
Sig(gparam, {apkt, uskgid,(t,xt)}, m, S), where uskgid,(t,xt)

R← AttrGen(gparam,
t, askt, gid, xt).

Ver To verify signature σ on message m with claim-predicate (access struc-
ture) S, using a set of public keys for relevant authorities {apkt}, a user
runs Ver(gparam, {apkt},m,S, σ) which outputs boolean value accept := 1 or
reject := 0.

Definition 7 (Perfect Privacy of DMA-ABS). A DMA-ABS scheme is per-
fectly private, if, for all gparam

R← GSetup(1λ), for all (askt, apkt)
R← ASetup(

gparam, t) (1 ≤ t ≤ d), all messages m, all attribute sets Γ1 associated with gid1

and Γ2 associated with gid2, all signing keys {uskt,1
R← AttrGen(gparam, t, askt,

gid1, xt,1)}(t,xt,1)∈Γ1 and {uskt,2
R← AttrGen(gparam, t, askt, gid2, xt,2)}(t,xt,2)∈Γ2 ,

all access structures S such that S accepts Γ1 and S accepts Γ2, the distributions
Sig(gparam, {apkt, uskt,1 | (t, xt,1) ∈ Γ1},m,S) and Sig(gparam, {apkt, uskt,2 |
(t, xt,2) ∈ Γ2},m,S) are equal.

Note that the above definition of perfect privacy is weaker than that in [24],
since the attribute authorities are assumed to be honest in our definition, while
they can be malicious in [24].

For a DMA-ABS scheme with perfect privacy, we define algorithm AltSig(
gparam, {apkt, askt}, m,S) with S and master key askt instead of Γ and
{uskgid,(t,xt)}(t,xt)∈Γ : First, generate uskgid,(t,xt)

R← AttrGen(gparam, t, askt, gid,

xt) for arbitrary Γ := {(t, xt)} which satisfies S, then σ
R← Sig(gparam, {apkt,

uskgid,(t,xt)},m,S). Return σ.

9



Let T be the set of authorities. We assume each attribute is assigned to one
authority.

Definition 8 (Unforgeability of DMA-ABS). For an adversary A, we de-
fine AdvDMA-ABS,UF

A (λ) to be the success probability in the following experiment
for any security parameter λ. A DMA-ABS scheme is unforgeable if the success
probability of any polynomial-time adversary A is negligible:

1. Run gparam
R← GSetup(1λ) and give gparam to adversary A. For author-

ities t ∈ T , run (askt, apkt)
R← ASetup(gparam) and give {apkt}t∈T to A.

Adversary A specifies a set T̃ ⊂ T of corrupt attribute authorities, and gets
{askt}t∈eT .

2. The adversary A is given access to oracles AttrGen and AltSig with queries
including attribute authorities, t, from S := T \ T̃ alone.

3. At the end, the adversary outputs (m′,S′, σ′).

Let Γgid := {(t, xt) | (t ∈ S, xt, gid) is queried to AttrGen oracle by A}. We say
the adversary succeeds, if (m′,S′) was never queried to AltSig oracle, S

′ does not
accept Γgid for any gid, S

′ includes attributes authorities, t, from S alone, and
Ver(pk,m′,S′, σ′) = 1.

Remark 3 The unforgeability defined above ensures that adversary A cannot
forge a signature regarding uncorrupt authorities even if A makes key and signa-
ture queries to uncorrupt authorities. That is, the forging capability of any A is
limited or localized to that of corrupt authorities as expected in DMA schemes
(in contrast, it can be expanded to the whole system in MA schemes).

The model regarding corrupt authorities in this definition, however, is weaker
than that in [24]. Roughly, the security on this model implies that no adversary
A can forge a signature with a predicate S

′
S unless A issues key queries for

ΓS such that S
′
S accepts ΓS , where S

′
S and ΓS are a predicate and attributes

including uncorrupt parties from S alone. On the other hand, the security on the
model in [24] implies that no adversary A can forge a signature with a predicate
S
′
S∪eT unless A issues key queries for ΓS such that, for some ΓeT , S

′
S∪eT accepts

(ΓS ∪ ΓeT ). Namely, the scope of forgery in [24] is wider (i.e., it covers a policy
over S ∪ T̃ ) than that in our definition (i.e., it is limited to a policy over S). 3

4.2 Construction Idea of the Proposed DMA-ABS Scheme

Here we will show some basic idea to construct the proposed DMA-ABS scheme,
which is designed on the DMA-FE scheme (Appendix A) through Naor’s paradigm.
For the key techniques to construct DMA-FE from (non-decentralized) FE [25],
we refer to Section 1.3. In the paradigm, collusion-resistant identity-based en-
cryption (IBE) is transformed to unforgeable signatures, where (a hash value of)
3 The proposed scheme in this paper has been proven unforgeable only in our model

due to some technical reason caused by no trusted setup (or no trapdoor) of our
scheme.
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a message is used for an identity in IBE. To realize the Naor-like transformation
in our DMA-FE, two-dimensional subspaces span〈bt,5, bt,6〉 (and their dual sub-
spaces) are newly added for identity (message) embedding to all spaces Vt for
t > 0. Note that the privacy condition is not included in Naor’s paradigm.

In our variant of Naor’s paradigm, a secret signing key skΓ with attribute set
Γ and a verification text �c with access structure S (for signature verification) in
our DMA-ABS scheme correspond to a secret decryption key skΓ with Γ and a
ciphertext �c with S in the DMA-FE scheme, respectively. No counterpart of a
signature �s∗ in the DMA-ABS exists in the DMA-FE, and the privacy property
for signature �s∗ is also specific in DMA-ABS. Signature �s∗ in DMA-ABS may
be interpreted to be a decryption key specialized to decrypt a ciphertext with
access structure S, that is delegated from secret key skΓ . The algorithms of the
proposed DMA-ABS scheme can be described in the light of such correspondence
to the DMA-FE scheme:

GSetup Almost the same as that in the DMA-FE scheme except that a hash
function, H2, is added in gparam. This is used for hashing of message and
access structure in the signing and verification algorithms.

ASetup Almost the same as that in the DMA-FE scheme except that B̂
∗
t is

published in our DMA-ABS, while it is secret in the DMA-FE scheme. They
are used in our DMA-ABS for the signature generation procedure Sig to
meet the privacy of signers (for randomization). This is an essential difference
between DMA-FE and DMA-ABS.
Here, we remark an important difference in setup between (non-decentralized)
ABS and DMA-ABS: While a part of B̂

∗
0, b∗

0,1, is a master secret in ABS [27],
there is no central space V0 in our DMA-ABS. To obtain unforgeability in
our setting, the secret key b∗

0,1 in ABS is distributed to all (b∗
t,ι)t>0;ι=1,2.

Therefore, we modify them to (b̃∗
t,ι := πb∗

t,ι)t>0;ι=1,2 with π
U← Fq as a part

of public key {B̂∗
t }t>0.

AttrGen The same as that in the DMA-FE scheme.
Sig Specific in DMA-ABS. To meet the privacy condition for �s∗, a novel tech-

nique is employed to randomly generate a signature from skΓ and {B̂∗
t }(t,xt)∈Γ .

Since our DMA-FE (and DMA-ABS) lacks the central space V0, attribute
vectors (1, xt) and δ(1, xt) with δ U← Fq are encoded in subspaces span〈b∗

t,1, b
∗
t,2〉

and span〈b∗
t,3, b

∗
t,4〉, for skΓ with Γ := {(t, xt)}. In signature generation, both

vectors are re-randomized independently using (b̃∗
t,ι, b

∗
t,2+ι)ι=1,2, in a manner

consistent with predicate S.
Ver The signature verification in our DMA-ABS checks whether a signature

(or a specific decryption key) �s∗ works as a decryption key to decrypt a
verification text (or a ciphertext) associated with S and H2(m,S).

4.3 Proposed DMA-ABS Scheme

For matrix X := (χi,j)i,j=1,...,N ∈ F
N×N
q and element g := (G1, . . . , GN ) in N -

dimensional V, gX denotes (
∑N
i=1Giχi,1, . . . ,

∑N
i=1Giχi,N ) =(

∑N
i=1 χi,1Gi, . . . ,
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∑N
i=1 χi,NGi) by a natural multiplication of a N -dim. row vector and a N ×N

matrix. Thus, it holds that e(gX,h(X−1)T) = e(g,h) for any g,h ∈ V. The
proposed scheme is given as:

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

H1 : {0, 1}∗ → G; H2 : {0, 1}∗ → Fq; return gparam := (paramG,H1,H2).
Remark : Given gparam, the following values can be computed by
anyone and shared by all parties: G0 := H1(0λ) ∈ G,

G1 := H1(0λ−1, 1) ∈ G, G2 := H1(0λ−2, 1, 0) ∈ G, gT := e(G0, G1).
ASetup(gparam, t) : paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 13, paramG),

Xt
U← GL(13,Fq), (ϕ̃t,ι,1, ϕ̃t,ι,2)

U← F
2
q for ι = 1, 2,

bt,ι := (0ι−1, G0, 013−ι)Xt, b∗
t,ι := (0ι−1, G1, 013−ι)(X−1

t )T

for ι = 1, . . . , 13,
2︷ ︸︸ ︷ 8︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷

b̃∗
t,1 := ( G2, 0, 08, ϕ̃t,1,1G1, ϕ̃t,1,2G1, 0 )(X−1

t )T,
2︷ ︸︸ ︷ 8︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷

b̃∗
t,2 := ( 0, G2, 08, ϕ̃t,2,1G1, ϕ̃t,2,2G1, 0 )(X−1

t )T,

Bt := (bt,1, . . . , bt,13), B
∗
t := (b∗

t,1, . . . , b
∗
t,13), B̂t := (bt,1, . . . , bt,6, bt,13),

B̂
∗
t := (b̃∗

t,1, b̃
∗
t,2, b

∗
t,3, . . . , b

∗
t,6, b

∗
t,11, b

∗
t,12),

return askt := Xt, apkt := (paramVt
, B̂t, B̂

∗
t ).

Remark : Let π ∈ Fq s.t. G2 = πG1,

then b̃∗
t,1 = (

2︷︸︸︷
π, 0 ,

8︷︸︸︷
08 ,

2︷ ︸︸ ︷
ϕ̃t,1,1, ϕ̃t,1,2,

1︷︸︸︷
0 )B∗

t
,

b̃∗
t,2 = (

2︷︸︸︷
0, π ,

8︷︸︸︷
08 ,

2︷ ︸︸ ︷
ϕ̃t,2,1, ϕ̃t,2,2,

1︷︸︸︷
0 )B∗

t
.

AttrGen(gparam, t, askt, gid, xt ∈ Fq) : Ggid := H1(gid), (ϕt,1, ϕt,2)
U← F

2
q ,

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷︸︸︷ 2︷ ︸︸ ︷ 1︷︸︸︷
k∗
t := ( G1, xtG1, Ggid, xtGgid, 06, ϕt,1G1, ϕt,2G1, 0 )(X−1

t )T,
return uskgid,(t,xt) := (gid, (t, xt),k∗

t ).
Remark : Let δ ∈ Fq s.t. Ggid = δG1,

then k∗
t = (

2︷ ︸︸ ︷
(1, xt),

2︷ ︸︸ ︷
δ(1, xt),

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ϕt,1, ϕt,2, 0 )B∗

t
.

Sig(gparam, {apkt, uskgid,(t,xt) := (gid, (t, xt),k∗
t )}, m, S := (M,ρ)) :

If S := (M,ρ) accepts Γ := {(t, xt) ∈ uskgid,(t,xt)}, then compute I and {αi}i∈I
such that �1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and
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I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },

ψ
U← Fq, ψi := ψ if i ∈ I, ψi := 0 if i �∈ I for i = 1, . . . , �,

for i = 1, . . . , �, ζi
U← Fq, (βi,0), (βi,1)

U← {(β1, . . . , β�) |
∑�
i=1 βiMi = �0},

Remark : If rank(M) ≥ �, the set contains only 0�, i.e., βi = 0 for i = 1, .., �.

s∗
i := γi · k∗

t + ψi(b∗
t,3 + xtb

∗
t,4) +

∑2
ι=1

(
yi,0,ιb̃

∗
t,ι + yi,1,ιb

∗
t,2+ι

)
+ζi

(
b∗
t,5 +H2(m,S)b∗

t,6

)
+ r∗

i ,

where r∗
i

U←span〈b∗
t,11, b

∗
t,12〉, and γi, �yi,j := (yi,j,1, yi,j,2) for j = 0, 1,

are defined as
if i ∈ I ∧ ρ(i) = (t, vi), γi := αi, �yi,j := βi,j(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt , �yi,j :=
βi,j

vi − yi,j (1, yi,j)

where yi,j
U← Fq \ {vi},

if i �∈ I ∧ ρ(i) = (t, vi), γi := 0, �yi,j := βi,j(1, vi),

if i �∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, �yi,j :=
βi,j

vi − yi,j (1, yi,j)

where yi,j
U← Fq \ {vi},

return �s∗ := (s∗
1, . . . , s

∗
� ).

Ver(gparam, {apkt},m,S := (M,ρ), �s∗) : �f U← F
r
q, �s

T := (s1, . . . , s�)T := M · �fT,

s0 := �1 · �fT, �f ′ U← F
r
q s.t. �1 · �f ′T = 0, �s′T := (s′1, . . . , s

′
�)

T := M · �f ′T,
for i = 1, . . . , �, θi, θ

′
i, θ

′′
i , ηi

U← Fq,

if ρ(i) = (t, vi),
2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si + θivi, −θi, s′i + θ′ivi, −θ′i, θ′′i (H2(m,S),−1), 06, ηi )Bt
,

if ρ(i) = ¬(t, vi),
2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si(vi, −1), s′i(vi, −1), θ′′i (H2(m,S),−1), 06, ηi )Bt
,

cd+1 := gs0T , return 1 if
∏�
i=1 e(ci, s

∗
i ) = cd+1, return 0 otherwise.

[Correctness] If S := (M,ρ) accepts Γ := {(t, xt) ∈ uskgid,(t,xt)},
∏�
i=1 e(ci, s

∗
i )

=
∏
i∈I

(
e(ci,k∗

t )
γie(ci, b∗

3 + xt,ιb
∗
4)
ψ
) ·∏�

i=1

∏2
ι=1 e(ci, b̃

∗
ι )
yi,0,ιe(ci, b∗

2+ι)
yi,1,ι

=
∏
i∈I g

αi(si+(δ+ψ)s′i)
T ·∏�

i=1 g
πβi,0si+βi,1s

′
i

T = g
P

i∈I αi(si+(δ+ψ)s′i)
T ·g

P�
i=1(πβi,0si+βi,1s

′
i)

T

= gs0T , since
∑
i∈I αisi = s0 and

∑
i∈I αis

′
i =

∑�
i=1 βi,0si =

∑�
i=1 βi,1s

′
i = 0.
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Comparison with the MA-ABS Scheme in [27] Okamoto-Takashima [27]
gave a fully secure (non-decentralized) MA-ABS scheme on the DPVS frame-
work. In their scheme, a signature (SIG) associated with a policy of size �
consists of (� + 2) components, (s∗0, . . . , s

∗
�+1), which are categorized into three

roles. The first one, s∗0 ∈ V0 (for t = 0), is for embedding/recovering a secret,
the second, (s∗1, . . . , s

∗
� ), for secret shares on the policy (access structure), and

the last, s∗�+1 ∈ Vd+1 (for t = d + 1), is for embedding/verifying the hashed
value, H2(m,S). The secret share components, (s∗1, . . . , s

∗
� ), are 7-dimensional

(7 = 2 + 2 + 2 + 1), where the first 2-dimensional part is the real-encoding part
(real part, for short) for shared secrets, the second the hidden part for semi-
functional signatures, the third the signature randomness part, and the last is
the verification text (VT) randomness part.

In the DMA setting, we cannot use special (central) spaces, V0 and Vd+1.
Instead, we should distribute the roles of these spaces into the secret share
components, (s∗1, . . . , s

∗
� ). As a result, these components become 13-dimensional

(13 = 6 + 4 + 2 + 1), where the real part (hidden part, resp.) is expanded to
6-dimensions (4-dimensions, resp.) (see the figure below). The 6-dimensional real
part consists of 2 dimensions to distribute the role of V0, 2 dimensions for secret
shares, and 2 dimensions to distribute the role of Vd+1. We also use additional 2
dimensions in the hidden part to execute the swapping technique in the security
proof.

SIG component (t �= 0, d+ 1)
in [27] MA-ABS :

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
( real hidden SIG ran. VT ran. ),

SIG component
in our DMA-ABS :

6︷ ︸︸ ︷ 4︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
( real hidden SIG ran. VT ran. ).

4.4 Security of the Proposed DMA-ABS

The (standard) DLIN assumption is given in the full version [26].

Theorem 1. The proposed DMA-ABS scheme is perfectly private.

Theorem 2. The proposed DMA-ABS scheme is unforgeable (adaptive-predicate
unforgeable) under the DLIN assumption in the random oracle model.

The proofs of Theorems 1 and 2 are given in the full version of this paper [26].

4.5 Performance

In this section, we compare the efficiency and security of the proposed DMA-ABS
scheme with the existing MA-ABS schemes in the standard model (instantiation
2 in [24] and MA-ABS in [27]) as well as the ABS scheme in the generic group
model (instantiation 3 in [24]) as a benchmark. Since all of these schemes can be
implemented over a prime order pairing group, the size of a group element can
be around the size of Fq (e.g., 256 bits). In Table 1, � and r represent the size of
the underlying access structure matrix M for a predicate, i.e., M ∈ F

�×r
q .
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Table 1. Comparison with the Existing MA-ABS Schemes

MPR10 [24] MPR10 [24] OT11 [27] Proposed
Instantiation 3 Instantiation 2

Signature size
(# of group elts)

� + r + 2
36� + 2r
+9λ + 12

7� + 11 13�

Decentralized × × × X
Model

generic group
model

standard
model

standard
model

random oracle
model

Security full full full full

Authority
Corruption Type

strong strong weak weak

Assumptions CR hash DLIN
DLIN and
CR hash

DLIN

Predicates monotone monotone non-monotone non-monotone

Sig. size example 1
(� = 10, r = 5,

λ = 128)
17 1534 81 130

Sig. size example 2
(� = 100, r = 50,

λ = 128)
152 4864 711 1300

For example, some predicate with 4 AND and 5 OR gates as well as 10
variables may be expressed by a 10 × 5 matrix, and a predicate with 49 AND
and 50 OR gates as well as 100 variables may be expressed by a 100× 50 matrix
(see the appendix of [20]). λ is the security parameter (e.g., 128).

5 Concluding Remarks

We presented the first DMA-ABS scheme, in which no central authority and
no trusted setup are required. An adaptively secure DMA-FE scheme with no
trusted setup was also presented.

One of the most important remaining problems in this paper is to construct
a DMA-ABS (and DMA-FE) scheme in the standard model (without random
oracles). It would be also important to realize a DMA-ABS (and DMA-FE)
scheme with no trusted setup in a stronger authority corruption model (like
that in [24]), and to introduce a revocation mechanism in a DMA-ABS scheme.
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A Proposed DMA-FE

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v) or
ρ(i) = ¬(t, �v), where ρ is given in access structure S := (M,ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M,ρ) with ciphertext c = cS. We
will show how to relax the restriction in the full version [26]. In the description
of the scheme, we assume that input vector �xt := (xt,1, . . . , xt,nt

) is normalized
such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one
by (1/xt,1) · �xt assuming that xt,1 is non-zero). In addition, we assume that
input vector �vi := (vi,1, . . . , vi,nt

) satisfies that vi,nt
�= 0. For matrix X :=

(χi,j)i,j=1,...,N ∈ F
N×N
q and element g := (G1, . . . , GN ) in N -dimensional V, for

notation gX, refer to Section 4.3.

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), H : {0, 1}∗ → G;

return gparam := (paramG,H).
Remark : Given gparam, the following values can be computed by
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anyone and shared by all parties:
G0 := H1(0λ) ∈ G, G1 := H1(0λ−1, 1) ∈ G, gT := e(G0, G1),

ASetup(gparam, t, nt) : paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 5nt + 1, paramG),

Xt
U← GL(5nt + 1,Fq), bt,i := (0i−1, G0, 05nt+1−i)Xt for i = 1, . . . , 5nt + 1,

B̂t := (bt,1, . . . , bt,2nt
, bt,5nt+1), askt := Xt, apkt := (paramVt

, B̂t),
return (askt, apkt).

AttrGen(gparam, t, askt, gid, �xt := (xt,1, . . . , xt,nt
) ∈ F

nt
q \ {�0} s.t. xt,1 := 1) :

Ggid := H(gid) ∈ G, �ϕt := (ϕt,1, . . . , ϕt,nt
) U← F

nt
q ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷
k∗
t := ( xt,1G1, .., xt,nt

G1, xt,1Ggid, .., xt,nt
Ggid, 02nt ,

nt︷ ︸︸ ︷ 1︷︸︸︷
ϕt,1G1, .., ϕt,nt

G1, 0 )(X−1
t )T,

return uskgid,(t,�xt) := (gid, (t, �xt),k∗
t ).

Remark : Let b∗
t,i := (0i−1, G1, 05nt+1−i)(X−1

t )T,
B
∗
t := (b∗

t,1, . . . , b
∗
t,5nt+1) and δ ∈ Fq s.t. Ggid = δG1. Then k∗

t is

represented as k∗
t = (

nt︷︸︸︷
�xt ,

nt︷︸︸︷
δ�xt ,

2nt︷︸︸︷
02nt ,

nt︷︸︸︷
�ϕt , 0 )B∗

t
.

Enc(gparam, {apkt}, m, S := (M,ρ)) :

�f
U← F

r
q , �s

T := (s1, . . . , s�)T := M · �fT, s0 := �1 · �fT, �f ′ R← F
r
q s.t. �1 · �f ′T = 0,

�s′T := (s′1, . . . , s
′
�)

T := M · �f ′T, ηi, θi, θ′i U← Fq (i = 1, .., �),
for i = 1, . . . , �,
if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt

) ∈ F
nt
q \ {�0} such that vi,nt

�= 0),
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, 02nt , 0nt , ηi )Bt
,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, 02nt , 0nt , ηi )Bt

,

cd+1 := gs0T m, ctS := (S, c1, . . . , c�, cd+1), return ctS.

Dec(gparam, {apkt, uskgid,(t,�xt) := (gid, (t, �xt),k∗
t )}, ctS := (S, c1, . . . , c�, cd+1)) :

If S := (M,ρ) accepts Γ := {(t, �xt) ∈ uskgid,(t,�xt)}, then compute I and {αi}i∈I
such that �1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0]
∨ [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt �= 0] },

K :=
∏

i∈I ∧ ρ(i)=(t,�vi)

e(ci,k∗
t )
αi ·

∏
i∈I ∧ ρ(i)=¬(t,�vi)

e(ci,k∗
t )
αi/(�vi·�xt),

return m′ := cd+1/K.
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