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Abstract

This paper presents a novel decentralized bi-level stochastic optimization approach

based on the progressive hedging algorithm for multi-agent systems (MAS) in multi-

energy microgrids (MEMGs) to enhance network flexibility. In the proposed model,

suppliers and consumers of three energy carrier of power, heat, and hydrogen are

considered. This system further consists of multi-energy storage systems such as

plug-in electric vehicle aggregators, thermal energy storage, and hydrogen energy

storage with the application of power-to-hydrogen and hydrogen-to-power tech-

nologies. Furthermore, the Latin Hypercube Sampling method has been utilized to

manage the uncertainties. In addition, a penalty function and a power exchange

pricing model are evaluated by the electrical marginal price of each microgrid to

determine the agreed power exchange among the MEMGs. The suggested work

performs over a MAS with three MEMGs. The total profit of each microgrid is max-

imized over a 24-hour scheduling in three diverse case studies. Ultimately, the pro-

posed decentralized bi-level optimization approach, by converging through seven

iterations, indicates an effective performance as a promising solution to a MAS-

based framework. Besides, the optimal scheduling of the MEMGs were converged
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in the same profit for the diverse network topologies. Implementing multi-energy

storage systems plays a major role in increasing total profit of MEMGs and improv-

ing the reliability performance of MAS-based structure.

Keywords: Decentralized energy management, multi-energy microgrid,

multi-agent system, plug-in electric vehicle, hydrogen energy storage, progressive

hedging algorithm.

Nomenclature

Acronyms

BES Battery Energy Storage

CHP Combined Heat and Power

DER Distributed Energy Resource

DS Distribution system

e-MP Electrical Marginal Price

EMS Energy Management System

H2P Hydrogen to Power

HES Hydrogen Energy Storage

HFC Hydrogen Fuel Cell

LHS Latin Hypercube Sampling

MAS Multi-Agent System

MEMG Multi-Energy Microgrid

MT Micro Turbine

P2H Power to Hydrogen

PEV Plug-in Electric Vehicle

PH Progressive Hedging

PV Photovoltaic

RO Robust Optimization
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SoC State of Charge

TES Thermal Energy Storage

WT Wind Turbine

Indices

m Index for MEMGs

i Index for nodes

g Index for MTs

c Index for CHP units and TESs

e Index for renewable units

v Index for PEV aggregators

h Index for HESs

l Index for tie-lines

t Index for time

s Index for scenarios

Parameters

PMT
(g) / P

MT
(g) Minimum/Maximum allowable active output of MT g (MW)

QMT
(g)
/ Q

MT
(g) Minimum/Maximum allowable reactive output of MT g (MVAR)

PMT, RU
(g) / PMT, RD

(g) Active ramp up/down limits of MT g (MW)

QMT, RU
(g) / QMT, RD

(g) Reactive ramp up/down limits of MT g (MVAR)

PCHP
(c) Minimum allowable power output of CHP unit c (MW)

PCHP, RU
(c) / PCHP, RD

(c) Power ramp up/down limits of CHP unit c (MW)

UTCHP
(j) / DTCHP

(j) Minimum up/down time of CHP units (hr)

PLoad
(i,t,s) / Q

Load
(i,t,s) Active/Reactive load at node i at hour t for scenario s (MW/MVAR)

HLoad
(i,t,s) Heat load at node i at hour t for scenario s (MWt)

B(c) / B(c) Minimum/Maximum capacity of TES c (MWht)

B
ch
(c) / B

dch
(c) Maximum charge/discharge rate of the TS c (MWt)

EHES
(h) / E

HES
(h) Minimum/Maximum capacity of HES h (MW)

PP2H
(h) / P

P2H
(h) Minimum/Maximum convertible power to hydrogen in HES h (MW)

PH2P
(h) / P

H2P
(h) Minimum/Maximum convertible hydrogen to power in HES h (MW)
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P
PEV
(v) Maximum charge/discharge level of stored power in PEV aggregator v (MW)

EPEV
(v) / E

PEV
(v) Minimum/Maximum level of stored power in PEV aggregator v (MW)

EPEV, RA
(v) Allowable ramp of energy storing in PEV aggregator v (MW)

P
EX
(l) Maximum allowable active power exchange for tie-line l (MW)

P
GR
(m) Maximum allowable active power exchange of MEMG m with main grid (MW)

PWT
(e,t,s) Power output of WT e at hour t for scenario s (MW)

PPV
(e,t,s) Power output of PV e at hour t for scenario s (MW)

aMT
(g), b

MT
(g) Generation cost parameters of MT g

φCHP,1
(c) - φCHP,3

(c) Power cost coefficients of CHP unit c

ψCHP,1
(c) - ψCHP,3

(c) Heat cost coefficients of CHP unit c

PACHP
(c) - PFCHP

(c) Power operation regions of CHP unit c (MW)

HACHP
(c) - HFCHP

(c) Heat operation regions of CHP unit c (MWt)

r(i) / x(i) Line resistance/reactance between node i and i+1 (p.u.)

ε Maximum allowed voltage deviation (%)

λloss / λgain Heat generation loss/excess of CHP units for startup and shutdown interval (%)

ηTES Heat storing efficiency of TESs (%)

ηPEV, ch / ηPEV, dch Charge/Discharge efficiency of PEV aggregators (%)

ηP2H / ηH2P Charging/Discharging efficiencies of HESs (%)

YPEV
(v) Energy conversion coefficient of PEV aggregator v (MW/km)

RQPEV
(v,t) Distance requirement based on riving pattern of PEV aggregator v at hour t (km)

SUPEV
(c) / SDCHP

(c) Start-up/Shut-down costs of CHP unit c ($)

µEX
(l,t) Price of power exchange in tie-line l at hour t ($/MW)

µRetail
(t) Price of retail electricity market at hour t ($/MW)

µWholesale
(t) Price of wholesale electricity market at hour t ($/MW)

µHeat, Sell
(t) Heat price at hour t ($/MWt)

µ
Hyd, Sell
(t) Hydrogen price at hour t ($/MW)

µ
Hyd, Char
(t) Charging price of HESs at hour t ($/MW)

µPEV
(t) Charging and discharging price of PEV aggregators at hour t ($/MW)

γ(s) Probability of scenario s [0-1]

M An adequately large number
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Variables

PFlow
(i,t,s) / Q

Flow
(i,t,s) Active/Reactive power flow from node i to node i+1 at hour t for scenario s

(MW/MVAR)

V(i,t,s) Voltage magnitude of node i at hour t for scenario s (p.u.)

υ(i,t,s) Additional variable of voltage magnitude of node i at hour t for scenario s (p.u.)

PMT
(g,t,s) / Q

MT
(g,t,s) Active/Reactive power output of MT g at hour t for scenario s (MW/MVAR)

πDG
(g,t,s) / θ

DG
(g,t,s) Additional variable active/reactive power output of MT g at hour t for scenario s

(MW/MVAR)

PCHP
(c,t,s) / H

CHP
(c,t,s) Power/Heat generation of CHP unit c at hour t for scenario s (MW/MWt)

B(c,t,s) Available heat in the TES c at hour t for scenario s (MWt)

SUCCHP
(c,t,s) Startup cost function of CHP unit c at hour t for scenario s ($)

SDCCHP
(c,t,s) Shutdown cost function of CHP unit c at hour t for scenario s ($)

PP2H
(h,t,s) / P

H2P
(c,t,s) Charging/Discharging amount of HES h at hour t for scenario s (MW)

EHES
(h,t,s) Level of charge of HES h at hour t for scenario s (MW)

SOCHES
(h,t,s) State of charge of HES h at hour t for scenario s (%)

P
Hyd, Ind
(h,t,s) Amount supplied hydrogen to industry in HES h at hour t for scenario s (MW)

PPEV, ch
(v,t,s) / P

PEV, dch
(v,t,s) Charged/Discharged active power of PEV aggregator v at hour t for scenario s

(MW)

EPEV
(v,t,s) Stored energy of PEV aggregator v at hour t for scenario s (MW)

SOCPEV
(v,t,s) State of charge of PEV aggregator v at hour t for scenario s (%)

PGR, Sell
(m,t,s) Sell power to main grid in MEMG m at hour t for scenario s (MW)

P
GR, Buy
(m,t,s) Buy power from main grid in MEMG m at hour t for scenario s (MW)

FG(m,t)(.) Function of generating electricity in MEMG m at hour t

FD(m,t)(.) Function of selling electricity in MEMG m at hour t

PEX
(l,t,s) Active power exchange of tie-line l at hour t for scenario s (MW)

PEX, UP
(l,t,s) Active power exchange of tie-line l from MEMG m to neighboring MEMGs at hour

t for scenario s (MW)

PEX, DO
(l,t,s) Active power exchange of tie-line l from neighboring MEMGs to MEMG m at hour

t for scenario s (MW)
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XUP
(l,t,s,α,β) Additional variable of active power exchange in tie-line l from MEMG m to neigh-

boring MEMGs at hour t for scenario s (MW)

XDO
(l,t,s,α,β) Additional variable of active power exchange in tie-line l from neighboring MEMGs

to MEMG m at hour t for scenario s (MW)

λ(t,β) Penalty price of power exchanges at hour t ($/MW)

∆EX
(l,t,s) Penalty function of tie-line l at hour t for scenario s

RLoad
(m,t,s) Revenue function of selling electricity in MEMG m ($)

RCHP
(m,t,s) Revenue function of selling heat in MEMG m ($)

RPEV
(m,t,s) Revenue function of driving requirements in MEMG m ($)

RHES
(m,t,s) Revenue function of supplying hydrogen to industry in MEMG m ($)

C MT
(m,t,s) Cost function of MTs in MEMG m ($)

C CHP
(m,t,s) Cost function of CHP units in MEMG m ($)

C PEV
(m,t,s) Cost function of charging PEVs in MEMG m ($)

C HES
(m,t,s) Cost function of charging HESs in MEMG m ($)

RGR
(m,t,s) Revenue function of selling electricity to main grid in MEMG m ($)

C GR
(m,t,s) Cost function of buying electricity from main grid in MEMG m ($)

C EX
(m,t,s) Cost function of active power exchanges in MEMG m ($)

σMT, UC
(g,t,s) Commitment state of MT g at hour t for scenario s [0,1]

σSU
(g,t,s) / σ

SD
(g,t,s) Start-up/Shut-down state of MT g at hour t for scenario s [0,1]

σCHP, UC
(g,t,s) Commitment state of CHP unit c at hour t for scenario s [0,1]

σCHP, SU
(c,t,s) / σ

CHP, SD
(c,t,s) Start-up/Shut-down state of CHP unit c at hour t for scenario s [0,1]

σP2H
(h,t,s) / σ

H2P
(h,t,s) Charge/ Discharge state of HES h at hour t for scenario s [0,1]

σPEV, ch
(v,t,s) / σ

PEV, dch
(v,t,s) Charge/Discharge state of PEV aggregator v at hour t for scenario s [0,1]

σEX, UP
(l,t,s) State of power exchange in tie-line l from MEMG m to neighboring MEMGs at hour

t for scenario s [0,1]

σEX, DO
(l,t,s) State of power exchange in tie-line l from neighboring MEMGs to MEMG m at hour

t for scenario s [0,1]

κEX
(l,t,s) Status of the switch in tie-line l at hour t for scenario s [0,1]
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1. Introduction

1.1. Motivations

In recent years, due to issues such as paucity of conventional energy resources,

global concerns over climate change, and energy crisis associated with global eco-

nomic development and manufacturing production, the power system has faced

diverse challenges [1, 2]. Generating power and supplying diverse loads via locally

available renewable energies have led to the introduction of a novel concept named

microgrid [3]. The introduction of novel distributed energy resources (DERs) with

diverse renewable energy generation and storage systems in the microgrids have

influence remarkable alterations to the conventional energy systems [4]. Further-

more, the microgrids are connected to an adjacent distribution power system, i.e.

main grid, to optimize the energy management system by locally distributed re-

sources, and effectively cooperate with the main grid [5, 6]. Higher power network

operational flexibility could be also achieved by system operation advancements

applying flexible resources and improving grid infrastructure provided by micro-

grids [7]. On the other hand, the networked structure of the microgrids provides a

reliable, highly adaptable and flexible solution to operational objectives of the dis-

tribution power system, since each MG contains larger capacity for the consumers

through actively managed power exchanges [8, 9].

The numerous energy technologies such as wind turbine (WT), photovoltaic

(PV), micro turbine (MT), combined heat and power (CHP), plug-in electric vehicle

(PEV), battery energy storage (BES), thermal energy storage (TES), and hydrogen

energy storage (HES) have enhanced the microgrid concept to develop an infras-

tructure called multi-energy microgrid (MEMG), which facilitates multi-energy de-

mands such as power, heating, and hydrogen simultaneously [10]. A MEMG has

several terminal resources and several distributed elements for energy generation,

conversion, and storage. By applying this network structure, an interconnected en-

ergy system with optimized multi-energy resources can be designed. This MEMG

is a cost-effective, efficient, and reliable energy system, which could participate in

the day-ahead energy markets of electricity, heating, and hydrogen energy carriers
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during clearing process of market prices [11]. The CHP units are distributed en-

ergy resources (DERs) which can interact with both electrical and thermal energy,

as well as energy storages such as BES, TES, and HES in the MEMG to achieve

cost-effective results during the scheduling procedure [12, 13]. Furthermore, hy-

drogen energy is an emerging strategy with zero-emission of carbon [14], which

facilitates power-to-hydrogen (P2H) and hydrogen-to-power (H2P) technologies.

Also, the HES, a novel storage technology, could apply to P2H/H2P technologies

for enhancing economic and ecological features [15].

The multi-agent system (MAS) containing two or more cooperative agents, de-

ploys in MEMGs, which consists of independent agents such as DERs and energy

customers. The prime advantages of the MAS-based framework compared to the

conventional energy management are self-sufficiency, lower requirement for mas-

sive data usage, enhanced robustness, and reliability [16]. The major approaches

to perform proper MAS-based energy management in MEMGs are classified into

two main groups including centralized and decentralized control frameworks. The

centralized system accompanied with a central controller agent to collects overall

data from the energy resources, system parameters, cost functions, and technical

constraints. The prime benefits of the centralized control framework are reliability

and controllability in contrast to disadvantages including multiple communication

and computation burdens which could be occurred by single-point failure. On the

other hand, the decentralized framework is more robust and less intricate, where

the agents based on the applied structure, which is hierarchical or distributed strate-

gies. In this system, the limited data is permitted to exchange between the local con-

trollers [17]. Hence, decentralized energy management is capable to operate the

networked MEMGs in a MAS structure with diverse network topologies. Besides, di-

verse sub-systems in a MAS-based MEMG are associated with diverse stakeholders.

Therefore, data sharing without privacy protection may result in critical economic

losses. Although market competition enhances the productive participation, it is

complex to develop a centralized controller for the MAS to regulate these agents

due to the market privacy. Thus, how to realize an efficient operation for MAS-based

MEMGs with minimal data exchange becomes an essential challenge [18].
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Accordingly, in order to properly characterize optimal scheduling of MAS-based

system with networked MEMGs, subject to the uncertainties and network energy

balance constraints, in this paper, a novel decentralized bi-level stochastic optimiza-

tion algorithm is proposed.

1.2. Literature Review

Numerous studies have been previously observed with respect to optimization

approaches of MAS in networked MEMG. The authors in [19] propose a stochas-

tic price-based planning strategy for a MEMG. This strategy considers the energy

carriers’ prices as the uncertain parameters. The outcomes show 6.6% and 50.9%

cost saving for winter and summer days, respectively, when the power is offered

to the distribution system. A resilience-oriented scheduling structure has investi-

gated in the study [20], for industrial parks, powered with integrated electricity-

heat-hydrogen microgrids, which focuses on the demand survivability improvement

under contingency conditions. Further, the presented resilient operation problem is

reformulated as a CVaR-based stochastic problem, while a risk-averse (RA) method

has established to manage the uncertainty of system contingencies. The results

demonstrate that the CVaR measure is significantly reduced by 35.2%, which im-

plies that the lowered possibility of energy load interruption. In [21], an optimal

planning scheme has presented to developing multi-carrier networked microgrids,

considering load profiles in the various seasons. Diverse multi-energy carriers have

applied to form energy hubs that interchange energy with each other and the main

electricity/gas networks. The results show when hubs integrate the total daily cost

of each microgrid has been improved about 200$. A combined cooling, heating, and

power (CCHP) microgrid network has discussed in literature [22], which combines

the power-to-gas (P2G) technology with the traditional CCHP microgrid. The re-

sults show that P2G device can improve the electricity-gas coupling in the CCHP-P2G

system enhancing the stability and economy of the system operation. The authors

in [23] have focused on combined cooling, heating, and power microgrid, with

multi-carrier energy storage consists of HES, TES, and ice storage under the uncer-

tainties of wind speed and electricity price managed by a hybrid robust-stochastic
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framework. Obtained results shows that utilizing HES and multi-energy demand re-

sponse can reduce the operation cost up to 5% for the studied test system. In [24],

a multi-energy retailer is introduced to simultaneously meet both flexible and non-

flexible electrical, gas, and heat demands of multi-energy consumers. The results

show that utilizing the conversion facilities plays a vital role in increasing the profit

of multi-energy retailer up to 32% compared to the traditional retailers. In [25],

a bi-level optimization problem is presented to schedule a multi-energy system in

the day-ahead wholesale market. The results illustrate the efficacy of the proposed

model in manipulating market clearing price in favor of the multi-energy system.

In Refs. [19–25], the centralized management approach has been applied for the

scheduling of the microgrids with multi-energy carriers. However, the networked

structure and the MAS-based frameworks were ignored in the systems.

In [26], a novel bi-level EMS has presented for the optimal scheduling of the

networked microgrids under the uncertainties of renewable energies and power

loads. The outer-level is regulated the required power exchange and data among

microgrids, while the inner-level optimally schedules each on-fault microgrid in an

emergency condition. The results demonstrated that the total operational cost of

the microgrids in the case with demand response is 1395.234$ less than the case

without demand response. The authors in [27] have presented a coordinated en-

ergy management system considering the cooperation of hubs in day-ahead markets

under the uncertainties of diverse loads, day-ahead market energy price, renewable

generation, and EVs parameters. The presented model links the natural gas and

district heating grids with the electrical grid. The results show the ability of the

proposed strategy to improve the flexibility, security, reliability, stability and opera-

tional situation of hubs. In Refs. [26] and [27], a centralized energy management

has utilized for the scheduling of the multi-energy carriers. However, the investi-

gation of the MAS-based structure is neglected in these studies. The energy hub

concept has been studied in [28] in the case of microgrids to beneficial from the ef-

ficiency of microgrids as multi-energy hubs using a decentralized algorithm based

on the alternating direction method of multipliers (ADMM) to adjust the optimal

operation of the microgrids and exchanged power among microgrids and DS. The
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results show that when the robustness level is getting twice, the operation cost of DS

increases by 19%. A novel decentralized-distributed adaptive robust optimization

(ARO) strategy has demonstrated in [29] to model the efficient distributed opera-

tion of multi- microgrids with the uncertainties. The analyses showed that the so-

lution time for each iteration of the ARO strategy is reduced by 47%, which greatly

improved the solution efficiency. Zhou et al. [30] have recommended two types of

robust decentralized economic dispatch strategies for the coordinated scheduling of

microgrids in a DS. The economic dispatch strategy has applied on a modified IEEE

33-bus test DS with three microgrids, while the RO-based decentralized framework

was suggested for the uncertainties of renewable energies and loads. The results

show that the robustness is enhanced at the expense of adding up to 7.6% of costs.

In Refs. [28–30], the MAS-based strategy and application of the PEV and HES were

not considered in the test systems.

In the study [31], a reliability evaluation strategy is demonstrated for the MAS

with WTs, PEVs, and gas storages in a communication framework. A re-dispatching

problem with voltage and gas pressure constraints has also suggested to lessen the

scheduling cost. The results demonstrated that the maximum error between dis-

tributed and centralized reliability evaluation approach is less than 0.8%, which is

caused by random errors due to Monte Carlo simulation. A MAS-based decentral-

ized energy management system (EMS) for a grid-connected microgrid has been

proposed in [32]. DERs and loads are modeled as independent agents by a rein-

forcement learning algorithm to optimize the performance of microgrid and each

agent. The results show that the operation costs of microgrid is reduced about 48%

in the scenario with learning algorithm compared to the scenario without learning

algorithm. However, a single microgrid has considered in the proposed system and

the concept of the networked framework has not been studied. The authors in [33]

has presented a two-level hierarchical multi-agent EMS for the multi-microgrid sys-

tems to maximize the utilization of renewable units over a three-microgrid system.

The results indicate that using the proposed strategy, the renewable energy utiliza-

tion of the entire system is improved by 12.32%. In Ref. [34], an optimal voltage

regulation approach has been investigated with the participants of multi-microgrids
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based on multiple agent systems. A bi-level game model is also addressed for the

voltage control process on a modified IEEE 33-bus system. Based on the simula-

tion results of the proposed bi-level game model, the DNO and microgrids improve

the voltage profiles through an iteration bidding process. In Ref. [35], a two-layer

multi-agent distributed control strategy with fault tolerance control for MMG sys-

tems is presented. The simulated results show that the frequencies and voltages

in microgrids stay at the allowed values. In [36], a phased algorithm based on

symbiotic organisms search and an advanced MAS-based consensus algorithm is

proposed to improve the utilization rate of renewable energies in islanded multi-

microgrids. Simulation results demonstrate that the utilization rate of renewable

energies can reach 99.99% when the difference between renewable energies and

demand is large at some moments. However, a deterministic approach has been

applied to energy management and the uncertainty analysis has been neglected.

In Ref. [37], a distributed-based energy management framework is proposed us-

ing primal-dual method of multipliers in smart network with five different agents

including an energy hub, a networked multi-microgrid with three agents and a

transportation system. The compared distributed approach with the centralized

approach showed a very slight error, which indicates that the approaches have al-

most equal solutions. Although, the MAS-based structure has considered for the

multi- microgrids in [33–37], the MEMG is not taken into account.

1.3. Contributions

Based on the mentioned literature of the MEMG scheduling, it is obvious that:

1. Previous works were failed to propose a decentralized energy management

for the optimal operation of the MAS-based networked MEMGs considering

the PEV and hydrogen-based energy scheduling;

2. The bi-level stochastic optimization approach has not been investigated for

the decentralized control framework of the MAS-based MEMGs;

3. Previous studies have not taken into account P2H and H2P facilities along

with HES system as an independent agent in the MAS-based framework;

4. A proper penalty function model has not presented in the literature for the
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convergence of the agreed energy exchanges among the MAS-based networked

MEMGs in a decentralized framework considering the self-sufficiency of each

agent.

To fill this gap out, the proposed model has considered all the mentioned factors

with the stochastic behavior of the renewable units, energy demands, and energy

carrier prices. The MEMG contains an electricity DS, a heating DS, and a hydrogen

energy network, which has coupled by MAS-based network. According to the cou-

pling elements, diverse forms of energy in the MEMG can be generated, converted

and stored by the connected sources and storage systems. Accordingly, the CHP

units and TESs are applied to manage the heat consumption of local customers.

Further, the PEV aggregators investigate the optimization constraints of the trans-

portation agents, and the HES are presented for the hydrogen-based consumers and

industry by P2H and H2P technologies.

Table 1 demonstrates a comprehensive comparison between the proposed ap-

proach and the literature reviewed. Therefore, this paper proposes a novel flexible

decentralized bi-level stochastic optimization approach based on the progressive

hedging algorithm for the MAS-based networked MEMGs (including power, heat,

and hydrogen carrier) under the uncertainties of the renewable units, power and

heat demands, as well as distance requirement of PEVs. Specifically, the Latin Hy-

percube Sampling (LHS) method has been applied to control the mentioned un-

certainties. In addition, a reliable penalty function and a power exchange pricing

model are modified based on the electrical marginal price (e-MP) to adjust the en-

ergy exchange among the networked MEMGs.

The rest of the paper is laid out as follows. In Section 2, MAS-based networked

MEMGs configurations are presented. First, the hydrogen production from renew-

able generations is reviewed, and then the energy management structure of MAS-

based MEMGs and the proposed decentralized bi-level stochastic optimization ap-

proach are described. In Section 3, the mathematical modeling of the networked

MEMGs is demonstrated. Corresponding results are presented in Section 4 for three

diverse scheduling case studies. Finally, the paper is concluded in Section 5.
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2. MAS-based Networked MEMGs Configurations

2.1. Energy Management Structure of MAS-based MEMGs

This section describes a novel structure of the networked MEMGs and the pro-

posed decentralized MAS-based energy management model. As shown in Figure 1,

the MAS-based MEMGs composed of electrical/thermal generators such as CHP

unit, MT, renewable units such as PV and WT, energy storage systems such as BES,

TES, and HES, HFC as H2P technology, PEV aggregators, as well as electrical, ther-

mal, and hydrogen customers considering multi-energy market based on the energy

hub interconnection concept. Besides, the P2H technology containing an AC/DC

converter, an electrolyzer, and a compressor is applied as the essential elements to

convert electricity into hydrogen in each MEMG. The proposed networked model

provides multi-energy exchanging among MEMGs and DS. The relation of the elec-

tricity, heat, transportation, and hydrogen operators with multi-energy markets is

also demonstrated in Figure 1.

Each MEMG has a decentralized controller to manage its local interactions be-

tween diverse energy generations and consumptions. In this paper, each local en-

ergy supplier and consumer controls are managed by the local decentralized con-

troller presented in each MEMGs. Accordingly, the local electricity operator as the

main operator is responsible for ensuring energy balance between local energy sup-

pliers and consumers, while the heat, transportation, and hydrogen operators can

monitor their corresponding energy generators and demands, and determine en-

ergy prices for their interactions with the local electricity operator in each MEMG.

As the only electrical energy is exchanged among MEMGs, a central EMS is also

defined as an independent entity to converge the power exchanges in the decen-

tralized framework.
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Figure 1: Structure of the networked MEMGs

Figure 2 indicates the proposed MAS-based structure, communication systems,

and agent management ontologies of the networked MEMGs to optimally control

the energy generation and consumption. As demonstrated in this figure, the oper-

ators oversee exchanging required data and energy among MEMGs and the multi-

energy market. Given the local energy demands, local energy resources, and energy

prices, each MEMG determines its optimal energy management in its decentralized

controller. Applying this model leads to the privacy protection for each MEMG and

reduces the total computational time for energy management of the networked

MEMGs. The definition of different components in Figure 1 as follows:
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Figure 2: Proposed MAS-based analysis, communication network, and agent management ontology

1. Local electricity operator is a unit established for gathering and sharing re-

quired data, including real-time power prices and meteoric information with

associated agents and other general energy operators. This unit acts as a local

management agent that controls the power monitoring and real-time schedul-

ing of each MEMG applying a decentralized controller to ensure the optimal

operation.
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2. General energy operator is established for determining and sharing required

data, including real-time energy prices and operational constraints with the

local electricity operator and other general energy operators. The general

heat, transportation, and hydrogen operators perform as the management

agent that controls the heat, transportation and hydrogen energy monitoring

of each MEMG.

3. Central EMS is established for sharing required data, including updated penalty

prices with local electricity operators in each MEMG. The central EMS per-

forms as an independent entity that converge the power exchanges among

the networked MEMGs in the decentralized framework and verifies whether

the agreement among MEMGs concludes with the current penalty price.

4. Energy consumer agent collects relevant data about residential, commercial,

and industrial tasks operating statuses, consumption demands, and signals of

the system. Also. it sends required control commands back to the controllable

devices to determine solutions for diverse consumer’s objectives considering

energy efficiency and a convenient life-form.

5. Renewable energy supplier agent gathers the meteorological data, forecasts

the renewable energy generations in short-time periods and shares corre-

sponding data to the requesting agent, i.e. local electricity operator. Since

two kinds of renewable units, including WT and PV, are taken into account

in the proposed analysis, two kinds of renewable energy supplier agents are

developed as WT-agent and PV-agent.

6. Fuel-based energy supplier agent gathers the fuel cost data and shares them

with the requesting agent, i.e. local electricity operator. Since two kinds

of fuel-based units, including MT and CHP, are considered in the proposed

examination, two kinds of fuel-based energy supplier agents are developed

as MT-agent and CHP-agent.

7. Energy storage agent is developed to regulate the charge/discharge states

of feasible energy storages. Since three kinds of energy storages, including

BES, TES and HES, are considered, thus, three kind of energy storage agents

are developed as BES-agent, TES-agent, and HES-agent. Besides, the PEV
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aggregator can be also considered as the energy storage agent due to the

charging/discharging behavior in the networked MEMGs.

8. Energy service agent assists other agents with particular kinds of compu-

tation services, e.g. required optimization algorithms. Such easy-response

agent collects essential data as input and shares the optimal outputs of the

system. In the proposed approach, the electricity, heat, transportation, and

hydrogen service agents are designed.

It can be mentioned that in the presented MAS-based analysis, agents act col-

laboratively for attaining objectives such as supplying the energy demands of each

MEMG continuously and maximizing the network total profit. Within the explo-

ration, various ontologies are proposed and applied as references to ensure mean-

ing to symbols in the message theme. Also, these ontologies facilitate identifying

types of information to be applied in the sharing of messages, while verifying the

data to be converted from the semantic point of view.

2.2. Decentralized Bi-Level Stochastic Optimization Approach

Communicating variables in the decentralized approach are generally the en-

ergy exchanges among the networked MEMGs. Each self-sufficient entity has its

decision variables and intentions [40]. The proposed novel bi-level optimization ap-

proach in this paper is based on the modified progressive hedging (PH) algorithm as

a heuristic algorithm to efficiently solve stochastic mixed-integer optimization prob-

lems with bounds on solution quality by penalizing constraint deviations in the ob-

jective function. The proposed algorithm can be implemented to acquire a feasible

adjustment to the primary optimization problem, which also determines an upper

bound on the optimal objective function merit and alleviate the computational com-

plexity by disintegrating the optimization problem into scenario-based subproblems

and solving them in parallel [41]. Accordingly, the penalty is contributed to the ob-

jective function of each scenario to converge the first level results of all generated

scenarios to the same point. However, in this paper, the optimization problem is

disintegrated based on the self-sufficient MAS-based networked MEMGs schedul-

ing instead of scenario-based subproblems. This means that each MEMG has its
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own optimal decisions. Hence, the exchanged energy among the MEMGs is mod-

eled applying a stochastic decentralized bi-level optimization strategy. When both

levels converge, the electrical power exchanges among the MEMGs are determined.

It can be noted that this algorithm is fully adaptable for the reconfigurations and

grid topologies. Figure 3 illustrates the flowchart of the proposed algorithm. The

full operation steps can be figured out as follows.

Step 1: Define input parameters including capacity and hourly forecasted value of

renewable unit, MT generation data, CHP unit data, characteristic of the

TES, PEV aggregator data, HES data, hourly forecasted amount of active

power, reactive power, and heat demands, hourly forecasted values of mar-

ket prices.

Step 2: Generating problem scenarios for renewable units, active power, reactive

power, and heat consumptions, and driving requirement of PEVs using the

LHS method. More details about the LHS strategy are presented in Sec-

tion 3.

Step 3: Reducing the number of generated scenarios to desired scenarios in GAMS

software to enhance the calculation speed while sustaining the solution ac-

curacy More details about the scenario reduction algorithm are described

in Section 3.

Step 4: Solve the deterministic optimization problem for configured MEMGs to ob-

tain the initial value for power exchange prices, µexchange
(l,t) .

Step 5: Define the initial values for the electrical power exchanges and the corre-

sponding penalty price at the running time of the optimization problem,

trun, as well as Equating the λ(t,β) and PEX
(l,t,s) with zero for all operating

hours and scenarios.

Step 6: Solve the stochastic optimization problem of MEMG m in networked struc-

ture for t= {trun, trun + 1, · · · , tschedule} to obtain the power exchange value

with the main grid, CHP units, PEV aggregators, and HES outputs for t=

trun as the results of the energy agents in this hour and set the calculated

results as the input parameters for the optimization problem in Step 7.
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Step 7: Solve the stochastic optimization problem of MEMG m in networked struc-

ture for t= trun to obtain active and reactive power outputs of MTs, χUP
(l,t,s,α,β)

and χDO
(l,t,s,α,β) as the results of electrical agents. χUP

(l,t,s,α,β) and χDO
(l,t,s,α,β)

indicate the power exchange adjusted by the MEMG m from tie-line l at hour

t for scenario s. The optimization problem is solved with the χ̂UP
(l,t,s,α−1,β)

and χ̂DO
(l,t,s,α−1,β) to obtain χUP

(l,t,s,α,β) and χDO
(l,t,s,α,β). χ

UP
(l,t,s,α,β) and χDO

(l,t,s,α,β)

indicate the power exchange adjusted by the neighboring MEMG connected

to the MEMG m in the preceding first level iteration.

Step 8: Equate the decision-making variables of exchanged power, PEX, UP
(l,t,s) and PEX, DO

(l,t,s),

with the adjusted electrical power exchange among networked MEMGs at

hour t. In this case, the dependence of the decision-making variable at

the two-level optimization problem on the adjusted operational value is

removed. Furthermore, Equate the resulted decision-making variable of

active and reactive power outputs of MTs, PMT
(g,t,s) and QMT

(g,t,s), with the

additional adjusted active and reactive power outputs of the MTs at hour t,

πMT
(g,t−1,s) and θMT

(g,t−1,s). Accordingly, the value of the MT output at hour t

can be preserved as a parameter in the optimization problem to ensure that

the value of the generation ramp-rates of MTs between hours t and t-1 be

in their allowed capacity limits.

Step 9: Investigate the first level convergence as as shown in Eq. (1).∣∣∣χUP(l,t,s,α,β) − χ
UP
(l,t,s,α−1,β)

∣∣∣ 6 δ1∣∣∣χDO(l,t,s,α,β) − χ
DO
(l,t,s,α−1,β)

∣∣∣ 6 δ1

; ∀l, t, s (1)

The first level convergence investigates whether the agreement among the

networked MEMGs concludes with the present penalty price, the algorithm

bounds back to Step 7 if it is not converged. It should be noted that it

is not required to investigate the convergence of the power exchange ad-

justed by the neighboring MEMG connected to the MEMG m, χ̂UP
(l,t,s,α,β) and

χ̂DO
(l,t,s,α,β), besides as a result of investigating the convergence of χUP

(l,t,s,α,β)

and χDO
(l,t,s,α,β) for the related MEMG in the first level.
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Figure 3: Flowchart of the proposed bi-level decentralized stochastic optimization problem
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Step 10: Investigate the second level convergence as indicated by Eq. (2).∣∣∣χUP(l,t,s,α,β) − χ̂
DO
(l,t,s,α,β)

∣∣∣ 6 δ2∣∣∣χDO(l,t,s,α,β) − χ̂
UP
(l,t,s,α,β)

∣∣∣ 6 δ2

; ∀l, t, s (2)

Obviously, the second level convergence investigates whether the agree-

ment among the networked MEMGs is achieved, the algorithm goes to Step

11 if it is not converged.

Step 11: Update the penalty price, λ(t,β), and bounds back to Step 7. More informa-

tion about the proposed penalty price is represented in Section 3.

Step 12: Finally, the algorithm continues until the last scheduling time, tschedule.

3. Proposed Formulation

The model of decentralized energy management and the corresponding local

stochastic optimization problem of MEMG m are discussed in this section. Besides,

a new pricing model is recommended for the initial power exchanges.

3.1. Model of Uncertainty

In this paper, multiple scenarios of renewable generations, active/reactive power

and heat consumptions, and distance requirement of PEVs are generated present-

ing the Latin hypercube sampling (LHS) to realize the corresponding errors of fore-

casted values in a 24-hour scheduling interval. The LHS strategy indicates several

conveniences including accelerating problem solutions and advanced sampling ef-

ficiency compared to the traditional Monte Carlo Simulation (MCS) approach [42].

The LHS will sustain the desired distributional properties while the sample volume

expands during the investigation [43]. With many sampling-based numerical in-

vestigations for uncertainty analysis, it has been illustrated that the LHS strategy

has various conveniences over the one-stage sampling strategies, particularly con-

cerning improved convergence of the corresponding analysis and the robustness of

the results to sampling variations. Even for reasonable numbers of iterations, the

LHS strategy makes all or almost all sample means fall within a minor fraction of

the standard error. When multiple simulations are performed, their means will be
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much closer together with LHS than with MCS. This is how the LHS strategy makes

simulations converge faster than MCS. Therefore, the LHS strategy is implemented

to generate samples of renewable generations, demand fluctuations, and distance

requirement of driving [44].

The LHS uncertainty approach can be assigned to the bi-stage method including

the sampling stage and combination stage. In this paper, 1000 samples were gen-

erated to take into account the probabilistic characteristic of the renewable genera-

tions, load consumptions, and distance requirement of PEVs in the sampling stage.

Consequently, the Cumulative Distribution Function (CDF) of the uncertain param-

eters is apportioned into 1000 portions with an equivalent probability of 1/1000.

Hence, the following approach can be suggested for each generated scenario-based

variable, as illustrated in Figure 4.

For k=1 to 1000:

Step 1: A value is randomly appointed from each portion. The illustrative proba-

bility of the CDF at portion kth can be determined according to Eq. (3).

probk =
1

1000
(rndu + k− 1) (3)

where, rndu ∈ (0, 1) is a constantly distributed random weight.

Step 2: Eq. (4) expresses that the illustrative value is regularly adjusted into γk

applying the inverse of distribution function F−1:

γk = F−1 (probk) (4)

End For

Probability 
Distribution 

Function 
(PDF)

Cumulative 
Distribution 

Function

(CDF)

Uniform Distribution
Function

k
N  0,1k U

N
  

Figure 4: Uncertainty approach applying Latin Hypercube sampling
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To provide the lowest correlation coefficients within the decision-making vari-

ables, the Cholesky factorization strategy is also adopted to merge the sampled

values of the uncertain parameters. Besides, a backward scenario reduction tech-

nique is also applied in the bi-level stochastic optimization problem to reduce the

number of scenarios and enhance the calculation speed [45].

3.2. Modeling of Power Exchange Prices

As mentioned previously, the e-MP and penalty function have been applied to the

model for calculating the power exchange and penalty prices, respectively. Initially,

the definition and some principles of the e-MP are reviewed. Then, the proposed

e-MP model and method of calculating the power exchange prices are explained.

Finally, the proposed penalty function is formulated by updating the relevant coef-

ficient in the bi-level optimization approach.

3.2.1. Electrical Marginal Prices of MEMGs

The concept of the e-MP is derived from the definition of the Locational Marginal

Price (LMP). However, in the concept of decentralized energy management, each

MEMG is modeled as a self-sufficient agent to optimize its operational objectives.

Accordingly, despite the interregional trading, the independent operation of each

MEMG has made it realizable for marginal prices to be distinct in local MEMGs.

In this proposed approach, to formulate the e-MP of MEMG m, it is assumed that

the local power generation units and power consumptions are accumulated at a

local node, and each MEMG is operated in the islanded mode applying the linear

programming approach to reduce the complexity of the proposed model. It should

be noted that power losses are ignored in the pricing model and only electrical

energy agents are considered. Also, it is assumed that the price of selling electrical

energy to consumers is equivalent to the price of generating electrical energy in

each MEMG. The objective function of the MEMG operation problem is maximizing

the cost function of the selling electrical energy, while it minimizes the cost function

of generating electrical energy. Consequently, a convenient optimization problem

for the proposed model can be formulated by Eqs. (5)-(8),
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min FD(m,t)(P
Net,Load
(m,t) ) − FG(m,t)(P

Net,Generation
(m,t) ) (5)

PNet,Load(m,t) − PNet,Generation(m,t) = 0 (6)

PNet,Generation(m,t) =
∑
g∈Gm

PMT(g,t) +
∑
c∈Cm

PCHP(c,t) (7)

PNet,Load(m,t) =
∑
i∈Im

PLoad(i,t) −
∑
e∈Em

[
PWT(e,t) + P

PV
(e,t))

]
(8)

The result of the Lagrangian function of the above problem is defined in Eq. (9).

τ(m,t) represents the Lagrangian multiplier.

dFD(m,t)

dPNet,Load(m,t)

=
dFG(m,t)

dPNet,Generation(m,t)

= τ(m,t) (9)

The calculated value τ(m,t) can be introduced as the e-MP of the MEMG m at hour t.

As noted earlier, the initial price of power exchange among MEMG m and MEMG n

through the tie-line l is regulated in regards to their e-MP. The proposed calculation

can be simplified by Eq. (10). $ represents the weighted multiplier for regulating

offered power exchange price.

µEX(l,t) =
$

2

[
τ(m,t) + τ(n,t)

]
(10)

This multiplier can be selected as a number in the range of 1.5-2.5 under the oper-

ating conditions [46].

3.2.2. Penalty Function of Power Exchanges

In the proposed approach, only the electrical power is exchanged among the

MEMGs through the tie-lines. For modeling the correlative impacts of operating

conditions between the networked MEMGs, it is imperative to assign a penalty func-

tion in the agreement procedure of the proposed algorithm. Therefore, the penalty

function can be defined in the form of Eq. (11). λ(t,β) represents the penalty price

at hour t in the second-level iteration β.

∆EX(l,t,s) = λ(t,β)

 χUP(l,t,s,α,β) − χ̂
DO
(l,t,s,α,β)

sgn
(
χUP(l,t,s,α,β) − χ̂

DO
(l,t,s,α,β)

) +
χDO(l,t,s,α,β) − χ̂

UP
(l,t,s,α,β)

sgn
(
χDO(l,t,s,α,β) − χ̂

UP
(l,t,s,α,β)

)


(11)

The proposed penalty price is updated in each iteration β based on the regulation

defined in Eq. (12). TL represents number of tie-lines in the MEMGs. Notably, this
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number can be variant according to the network topology. Cleary, higher z value

represents a stricter penalty price and may result in the optimum decisions, while

a lower z value represents that more iterations are desired for the convergence of

the agreed power exchanges between the MEMGs. It is obvious that the penalty

price is rising until the power exchanges agreed by the neighboring MEMGs reach

an equal value.

λ(t,β) = λ(t,β−1) +
1
z

(
1
TL

∑
l

µEX(l,t)

)
(12)

3.3. Objective Function of the Proposed Stochastic Optimization Problem

The decentralized controller of the MEMG schedules the energy resources in

such a way that the total profit of the MEMG is maximized. The objective function

of the proposed stochastic optimization problem of the local MAS-based MEMG m

from the networked structure point of view can be formulated by Eq. (13). Im,Gm,

Cm, Em, Vm, Hm, and Lm are sets of loads, MTs, CHP units and TESs, renewable

units, PEV aggregators, HESs and tie-lines in MEMG m.

max Profit(m) =
∑
t

∑
s γ(s)


(
<Load(m,t,s) +<CHP(m,t,s) +<PEV(m,t,s) +<HES(m,t,s)

)
−(

℘MT(m,t,s) + ℘
CHP
(m,t,s)+℘

PEV
(m,t,s) + ℘

HES
(m,t,s)

)
+(

<GR(m,t,s) − ℘
GR
(m,t,s)

)
+
(
℘EX(m,t,s) + ∆

EX
(l,s)

)


(13)

<Load(m,t,s)=
∑
Im
µRetail(t) .PLoad(i,t,s); ∀m, t, s (14)

<CHP(m,t,s)=
∑
Im
µHeat,Sell(t) .HLoad(i,t,s); ∀m, t, s (15)

<PEV(m,t,s)=
∑
Vm
µRetail(t) .YPEV(v) .RQPEV(v,t); ∀m, t, s (16)

<HES(m,t,s)=
∑
Hm

µHyd,Sell
(t) .PHyd,Ind

(h,t,s) ; ∀m, t, s (17)

℘MT(m,t,s)=
∑
Gm

[
aMT(g) .PMT(g,t,s) + b

MT
(g) .σMT ,UC

(g,t,s)

]
; ∀m, t, s (18)

℘CHP(m,t,s)=
∑
Cm

 ϕCHP,1
(c) .

(
PCHP(c,t,s)

)2
+ϕCHP,2

(c) .PCHP(c,t,s) +ϕ
CHP,3
(c) +

ψCHP,1
(c) .

(
HCHP(c,t,s)

)2
+ψCHP,2

(c) .HCHP(c,t,s) +ψ
CHP,3
(c)

 ; ∀m, t, s

(19)

26



℘PEV(m,t,s)=
∑
Vm
µPEV(t) .

[
ηPEV ,ch.PPEV ,ch

(v,t,s) −
(
1
/
ηPEV ,dch

)
.PPEV ,dch

(v,t,s)

]
; ∀m, t, s

(20)

℘HES(m,t,s)=
∑
Hm

µHyd,Char
(t) .PP2H

(h,t,s); ∀m, t, s (21)

<GR(m,t,s)= µWholesale(t) .PGR,Sell
(m,t,s) ; ∀m, t, s (22)

℘GR(m,t,s)= µWholesale(t) .PGR,Buy
(m,t,s) ; ∀m, t, s (23)

℘EX(m,t,s)=
∑
Lm
µEX(l,t).P

EX
(l,t,s); ∀m, t, s (24)

In the objective function presented by Eq. (13), the first and the second paren-

theses indicate the revenue and operational cost functions of the MEMG m, respec-

tively, which are performed by scheduling different energy sources. The first term

of the MEMG revenue is gained by selling electrical energy to the electrical con-

sumers owing to retail market price signals. The second term is related to selling

heat energy generated by the CHP units to the heat consumers owing to heat price

signals. The third term is related to selling electrical energy to the PEV aggregators

for providing driving requirements. The fourth term denotes the benefit of export-

ing hydrogen energy to the hydrogen industry. The fifth and sixth terms are related

to the MEMG operational costs of generated electrical and heat energies in MT and

CHP units, respectively. Seventh term indicates costs related to the charging and

discharging power of the PEV aggregators. The eighth term is associated with the

charging cost of HESs. The nineth and tenth terms of Eq. (13) demonstrate the

MEMG revenue gained by selling electrical energy to the main grid and operating

costs related to buying electrical energy from the main grid, respectively, owing to

wholesale market price signals. The eleventh term shows the costs of electrical en-

ergy exchanges between the MEMG m and neighboring MEMGs through tie-lines.

The twelfth term demonstrates the cost function of the penalty price for regulating

the value of the converged power exchanges. The revenue functions corresponding

to the energy demanded by the electrical consumers, heat consumers, PEV aggre-

gators, and hydrogen industry are modeled by Eqs. (14)-(17), respectively. Also,

the cost functions corresponding to the energy provided by the MTs, CHP units,

PEV aggregators, and HESs are modeled by Eqs. (18)-(21), respectively. The func-

tions corresponding to sell and buy electrical energy from the main grid can be also
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modeled by Eqs. (22) and (23), respectively. Furthermore, the cost of exchanging

electrical energy is formulated by Eq. (24).

3.4. Constraints

The constraints of the stochastic optimization problem of the MAS-based net-

worked MEMGs can be presented as Eqs. (29) and (87).

3.4.1. Distribution Power Flow

The constraints presented by Eqs. (25)-(28) are the linear Dist. Flow equations

of power distribution networks which describe the power flow at each node i [47].

PFlow(i+1,t,s) = P
Flow
(i,t,s) + P

MT
(g,t,s) + P

WT
(e,t,s) + P

PV
(e,t,s)

+PCHP(c,t,s) + P
H2P
(h,t,s) − P

P2H
(h,t,s)

+PPEV ,dch
(v,t,s) − PPEV ,ch

(v,t,s) − PLoad(i,t,s) ; ∀i, t, s

(25)

QFlow(i+1,t,s) = Q
Flow
(i,t,s) +Q

MT
(g,t,s) −Q

Load
(i,t,s) ; ∀i, t, s (26)

υ(i+1,t,s) = υ(i,t,s) − 2
[
r(i).P

Flow
(i,t,s) + x(i).Q

Flow
(i,t,s)

]
; ∀i, t, s (27)

(1 − ε)2 6 υ(i,t,s) 6 (1 + ε)2
; υ(i,t,s) =

∣∣V(i,t,s)

∣∣2 ; ∀i, t, s (28)

3.4.2. Constraints of Power Exchange with other MEMGs

To deal with the complex application of bi-directional energy transactions be-

tween the MEMGs, the associated power exchange variable is transformed into

two additional positive variables with diverse power exchange directions as demon-

strated in Eqs. (29)-(31). Consequently, an energy transaction status and the status

of the implemented tie-line switches are addressed for each active power exchange

variable to prevent bidirectional exchange simultaneously at hour t (Eq. (32)).

−P
EX

(l) .κEX(l) .σEX,UP
(l,t,s) 6 PEX,UP

(l,t,s) 6 P
EX

(l) .κEX(l) .σEX,UP
(l,t,s) ; ∀l, t, s (29)

−P
EX

(l) .κEX(l) .σEX,DO
(l,t,s) 6 PEX,DO

(l,t,s) 6 P
EX

(l) .κEX(l) .σEX,DO
(l,t,s) ; ∀l, t, s (30)

PEX(l,t,s) = P
EX,UP
(l,t,s) + PEX,DO

(l,t,s) ; ∀l, t, s (31)

σEX,UP
(l,t,s) + σEX,DO

(l,t,s) < 1 ; ∀l, t, s (32)
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3.4.3. Constraints of Power Exchange with Main Grid

The power exchange between MEMG m and main grid should be limited to the

capacity of transformers located in the substations (Eqs. (33) and (34)).

0 < PGR,Buy
(m,t,s) < P

GR

(m); ∀m, s, t (33)

0 < PGR,Sell
(m,t,s) < P

GR

(m); ∀m, s, t (34)

3.4.4. MT Constraints

The constraints demonstrated by Eqs. (35)-(42) guarantee that an MT output

value is in its generation capacity. The allowed generation limits compounded with

commitment states, up/down ramp-rate boundaries, and start-up/shot-down states

are incorporated as the MT constraints.

PMT(g) .σMT ,UC
(g,t,s) 6 PMT(g,t,s) 6 P

MT

(g) .σMT ,UC
(g,t,s) ; ∀g, t, s (35)

πMT(g,t−1,s) − P
MT
(g,t,s) = P

MT ,RU
(g) .

[
1 − σSU(g,t,s)

]
; ∀g, t, s (36)

PMT(g,t,s) − π
MT
(g,t−1,s) = P

MT ,RD
(g) .

[
1 − σSD(g,t,s)

]
; ∀g, t, s (37)

QMT
(g)

.σMT ,UC
(g,t,s) 6 QMT(g,t,s) 6 Q

MT

(g) .σMT ,UC
(g,t,s) ; ∀g, t, s (38)

θMT(g,t−1,s) −Q
MT
(g,t,s) = Q

MT ,RU
(g) .

[
1 − σSU(g,t,s)

]
; ∀g, t, s (39)

QMT(g,t,s) − θ
MT
(g,t−1,s) = Q

MT ,RD
(g) .

[
1 − σSD(g,t,s)

]
; ∀g, t, s (40)

σSU(g,t,s) + σ
SD
(g,t,s) < 1 ; ∀g, t, s (41)

σSU(g,t,s) − σ
SD
(g,t,s) − σ

UC
(g,t,s) + σ

UC
(g,t−1,s) = 0 ; ∀g, t, s (42)

3.4.5. CHP Unit Constraints

The power and heat generations of CHP units are interdependent and cannot

operate individually. Based on the Ref. [48], two types of scheduling regions can

be defined for CHP units which are illustrated in Figure 5.
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Figure 5: Heat-power feasible operation region of CHP units, (a) type 1, (b) type 2

The first type of scheduling region of CHP units can be defined in a linear model

as Eqs. (43)-(47). Eq. (43) indicates the region under the line AB. Also, the upper

region of line BC and line CD are expressed by Eqs. (44) and (45), respectively. Fur-

thermore, the upper heat and power generation limits of the CHP unit are bounded

by Eqs. (46) and (47), respectively.

PCHP(c,t,s) − PA
CHP
(c) −

PACHP(c) − PBCHP(c)

HACHP(c) −HBCHP(c)

[
HCHP(c,t,s) −HA

CHP
(c)

]
6 0; ∀c, t, s

(43)

PCHP(c,t,s) − PB
CHP
(c) −

PBCHP(c) − PCCHP(c)

HBCHP(c) −HCCHP(c)

[
HCHP(c,t,s) −HB

CHP
(c)

]
> −

(
1 − σCHP,UC

(c,t,s)

)
M;

∀c, t, s
(44)

PCHP(c,t,s) − PC
CHP
(c) −

PCCHP(c) − PDCHP(c)

HCCHP(c) −HDCHP(c)

[
HCHP(c,t,s) −HC

CHP
(c)

]
> −

(
1 − σCHP,UC

(c,t,s)

)
M;

∀c, t, s
(45)

0 6 HCHP(c,t,s) 6 HB
CHP
(c) .σCHP,UC

(c,t,s) ; ∀c, t, s (46)

0 6 PCHP(c,t,s) 6 PA
CHP
(c) .σCHP,UC

(c,t,s) ; ∀c, t, s (47)

In order to formulate the second type of scheduling region for CHP units (Fig-

ure 5(b)) in a linear model, heat-power feasible operation region is apportioned into
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two main sub-regions I and II applying two additional binary variables (σCHP,R2
(c,t,s)/

σCHP,R1
(c,t,s)). Equation (48) indicates the region under the line BC. Also, the upper

region of the lines CD, DE, and EF are expressed by Eqs. (49)-(51), respectively.

In Eqs. (50)-(53), σCHP,R1
(c,t,s)= 1/σCHP,R2

(c,t,s)= 1 implies CHP unit schedule in region I/II.

Based on Eq. (55), the CHP unit can be scheduled either in the region I or II. Fur-

thermore, the upper heat and power generation limits of the CHP unit are bounded

by Eqs. (55) and (56), respectively.

PCHP(c,t,s) − PB
CHP
(c) −

PBCHP(c) − PCCHP(c)

HBCHP(c) −HCCHP(c)

[
HCHP(c,t,s) −HB

CHP
(c)

]
6 0; ∀c, t, s

(48)

PCHP(c,t,s) − PC
CHP
(c) −

PCCHP(c) − PDCHP(c)

HCCHP(c) −HDCHP(c)

[
HCHP(c,t,s) −HC

CHP
(c)

]
> 0; ∀c, t, s

(49)

PCHP(c,t,s) − PE
CHP
(c) −

PECHP(c) − PFCHP(c)

HECHP(c) −HFCHP(c)

[
HCHP(c,t,s) −HE

CHP
(c)

]
> −

(
1 − σCHP,R1

(c,t,s)

)
M;

∀c, t, s
(50)

PCHP(c,t,s) − PD
CHP
(c) −

PDCHP(c) − PECHP(c)

HDCHP(c) −HECHP(c)

[
HCHP(c,t,s) −HD

CHP
(c)

]
> −

(
1 − σCHP,R2

(c,t,s)

)
M;

∀c, t, s
(51)

HCHP(c,t,s) −HE
CHP
(c,t,s) 6 −

(
1 − σCHP,R1

(c,t,s)

)
M; ∀c, t, s (52)

HCHP(c,t,s) −HE
CHP
(c,t,s) > −

(
1 − σCHP,R2

(c,t,s)

)
M; ∀c, t, s (53)

σCHP,R1
(c,t,s) + σCHP,R2

(c,t,s) = σCHP,UC
(c,t,s) ; ∀c, t, s (54)

0 6 HCHP(c,t,s) 6 HC
CHP
(c) .σCHP,UC

(c,t,s) ; ∀c, t, s (55)

0 6 PCHP(c,t,s) 6 PA
CHP
(c) .σCHP,UC

(c,t,s) ; ∀c, t, s (56)

The start-up and shut-down expanses of CHP units are also presented by Eqs. (57)

and (58), respectively.

SUCCHP(c,t,s) = SU
CHP
(c) .σCHP,SU

(c,t,s) ; ∀c, t, s (57)

SDCCHP(c,t,s) = SD
CHP
(c) .σCHP,SD

(c,t,s) ; ∀c, t, s (58)
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Plus, the constraints of ramp-up, ramp-down, minimum down-time, and mini-

mum up-time can be also presented by Eqs. (59)-(65):

PCHP(c,t,s) − P
CHP
(c,t−1,s) 6 P

CHP,RU
(c)

(
1 − σCHP,SU

(c,t,s)

)
+ PCHP(c) .σCHP,SU

(c,t,s) ; ∀c, t, s

(59)

PCHP(c,t−1,s) − P
CHP
(c,t,s) 6 P

CHP,RD
(c)

(
1 − σCHP,SD

(c,t,s)

)
+ PCHP(c) .σCHP,SD

(c,t,s) ; ∀c, t, s

(60)∑t+UTCHP
(j) −1

h=1 σCHP,UC
(j,h,s) > UTCHP(j) .σCHP,SU

(c,t,s) ; ∀c, t, s (61)∑t+DTCHP
(j) −1

h=1

(
1 − σCHP,UC

(j,h,s)

)
> DTCHP(j) .σCHP,SD

(c,t,s) ; ∀c, t, s (62)

σCHP,UC
(c,t+1,s) − σ

CHP,UC
(c,t,s) 6 σCHP,SU

(c,t+1,s) ; ∀c, t, s (63)

σCHP,UC
(c,t,s) − σCHP,UC

(c,t+1,s) 6 σ
CHP,SD
(c,t+1,s) ; ∀c, t, s (64)

σCHP,UC
(c,t+1,s) − σ

CHP,UC
(c,t,s) 6 σCHP,SU

(c,t+1,s) − σ
CHP,SD
(c,t+1,s) ; ∀c, t, s (65)

3.4.6. TES Constraints

The TES system can be formulated based on the model presented in Ref. [49].

As the heat transferred with the TES is affected by the loss (λloss) and extra (λgain)

heat generation during shutdown and startup times, the actual heat (H(c,t,s)), can

be formulated as Eq. (66).

H(c,t,s) =

Cm∑
c=1

HCHP(c,t,s) − λ
loss.σCHP,SU

(c,t+1,s) + λ
gain.σCHP,SD

(c,t+1,s) ; ∀c, t, s (66)

The feasible heat in the TES (B(c,t,s)) considering the TES efficiency (ηTS) can

be formulated by Eq. (67).

B(c,t,s) = η
TS.B(c,t−1,s) +H(c,t,s) −

Hm∑
i=1

HDE(i,t,s) ; ∀c, t, s (67)

Furthermore, the capacity of TES is bounded in Eq. (68). B(c) and B(c) are

lower and upper thermal capacities of TESs, respectively.

B(c) 6 B(c,t,s) 6 B(c) ; ∀c, t, s (68)

To simulate actual state of TES, ramp-up and ramp-down rates are also taken

into account as Eqs. (69) and (70). B
ch
(c) and B

dch
(c) are the maximum allowed charge

and discharge rates of TES, respectively.
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B(c,t,s) − B(c,t−1,s) 6 B
ch

(c) ; ∀c, t, s (69)

B(c,t−1,s) − B(c,t,s) 6 B
dch

(c) ; ∀c, t, s (70)

3.4.7. HES Constraints

The level of hydrogen stored in the HES at time t is defined by Eq. (71) and

bounded by Eq. (72) due to the storage system potential. The HES, like the TES

and BES, has some boundaries for charging and discharging modes. Eq. (73) shows

the energy state of hydrogen stored in the HES at time t. Eq. (74) ensures that the

amount of active power converted to the hydrogen energy is in its capacity bound-

aries. Similarly, Eq. (75) limits the amount of stored hydrogen energy converted to

the active power. Also, Eq. (76) indicates that the active power cannot be converted

to hydrogen energy and stored hydrogen cannot be converted to active power si-

multaneously.

EHES(h,t,s) = E
HES
(h,t−1,s) + η

P2H.PP2H
(h,t,s) −

(
1
/
ηH2P

)
PH2P
(h,t,s) − P

Hyd,Ind
(h,t,s) ; ∀h, t, s

(71)

EHES(h) 6 EHES(h,t,s) 6 E
HES

(h) ; ∀h, t, s (72)

SOCHES(h,t,s) = E
HES
(h,t,s)/E

HES

(h) ; ∀h, t, s (73)

PP2H
(h) .σP2H

(h,t,s) 6 P
P2H
(h,t,s) 6 P

P2H
(h) .σP2H

(h,t,s) ; ∀h, t, s (74)

PH2P
(h) .σH2P

(h,t,s) 6 P
H2P
(h,t,s) 6 P

H2P
(h) .σH2P

(h,t,s) ; ∀h, t, s (75)

σP2H
(h,t,s) + σ

H2P
(h,t,s) 6 1 ; ∀h, t, s (76)

3.4.8. PEV Aggregator Constraints

The scheduling constraints for PEV aggregators are formulated by Eqs. (77)-

(84). The energy balance of the PEV aggregators is presented by Eq. (77). Eq. (78)

shows the energy state stored in the PEV at time t. Eqs. (79)-(81) indicated the

upper/lower amount of charging/discharging of PEVs. Eq. (82) ensures that each

PEV be in its energy storage capacity. Also, the amount of required stored energy

to provide the driving requests is represented in Eq. (83). Furthermore, Eq. (84)

guarantees the ramp rate value of charging/discharging of PEVs.
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EPEV(v,t,s) = E
PEV
(v,t−1,s) + η

PEV ,ch.PPEV ,ch
(v,t,s) −

(
1
/
ηPEV ,dch

)
.PPEV ,dch

(v,t,s) − YPEV(v) .RQPEV(v,t)

∀v, t, s
(77)

SOCPEV(h,t,s) = E
PEV
(h,t,s)/E

PEV

(h) ; ∀v, t, s (78)

0 6 PPEV ,ch
(v,t,s) 6 P

PEV

(v) .σPEV ,ch
(v,t,s) ; ∀v, t, s (79)

0 6 PPEV ,dch
(v,t,s) 6 P

PEV

(v) .σPEV ,dch
(v,t,s) ; ∀v, t, s (80)

σPEV ,ch
(v,t,s) + σPEV ,dch

(v,t,s) 6 1 ; ∀v, t, s (81)

EPEV(v) 6 EPEV(v,t,s) 6 E
PEV

(v) ; ∀v, t, s (82)

EPEV(v,t,s) − E
PEV
(v) > ηPEV ,dch.YPEV(v) .RQPEV(v,t) ; ∀v, t, s (83)

EPEV(v,t,s) − E
PEV
(v,t−1,s) 6 E

PEV ,RA
(v) ; ∀v, t, s (84)

3.4.9. Heat and Power Balance Constraints

To investigate the reliable decentralized energy management of MEMGs, the

constraint of active power, reactive power, and heat balances between the total

local generation and consumption in each MEMG is required per scenario and per

hour of the scheduling period. Accordingly, the active power, reactive power, and

heat balance constraints at MEMG m at hour t for scenario s can be respectively

represented by Eqs. (85) and (87).∑
Im
PLoad(i,t,s) = P

Grid,Buy
(m,t,s) − PGrid,Sell

(m,t,s)

+
∑
Gm

PMT(g,t,s) +
∑
Cm

PCHP(c,t,s)

+
∑
Em

[
PWT(e,t,s) + P

PV
(e,t,s)

]
+
∑
Hm

[
PH2P
(h,t,s) − P

P2H
(h,t,s)

]
+
∑
Vm

[
PPEV ,dch
(v,t,s) − PPEV ,ch

(v,t,s)

]
+
∑
Lm

[
PEX,UP
(l,t,s) − PEX,DO

(l,t,s)

]
; ∀m, t, s

(85)

∑
Im

QLoad(i,t,s) =
∑
Gm

QMT(g,t,s) ; ∀m, t, s (86)

∑
Im

HLoad(i,t,s) =
∑
Cm

HCHP(c,t,s) ; ∀m, t, s (87)
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4. Case Study Applications

In this paper, the derived model is simulated over a network with three MAS-

based networked MEMGs as illustrated in Figure 6, and the total profit of each

MEMG is maximized over a 24-hour time horizon operation in three different schedul-

ing case studies to accurately investigate the performance of the proposed decen-

tralized approach in the presence of multi-energy storages. Each MEMG includes

the MTs as dispatchable DGs, renewable units as non-dispatchable DGs, CHP units,

PEV aggregators, HESs, and active/reactive power and heat demands. The hourly

forecasted multipliers of the renewable generations are illustrated in Figure 7. The

hourly forecasted multipliers of active power, reactive power, and heat demands are

illustrated in Figure 8. Also, the maximum active power, reactive power, and heat

demands of each node in the network are assumed to be 1 MW, 0.4 MVAR, and 0.33

MWth, respectively. Furthermore, the forecasted values of the day-ahead electricity

market prices, retail-rate prices, and heat prices are represented in Figure 9. Table 2

represents the installed capacity of renewable units containing wind turbines (WTs)

and photovoltaic (PV) systems. Besides, Table 3 represents the location, as well as

technical and economic data of MTs. The techno-economic data of the CHP units

and the feasible operation region data of CHP units are also presented in Tables 4

and 5, respectively. Besides, the characteristics of the TES and the required data

of PEV aggregator are respectively presented in Tables 6 and 7. The location and

data of HESs are shown in Table 8. Figure 10 illustrate the driving requirement

pattern of each PEV. Assumptions of proposed optimization model are represented

in Table 9.

The stochastic decentralized optimization approach of the MAS-based networked

MEMGs is solved applying CPLEX solver under the GAMS 24.8.3 environment. It

should be noted that all above hypotheses are not limited to the adjusted values

and can vary based on any case study.
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Figure 6: Test system with three MAS-based networked MEMGs
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Figure 7: Hourly forecasted multipliers of renewable units
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Figure 8: Hourly forecasted multipliers of active power, reactive power, and heat demands

1 3 5 7 9 11 13 15 17 19 21 23
Time [h]

40

50

60

70

80

90

100

P
ri

ce
 [

$/
M

W
h]

Figure 9: Hourly forecasted values of market prices
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Table 2: Installed capacity and location of renewable units

MEMG # Location Type Capacity (MW)

MEMG 1

Node 04 WT 0.5

Node 11 PV 1.0

Node 14 WT 2.5

Node 17 PV 1.5

MEMG 2

Node 22 WT 2.0

Node 24 PV 1.5

Node 29 PV 2.5

MEMG 3
Node 34 PV 1.5

Node 36 WT 1.0

Table 3: Location, technical, and economic data of MTs

MEMG # Location a ($/MW) b ($/MW) P
MT

(MW) Q
MT

(MVAR) PMT, RU/RD (MW) QMT, RU/RD (MVAR)

MEMG 1

Node 02 13.325 38.96 6 3 2.0 1.5

Node 06 12.349 27.98 6 3 2.0 1.5

Node 12 26.802 31.02 12 7 4.0 2.5

MEMG 2
Node 19 10.784 32.93 8 5 3.0 2.5

Node 25 17.922 10.03 8 5 2.0 3.0

MEMG 3 Node 33 12.974 10.05 8 4 3.0 2.0

Table 4: Location and techno-economic data of CHP units

MEMG # Location φCHP, 1 φCHP, 2 φCHP, 3 ψCHP, 1 ψCHP, 2 ψCHP, 3 PCHP, RU PCHP, RD UTCHP DTCHP

MEMG 1
Node 09 0.035 36 12.5 0.027 1.6 0.011 4.94 4.94 3 3

Node 15 0.044 14.5 26.5 0.03 4.2 0.031 2.14 2.14 3 3

MEMG 2 Node 23 0.038 25 17 0.019 3.7 0.039 3.02 3.02 3 3
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Table 5: Feasible operation region data of CHP units (MW/MWth)

MEMG # Location PACHP PBCHP PCCHP PDCHP PECHP PFCHP HACHP HBCHP HCCHP HDCHP HECHP HFCHP

MEMG 1
Node 09 4.94 4.3 1.62 1.98 0 0 0 3.6 2.09 0 0 0

Node 15 2.14 2.14 1.87 0.68 0.75 0.75 0 0.55 2.64 1.27 0.27 0

MEMG 2 Node 23 3.02 3.02 2.64 0.96 1.06 1.06 0 0.78 3.73 1.8 0.38 0

Table 6: Characteristics of the TES (MWth)

MEMG # Location B
ch
(c) B

dch
(c) B(c) B(c)

MEMG 1
Node 09 1.20 1.20 2.4 0

Node 15 0.90 0.90 1.8 0

MEMG 2 Node 23 1.25 1.25 2.5 0

Table 7: Characteristics of the TES (MWth)

MEMG # Location P
PEV

E
PEV

EPEV Number of Available PEVs

MEMG 1
Node 08 1.200 1.200 0.1200 4

Node 13 1.125 1.125 0.1125 3

MEMG 2 Node 20 1.425 1.425 0.1425 4

MEMG 3 Node 35 0.750 0.750 0.0750 2

Table 8: Location and data of HESs (MW)

MEMG # Location P
P2H

PP2H P
H2P

PH2P E
HES

EHES

MEMG 1
Node 08 0.20 0.04 0.20 0.04 0.60 0.12

Node 13 0.30 0.06 0.30 0.06 0.90 0.18

MEMG 2 Node 20 0.30 0.06 0.30 0.06 1.00 0.20

MEMG 3 Node 35 0.15 0.03 0.15 0.03 0.50 0.10
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Figure 10: Forecasted values of driving requirement of each PEV

Table 9: Assumptions of proposed optimization model

Variable Value Variable Value Variable Value

Power Base 10 MVA YPEV
(v) 0.45 kWh/km ηTES 0.99

P
EX
(l) 10 MW µPEV

(t) 30 $/MWh ηPEV, ch 0.95

P
GR
(m) 10 MW µ

Hyd, Char
(t) 2 $/MWh ηPEV, dch 0.95

PMT
(g) / Q

MT
(g)

0 MW/MVAR µ
Hyd, Sell
(t) 55 $/MWh ηP2H 0.80

SUCHP 0 $ λloss 0.60 λloss 0.60

SDCHP 0 $ λgain 0.30 z 10

In this paper, three different scheduling case studies are defined for a more

detailed analysis of the simulation results of the decentralized bi-level optimization

approach as follows:

• CS1: Case without HESs with PEVs

• CS2: Case with HESs without PEVs

• CS3: Case with both HESs and PEVs
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4.1. Numerical Results of MTs

Figures 11-13 illustrate the active power output of MTs in a 24-hour scheduling

interval of the networked MEMGs in CS1-CS3, respectively. Comparing Figures 11

and 12 with Figure 13, it can be seen that the amount of total active power gen-

eration of MTs in off-peak hours in CS3 is increased very little compared to CS1,

while is increased considerably compared to CS2. The total active power output of

MTs in MEMG1 is approximately enhanced in CS3, while the total MT outputs in

other MEMGs are almost unchanged compared to CS1 and CS2. Furthermore, the

existing MTs in MEMG2 are off in all case studies. Accordingly, it can be mentioned

that MEMGs need more energy to provide distance requirement of PEVs. Besides,

the HES has little effect on the active power generation of MTs. Furthermore, the

strategy of implementing power generation ramp-rates in the proposed approach

deserves very well in such a manner that the ramp-rates of each MT between two

scheduling hours are in their allowed value.
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Figure 11: Active power output of MTs in CS1
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Figure 12: Active power output of MTs in CS2
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Figure 13: Active power output of MTs in CS3

4.2. Numerical Results of CHP Units and TESs

Figures 14-16 indicate the power and heat outputs of CHP units, and the value

of heat storage of the TESs in CS1-CS3, respectively. As illustrated in Figure 6,

the location of the CHP units and TESs are defined to be the same. Accordingly,

the constraints of heat energy transmission are not taken into account. It can be

seen from Figure 16 that the amount of power outputs of CHP units in CS3 almost

remains unchanged compared to CS1, while reduced at hours 16 and 17 compared

to CS2. Also, the total heat generation of CHP units and heat stored in TESs per hour

is equal for all case studies. In general, the total amount of power/heat outputs of

CHP units and total amount of heat storage in TESs are the same in all case studies.

This means that the related optimization of the heating agent in the proposed MAS

is independent of the hydrogen and transportation agents.
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(a) Power outputs of CHP units
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(b) Heat outputs of CHP units
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(c) Heat storage of TESs

Figure 14: Equipment output in CS1 (a) CHP power, (b) CHP heat, (c) TESs heat stored
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(a) Power outputs of CHP units
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(b) Heat outputs of CHP units
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(c) Heat storage of TESs

Figure 15: Equipment output in CS2 (a) CHP power, (b) CHP heat, (c) TESs heat stored
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(a) Power outputs of CHP units
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(b) Heat outputs of CHP units
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(c) Heat storage of TESs

Figure 16: Equipment output in CS3 (a) CHP power, (b) CHP heat, (c) TESs heat stored
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4.3. Numerical Results of PEV Aggregators

The state of charge (SoC) of PEV aggregators in CS1 and CS3 are shown in Fig-

ures 17 and 18, respectively. It can be seen that amount of charging/discharging

of PEVs is equal for both CS1 and CS3, however, the charging/discharging patterns

are different. More charging/discharging is done in the CS1 because if there are

HESs, less number of charge/discharge of PEVs is needed. The value of charg-

ing/discharging for both cases are equal to 6.26 MW, 5.51 MW, 7.37 MW, and 3.68

MW for PEV aggregators at nodes 8, 13, 20, and 35, respectively. This means that

the transportation agent in the proposed MAS is independent of the hydrogen agent.
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Figure 17: State of charge of PEV aggregators in CS1
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Figure 18: State of charge of PEV aggregators in CS3
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4.4. Numerical Results of HESs

The SoC of the HES in CS2 and CS3 are presented in Figures 19 and 20, respec-

tively. It can be seen that the amount of charging/discharging of HESs in CS2 is

more than CS3. Thus, if there are PEVs, less amount of charge/discharge of HESs is

required. it is worth noting that both P2H and the hydrogen delivery to the industry

are affect the SoC of HESs. Also, based on the non-economic characteristic of the

hydrogen energy returned to the network as the electrical form (H2P), the value of

H2P in FCs is low for each HES in both CS2 and CS3.
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Figure 19: State of charge of HESs in CS2
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Figure 20: State of charge of HESs in CS3
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The amount of hydrogen energy delivered to the industry in CS2 and CS3 are

presented in Figures 21 and 22, respectively. The amounts of hydrogen energy de-

livered to the industry are obtained based on the interactions between the electricity

and hydrogen agents in the proposed MAS framework. It can be mentioned that

the amounts of hydrogen energy delivered to the industry in CS3 is 785 kW, equiva-

lent to 20%, more than CS2 over a 24-hour scheduling. This means that PEVs have

played an important role in increasing hydrogen energy delivery to the industry.
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Figure 21: Amount of hydrogen energy delivered to the industry in CS2
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Figure 22: Amount of hydrogen energy delivered to the industry in CS3
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4.5. Numerical Results of Power Exchanges

Figures 23-25 illustrate the active power exchanges among MEMGs and main

grid in CS1-CS3, respectively. It should be mentioned that the positive values

demonstrate that active power is exchanged from MEMG2 to MEMG1, MEMG3 to

MEMG1, MEMG3 to MEMG2, and main grid to entire networked MEMGs. It can be

seen from Figures 23-25 that the active power is exchanged only between MEMG1

to MEMG2, and from the main grid to MEMG1 in all case studies. This means

that TL1 and TL3 switches are off during a 24-hour scheduling interval in all case

studies. The total power exchange among the networked MEMGs in CS3 (Figure

25) is enhanced compared to CS1 (Figure 23). Also, the total power exchange in

CS2 (Figure 24) is increased only at hours 1 and 2, while reduced at other hours

compared to CS3. This means that utilizing multi-energy storage systems have an

important role in increasing power exchanges among the networked MEMGs.
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Figure 23: Active power exchanges between MEMGs and main grid in CS1
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Figure 24: Active power exchanges between MEMGs and main grid in CS2
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Figure 25: Active power exchanges between MEMGs and main grid in CS3

To investigate in more detail how the active power exchanges are converged, the

values of the power exchanges among the MEMGs in the iterations at hour 18 as an

example are illustrated for CS1-CS3 in Figures 26-28, respectively. It can be realized

from comparison of Figures 26-28 that all MEMGs want to sell active power to other

MEMGs at the early iterations. After seven iterations, the negotiations between all

MEMGs are achieved in all case studies.
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Figure 26: Active power exchange convergence between MEMGs at hour 18 in CS1
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Figure 27: Active power exchange convergence between MEMGs at hour 18 in CS2
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Figure 28: Active power exchange convergence between MEMGs at hour 18 in CS3
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4.6. Numerical Results of Voltage Magnitude

The voltage of the nodes on a 24-hour scheduling of MEMGs in CS1-CS3 are

shown in Figures 29-31, respectively. It is clear that all voltage values are in their

allowed deviation limit for all case studies. It can be seen from Figures 29-31 that

the voltage regulation in CS2 and CS3 are almost the same and are generally more

favorable than values in CS1. This means that implementing HESs in the MEMG

model has played an effective role in regulating the voltage level, while the employ-

ment of PEVs has been almost unaffected.

Figure 29: Voltage magnitude of nodes in CS1

Figure 30: Voltage magnitude of nodes in CS2
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Figure 31: Voltage magnitude of nodes in CS3

4.7. Numerical Results of Penalty Prices

The hourly calculated penalty prices to achieve an agreement among the net-

worked MEMGs in all case studies are illustrated in Figure 32. As it is obvious from

Figure 32, the penalty price in CS1 and CS2 at hours 12 and 13 is higher than CS3.

Also, the calculated penalty prices are reduced at peak hours in all case studies.

This means that there is less disparity between MEMGs to exchange power during

peak hours when the HESs are considered in the model, while the employment of

PEVs has almost no effect on the penalty prices.
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Figure 32: Hourly calculated penalty price in all case studies
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4.8. Numerical Results of Operation Costs and Revenues

According to the objective function formulated by Eq. (13), the operational ex-

penses, revenues, and total profits of each MEMGs and the entire networked sys-

tem are illustrated in details in Tables 10-12 at a 24-hour scheduling interval for

CS1-CS3, respectively. Besides, the total profit of each MEMGs and the entire net-

worked system for the deterministic optimization approach is also presented for all

case studies as a detailed comparison of the proposed stochastic optimization strat-

egy. As it is clear from Tables 10-12, the total profit of each MEMGs and the entire

networked system for the stochastic optimization strategy is higher than the deter-

ministic approach in all case studies. Furthermore, the total profit of the networked

MEMGs for the stochastic optimization strategy in CS3 is $630.5 higher than CS1

and $688.268 higher than CS2. It can be also seen from Tables 10-12 that the rev-

enues of selling electricity and heat to consumers, and driving requirements of PEVs

in all case studies remain unchanged.

Table 10: Detailed cost and revenue results in CS1

Optimization Approach Detail ($) MEMG1 MEMG2 MEMG3 Networked MEMGs

Stochastic RLoad 24704.064 16469.376 8234.688 49408.128

RCHP 2286.218 1371.598 0 3657.816

RPEV 817.182 510.739 255.37 1583.291

C PEV 342.772 214.538 106.819 664.129

C CHP 5820.57 2259.072 0 8079.642

C EX 982.81 -982.81 0 0

C MT 1740.42 0 1312.346 3052.766

C GR 620.098 0 0 620.098

RGR 0 0 0 0

Total Profit 18300.795 16860.913 7070.893 42232.601

Deterministic Total Profit 18191.645 15054.386 7049.7437 40295.775
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Table 11: Detailed cost and revenue results in CS2

Optimization Approach Detail ($) MEMG1 MEMG2 MEMG3 Networked MEMGs

Stochastic RLoad 24704.064 16469.376 8234.688 49408.128

RCHP 2286.218 1371.598 0 3657.816

RHES 328.75 288 144 760.75

C HES 16.44 14.4 7.2 38.04

C CHP 5836.754 2229.265 0 8066.019

C EX 973.753 -973.753 0 0

C MT 1645.675 0 1311.555 2957.23

C GR 590.672 0 0 590.672

RGR 0 0 0 0

Total Profit 18255.737 16859.063 7060.033 42174.833

Deterministic Total Profit 18146.855 15052.734 7038.916 40240.656

Table 12: Detailed cost and revenue results in CS3

Optimization Approach Detail ($) MEMG1 MEMG2 MEMG3 Networked MEMGs

Stochastic RLoad 24704.064 16469.376 8234.688 49408.128

RCHP 2286.218 1371.598 0 3657.816

RPEV 817.182 510.739 255.37 1583.291

RHES 378 288 144 810

C PEV 342.744 214.538V 106.847 664.129

C HES 18.4 14.4 7.2 40

C CHP 5841.616 2256.364 0 8097.98

C EX 1241.426 -1241.426 0 0

C MT 1766.063 0 1359.066 3125.129

C GR 668.898 0 0 668.898

RGR 0 0 0 0

Total Profit 18300.795 16860.913 7070.893 42232.601

Deterministic Total Profit 18191.645 15054.386 7049.743 40295.775
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4.9. Numerical Results of Diverse Network Topologies

For the sake of a detailed analysis, the results of the proposed approach as the

base value, is compared with diverse switch status forms of the network topology

for CS1-CS3 in Tables 13-15, respectively. It can be seen that the total profit of

networked MEMGs in all switch status forms are equal to the base values for all case

studies. This means that the networked MEMGs using the proposed approach are

converged in the same profit, but with a difference that the profit of each MEMG has

slightly changed in its independent operation. As a result, the proposed approach

has the necessary merit to operate MEMGs in diverse topologies.

Table 13: Total profit changes with diverse switch statuses compared to the proposed topology in CS1

Switch Status Total Profit Changes (%)

TL12 TL13 TL23 MEMG 1 MEMG 2 MEMG 3 Networked MEMGs

" " " Base Value I Base Value II Base Value III Total Value

" " $ No Change No Change No Change No Change

" $ " No Change No Change No Change No Change

$ " " -0.21 -0.76 +2.35 No Change

" $ $ No Change No Change No Change No Change

$ " $ -0.67 +0.66 +0.16 No Change

$ $ " -0.61 +0.22 +1.05 No Change

$ $ $ -0.61 +0.66 No Change No Change

Table 14: Total profit changes with diverse switch statuses compared to the proposed topology in CS2

Switch Status Total Profit Changes (%)

TL12 TL13 TL23 MEMG 1 MEMG 2 MEMG 3 Networked MEMGs

" " " Base Value I Base Value II Base Value III Total Value

" " $ No Change No Change No Change No Change

" $ " No Change No Change No Change No Change

$ " " -0.43 -1.68 +5.12 No Change

" $ $ No Change No Change No Change No Change

$ " $ -1.24 +1.05 +0.69 No Change

$ $ " -0.97 +0.38 +1.60 No Change

$ $ $ -0.97 +1.05 No Change No Change
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Table 15: Total profit changes with diverse switch statuses compared to the proposed topology in CS3

Switch Status Total Profit Changes (%)

TL12 TL13 TL23 MEMG 1 MEMG 2 MEMG 3 Networked MEMGs

" " " Base Value I Base Value II Base Value III Total Value

" " $ No Change No Change No Change No Change

" $ " No Change No Change No Change No Change

$ " " -0.59 - 2.39 +7.32 No Change

" $ $ No Change No Change No Change No Change

$ " $ -1.64 +1.52 +0.51 No Change

$ $ " -1.44 +0.53 +2.29 No Change

$ $ $ -1.44 +1.52 No Change No Change

5. Conclusion

In this paper, a novel structure for MAS-based networked MEMGs (including

power, heat, and hydrogen energy carriers) was proposed considering CHP units,

TES, PEVs aggregators, and HESs to meet the diverse energy consumers. Also, a

novel flexible decentralized bi-level stochastic optimization approach based on the

progressive hedging algorithm was introduced for the proposed structure consider-

ing power, heat, and hydrogen energy supplier and consumers. The P2H and H2P

facilities were also utilized along with the HES to increase the overall profit and

efficiency of the multi-agent networked multi-energy microgrids and consider the

hydrogen-based consumers and industry. The LHS method was selected to handle

the related uncertainty of the renewable units, active/reactive power and heat con-

sumptions, and distance requirements of PEVs. Also, a novel penalty function was

developed for the convergence of the agreed energy exchanges among the multi-

agent networked multi-energy microgrids taking into account the self-sufficiency

of each agent. The derived model was simulated over a multi-agent system with

three microgrids maximizing the total profit of each microgrid over a 24-hour time

horizon operation.

One of the main advantages of the proposed framework is that connecting a new

agent with specific attributes to the proposed networked MEMGs is feasible due to
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the configurability feature of the proposed optimization algorithm. In addition,

the agent’s objectives, tasks and accessibility to other agent’s data can be modified

during the MAS-based network operation. Besides, the scalability feature allows

the integration of new loads, generations and agents without affecting the simplicity

and computational process of the proposed modified progressive hedging algorithm.

According to the main achievements of the result section with three diverse case

studies, it can be concluded that:

• Each agent in the proposed structure of MEMGs were self-sufficient in the

scheduling optimization problem in such a way that electricity and heat-

ing agents were self-determining of the transportation and hydrogen-based

agents’ performance in all case studies;

• Utilizing the conversion facilities plays a crucial role in enhancing total profit

of MEMGs and improving the reliability performance of MAS-based structure;

• A reliable MAS-based framework can be achieved through a little data ex-

change, which protect the data privacy of agents belonging to different stake-

holders.;

• The optimal scheduling of the networked MEMGs using the proposed opti-

mization approach were converged in the same profit for the diverse network

topologies considering diverse tie-line switch forms, but with this difference

that the profit of each MEMGs had slightly varied in its self-scheduling opti-

mization;

• Finally, the proposed bi-level optimization approach, by converging through

seven iterations, showed an effective performance as a promising solution to

a decentralized framework. Also, the proposed optimization approach could

contribute to more efficient market operation for multi-stakeholder MEMGs.

Based on the proposed MAS-based framework of the networked MEMGs, occur-

rence of emergency situation and general strategies for enhancing the flexibility of

the DSs in response to the proposed local optimization in each MEMG can be studied

in future researches. Furthermore, the self-healing concepts can also be proposed

to investigate the interconnection and flexibility enhancement capabilities of the

networked MEMGs toward an intelligent emergency operation.
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