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Decentralized Beacons: Attesting the Ground Truth
of Blockchain State for Constrained IoT Devices

Santeri Paavolainen∗† and Pekka Nikander∗

Abstract—Internet of Thing devices (IoT devices) are often
constrained in terms of computing, memory, storage, power, and
network resources. This makes them ill-suited to operate as first-
class citizens on a blockchain, such as Ethereum, preventing
the IoT devices from attaining the security guarantees that are
available to better resourced nodes that are able to operate
as full, validating nodes on the blockchain. IoT devices may
use so-called light protocols to interact with the blockchain
with minimal resource requirements, but these protocols provide
only probabilistic security guarantees. In this position paper, we
propose a new mechanism where an operator of IoT devices
is able to send a “ground truth state” to the devices via a
new mechanism, which we call “decentralized beacons”, enabling
them to gain full security guarantees of the blockchain state.
Index Terms—Internet of Things; Blockchain; Ethereum

I. Introduction
While the initial use of blockchains was primarily to

transfer cryptocurrency between accounts on the blockchain
network [1], the potential benefit of blockchains for Internet-
of-Things (IoT) devices has since became apparent [2]. Given
the large variability of computing, memory, storage, power
and network capabilities of IoT devices, several different
integration models have been identified [3]. These each offer
differing security guarantees for the devices. From the security
point of view, the most desirable situation for an IoT device
would be to operate as a full node, as this gives the best
security properties; however, this is often out of the reach
of constrained IoT devices. For example, to participate in
the Ethereum blockchain [4] as a full node requires several
gigabytes of storage to maintain the blockchain state [5]. In
practice, the two realistic blockchain integration models for
constrained IoT devices are to either rely on a gateway and/or
trusted server, or to operate as a thin client.

A thin blockchain client — also known as a light client —
utilizes a blockchain-specific light protocol. For Ethereum, this
is the Light Ethereum Subprotocol (LES) [6]. The core idea
of a light protocol is to both minimize the bandwidth require-
ments and to provide cryptographic proofs of the consistency
of the data, which the light protocol client can independently
verify. However, it is well-known that light protocols are
able to provide only probabilistic security guarantees, as the
cryptographic proofs are able to only show that the provided
data is internally consistent; it is unable to provide a global
consistency guarantee. For example, LES cannot prove that the
state a light client is receiving is really the “true” blockchain
state as viewed by the majority of the network nodes.

The recommended behavior for light clients is to contact
many light protocol servers over the Internet and try to deter-
mine the prevailing consensus with the assumption that with
a sufficiently large number of connections, the majority of the
connected nodes are honest. However, IoT devices are often
constrained also by their network connectivity, meaning that
they have to operate under a threat model where all network
traffic may be intercepted and controlled by a single adversary.
Under this model, such an adversary has full control of the
visibility of the light protocol servers on the Internet. There-
fore, an adversary can masquerade as any number of such
servers. Another solution to the issue of attaining confirmation
on the global blockchain state is to rely on human intervention,
e.g. with the human independently cross-checking the root
block hash from independent sources such as Etherscan.1 For
IoT devices deployed at scale such human intervention is
unfortunately not economically nor operationally feasible.

There is a strong trend to add networking capabilities
even to the lowest-cost devices, where the low cost of the
device sets limits on computational and storage resources
such devices can afford. Consequently, while technological
development can increase the capacity of a device at a fixed
price, this is often counteracted by the desire to instead use
manufacturig advancements to decrease unit costs without
increasing the computing and storage resources of the de-
vice. Thus, in the future, we believe that the proportion of
constrained IoT devices unable to operate as full nodes on a
blockchain will increase even as the absolute number of IoT
devices capable of being full nodes will increase.

In this paper, we propose a mechanism where an IoT device
can operate as a light client while simultaneously attaining the
full security properties available to a full node, albeit under
limited circumstances, and at a cost of depending on a trusted
party. Despite these limitations, we believe that this would
make new use cases for IoT-blockchain systems feasible in
terms of security, latency and costs.

The rest of this paper is structured as follows. First, in
Section II we review existing research on the field, after which
we provide an overview of Ethereum in Section III. Then, in
Section IV, we describe decentralized beacons, a new method
of transmitting and using trusted attestations of the blockchain
state at IoT devices. This is followed, in Section V, by a
discussion and a description of future work, with conclusions
presented in Section VI.

1https://etherscan.io/
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II. Related work
Over the last few years there has been an increasing interest

in IoT device and blockchain integration, as summarized e.g.
by Reyna et al. [2]. Similarly, different integration patterns,
such as an IoT device acting as a full node, blockchain
access via a trusted gateway, or blockchain access via a
light protocol have been identified [3]. Since it is common
knowledge that many common public blockchains, such as
Ethereum, have resource requirements that rule out most IoT
devices from operating as a full node [5], an approach taken
for example by IOTA2 is to try to create a blockchain protocol
and network that is suitable for direct use by IoT devices.
Other distributed ledger systems, such as Hyperledger Fabric,3
offer more lightweight integration options due to their inherent
permissioned model that contains explicit trust anchors.

Another approach is to use gateways, but in ways where
the protocol between the gateway and the IoT device (or
across an IoT device mesh) provide security guarantees needed
by the system, such as in Beekeeper [7]. While not always,
these systems are more suitable for authenticating informa-
tion transferred from the IoT device, but less frequently
they address authentication and validating blockchain state as
transferred to the device. While not explicitly using a trusted
gateway, IoT devices are often used as full nodes on a (small)
private network, either implying the use of an IoT-friendly
blockchain, or the use of gateways in a more realistic, full-
scale deployment [8]. Similarly, the proposed overlay network
by Dorri et al. [9] establishes a layer of trusted nodes, pushing
the security boundary outside of the most constrained nodes
on the network.

III. Background
A. Etherereum

Ethereum [4] is a public blockchain technology and a
network4 of thousands of decentralized nodes. The network
consists of three types of nodes: miners, full nodes (validating
nodes) and light nodes. In the network all parties can submit
transactions, but only miners can seal transactions into a new
block. This requires solving a cryptographic puzzle (proof of
work) which is a compute-intensive task. When a new block is
announced on the network, both miners and full nodes validate
the validity of the block (rejecting invalid blocks) and update
their own internal view of the blockchain state. In contrast,
light nodes are unable to maintain an internal view of the
blockchain state, and have to rely on other nodes to provide
the blockchain state upon request.

Transactions in the Ethereum network can interact with
smart contracts, pieces of code stored in the Ethereum
blockchain state and evaluated under a well-defined and
deterministic virtual machine model. Since miners and full

2https://www.iota.org/
3https://www.hyperledger.org/projects/fabric
4The ethereum protocol and implementation can also be used in private

blockchains. This paper focuses on the use of the public Ethereum network.

nodes keep their internal view of the blockchain state up-to-
date by evaluating all transactions in blocks, all parties on the
network can also rely on a smart contract’s state being same
across the whole network. The heteregoneus and decentralized
blockchain network provides a high level of finality for all
sealed transactions — after a short delay transactions can
be considered to have become permanently recorded in the
blockchain.5

While miners and full nodes form a peer-to-peer network,
light nodes in contrast operate in a client-and-server model
using Light Ethereum Subprotocol (LES) to communicate with
light protocol servers. The light protocol are conventionally
assumed to be full nodes. This protocol offers significantly
different security properties than what is available to full nodes
using the normal peer-to-peer protocol, and is described in
Section III-C..

B. Ethereum and IoT devices
The permanence and decentralized nature of blockchains

make them interesting from IoT devices’ point of view.
For example, Boudguiga et al. describe a mechanism for
distributing information on IoT device firmware updates via
a blockchain [10]. Similarly, smart contracts can be used as
as integration points, providing a highly secure and robust
source of information for the device. Since operations on a
smart contract that do not require modification of the contract
state can be evaluated locally, the device can use the smart
contract to query values or make decisions based on input
values from the device — for example, a sensor could check
that a conventional HTTPS-based request is signed by a public
key from the list of keys maintained by such a smart contract.
Since smart contracts can encode arbitrary program logic they
are highly flexible and adaptable to different requirements.

However, IoT devices are often constrained in their com-
puting, storage and networking capabilities. As noted before,
being a full node on the Ethereum network requires maintain-
ing a local copy of the blockchain state. This requires com-
puting resources (evaluating transactions’ effects on the state),
persistent storage for storing the state, and network capacity
to receive information on new blocks and transactions. In the
general case we have to assume that IoT devices are unable
to operate as full nodes on the network, and have to operate
as light nodes.

C. Light Ethereum Subprotocol
The Light Ethereum Subprotocol (LES) is a protocol [6]

where a client receives block announcements from a server
and can request block headers, transaction details, and state
proofs from the server. The LES protocol itself is a peer-to-
peer protocol, but in the context of IoT devices it is operated
purely as a client-server protocol. In this context, an example
of a highly simplified exchange of LES messages between
a client (IoT device) and a server (full node) is shown in

5The mechanics and economics of mining, permanence of past blocks, and
risks concerning the whole network’s behavior are beoynd the scope of this
paper, and an interested reader is instructed to check the literature.



Client Server

(initial handshake and capability negotiation omitted)

Announce [[hash, number], …]

GetBlockHeaders [[block, …]]

BlockHeaders [header, …]

GetBlockBodies [[block, …]]

BlockBodies [header, …]

GetProofs [[block, key]]

Proofs [Merkle proofs]

Figure 1. Simplified exchange between a LES client and server. The server
announces a new block, which is then subsequently queried in detail by the
client, ending with the client requesting state and its associated Merkle proofs
for a specific account or smart contract.

Figure 1, where the client fetches block header, block body and
state of an address on the blockchain as a result of receiving
announcement of a new block.

As a result of the message exchange, the client can ver-
ify the consistency of all responses up to the block hash,
through the use of hashing, Merkle-Patricia trees, and Merkle
proofs. We denote this as the internal consistency of a block:
there exists a chain of proofs from the block hash to all
the retrievable block state, and the chain of proofs can be
independently verified by the client. That is, the block hash
validates the block header itself, whose proof-of-work can be
checked by the client, and any state retrieved from the server
can then be linked to the block header’s Merkle-Patricia tree
root hashes via state proofs. Therefore, once the client has
hold of a block hash (or a block header), all of the state
for the block is essentially securely frozen — any attempt
to return inconsistent state data would result in an invalid
proof. This internal consistency does not, however, provide
any global consistency guarantees: the client cannot validate
(in any easy way) that the state transition rules have been
correctly followed by the miner(s) across blocks.6

Normally, any a block that does not follow the Ethereum
blockchain transition rules will be rejected by other nodes.
However, if an adversary has forked the blockchain, the
adversary can provide an invalid view of the blockchain state
to the client as it has no need to pass these invalid blocks
to the general Ethereum network. If such an adversary can
prevent the client from contacting any trustworthy nodes, the
adversary can arbitrarily manipulate the state of any address

6Validating that the state transition rules have been followed requires
evaluating the block and its transactions and maintaining the full blockchain
state, which, by definition, would equal for the client being a full node.

in the invalid blocks it mines and presents to the client;
for example, it may substitute a smart contract’s code, or
arbitrarily modify the balance of an account. A trivial client
implementation would be unable to detect such a change,7
as the block that had been mined by the adversary would
contain a valid proof-of-work and the root hashes of Merkle-
Patricia trees would correspond to the modified state, for which
the server would be able to provide valid proofs. The block
provided to the IoT device would be internally consistent, but
not globally consistent.

IV. Decentralized Beacons
There is an underlying conflict between constrained IoT

devices, which want to minimize the bandwidth, storage and
processing requirements, and the security of the light protocol,
where increased security properties come at the price of
increased use of bandwidth, storage and processing resources.
To address this fundamental conflict between minimizing
resource use and maximizing security guarantees, it is possible
to rely on a trusted third party. The usual way is to use a
gateway or a separate trusted server that the IoT device com-
municates directly with, pushing the boundary of blockchain
interaction away from the device.

We propose a new mechanism, called decentralized bea-
cons. Instead of an IoT device trusting an intermediary gate-
way, or a directly connected server, the trust is placed on
a separate, trusted entity that provides attestations of the
blockchain state, but is not in direct communication with the
IoT device. These attestations are encoded as transactions
on the very same blockchain network the IoT device is
connected to (using a light protocol). The trusted entity is
assumed to have sufficient resources to operate as a secure
and well-connected full node, providing sufficient guarantees
on the persistence and commitment properties of the attested
blockchain state.

The main benefit of this method is that the IoT device
and the attestation entities do not need to have any direct
communication whatsoever, other than being members of the
same blockchain. Hence, it is possible to deploy any number
of IoT devices relying on the same attesting node(s) without
adding any new load. An IoT device may also check the
attestation state from multiple independent attesters without
adding any communications load.

A. Overview
The overall structure of an IoT system using decentralized

beacons is shown in Figure 2 and discussed in detail below.
While the idea of establishing a trusted entity in order to

operate on a decentralized blockchain may appear to fly in the
face of the goal of attaining decentralized security guarantees,
one must realize that most IoT devices already implicitly or

7More complex implementation could recurse and fetch the state of
the smart contract from earlier blocks for cross-correlation. With sufficient
recursion depth the client could have a probabilistic assurance that the chain of
blocks could not have been mined by an adversarial miner. This does increase
the complexity of the light client as well as the bandwidth requirements, and
in the end, can only provide probabilistic security guarantees.
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IoT provisioner Public key / Address
Public key / Address
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Figure 2. The IoT device is limited to use the light protocol server to interact with the blockchain. The light protocol server is a full node, and communicates
directly with the blockchain network. The trusted entity observes the blockchain state, and generates beacon transactions and sends them to the network for
processing. The IoT device is assumed to have configured with the trusted entity’s public key or address during provisioning as well as any other parameters,
such as the light protocol server address, as needed. If and when the beacon is part of a block the device receives from the light protocol server, the device
is able to securely confirm that the transaction is sent by the trusted entity.

explicitly trust their manufacturer, owner, installer, or other
such entity. Hence, in this context, it is not a significant
step to assume the existence of a entity that provides trusted
blockchain state attestations, especially if that entity can be
used to provide an operational solution solving the problems
outlined above. Also, since there is no need for global trust,
decentralized beacons do not require any global coordination
among the blockchain nodes or between the trusted entities
and the IoT devices relying on them. The deployment and use
of the beacons are decentralized decisions, made by a each
IoT device owner, operator, or manufacturer, separately.

B. Beacon Structure

For the beacons to work, they must provide the client a
convincing piece of evidence about the global state of the
blockchain. On the Ethereum blockchain, a trivial beacon
structure would be a transaction from the trusted entity’s
address and with the data field containing the block hash of the
attested block. However, some further elaboration is necessary,
as the sender’s address is available only through recovering it
from the transaction signature. Hence, the sender needs to send
the transaction to itself (or some other predefined address).
As the recipient address is explicit in the transaction, using it
allows the IoT device to detect beacon transactions with less
resources.

More formally, we define a decentralized beacon to be a
mechanism for transporting an attestation A = fA(bn) for
block n, and fA is a function of the block identified by
its block hash bn where its result satisfies the property that
bn can be inferred from it.8 For Ethereum, we place the
attestation A to a transaction’s data portion, Td = A, set
the target address to the trusted party’s own address as (or
other predefined address), Tt = as, the transaction sequence

8A trivial fA(bn) = bn. We do, however, anticipate a need for more
elaborate encoding for the attestation data.

number Tn to the next sequence number,9 and transaction
value to zero Tv = 0. The gas limit Tg is set to a sufficient
value.10 The gas price Tp is dynamically determined by the
current gas price level of the network to ensure sufficiently
fast inclusion of the transaction in a future block. Finally, the
transaction must include the signature components Tw, Tr and
Ts,. Consequently, an attestation transaction T is constructed
as follows:

T = (Tn, Tp, Tg, Tt, Tv, Td, Tw, Tr, Ts)

= (Tn, Tp, ≥ 21000 + 68 |fA(bn)|,

as, 0, fA(bn), Tw, Tr, Ts)

Note that from the security point of view, everything but
the signature (Tw, Tr, Ts) and the attestation A = fA(bn) are
irrelevant and need only to be chosen so that the transaction
is both valid, and will be accepted into a future block. The
other fields could be used for other purposes — for example,
if the recipient of the transaction is the sender itself, one could
imagine piggy-backing other information on the value field, as
sending cryptocurrency to oneself does not change the balance
(apart from the transaction costs).

C. Security

The use of decentralized beacons assumes existence of a
centralized trusted entity. The security of the system rests on
the infeasibility of an adversary being able to impersonate the
trusted party. In practice, this equates to the security of the
private key of the trusted party. However, beacons themselves
do not rely on the security of the underlying blockchain — in

9Tn is referred to as “nonce” in the Ethereum specification, but as a
monotonically increasing sequence of integer numbers starting from zero
value it is actually a sequence number.

10Since the target address is not a smart contract address, the gas usage of
the transaction is 21000 + 68 |Td|, but it would be prudent to set a higher
limit to guard against future changes in gas usage calculation.
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contrast, they assume a model where an adversary is actively
trying to subvert the network.

A hostile entity, such as a wireless base station, can fork
the blockchain, providing any light clients connecting to it
with a state that differs from the “real” network state. The
hostile entity is, however, unable to forge transactions from
the trusted party. The hostile entity can arbitrarily delay or
reorder beacon transactions, as well as any other transaction
that is submitted to the original blockchain. It can also generate
bogus transactions from addresses it has control over. These
actions are, however, already available to the adversary under
the assumed threat model, and the use of beacons does not
introduce any new capabilities to the adversary.

If the device receives a block that contains a transaction
from the trusted party, even under an assumption that any
other data or state related to the block is arbitrary and cannot
be trusted, the device can check the authenticity of the beacon
transaction based on its signature, and verify that the signature
matches the trusted party’s public key or address. Even if
the hostile party generates bogus transactions that contain
a correctly formed beacon transaction, they are unable to
generate a signature that the device would accept as genuine.

This method of validating blocks based on an attestation
in a beacon transaction is shown in Figure 3, which shows
the beacon in the list of transactions in block number n + 1.
While the block can be checked against internal consistency,
e.g. it has a valid proof-of-work, its transaction hash matches
the hash of transactions, etc., the device cannot assume these
represent a view that the trusted party sees or will see. What it
can do is to validate the beacon itself — and use the attestation
in the beacon to verify the attested block and all prior blocks.

In the Figure 3, the beacon transaction in block n + 1
contains the attestation from which the block hash bn of
an earlier block number n can be inferred. This allows the
device to fetch the block header Hn and check that the hash
h(Hn) = bn. The chain of attestation will trace backwards to
all of the earlier blocks, since the block header Hn contains
also the parent hash e.g. block hash of the previous block
bn−1, allowing the client to verify recursively all past blocks.

An important consideration is that the device must check
the sequence number Tn of the transaction, accepting beacons
only if the sequence number is greater than in the previous
beacon the device has received. While a valid Ethereum
state transition requires a monotonic increase of the sequence
number for any party sending a transaction and strictly ordered
execution, a hostile party can include beacon transactions in a
mined block in arbitrary order, or omit transactions causing
skips in the numbering sequence. To guard against replay
attacks of past beacons, a sequence number check in the client
is required.

The use of decentralized beacons is not without some
tradeoffs and risks to the device. It is still reliant on the light
protocol server, and an adversarial server can still block any
and all beacon transactions. This is a real risk for any device
whose correct operation relies on access to up-to-date infor-
mation. The beacon sender must also acknowledge operational
risks associated from purposeful manipulation of transaction
economics of the blockchain [11] or straightforward brute-
force denial-of-service attacks [12].

V. Discussion and Future Work
The applicability of decentralized beacons is limited by

their inherent latency: the attestation of a past blockchain
state will take, at the minimum, a single block interval to
be accepted to a future block, and potentially a lot more. Ad-
ditionally, beacon transactions need to be paid in Ethereum’s
cryptocurrency, which incurs a real-world cost. Attempting to
include a beacon transaction in every block would run into
anything towards and up a thousand dollars a day. This may
or may not be an obstacle — it is possible to envision an IoT
service provider bearing the cost, amortized over its customer
base. Alternatively, some use cases may be more tolerant to
higher update latencies, in which case a beacon could be sent
less frequently. Regardless, the operational costs of sending
beacons may restrict its applicability.

Based on the presented outline, we are in the process of
1) implementing a proof-of-concept beacon sender and client,
and will 2) evaluate the characteristics and performance of the



proof-of-concept implementation on a private test network,
the Rinkeby test network and the Ethereum main network.
Furthermore, we will 3) develop a version of an Ethereum
client that can use beacons to establish a trusted state of
the blockchain, and 4) build and evaluate the beacon-enabled
client in an environment where IoT devices operate on the
Ethereum blockchain, evaluating the use of smart contracts
to attain, for example, configuration data or access control
policies relevant to the IoT device.

VI. Conclusions
In this paper, we have proposed a mechanism for enabling

IoT devices to establish a trusted state of a public blockchain
without them being full nodes, while yet being able to gain
most of the security guarantees that a fully validating node
is able to gain. This requires an addition of a trusted party,
but we consider this a minor inconvenience, given that most
IoT devices operated are already implicitly or explicitly trust-
ing their manufacturer, owner, installer or other such entity.
The proposed method does not require any changes to the
actual blockchain network or other participating nodes on the
network — it can be deployed locally by any single party.
Furthermore, it scales linearly w.r.t. the number of trusted
parties, supporting any number of IoT devices without any
additional costs occuring as more devices are added.

While the concept of using a trusted attestation is not
something that can be claimed to be a giant leap of imagination
or technological advancement, we do see the need for IoT
devices to be able to operate as “first-class citizens” on DLTs.
While the second generation blockchains, such as Ethereum,
may be eventually superseded by other DLTs that are natively
more IoT-friendly, the use of beacons is a solution that can
potentially be deployed immediately.
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