
Decentralized Coded Caching with Distinct

Cache Capacities

Mohammad Mohammadi Amiri, Qianqian Yang, Deniz Gündüz

Electrical and Electronic Engineering Department, Imperial College London

Email: {m.mohammadi-amiri15, q.yang14, d.gunduz}@imperial.ac.uk

Abstract—Decentralized coded caching is studied for a content
server with N files, each of size F bits, serving K active users,
each equipped with a cache of distinct capacity. It is assumed that
the users’ caches are filled in advance during the off-peak traffic
period without the knowledge of the number of active users, their
identities, or the particular demands. User demands are revealed
during the peak traffic period, and are served simultaneously
through an error-free shared link. A new decentralized coded
caching scheme is proposed for this scenario, and it is shown
to improve upon the state-of-the-art in terms of the required
delivery rate over the shared link, when there are more users in
the system than the number of files. Numerical results indicate
that the improvement becomes more significant as the cache
capacities of the users become more skewed.

Index Terms—Decentralized coded caching, network coding,
proactive caching.

I. INTRODUCTION

The ever-increasing mobile data traffic has imposed a great

challenge on the current network architectures. The growing

demand is typically addressed by increasing the achievable

data rates; however, moving content to the network edge has

recently emerged as a promising alternative solution as it

reduces both the bandwidth requirements and the delay. The

use of edge caching is further motivated by the continuous

drop in the cost of memory. In this paper, we consider an

extreme form of edge caching, in which contents are stored

directly at user terminals in a proactive manner. Proactive

caching of popular content during off-peak traffic periods also

helps flattening the high temporal variability of traffic. [1], [2].

Proactive caching is performed in two phases: The place-

ment phase takes place during off-peak traffic hours, when the

resources are abundant, and the users’ caches are filled by the

server without knowing the future user demands. When the

user demands are revealed, the delivery phase is performed,

in which a common message is transmitted from the server

to all the users over the shared communication channel. Each

user decodes its requested file by combining the bits received

in the delivery phase with the contents of its local cache. The

goal is to minimize the delivery rate, which guarantees that

all the user demands are satisfied, independent of the demand

combination of the users.

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement 690893, project
TACTILENet: Towards Agile, effiCient, auTonomous and massIvely LargE
Network of things.

Research on caching over the past decade has mainly

focused on the placement phase in order to identify the most

popular contents to be cached locally at user terminals [3],

[4]. Recently, coded caching scheme was introduced in [5]

for proactive caching, and it is shown that by storing and

transmitting coded contents, and designing the placement and

delivery phases jointly, it is possible to significantly reduce

the delivery rate compared to uncoded caching.

A centralized caching scenario is studied in [5], in which the

number and the identities of the users are known in advance

by the server. This allows coordination of the cache contents

across the users during both the placement and delivery phases;

such that, by carefully placing pieces of contents in user

caches, a maximum number of multicasting opportunities are

created for tranmission during the delivery phase. Several other

recent work has considered centralized coded caching, and the

required delivery rate has been further reduced [6], [7], [8].

In practice, however, the number or the identity of active

users that will participate in the delivery phase might not be

known in advance during the placement phase. In such a sce-

nario, called decentralized coded caching, coordination across

users is not possible during the placement phase. However,

Maddah-Ali and Niesen proposed a scheme that randomly

caches parts of each content at each user, and can still exploit

multicasting opportunities in the delivery phase, albeit limited

compared to the centralized setting [9]. Decentralized coded

caching has been studied in various other settings, e.g., files

with different popularities [10], [11], and distinct lengths [12],

online caching [13], etc.

Most of the existing literature on coded caching assume

identical cache sizes across users. Recently, in [14] decen-

tralized caching to users with heterogeneous cache sizes is

studied, and by extending the scheme proposed in [9] to this

scenarios, authors have shown that significant gains can still

be obtained compared to uncoded caching. In this paper, we

propose a novel decentralized caching algorithm for users with

distinct cache capacities. We show that the proposed scheme

requires a smaller delivery rate than the one achieved in [14].

The simulation results illustrate that the improvement in the

delivery rate is more significant when the distribution of the

cache capacities across users is more skewed.

The rest of this paper is organized as follows. The system

model is introduced in Section II. In Section III, we introduce

the proposed coded caching scheme, analyze its performance

in terms of the delivery rate. The performance of the proposed

caching scheme is compared with the state-of-the-art result,

and some numerical results are presented in Section IV. We

conclude the paper in Section V.

Notations: The set of integers {1, ...,K} is denoted by

[1 : K]. Notation ⊕ illustrates the bitwise XOR operation. For

two sets Q and P , Q\P is a set including the members of

Q and excluding the members of P . Notation |.| represents

cardinality of a set or length of a file. We use the notation

⊕̄ to represent the bitwise XOR operation between binary

sequences with different lengths. The arguments of ⊕̄ are first

zero-padded to have the same length as the longest argument,

and then they are bitwise XOR-ed.

II. SYSTEM MODEL

A server with N independent F -bit files, W1, ...,WN ,

is considered, where each file is assumed to be uniformly

distributed over
[

1 : 2F
]

. There are K active users, U1, ..., UK ,

where user Uk is equipped with a cache of capacity MkF bits,

with Mk ≤ N , ∀k. We denote the cache capacities by vector

µ , (M1, . . . ,MK). Let Zk denote the contents of Uk’s cache

at the end of the placement phase. Unlike in centralized coded

caching [5], cache contents are independent of the number of

users, their identities, or the user requests. User requests are

revealed after the placement phase, where dk ∈ [1 : N] denotes

the file requested by user Uk, k = 1, . . . ,K. User demands are

served simultaneously through an error-free shared link. Let

X denote the RF -bit message transmitted over the shared link

by the server to enable each user Uk to decode its requested

file Wdk
, together with its local cache content. Our goal is

to characterize the minimum rate R(µ); such that, each user

can decode its desired file with arbitrarily small probability of

error, independent of the particular demand combination.

III. DECENTRALIZED CODED CACHING

We first illustrate our decentralized coded caching scheme

on the following example.

Example 1. Consider a caching system with N = 2 files

W1 and W2, and K = 4 users. It is assumed that the cache

capacity of user Uk is Mk = (1/2)
4−k

M , ∀k ∈ [1 : 4].
In the placement phase, user Uk caches a random MkF/2

bits of each file independently. Since there are N = 2 files in

the database, a total of MkF bits are cached by user Uk.

When N < K, it can be shown that the worst-case user

demands happens when N users with the smallest cache

capacities have different requests. For this particular example,

we have M1 ≤ · · · ≤ M4, and the worst-case happens when

users U1 and U2 request distinct files. Hence, we can assume

the worst-case demand combination of dk = 1, if k = 1, 3,

and dk = 2, otherwise.

The contents served in the delivery phase are divided into

three distinct parts, where Xi is delivered in part i, for i =
1, 2, 3. Thus, the common message is X = (X1, X2, X3). We

further divide the message X2 into three pieces X1
2 , X2

2 , and

X3
2 . Below, we explain the purpose of each part in detail.

Part 1: In the first part of the delivery phase, the bits

of each requested file which have not been cached

by any user are directly delivered by the server. The

following contents are delivered in this part. X1 =
(

W1,{∅},W2,{∅}

)

.

Part 2: The bits of the file requested by a user having

been cached by another user are transmitted in the second

part of the delivery phase. The server first delivers each

user the bits of its requested file which are in the cache of

one user with the same request. Then, each user receives

the bits of its requested file which are in the cache of

a single user with different request. By delivering the

following contents, user Uk can obtain the bits of file

Wdk
having been cached in user Ul, for k, l ∈ [1 : 4],

such that l 6= k. X1
2 =

(

W1,{3} ⊕̄ W1,{1}, W2,{4} ⊕̄
W2,{2}

)

, X2
2 =

(

W1,{4} ⊕̄ W1,{2}, W2,{3} ⊕̄ W2,{1}

)

,

X3
2 =

(

W1,{2} ⊕̄ W2,{1}

)

.

Part 3: In the last part, the server delivers the users the

bits of their requested files which have been cached by

more than one another user. Accordingly, each user Uk,

∀k ∈ [1 : 4], can obtain all the bits of file Wdk
which

are in the cache of users in any set S ⊂ [1 : 4] \ {k},

where |S| ≥ 2, after receiving the following contents.

X3 =
(

W1,{2,3} ⊕̄ W2,{1,3} ⊕̄ W1,{1,2}, W1,{2,4} ⊕̄
W2,{1,4} ⊕̄ W2,{1,2}, W1,{3,4} ⊕̄ W1,{1,4} ⊕̄ W2,{1,3},

W2,{3,4} ⊕̄ W1,{2,4} ⊕̄ W2,{2,3}, W1,{2,3,4} ⊕̄ W2,{1,3,4}

⊕̄ W1,{1,2,4} ⊕̄ W2,{1,2,3}

)

.

After these parts, each user can decode all the missing bits of

its desired file. To find the delivery rate, we first note that, by

the law of large number, the length of the subfile Wk,V , for

any set V ⊂ [1 : K], is approximately given by

|Wk,V | ≈
∏

i∈V

(

Mi

2

)

∏

j∈[1:4]\V

(

1−
Mj

2

)

F, ∀k ∈ [1 : K] .

(1)

For the example under consideration, when M = 1, i.e.,

µ = {1/8, 1/4, 1/2, 1}, the delivery rate is 1.758, while the

delivery rate of the scheme proposed in [14] for this setting is

2.681. Hence, the proposed scheme provides 34.43% reduction

in the delivery rate compared to the state-of-the-art result for

this example.

A. Placement Phase

Since the active users are not known in advance in the

decentralized setting, cache contents cannot be coordinated

among the users. Similarly to the placement phases of the the

decentralized coded schemes in the literature [9], [14], user

Uk caches a random MkF/N bits of each file independently,

for k = 1, ...,K. Since N files are hosted in the database, a

total of MkF bits are cached by each user Uk, and hence, the

corresponding cache-capacity constraint is satisfied.

For any set V ⊂ [1 : K], let Wi,V represent the bits of file

Wi that have been exclusively cached by the users in set V
at the end of the placement phase, i.e., Wi,V ⊂ Zk, ∀k ∈ V ,

and Wi,V ∩ Zk = ∅, ∀k ∈ [1 : K] \V .

B. Delivery Phase

User demands are revealed at the beginning of the delivery

phase. Without loss of generality, we re-label the users such

that the first K1 users, referred to as group G1, have the same

request W1, the next K2 users, group G2, request file W2, and

so on so forth. For notational convenience, we define Si
∆
=

i
∑

l=1

Kl. Therefore, the user demands are as follows:

dk = i, for i = 1, ..., N, and k = Si−1 + 1, ..., Si, (2)

where we set S0 = 0. We further order the users within a

group according to their cache sizes, and assume, without loss

of generality, that MSi−1+1 ≤ MSi−1+2 ≤ · · · ≤ MSi
, for

i = 1, . . . , N .

The proposed delivery phase is presented in Algorithm

1. For any general demand combination described above,

the delivery phase presented in Algorithm 1 contains two

procedures CODED DELIVERY and RANDOM DELIVERY,

and in each case the server chooses the one with the smaller

delivery rate. Below, we explain these two procedures in detail.

The CODED DELIVERY procedure includes three distinct

parts, where the content delivered in part i is denoted by Xi,

i = 1, 2, 3, and the common message X = (X1, X2, X3) is

sent to all the users during the delivery phase. The message

transmitted in part 2, X2, is further divided into three pieces

X1
2 , X2

2 , and X3
2 , i.e., X2 =

(

X1
2 , X

2
2 , X

3
2

)

. Based on the

aforementioned placement phase, the main motivation of the

CODED DELIVERY procedure is to enable each user to

recover the missing bits of its requested file which have been

cached by i other users, ∀i ∈ {0, ...,K − 1}.

In Part 1 of the this procedure, each user receives the bits

of its requested file which have not been cached by any user.

The purpose of Part 2 is to enable each user to obtain all the

missing bits of its request that have been cached by another

single user. First, consider the message X1
2 . For i = 1, ..., N ,

each user k ∈ [Si−1 + 1 : Si] (i.e., Uk ∈ Gi), has access to

bits Wi,{k} locally in its cache, and with X1
2 it can decode

all the pieces Wi,{l}, ∀l ∈ [Si−1 + 1 : Si], i.e., the bits of its

demand Wi, which are in the cache of another user in the

same group, and no other user. Delivering the messages X2
2

and X3
2 together helps the users to decode the bits of their

requested files having been cached by a single user in other

groups; that is, after receiving
Sj−1
⋃

k=Sj−1+1

(

Wi,{k}⊕̄Wi,{k+1}

)

,

Si−1
⋃

k=Si−1+1

(

Wj,{k}⊕̄Wj,{k+1}

)

, and Wi,{Sj−1+1} ⊕̄

Wj,{Si−1+1}, the users in both groups Gi and Gj can

obtain the missing bits of their requested files that have been

cached by a user in another group, for i = 1, ..., N − 1
and j = i + 1, ..., N (and no other user). Note that, having

received X2
2 , the third message Wi,{Sj−1+1} ⊕̄ Wj,{Si−1+1}

is the smallest number of bits (based on the assumption

MSl−1+1 ≤ MSl−1+2 ≤ · · · ≤ MSl
, ∀l ∈ [1 : N]) that enable

all the users in both groups Gi and Gj to obtain the missing

bits of their desired files that are in the cache of users in the

other group, for i = 1, ..., N − 1 and j = i+ 1, ..., N .

Part 3 of our algorithm is the same as the delivery phase

proposed in [14, Algorithm 2], and it is performed to send the

Algorithm 1 Coded Delivery Phase

1: procedure CODED DELIVERY

2: Part 1: Delivering bits that are not in the cache of any

user

3: for i = 1, 2, . . . , N do

4: X1 =
(

WdSi−1+1,{∅}

)

5: end for

6: Part 2: Delivering bits that are in the cache of only

one user

7: X1
2 =

(

N
⋃

i=1

Si−1
⋃

k=Si−1+1

(

Wi,{k}⊕̄Wi,{k+1}

)

)

8: X2
2 =

N−1
⋃

i=1

N
⋃

j=i+1

(

Sj−1
⋃

k=Sj−1+1

(

Wi,{k}⊕̄Wi,{k+1}

)

,

Si−1
⋃

k=Si−1+1

(

Wj,{k}⊕̄Wj,{k+1}

)

)

9: X3
2 =

(

N−1
⋃

i=1

N
⋃

j=i+1

Wi,{Sj−1+1}⊕̄Wj,{Si−1+1}

)

10: Part 3: Delivering bits that are in the cache of more

than one user

11: for i = 1, 2, . . . ,K − 2 do

12: for j = 2, 3, . . . ,K − i do

13: for V ⊂ [i+ 1 : K] : |V | = j do

14: X3 =

((

⊕̄
v∈V

Wdv,{V,i}\{v}

)

⊕̄Wdi,V

)

15: end for

16: end for

17: end for

18: end procedure

19: procedure RANDOM DELIVERY

20: for i = 1, 2, . . . , N do

21: server sends enough random linear combinations

of the bits of file Wi to enable the users demanding it to

dedcode it.

22: end for

23: end procedure

users the missing bits of their requests that have been cached

by more than one user.

Finally, in the RANDOM DELIVERY procedure, as in the

DELIVERY procedure of [9], the server transmits enough

random linear combinations of the bits of file Wi to the users

in group Gi to make sure they all can decode the file, for

i = 1, . . . , N .

C. Delivery Rate Analysis

In the following, we evaluate the delivery rate of the

proposed caching scheme for the worst-case user demands.

Consider first the case N ≥ K. It can be argued in this

case that the worst-case user demands happens if each file is

requested by at most one user. Hence, by re-ordering the users,

for the worst-case user demands, we have Ki = 1, for 1 ≤ i ≤
N , and Ki = 0, otherwise. In this case, it can be shown that

the CODED DELIVERY procedure requires a lower delivery

rate than the RANDOM DELIVERY procedure; hence, the

server uses the former. In this case, it is possible to simplify

the CODED DELIVERY procedure such that, only message

X3
2 is transmitted in Part 2, when N ≥ K, i.e., X2 = X2

3 .

The corresponding common message, X =
(

X1, X
3
2 , X3

)

,

transmitted over the CODED DELIVERY procedure, reduced

to the delivery phase of [14, Algorithm 2]. Thus, the proposed

scheme achieves the same delivery rate as [14, Algorithm 2]

when N ≥ K.

Next, we consider the case N < K. It is possible to show

that the worst-case user demands in this case happens when

N users with the smallest cache capacities all request different

files, i.e., they end up in different groups. The delivery rate

of the proposed delivery phase when N < K is presented in

the following theorem. The proof of the worst-case demand

distribution as well as Theorem 1 are skipped due to space

limitations; however, they can be found in the longer version

of the paper in [15].

Theorem 1. In a decentralized caching system with N files

in the database, each of size F bits, and K users with cache

capacities µ = {M1, ...,MK}, such that M1 ≤ M2 ≤ · · · ≤
MK , the following delivery rate-cache capacity trade-off is

achievable when N < K:

Rc (µ) =min







K
∑

i=1





i
∏

j=1

(

1−
Mj

N

)





−∆R1 (µ)−∆R2 (µ) ,

N
∑

i=1

(

1−
Mi

N

)

}

, (3)

where

∆R1 (µ) = (K −N)

K
∏

l=1

(

1−
Ml

N

)

, (4a)

∆R2 (µ) =

[

K−N
∑

k=1

(

(k − 1)Mk+N

N −Mk+N

)

]

K
∏

l=1

(

1−
Ml

N

)

. (4b)

IV. COMPARISON WITH THE STATE-OF-THE-ART AND

NUMERICAL RESULTS

In this section, the proposed caching scheme is compared

with the scheme proposed in [14] both analytically and numer-

ically. We note that, although the scheme presented in [14] is

for N ≥ K, it can also be applied to the case N < K, and

the same delivery rate as [14, Theorem 2], denoted here by

Rb(µ), can be achieved. Hence, in the following, when we

refer to the scheme stated in [14, Algorithm 2] for N < K,

we consider its generalization to this scenario. When N < K,

according to [14, Theorem 2] and (3), we have

Rb (µ)−Rc (µ) ≥ ∆R1 (µ) + ∆R2 (µ)
(a)

> 0. (5)

k
0 10 20 30 40 50

7 M
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

, = 0:98
, = 0:95
, = 0:92
, = 0:89
, = 0:86
, = 0:83

Fig. 1. Illustration of cache capacity distribution normalized by
K∑

k=1

Mk for

different α values, and K = 50. The x-axis corresponds to the user index k.

The inequality (a) holds as long as N < K. Therefore, when

the number of files in the database is smaller than the number

of active users in the delivery phase, the proposed coded

caching scheme requires a smaller delivery rate than the one

presented in [14].

For the numerical results, we consider an exponential cache

distribution among users, such that the cache capacity of user

Uk is given by

Mk = αK−kM, (6)

where 0 ≤ α ≤ 1, for k = 1, . . . ,K, and M denote

the maximum cache capacity in the system. Thus, we have

µ =
{

αK−1M,αK−2M, . . . ,M
}

, such that M1 ≤ M2 ≤
· · · ≤ MK . The distribution of cache capacities normalized by
K
∑

k=1

Mk, i.e., Mk/
K
∑

k=1

Mk denoted by M̄K , ∀k ∈ [1 : K], is

demonstrated in Fig. 1 for different values of α, when K = 50.

Observe that, the smaller the value of α, the more skewed the

cache capacity distribution across users become. In the special

case of α = 1, we obtain the homogeneous cache capacity

model studied in [9].

In Fig. 2, the delivery rate of the proposed scheme, Rc(µ), is

compared with that of the coded scheme proposed in [14], i.e.,

Rb(µ), when N = 50, K = 70, and α = 0.97. The delivery

rate is plotted in this figure versus the largest cache capacity

in the system, M . As expected the performance improves,

i.e., the delivery rate reduces as M increases. We also clearly

observe that the proposed scheme outperforms the scheme

presented in [14]. The improvement is particularly significant

for lower values of M . The cut-set lower bound for this setting

is also included in the figure. Although the delivery rate of the

proposed scheme approaches the lower bound for relatively

small values of M , there is still a gap for large values of M ,

M
0 1 2 3 4 5 6 7 8 9 10

D
el

iv
er

y
ra

te
,
R

10

20

30

40

50

60

70

Rb(7)
Rc(7)
Lower bound

Fig. 2. Delivery rate versus M , where the cache capacity of user k is Mk =
αK−kM , k = 1, . . . ,K, when α = 0.97, N = 50, and K = 70.

which may as well be due to the looseness of the lower bound.

In order to see the effect of skewness of the cache capacities

on the delivery rate, in Fig. 3, the delivery rate of different

schemes are plotted as a function of α ∈ [0.9, 1], for N = 30,

K = 45, and the largest cache capacity of M = 2. The

delivery rate of the proposed decentralized coded caching

scheme is lower than the one presented in [14] for the whole

range of α values under consideration, while the gain is more

pronounced for smaller values of α, i.e., as the distribution of

cache capacities becomes more skewed. We also observe the

gap to the cut-set lower bound also diminishes in this regime.

V. CONCLUSIONS

In this paper, we have studied coded caching to users with

distinct cache capacities, and proposed a novel decentralized

coded caching scheme that improves upon the best known

delivery rate in the literature. The improvement is achieved

by improving the delivery of bits that have been cached by

none of the users, or by only a single user. In particular,

the proposed scheme exploits the group-based coded caching

scheme we have introduced previously for centralized caching

in a system with homogeneous cache capacities [16]. Our

numerical results show that the improvement upon the scheme

proposed in [14] is even more pronounced when the cache

capacities of the users are more skewed.

We are currently aiming to improve the delivery rate for

larger values of cache capacities by finding a more efficient

coded delivery scheme which delivers the missing bits of the

requested files that have been cached by more than one user.

REFERENCES

[1] L. W. Dowdy and D. V. Foster, “Comparative models of the file
assignment problem,” ACM Comput. Surv., vol. 14, pp. 287–313, Jun.
1982.

,
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

D
el

iv
er

y
ra

te
,
R

5

10

15

20

25

30

35

40

Rb(7)
Rc(7)
Lower bound

Fig. 3. Delivery rate versus α ∈ [0.9, 1], where Mk = αK−kM , N = 30,
K = 45, and M = 2.

[2] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to
provide a scalable and interactive video-on-demand service,” IEEE J.

Sel. Areas Commun., vol. 14, no. 6, pp. 1110–1122, Aug. 1996.
[3] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for

data placement problems,” SIAM Journal on Computing, vol. 38, no. 4,
pp. 1411–1429, 2008.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, San Diego,
CA, Mar. 2010, pp. 1–9.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[6] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching:
Improved bounds for users with small buffers,” IET Communications,
vol. 10, no. 17, pp. 2315–2318, Nov. 2016.

[7] M. Mohammadi Amiri and D. Gündüz, “Fundamental limits of caching:
Improved delivery rate-cache capacity trade-off,” arXiv:1604.03888v1

[cs.IT], Apr. 2016.
[8] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users

than files,” arXiv: 1601.063834v2 [cs.IT], Jan. 2016.
[9] M. A. Maddah-Ali and U. Niesen, “Decentralized caching attains order-

optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw, vol. 23, no. 4,
pp. 1029–1040, Apr. 2014.

[10] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform de-
mands,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM

WKSHPS), Toronto, ON, Apr. 2014, pp. 221–226.
[11] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate

of caching and coded multicasting with random demands,” arXiv:

1502.03124v1 [cs.IT], Feb. 2015.
[12] J. Zhang, X. Lin, C. C. Wang, and X. Wang, “Coded caching for files

with distinct file sizes,” in Proc. IEEE Int’l Symp. on Inform. Theory,
Hong Kong, Jun. 2015, pp. 1686–1690.

[13] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, NSW, Jun.
2014, pp. 1878–1883.

[14] S. Wang, W. Li, X. Tian, and H. Liu, “Fundamental limits of heteroge-
nous cache,” arXiv:1504.01123v1 [cs.IT], Apr. 2015.

[15] M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized coded
caching with distinct cache capacities,” arXiv:1601.05690v1 [cs.IT],
Nov. 2016.

[16] ——, “Coded caching for a large number of users,” arXiv:1605.01993v1

[cs.IT], May 2016.

