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Abstract—Completely decentralized Multi-Player Bandit mod-
els have demonstrated high localization accuracy at the cost of
long convergence times in cognitive radar networks. Rather than
model each radar node as an independent learner, entirely unable
to swap information with other nodes in a network, in this work
we construct a “ central coordinator” to facilitate the exchange of
information between radar nodes. We show that in interference-
limited spectrum, where the signal to interference plus noise
(SINR) ratio for the available bands may vary by location, a
cognitive radar network (CRN) is able to use information from
a central coordinator to reduce the number of time steps required
to attain a given localization error. Importantly, each node is still
able to learn separately. We provide a description of a network
which has hybrid cognition in both a central coordinator and
in each of the cognitive radar nodes, and examine the online
machine learning algorithms which can be implemented in this
structure.

I. INTRODUCTION

We consider a problem where a group of cognitive radar

nodes must cooperate to localize a target, while the qualities

of each radar observation vary by radar node and over time.

Coexistence in radar is an increasingly important problem to

study, as communication bands begin to occupy frequencies

which were previously dedicated to radar use. We will describe

a low-power, distributed radar system capable of cooperatively

localizing a target while autonomously optimizing channel

selections to increase SINR. In our scenario, the SINR varies

with time due to interference behavior as well as the relative

target motion.

Distributed radar provides many benefits over single-node

approaches [1]. Namely, distributed radar provides spatial

diversity and improved resilience to outages. Cognitive tech-

niques, on the other hand, provide a radar system the capability

to modify operating parameters to improve performance [2].

CRNs, then, are capable of greater performance due to in-

creased diversity as well as greater flexibility due to cognitive

strategies. The CRN we will investigate is distributed through-

out space and has the ability to monitor several different

channels. Each channel provides a different SINR, and each

radar node in the network must pick one channel in each

Coherent Pulse Interval (CPI). Multiple radar nodes cannot

select the same channel at the same time, so as to avoid

interfering with each other.

In one of the original works on cognitive radar networks

[3], Haykin defined two different cognition modes:
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1) Distributed Cognition, where observations from the

individual nodes are combined at a fusion center but

no feedback is provided to the nodes.

2) Centralized Cognition, where a central coordinator is

the only cognitive agent, collecting observations from

each node and dictating future actions.

Implementations of centralized cognition are susceptible to

failure of the central coordinator, and also must deal with

a large communication overhead due to the information that

must be exchanged. On the other hand, fully distributed

cognition approaches lack flexibility due to the need to co-

ordinate actions in a decentralized manner. This leads to

long convergence times, which are damaging when a target

is only available for a brief time. In this paper, we will

describe a hybrid approach, where the radar nodes and central

coordinator each exert some control over the network’s actions.

In this hybrid scheme, the central coordinator acts as a fusion

center to combine radar measurements. The central coordinator

also possesses cognitive functions, capable of communicating

reward weights observed throughout the network to each node.
a) Contributions: In this work we develop a method

to make decisions in a CRN in a centralized manner, while

preserving the independence of each node. We show that in

a non-stationary environment, where the observed rewards

may change over time, a central coordinator is able to adjust

the rate at which feedback is provided to maximize tracking

performance while minimizing the incurred communication

overhead. Since the network is centralized, decisions can be

made in a manner which eliminates mutual interference, sep-

arating this work from decentralized techniques. Specifically,

we contribute the following to the state of the art:

• The first online machine learning solution for sequential

action selection in radar networks where channel rewards

vary over time.

• The first description of a hybrid cognition model, where

the central coordinator performs data fusion as well as

cognitive functions to improve the performance of the

radar network.

b) Notation: We use the following notation. Matrices and

vectors are denoted as bold upper X or lower x case letters.

Functions are shown as plain letters F or f . Sets A are shown

as script letters. The cardinality |A| of a set A refers to the

number of elements in that set. The transpose operation is XT .

The set of all real numbers is R and the set of integers is Z.

The speed of electromagnetic radiation in a vacuum is given

as c. Element-wise (scalar) multiplication is denoted as x ∗ y.

The Euclidean norm of a vector x is written as ||x||.
c) Organization: Section II discusses prior work in this

area, and frames our contribution in the literature. Section III
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then introduces our specific network structure and discusses

the mathematical models we use. Section IV discusses the

learning problem that we consider and provides details on the

applicable online machine learning algorithms. In Section V

we provide simulations to support our work, and in Section

VI we draw conclusions and provide discussion on future

directions.

II. BACKGROUND

Cognitive radar has been the subject of much study in

recent years. In [4], the authors give details on recent work

in cognitive radar for spectrum sharing. Since cognitive radar

is inherently flexible, it is easily applied to spectrum sharing

problems where radar systems are secondary users.

The authors of [5] and [6] apply detailed machine learning

techniques to single-node cognitive radar, describing wave-

form selection techniques which adapt to a broad class of

target categories.

Cognitive radar networks have also been of interest in

the literature. The authors of [7] and [8] provided the first

description of multi-player bandit algorithms applied to the

CRN problem. In their approach, the reward for a given action

was assumed to be constant between nodes and over time. Our

current work differs in that the observed SINR varies by both

node and time.

In [9], the authors investigated the CRN problem where

node rewards are selected by an adversary. This models the

scenario where an interferer attempts to force the CRN to

experience poor performance. Our current work considers the

case where interferers are oblivious to the CRN and have

constant behavior over time.

Distributed learning is a broad class of machine learning

approaches. Generally, distributed learning problems focus

on a group of nodes which seek performance improvements

which scale with group size. Since the CRN channel selection

problem is also a sequential learning problem, we draw from

the multi-player multi-armed bandit literature. Multi-armed

bandits (MABs) are game theoretic models which consider

a set of actions which each offer some reward. Over finite

time steps, MAB algorithms describe the sequence of actions

a learner should select to maximize the cumulative reward

[10]. Multi-player MAB models extend this to several identical

players [11].

Federated learning is a separate ML structure where instead

of sharing data to collaborate, nodes in a network will train

separate models to preserve privacy between data sets. This

model differs from our approach because federated learning

assumes data is independent and identically distributed be-

tween node data sets. Federated learning has been applied to

sensor networks [12], where models trained at various nodes

are combined to form a single model. Our technique focuses

on a single model learning from various data sources.

A. Problem Summary

As mentioned above, the problem where SINR is constant

over time and node has been studied [8]. However, we will

consider the case where SINR varies over time and by node.

This is caused by the motion of the target. As described in the

radar equation [13], the power of received pulses is dependent

on the fourth power of the distance between transceiver and

target. Due to this relationship, as the target moves through the

environment, different nodes will experience different SINR

at different times. We will describe a method to solve this

problem, and to predict which actions will be best given the

motion of the target.

Before a CRN is able to determine the optimal actions to se-

lect, it must first learn about the environment. In our problem,

this will consist of estimating the INR in each channel. So,

we need to use an algorithm capable of 1) avoiding collisions,

and 2) exploring each channel enough times to develop an

estimate of the SINR, which varies slowly with time. This

information, coupled with target position estimates provided

by the central coordinator, is enough to estimate the INR of

each channel. Note that we assume the channels are identical

at each radar node. If the target were equidistant from each

node, we would expect identical observation quality at each

node. SINR varies by radar node due to the target position.

In an environment with a single target of interest, the

accuracy of each radar measurement will vary with the inverse

of SINR [14]. In other words, as the spectrum becomes more

congested, radar nodes will experience a reduction in per-

formance. When multiple channels with differing interference

statistics are available to a radar node, we are presented with a

learning and optimization problem. In the case where a single

node is considered, that node can try each channel multiple

times and determine which will be best. The problem is

similar when multiple nodes are considered, with the important

difference that some effort is required to prevent multiple

nodes selecting the same channel1. Since we are considering a

centralized problem, these instances of collisions are avoidable

through coordination.

From the above description, it is clear that the radar nodes

will experience different quality observations as the target

moves through the environment. In addition, in order to

determine which actions will be optimal, the CRN will need

to learn 1) the interference in each channel, and 2) the position

of the target over time. This structure is convenient, since the

overall goal of the network is target localization.

III. NETWORK STRUCTURE

The general structure of our network is as follows. The M

radar nodes are distributed uniformly at random throughout

the square kilometer. We denote the position of each node Rm

(m ≤ M ) as xm = [xm, ym]. Since the central coordinator

can provide feedback, these positions are known to the radar

nodes. Call M the set of all radar nodes. The scene contains

one target. Denote the position of the target at a time t as

x(t) = [x(t), y(t)]. Each radar node is able to transmit Linear

Frequency Modulated (LFM) chirp waveforms. The set C of

channels available to the radar nodes consists of N orthogonal

channels of equal bandwidth.

1This would increase the interference in that channel and reduce the SINR
observed by each node.
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The CRN divides time into CPIs, and further into Pulse

Repetition Intervals (PRIs). Each CPI consists of 1000 PRIs.

In each CPI, each node Rm ∈ M executes the following steps:

1) Select a channel Cn ∈ N from the available channels,

and transmit a train of 1000 LFM pulses.

2) Receive the waveform and process to determine range

r̂m(t), velocity ˆ̇rm(t) and angle θ̂m(t) estimates.

3) Transmit the target state estimates to the coordinator.

4) Receive a position estimate from the coordinator.

5) Update target tracking filter.

6) Determine the channel metric Pc for the selected channel

(defined later).

7) Update channel selection algorithm, requesting feedback

from the central coordinator as necessary.

Meanwhile, the central coordinator performs the following

functions:

1) Receive target state estimates.

2) Process these to determine a target position estimate.

3) Transmit the position estimate to the radar nodes.

4) Provide channel selection feedback in the form of action

sequences using a cognitive strategy.

Importantly, we assume that the CRN consists of low cost,

low-complexity nodes. This has several important implica-

tions.

• In order to conserve power, the radar nodes only conduct

signal processing once per CPI. This means that any

channel estimation must be conducted while radar returns

are expected to be present.

• The transmit arrays of each radar node have sufficient

gain to illuminate the target and are electronically steer-

able.

The central coordinator will require the use of a localization

algorithm to use the noisy range estimates to produce a

position estimate.

A. Target and Channel Modeling

The target platform is assumed to be an aircraft with a

velocity of 200m/s. We assume a point target with a constant

RCS. Further, let the scenario take place in an area with

sufficient clutter that interfering sources do not have a strong

directional dependence. So, each radar node will observe

similar interference and noise power in each channel but

different SINR.

In order to estimate the interference and noise power of

the channel, the radar nodes need to establish an estimate of

the target range. Assuming the target has an RCS which is

constant over frequency and angle, we can rearrange the radar

range equation as follows.

P ∗ =
Pr

σ
=

PtG
2λ2

(4π)3r̂4m
(1)

Once the range estimate r̂m is determined, the radar node can

estimate the power returned in each pulse from the target. We

will define the channel metric as:

Pc = SINRdB − P ∗

dB (2)

We assume that the local variations are sufficient to provide

different values at each radar node, but not so much as to

cause the order of these values to change. So, if one node

experiences Pc(a) > Pc(b) for two channels Ca, Cb, all nodes

will observe the same. We assume that each radar node has

the capability to measure SINR.

In the long term, due to repeated observations, each

radar node will converge to the true values of Pc for each

channel. Denote these values in the row vector Pm =
[Pc(1), Pc(2), . . . , Pc(N)] for each node Rm. With knowledge

of each node’s position and the target position, a vector of

ranges r can be developed, where r(m) = ||xm − x̂(t)||

B. Target Localization

Each radar node Rm processes estimates for range r̂m,

velocity ˆ̇rm(t) and angle θ̂m(t) estimates. These are processed

at each node to determine a position estimate x̂m. The mea-

surements are combined at the central coordinator and used to

update a Kalman filter, producing a final position estimate x̂.

IV. CANDIDATE ALGORITHMS

A. Matchings and Utility

Through the selection of a weight matrix, we can identify

the optimum assignment from radar nodes to channels. A

weight matrix W (t) is the M by N matrix consisting of the

reward a radar node Rm will observe for selecting a channel

Cn at time t. Algorithms must select from the set of all

matchings Π, where matchings are defined below.

Definition 1 (Matching). A matching π(t) : M → N is

any assignment from the set of radar nodes M to the set

of channels N with no common vertices. In other words,

matching functions π ∈ Π are injective.

Obviously, since the weights vary by radar node - channel

pairing, some matchings will be better than others.

Definition 2 (Utility). The utility of a mapping π is the sum

of the rewards each radar observes using that mapping:

U(π) =
∑

RmCn∈π

Wm,n (3)

Further, there will be one or more matching with greatest

utility.

Definition 3 (Optimal Matching). If a matching π(t) ∈ Π has

maximum utility, U(π(t)) = U∗(t), it is called optimal and

denoted π∗(t).

U∗(t) = max
π∈Π

U(π(t)) (4)

The goal of any selection algorithm is to select an optimal

matching, π∗(t). When an algorithm selects π(t) 6= π∗(t), we

can measure the regret [10] as the difference in utility.

Definition 4 (Regret). The regret for an algorithm at time t

is the difference in utility between the selected matching π(t)
and the optimal matching π∗(t).

ρ(t) = U(π∗(t)) − U(π(t)) (5)
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Note that the regret in each time step will be positive, since

the utility will always be less than or equal to the optimal

utility. We can then define the cumulative regret as the sum

of all regret until time step T:

ρT =
T
∑

t=1

ρ(t) (6)

B. Rewards

We will define two different sets of rewards. The first, S,

captures the observed SINR by each radar node for each

channel. The second separates the two underlying processes

to form estimates of both Pc and r̂

So, using our assumptions that the channel interference

varies by location but not enough to change their ranking,

Once estimates of the channel and target states are formed,

each node can determine a matrix of weights, which represents

the observation quality for each node-action pairing. Since

we’re attempting to optimize the network average SINR, we

can form this matrix as

W =
1

r
T
∗











P1

P2

...

PM











=
1

r
T
∗P (7)

Note that the multiplication here is element-wise, and recall

that r(m) = ||xm − x̂(t)||. We specify multiplication here

instead of addition for two reasons. First, if we were to use ad-

dition, the maximum utility matching for these weights would

not change between arbitrary r. In addition, we can choose

to optimize the closest-range node’s observations, which is

accomplished through the multiplication. Note that for either

scenario (multiplication or addition), the optimal matching will

consist of the same channels, just with a different ordering.

C. Algorithms

1) Oracle: An oracle for this problem knows the true

channel metrics and can predict ranges perfectly. Therefore,

in each CPI t, the oracle will select π∗(t). Specifically each

node Rm selects channel π∗(t)m. The regret for this oracle

will be 0.

2) Centralized Multiplayer Explore-Then-Commit: ETC

[15] uses the Upper Confidence Bound (UCB) [16] as a

threshold to narrow down the space of possible matchings

Π over time. Since each node has a “rank”, they can play

through a given sequence of matchings to observe the SINR in

each channel sequentially. Over time, the algorithm identifies

which matchings have utilities that are below a threshold, and

eliminates them from consideration. We make the modification

that the central coordinator is responsible for processing the

UCB values, and informing the nodes of the rewards observed

throughout the network.

ETC establishes a sequence Γ of matchings π. The sequence

is determined by the central coordinator, and once it is

exhausted a new one is provided. Once the sequence is a

single matching, the algorithm enters an exploitation phase,

where it seeks to minimize regret by selecting the action it has

determined to be best. Let |Γ| denote the number of matchings

in Γ. Recall that S denotes the SINRdB reward matrix, and

denote the optimal matching for S as π∗(S). Algorithm 1

provides the node-level cognition for this algorithm.

Algorithm 1: Explore-Then-Commit for node Rm

Result: C(t)

if |Γ|! = 1 then

C(t) = Γ(t)m;

else

C(t) = π∗(S)m;

end

Once the sequence Γ is explored, the central coordinator

provides a refined sequence, removing any matchings below

a threshold determined by UCB. The matchings in the pth

sequence are explored 2p times each, which causes each

successive sequence to require more rounds to explore. The

required feedback communication overhead decreases with

time.

3) Centralized Multiplayer Explore-Then-Predict: We

make a slight modification to CM-ETC by specifying that

once the algorithm has converged, we begin using W instead

of SINRdB . This is because while we need to use SINRdB

while the algorithm is learning to avoid errors, once it has

converged we should expect good estimates of both P and of

r. According to the oracle, however, we should expect higher

SINR using the more time-dependent weights in W.

Similarly to ETC, ETP relies on a central coordinator

specified sequence of matchings to dictate the exploration

phase. Then, in the exploitation phase, ETP uses the time-

dependent weights in W to determine actions. Since each

node will converge to the same conclusion and shares the same

target location information, the action sequences will remain

synchronized.

Algorithm 2: Explore-Then-Commit for node Rm

Result: C(t)

if |Γ|! = 1 then

C(t) = Γ(t)m;

else

C(t) = π∗(W)m;

end

4) Random Matchings: This naive algorithm has the radar

nodes select a random matching π(t) from Π in each time

step.

V. RESULTS

Our simulations consist of five radar nodes and one target.

The radar nodes are randomly placed in the unit kilometer.

The target is initially at [0, 0]km and moves towards [1, 1]km
at 200m/s with a uniform RCS of 100m2. These values
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Fig. 1. Target scenario. The radar nodes are located randomly and must
collaborate to localize the target in each CPI. The target is initially at the
origin and moves towards [1, 1]km at 200m/s.

are consistent with a typical commercial aircraft. The radar

nodes have access to 8 equally spaced channels of equal

bandwidth between 2.4 and 2.5 GHz. Each transmitter has

an output power of 20dBw, and the arrays have a main beam

gain of 30dB. The LFM chirp waveforms have a bandwidth

of 100MHz. Each CPI lasts 10ms and contains 1000 pulses.

All told, the simulation lasts for 700 CPIs. Fig. 1 shows one

instance of this scene.

We can first examine the error for each algorithm. Fig.

2 shows the position tracking error. Each CRN uses the

observation from all radar nodes to establish a localization

estimate once per CPI, which we compare against the target’s

true location in the middle of the CPI. We can see that the

oracle exhibits the best performance for the entire simulation,

while Random Matchings has quite variable performance.

Note that both ETC and ETP experience greater in the initial

steps than Random Matchings. This is due to the specified

exploration sequence, which explores all possible matchings

for several steps. Also note the increased error at the beginning

and end of the track. This is due to the target being relatively

further away from the nodes during these periods, as well as

the poor geometry.

We compare an emperical CDF for all four algorithms de-

scribed above. The CDF is generated for the entire simulation,

as well as for the last 300 CPIs so that we can see the

performance of each algorithm after the exploration period

has passed.

We can expect that the oracle performance will represent an

upper bound on realistic performance, while Random Match-

ings should represent a lower bound. In Fig. 3 we see that ETC

and ETP performance lies inside this region as expected. This

empirical CDF represents the probability of a given algorithm

obtaining localization error less than a given value. ETC and

ETP have relatively similar performance, with ETP having a

slight advantage. Note that there is a substantial gap between

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

Fig. 2. Localization error for the four different algorithms under consideration,
averaged over 30 simulations.
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Fig. 3. Emperical error CDFs for each algorithm show the relative perfor-
mance for the entirety of each simulation. As expected, the oracle algorithm
obtains the best possible performance given the RF environment. The ETP
algorithm is able to exploit knowledge of the target motion to obtain superior
results to ETC. Random Matchings provide the lowest performance, since this
algorithm does not learn any information throughout the game.

Random Matchings and ETC, which demonstrates that any

amount of learning is superior to blind action selection.

In Fig. 4, we see the empirical CDF for the performance of

each algorithm after ETC and ETP converge. The performance

for the oracle and Random Matchings is the same as in Fig. 3.

ETC exhibits good performance in this time period, as it has

learned the subset of channels which offer the best SINR. ETP,

however, has performance which nearly reaches the oracle.

ETP takes into account the motion of the target, which enables

it to predict SINR in the future and take appropriate actions.
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Fig. 4. Emperical error CDFs, created using the last 300 CPIs for each
simulation. This demonstrates the algorithm post convergence, when the
algorithm attempts to exploit the information it has learned. There is an even
larger gap between ETC and ETP, showing again the benefit of exploiting the
target’s motion.

VI. CONCLUSIONS

In this work we have examined a cognitive radar network

which is assisted by a central coordinator to select channels

over time. The network is capable of learning which channels

provide better SINR, as well as incorporating target range in-

formation to predict future SINR to inform channel selection.

We detailed online machine learning algorithms this network

could use to learn about the environment and provided analysis

through simulations.

While previous work has investigated the general CRN

learning problem, we contribute techniques which take into

account the fact that the target motion will alter the rewards

the network will observe, and discuss a method to exploit

this information. This alteration improves the realism of the

problem, as well as changing the applicable algorithms, since

the rewards can no longer be assumed to be constant over time.

We also develop a hybrid network model, where cognition

occurs in a central coordinator as well as in each radar node.

The simulations showed that out of those we studied,

the proposed ETP algorithm exhibits the best localization

performance. This is attributed to the ability of ETP to

learn the environment and exploiting the target motion to

make better selections. This performance gap is emphasized

when analyzing the performance post convergence, once the

algorithm attempts to exploit the information it has learned.

This is due to the fact that the ETP algorithm is able to utilize

information about the target to predict future range and SINR.

In addition, ETP shows convergence times on the order of 300

time steps, while previous work [7] has seen requirements of

up to 1000 time steps for convergence under similar reward

conditions. This comes at the cost of greater computation at

each node.

A. Future Work

This work only considers simple target models. In future

work, a class of target RCS models will be introduced, and we

will investigate how a radar network should learn which model

fits an observed target best. In addition, we intend to examine

how robust such a network is to loss of nodes or of the central

coordinator. Specifically we will determine which algorithms

can continue avoiding mutual interference while improving

radar tracking performance when a central coordinator has

unplanned outages.
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