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Summary. Several `smart market' mechanisms have recently appeared in the

literature. These mechanisms combine a computer network that collects bids

from agents with a central computer that selects a schedule of bids to ®ll

based upon maximization of revenue or trading surplus. Potential problems

exist when this optimization involves combinatorial di�culty su�cient to

overwhelm the central computer. This paper explores the use of a compu-

tation procuring clock auction to induce human agents to approximate the

solutions to discrete constrained optimization problems. Economic and

computational properties of the auction are studied through a series of

laboratory experiments. The experiments are designed around a potential

application of the auction as a secondary institution that approximates the

solution to di�cult computational problems that occur within the primary

`smart market', and show that the auction is e�ective and robust in eliciting

and processing suggestions for improved schedules.

JEL Classi®cation Numbers: D44, D83, D82, C92.

Introduction

Advances in computer technology, networking technology, and the under-

standing of decentralized market forces ± driven by both theory and exper-

iment ± create a unique opportunity for economists to apply market

processes to allocation and decision problems in areas where markets were
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not previously practical. The ability of the internet to bring together distant

agents for competition coupled with the application-speci®c market rules

that can be programmed into a computerized system allows the construction

of decentralized processes that before could exist only in theory. Such

markets, called ``smart markets''1 because of their high-tech implementation,

predate the recent growth of online commerce and started being proposed in

the early 1980s. Although not all of the early proposals survived to imple-

mentation, the list of potential applications that has been suggested by the

literature is quite broad and the experimental data has suggested that a

potential for success does exist.

Proposed smart market applications include airport time slot allocation,2

resource planning for space missions,3 project management,4 assignment of

time slots for equipment usage,5 markets for trading and transporting nat-

ural gas and electricity,6 and the allocation of access to railroads.7

The economic philosophy that markets should be more e�cient than

administrative processes has many sources. Hayek (1945) suggested that a

preference for markets should depend on the structure and nature of infor-

mation. He argues that if important information is decentralized, then a

decentralized economic system will be better at processing it than a system

that tries to collect the information to a central location. Hurwicz (1972)

attempted to formalize the idea of decentralized economic systems, and

along with the contributions of numerous others a theory of mechanism

design8 has evolved in the literature.

Just as the early laboratory ®ndings9 of high e�ciencies in classical

market environments prompted researchers to ask whether markets could be

extended to non-classical problems,10 the smart market research creates new

1 The term ``smart market'' for the description of these resource allocation processes seems to

originate with McCabe, Rassenti, and Smith (1988).
2 See Rassenti, Smith and Bul®n (1982) and Grether, Issac, and Plott (1989).
3 See Banks, Ledyard, and Porter (1989) and Plott and Porter (1990, 1996).
4 See Ledyard, Porter, and Rangel (forthcoming).
5 See Olson and Porter (1994).
6 See McCabe, Rassenti, and Smith (1987, 1989), and Rassenti, Reynolds, and Smith (1994).
7 See Brewer and Plott (1996), Brewer (1995), and Nilsson (1991, 1993, 1994).
8 For a survey, see Groves and Ledyard (1987). For a look at the basic concepts of the

mechanism design approach, see Ledyard (1991, 1993).
9 Smith (1962) reports on the e�ciency of experimental markets in a number o f di�erent supply

and demand con®gurations. A brief selection of recent articles related to e�cient information

aggregation in laboratory markets would include Plott and Sunder (1982, 1988), Friedman

(1984), Forsythe, Nelson, Neumann, and Wright (1992) and Cason and Friedman (1996). This

selection covers a variety of economic environments in which information aggregation is

important, and is by no means an exhaustive list.
10 For instance, the airport slots, space mission, and railroad problems all share a common

property in that non-convexity of preferences and indivisibility of resources are present. Also, see

Plott (1994).
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questions that require an answer. Two related questions are explored in this

paper.

The ®rst question involves what one should do when increases in scale of

use combine with the complexities of certain mathematical problems to cause

a runaway failure of a smart market design. The term ``runaway'' is used to

describe a computer program that has not crashed per se. There is no bug or

technical ¯aw. The problem being solved is simply too hard, and the com-

puter takes longer to solve it than practical. Such a failure might be attrib-

uted to a lack of computing power, but computer scientists have identi®ed a

class of NP-complete optimization problems for which computing require-

ments grow so quickly that additional hardware technology is not usually the

answer. Optimization of bid revenue or of trading surplus is a routine cal-

culation in many smart market designs, and such designs can involve com-

putation of NP-complete problems.

The second question poses an unusual response to the ®rst question.

Instead of using a central computer, can a secondary auction be used to

create a decentralized computer that runs the primary market? Equations

would be sent to the auction for solution, agents would compete to provide

solutions, and solutions would be checked before rewarding the agents who

submitted them. In this way, the computing bottleneck might be eliminated

from the smart market design.

Ideally, the computation procuring auction could provide 3 speci®c

bene®ts in correcting runaway smart markets. The ®rst bene®t is that the

auction transfers computational di�culties onto a broader class of agents,

who will compete to solve them. Competition among agents and solution

techniques should yield lower computational costs than solution via a ®xed

algorithm. The second bene®t is that the strategic private information of

agents might be applied to the computational problem, rather than solving it

centrally in the absence of this information. The third bene®t is that a

properly designed auction might force the bene®ts and costs of continued

computation to be assessed, preventing the runaway failure problem that was

possible with centralized computing.

Creating a decentralized computer that can solve any of the mathematical

problems that a centralized electronic computer can solve is a challenging

proposition. The primary goal of this research is not to solve this problem

with a single study. Instead, this research initiates an exploration into exis-

tence. Can the idea be seen in operation? Can an auction procure at low cost,

the intellectual good of solution or approximate solutions to optimizations?

Laboratory experiments can help to provide the answers to these questions.

Limiting the types of problems that the decentralized computer must

solve is crucial to both the success and the applicability of the research. The

problem to be solved will involve an optimization problem from a smart

auction called BICAP. The optimization involves maximizing bid revenue

from a set of known bids relative to a known feasibility constraint. BICAP

stands for Binary Con¯ict Ascending Price auction, and was an auction

constructed for allocating access to railroads. The BICAP application was
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chosen for two reasons: it is easy to describe and understand,11 and it can

involve signi®cant computational complexities at large scales.

The conclusion of this paper will be a demonstration, via experimental

methods, of a particular auction mechanism created in this paper. This

mechanism will be called the ``Computation Procuring Clock Auction'' or

CPCA, and will be shown to be e�ective at solving or approximating the

maximum bid revenue in the BICAP smart auction.

In these experiments, CPCA will be merged with BICAP. The BICAP

rules will continue to apply to the bidding procedures for the trains, but

CPCA will attempt to ®nd the train schedule. The schedule is supposed to be

the set of bids for trains that maximizes bid revenue and satis®es a complex

set of feasibility constraints (basically, no collisions between the trains), but

this requirement will be relaxed somewhat. CPCA will accept any feasible

suggestion, but will enforce an improvement rule and reward agents

according to the level of improvement in their scheduling suggestions.

The experiments are intended to provide a ``proof of concept'' or ``proof

of principle'' and also provide data on the operation of the auction that can

be used to argue design consistency. If the auction is observed to work,

works repeatedly, and works for reasons that are consistent with economic

theory, then we might initially trust the design to function consistently in

similar applications until counterexamples begin to be revealed. In this way,

the domain of applicability of the techniques can be discovered in a process

of future theoretical and laboratory research.

The demonstration problem that CPCA solves is in itself a signi®cant

problem from both an applied and a theoretical perspective. The problem

comes from a question about privatizing access to railroads in Sweden and

whether the BICAP could be scaled up. TheBICAP auction requires a ``market

maker'' to calculate the set of winning bids from a complex set of safety and

other contingency constraints. This calculation will be taken over by CPCA ±

functioning as an auction within an auction.12 In a broader sense the issues

about scaling up are common tomany of application-speci®c, ``smart'' market

mechanisms that have been appearing in the literature since the early 1980s.

The broader applied perspective is that the development of something like

CPCA may broaden the applicability of ``smart'' market techniques by

eliminating the requirement that the market maker choose a scale of com-

puting resources to make available. Typically, a market maker must provide

the computing power for the market to function. He must choose in advance

what kind of computing facilities to provide. This choice becomes a short

run constraint on computing resources that has consequences in terms of

11 Rubinstein (1996) suggests that binary relations are common in natural language (e.g. to the

left of, above, con¯icts with) for exactly such utilitarian reasons.
12 Thus, in the combined BICAP� CPCA process, an agent desiring to run a train submits a

BICAP bid and competes with other bidders. An agent who can compute schedules submits

scheduling suggestions to CPCA and will compete with other agents for cash bonuses that will be

awarded under the CPCA process.
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transaction costs and capacity13 of the market to handle more complex sit-

uations. CPCA could improve the applicability of these new market tech-

niques by decentralizing the operations of the market maker. CPCA could

provide the market maker with access to a broader range of facilities for

problem solving.

The broader theoretical perspective is that di�cult computational bur-

dens can be lightened by integrating strategic information, possessed by

human agents, into attempted solutions of the problem. In a sense the design

of the auction follows Hayek's [1945] lead, in that it insures that information

about ``the peculiar circumstances of time and place'' can compete with

expert technical knowledge. Modern ideas about heterogeneous computing

agents may also play a signi®cant role in understanding the operation of the

process but are beyond the scope of this paper.

The use of the incentive system of an auction to create a kind of ``com-

puter'' that, instead of using a ®xed hardware facility or software algorithm,

uses an auction to determine who solves what pieces of the problem, on what

hardware, and how is an exciting new idea from a computational perspective

as well. Such a ``computer'' should have some interesting properties when

compared to the typical operation of an ordinary electronic computer. Sys-

tems of equations sent to the auction would be publicly solved by agents in

the marketplace, who would be paid for their e�orts at a price level deter-

mined by performance and competitive forces. Least cost agents or tech-

niques would have an advantage in the competition, but other techniques

would also be involved in the competition. This could create a type of ro-

bustness or backup, so that if one solution technique fails another could still

succeed in providing a solution. In addition, such a ``computer'' could use

information that might be unavailable in a traditional, centralized setting.

When privately held strategic information is important to solving a problem,

the auction could give incentives for this private information to be applied,14

reducing solution cost or solution time. The laboratory experiments will

make it possible to demonstrate these ideas in operation.

Creating an e�ective computation-procuring auction is challenging.

There is a ``lemons''15 di�culty with more general approaches, a di�culty

that can be overcome for the limited class of mathematical problems de-

scribed in this paper. The lemons result involves the quality of goods and

13 Thus, one view is to limit smart markets to economic environments that are likely to be

solvable. Rothkopf, Pekec, and Harstad (1995) consider such an approach.
14 Disclosure of the private information might otherwise never occur in these cases. The private

information might remain completely with an agent, who might consider privacy valuable

towards their strategic position.
15 As shown theoretically by Akerlof ± if the quality of goods is costly to the seller, valuable to

the buyer, and unobservable to the buyer before the sale, least cost procurement can result in

acquiring low quality goods. Exact ``solutions'' to mathematical equations di�er in quality by

being either ``right'' or ``wrong'', so an auction could result in an incorrect answer to the system

of equations. Approximate solutions could be inaccurate.
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suggests that quality of solutions submitted to the auction should be moni-

tored. Monitoring for accuracy of solutions could involve considerable

computational e�ort on the part of the buyer and possibly introduce addi-

tional complications in the transaction between the buyer and seller. Keeping

solution quality high, using competition to lower costs, and avoiding large

transactions or monitoring costs are the challenges that the any auction-

based approach at computation must address.

Investigating the performance of CPCA will involve the creation of a new

economic criteria necessary to describe CPCA as a computational process.

This criteria ± to be called ``Computing E�ectiveness'' ± is di�erent from the

social welfare criteria of e�ciency of allocation, which is typically used to

evaluate new kinds of market processes. Constraints on the kinds of data

observable in the experiments motivates analysis in terms of this new criteria.

The current series of experiments will only allow observation of the outcomes

of CPCA and not the internal workings of the human agents involved in the

computation. One can not know how di�erent agents were thinking or what

mental steps they took to solve problems and submit suggestions to the

CPCA process. Because of this di�culty, there will be no way to insure that

the human agents are computing in the most socially e�cient way, and there

are many reasons to believe that some ine�ciencies will occur.16

The current research, as a proof-of-principle, is primarily concerned with

whether a decentralized computing technique can be e�ective at all. Thus, the

data analysis concentrates on particular aspects of CPCA's computational

capabilities, such as accuracy of solutions and costs of incentives paid to

agents, with the question of overall social e�ciency left for future research.

The remainder of the paper will be organized as follows. Section 2

introduces notation and concepts regarding scheduling problems. Both

scheduling in general and railroad scheduling will be addressed. General

computing techniques for optimal scheduling will be discussed, as well as the

implications for agents with limited computational abilities. The Computa-

tion Procuring Clock Auction [CPCA] mechanism is de®ned in section 3 and

it is a simple variation of a well known clock auction mechanism. Section 4

considers how to interface CPCA to the BICAP rail auction. Issues are listed

and an interface between the two processes ± which will run simultaneously ±

is de®ned. An experimental testbed environment is de®ned in section 5.

Human subject experiments are conducted using the economic environment

from section 5. The results of these experiments are reported in section 6. The

®nal section, section 7, contains concluding remarks.

2 Scheduling: Concepts and notation

Management of access to a common facility, such as railroad tracks, a

spacecraft, or a laboratory typically involves feasibility constraints and some

16 For example, there could be duplication of e�ort. CPCA does not attempt to coordinate

agents to work on separate parts of a problem.
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notion of value or priority. Because some uses can be carried on simultaneously

while other uses can not, a manager interested in ®nding the best schedule for

sharing the facility among the several uses and users faces a decision problem

with a particular mathematical structure. This section provides an introduc-

tion to the mathematical notation for such scheduling problems.

2.1 General scheduling environments

A schedule S is a set of uses for a facility. Extensions of this notation where a

schedule could be a function giving a set of uses at various times, a vector, a

matrix, or some other mathematical object are possible but are beyond the

scope of this work. It is useful to assume that the set of schedules is ®nite,17

though perhaps large.

Let s be the set of all schedules, and let F indicate a subset of schedules

that are feasible. Feasibility of a schedule is determined by a function

F � � : s ! f0; 1g. This function contains all of the technical, application-

speci®c constraints for determining feasibility of schedules. If F �S� � 1, then

s is a feasible schedule and so S 2 F. If F �S� � 0, then S is not a feasible

schedule and so S j2F.

De®ning feasibility via a function18 F � � captures an essential di�erence

between feasibility constraints and the feasible set that will be important later

when considering computational costs and agents with limited abilities. In

certain di�cult optimization problems, it is easy to determine if a particular

schedule is feasible but di�cult to search for and enumerate the set of all

feasible schedules. If computational abilities are quite costly then an agent

can determine F from F �S� and s, but only at a prohibitively high cost.

The value of a schedule is given by a function Q� � : s ! <�. Q�S� is a

positive real number giving the value19 of a particular schedule S. The

manager's problem in choosing the best schedule can be described via a triple

�s; F ;Q� which will be called a constrained optimization environment.

17 Although optimization over a continuum involves interesting issues, a number of applied

scheduling problems can be posed as optimizations over a [large] ®nite set. For example, in

scheduling the uses of a facility over time, one could consider only 1 second, 1 minute, or 1 hour

blocks of time as appropriate. If there are a ®nite number of possible uses at any time, and a

®nite number of times, then there are a ®nite number of schedules that can be chosen. The

®neness of such scheduling will depend on details of a particular application. As the purpose of

this section is primarily notational rather than theoretical, there is no reason for the reader to be

burdened with the consideration of technicalities involved with in®nite or dense sets.
18 The use of this notation does not reduce generality. If one begins a problem knowing the

feasible set of schedules F, it is easy to construct a feasibility function F � � that faithfully

generates that feasible set. F �S� � 1 if S is in F ; F �S� � 0 if S is not in F.
19 In this ana lysis, Q� � need not depend on whether S is feasible or not. For example, Q� � might

be an amount of money that could be collected if this schedule were implemented, and this

amount might not depend formally on feasibility. In the analysis that follows, only feasible

schedules can be selected. Values of Q� � outside of the feasible set of schedules will not a�ect the

schedule that is chosen.
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De®nition. A constrained optimization environment E is a triple �s; F ;Q�,
where:

s is a set of elements fS1; S2; . . .g [the solution space]

F �S� : s ! f1 � ``feasible''g; 0 � f``not feasible''g [the constraint func-

tion]

Q�S� : s ! <� is a positive, real-valued function of S [the criterion func-

tion].

2.2 Example: Railroad scheduling

The initial tests of the techniques developed in this paper will involve a model

scheduling problem involving access to railroad tracks. Auctions for rail

scheduling will be seen to involve computation al issues described by the

general framework de®ned above.

De®nition. A railroad scheduling environment is speci®ed by:

(a) a physical con®guration PC � �R;C�, where
R is a set of train routes

C � R
 R a set of train pairs that con¯ict; AND

(b) an economic con®guration EC � �I ; V �, where
I � f1; 2; 3; . . . ; i; . . . ; Ig a set of agents

V is a matrix of agent's private values for trains, with elements Vi�r�
de®ned for each i 2 I and r 2 R.

The physical con®guration of the railroad determines a portion of the

constrained optimization environment E � �s; F ;Q�, such that:

(i) sPC � 2R � fS : S � Rg � set of all subsets of R.

(ii) FPC�S� � 1 if and only if ��S 
 S� \ C � [�
FPC�S� � 0 otherwise.

Two of the three elements of E are determined by the physical con®gu-

ration alone. The remaining element, the criterion function Q� �, depends on
the type of public information that is present. The information that is

available depends on institutional features. Two examples, key to the later

arguments of the paper, are considered below.

E�cient scheduling EV

The criterion for e�cient scheduling is to attempt to maximize the value of

agents' uses of the track. The values V of the trains to each operator must be

known to the manager.20 Any trains that are scheduled can then be assigned

20 Whether the manager can obtain the necessary information about values, especially when the

values are privately held con®dential information, is often a key point of debate about whether a

centralized or decentralized system of management is appropriate. If the values are known, then

the e�cient scheduling problem will involve the constrained optimization environment de®ned

above.
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to the agent with the highest value. For each r 2 R let HV�r� � maxi2I Vi�r� be
the highest value for each train. Then in the general scheduling framework,

Q�S� � Qv�S� �
P

r2S

HV�r�, and

Ev � �sPC; FPC� �; Qv� �� :

Auction-based scheduling EB

The criterion for auction-based scheduling is to attempt to maximize the

total bid revenue for use of the track. The manager does not need to know

the values V . Instead, under auction-based scheduling, agents bid for the

right to run the various trains.21 Suppose for each train route r 2 R,

B�r� is the bid on that train. Then in the general scheduling framework,

Q�S� � QB�S� �
P

r2S

B�r�, and EB � �sPC; FPC� �; QB� � �.

This paper will concentrate primarily on the computational challenges

inherent in auction-based scheduling rather than on a comparison of auc-

tion-based scheduling and e�cient scheduling. This distinction will become

important in the design of the experiments and the techniques for data

analysis.

2.3 Computational perspectives

Attempting to maximize the criteria Q�S� over the feasible schedules could be

done in many ways. The best way of mathematically or computationally

setting up a particular problem involves many di�erent, possibly con¯icting

issues. For example, if a computing machine is to be used, there are tradeo�s

involved between programmer time and machine time in choosing an elegant

versus a brute force style of solution. Details on how a problem is set up

certainly a�ect the likelihood of obtaining a solution as well as its accuracy.

These details become important when computational capabilities are severely

limited or extremely costly.

An instance of a computational problem is an environment E together

with conditions a solution must satisfy. Thus, a problem has a formal de®-

nition. The computational perspective that a particular problem imposes is

not rigorously de®ned, but involves intuitions about tradeo�s between the

kinds of solutions likely to be obtained in practice and under harsh condi-

tions. Two types of problems are de®ned below.

De®nition. An instance of OPTIMIZATION �E � is the problem: ®nd a

solution S� 2 s such that

(a) F �S�� � 1, and

21 In theory, the agents with high values will outbid the agents with low values. Whether that in

fact occurs is a question for empirical ®eld and laboratory research. In any case, the

computational problem for the scheduling authority is to maximize the bid revenue over the

feasible schedules.
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(b) Q�S�� � Q�S� for every S 2 F

or return the null solution [.

De®nition. An instance of IMPROVEMENT �E; S� is the problem: ®nd a

solution S� 2 s such that

(a) F �S�� � 1, and

(b) Q�S�� > F �S�Q�S�
or return the null solution [.

The problems of IMPROVEMENT and OPTIMIZATION are related in

a straightforward way. If a non-null solution to OPTIMIZATION �E� ex-
ists, let this solution be S�. Then the solution to IMPROVEMENT �E; S��
must be [ because no feasible schedule can have a higher Q� � value than S�.

This suggests that an algorithm that repeats the improvement procedure,

improving the schedule until a feasible schedule with a higher value can not

be found, could yield solutions for OPTIMIZATION.

De®nition. An instance of the ITERATIVE-IMPROVEMENT �E; S0� al-

gorithm involves ®nding a solution S� 2 s via the following procedure:

for k � 1; 2; 3; . . .
repeat Sk � solution to IMPROVEMENT �E; Skÿ1�

until Sk � [
end with the solution S� � Skÿ1

When agents have in®nite computational abilities, the ITERATIVE-

IMPROVEMENT algorithm will solve the OPTIMIZATION problem. An

improvement solution exists if and only if the optimum has not been reached.

ITERATIVE-IMPROVEMENT can only stop if the optimum schedule is

calculated, and thus, its solution is equivalent to OPTIMIZATION.

2.4 Limited rationality

Limits on agents' computational abilities create a distinction between

the problems OPTIMIZATION, IMPROVEMENT and ITERATIVE-

IMPROVEMENT. IMPROVEMENT involves evaluating the functions F

and Q until a suitable schedule is found or until the agent ``gives up''.

OPTIMIZATION could require calculating the entire feasible set F, and

this increased di�culty increases likelihood that an agent will ``give up''.

Suppose that either OPTIMIZATION or IMPROVEMENT can fail

by returning a solution of [ when in fact some solution does exist. This

provides agents involved in computing a way out of a prohibitively costly

situation, and it provides mechanism designers a way to model the failure of

computations.

If a di�cult computation is structured as OPTIMIZATION, the ®nal

result may be [. In scheduling resources, a null schedule may be feasible but

not particularly desirable. A more useful result is likely if the computation

is structured as ITERATIVE-IMPROVEMENT, because as long as some
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IMPROVEMENT solution is found, a non-null schedule solution will be

returned. The return from ITERATIVE-IMPROVEMENT may or may not

be optimal, but it is more likely to be higher in Q� � value than a solution of

[. Furthermore, while a null solution to OPTIMIZATION is not particular

useful for further attempts at solution, the schedule solution to ITERA-

TIVE-IMPROVEMENT can be used to start another instance of the

algorithm,22 with no loss of the partial solution information.

3 The computation procuring clock auction [CPCA]

3.1 Overview

The CPCA mechanism involves a modi®cation of the ITERATIVE-IM-

PROVEMENT algorithm of the previous section. The primary modi®cation

is to invite the participation of many di�erent agents by providing payment

incentives similar to those in a clock auction. Thus, the name of the mech-

anism ± the Computation Procuring Clock Auction. This section is con-

cerned with de®ning and explaining the formal rules of this auction.

CPCA can be summarized as follows. At the beginning of the auction

there is some status quo feasible schedule. Agents who can ®nd and submit

an improved solution are paid a bonus equal to some percentage of the

improvement. While this is happening, a clock counts down from some initial

value. This clock indicates the time remaining in the auction if no im-

provements are submitted. As the clock counts down, the percentage of the

surplus o�ered to any agent submitting an improvement increases. The

percentage of the surplus o�ered to agents approaches 100% as the time

remaining approaches zero.

If an improved solution is submitted, the clock is reset and more im-

provements are sought. If no improved solution is found, then the procedure

ends with a recommendation to implement the best solution found so far.

The idea is that if no agent is willing to provide an improvement, even when

they are given all the surplus from the improvement, then further improve-

ment in the solution is not practical, at least not in a decentralized framework

with the given agents.

Some CPCA parameters, such as the choice of the time scale and the way

that the bonus increases as time ticks down, might be adjusted in order to

``®ne tune'' CPCA to a speci®c need. At the current time, there is no well

organized theory about how this might be done. In choosing a means for

approximating maxima, one typically wants to minimize solution time, and

solution cost, but maximize solution accuracy, all else being equal. But how

22 In his survey of bounded rationality, Conlisk (1996) mentions that iterative models are in use

in the theory of bounded rationality. In the bounded rationality literature, ideas similar to

iterative improvement are ± under other names ± o�ered as a behavioral theory of human

activity. Thus the ideas presented here are not totally unfamiliar to the economic literature.

When the manager does not have perfect rationality, it is reasonable for him to attempt an

iterative improvement calculation rather than a full optimization.
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to trade o� these qualities against each other is not obvious. Di�erent ap-

plication-speci®c needs might dictate di�erent tradeo�s one could make in

solving speci®c instances. The goal here was to ®nd a common mechanism or

adaptation of a common mechanism that would respond to all three of these

dimensions of the computing problem.

3.2 Formal description: states, messages, and transitions

In this section, the rules of CPCA are described using an event-driven ap-

proach that should be familiar to those who study dynamical systems or

state-machines. In this approach, the mechanism has a state that reacts to

events. Events are outside stimuli, such as messages from agents or the pas-

sage of time, that cause the state of the mechanism to change. Transition rules

indicate how events a�ect the states of the mechanism.

States have importance in this model of CPCA for two reasons. (1) The

current state of the mechanism is public information and common knowledge.

The state is available to all participants and everyone knows that the other

agents are seeing this information. (2) Given the current state in formation

and the transition rules, agents can determine the immediate e�ect that their

messages can have upon CPCA states and outcomes, as well as what will

occur if agents take no further action.

CPCA is described by 4 classes of states: null[ , listening L, veri®cation V ,

and closing C. The role of each of these classes will be made clear shortly. A

particular state is de®ned by a letter for the class �[; L; V ; or C� together

with the values of certain parameters that are relevant for that state. These

parameters are put in braces after the letter, e.g. LfQ; F ; S; bg denotes a

listening state with parameters Q; F ; S and b. The following paragraphs will

de®ne further the various classes of states and their parameters.

Classes of states

The null state [ denotes a pre-existing state of the world before the mecha-

nism is placed into operation. In the null state, there is no public information

about the mechanism's operation. ``Starting'' the mechanism involves a

transition away from the null state to a state where public information exists.

``LfE; S; bg'' denotes a listening state where E is a constrained optimiza-

tion environment, S is the best solution so far, and b is the current bonus rate.

``V fE; S; b; S�; ig'' denotes a veri®cation state. The environment E and the

variables S, and b have the same interpretation as in the listen states de-

scribed above. In this state, agent i has suggested that S� is better than the

solution S. That is, the agent claims that Q�S�� exceeds Q�S�. The mechanism

remains in the veri®cation state until this claim is veri®ed or rejected.

CfE ; SFINALg denotes a closing state. The closing state parameters are

the environmental parameters and the ®nal solution SFINAL obtained by the

CPCA mechanism. The closing state is a terminal state. It is a ®nal outcome

of the mechanism.
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Events

When events involve a particular agent, the notation for the event will in-

volve an arrow. For example, the notation ``actor ! event 1'' shows that a

particular actor caused event 1. There are 4 events that a�ect the current state

of CPCA. Two of these events are messages from the market maker. The

event mm ! E�E ; S0� indicates that the market maker made public the de-

tails of the improvement problem to be solved. The market maker must also

send a message to verify or reject suggestions that are submitted by the

agents. The other two events are suggestion messages from agents for

improved solution, and the passing of time with no such suggestions. Details

of these messages are shown in Appendix A.

Transition rules

The transition rules for the various states and events are illustrated in

Figure 1 and more formally de®ned in Appendix A. The ®gure is complete in

the sense that it shows the features of the rules necessary to the operation of

CPCA. The notation of the ®gure can be read as follows. States are given by

circles. Dashed lines indicate potential steps of how CPCA responds to

events that might or might not occur. Solid lines indicate procedural steps

that must occur. Boxes give details of procedures that are required in the

transition from one state to another.

Figure 1 can be interpreted as follows. The mechanism initially exists in a

null state[, where nothing is happening and agents have no information. An

agent called the ``market maker'', who is responsible for the maintenance of

CPCA, starts the mechanism by sending the message ``mm ! E�E; S0�''
[dashed line]. This message speci®es the constrained-optimization environ-

ment E (the functional form Q�S� of the criterion to be maximized, and the

function form F �S� of the feasibility constraint) along with the an initial

feasible schedule S0. The CPCA mechanism is then reset [solid box] so that

the information on the CPCA public display is then reset to indicate this

information. A particularly important variable, the bonus rate b, is set to

0%. This bonus rate determines the rate of payment to agents who submit

suggestions to the message. The mechanism then enters a Listen state where

it waits for one of two events to occur. Either (1) some agent, say agent k,

sends in a suggestion message for an improved solution to the constrained-

optimization environment or (2) time passes without any agent sending in

such a message. These two possibilities are considered separately below.

If time passes without a suggestion message from an agent, then the

indicated path is followed. If agents do not provide suggestions, the bonus

rate b steadily increases from 0% to 1%, 2%, 3%, up to 100%. When b

reaches 100%, the mechanism closes The bonus rate b is rising in a familiar

way, similar to the increase in price level in a clocked auction. As will be seen

in the next paragraph, b is such a price. b gives the proportion of the im-

provements surplus to be awarded to the agent submitting the suggestion.
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Figure 1. CPCA ¯owchart
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As b increases, an agent might know or ®nd a solution to the problem

IMPROVEMENT�E; S� of ®nding an improved schedule that is better than

the current schedule S. If agent k believes that the schedule S� is such a

solution, then agent k has the option, but not the requirement, to send a

suggestion message k ! S�k; S��. Such a message causes the mechanism to

leave the listen state and enter a veri®cation state V f g where the suggestion

�k; S�� is stored until it can be veri®ed. The market maker then veri®es

whether the suggestion is an improvement �F �S��Q�S�� > Q�S�� or not. If the
suggestion is an improvement, then a counterclockwise path is followed from

the verify state back to the listen state. First, the box ``POSITIVE IM-

PROVEMENT'' is entered, the market maker pays the agent the bonus rate

times the amount of the improvement, sets the current solution to S� and

then sets the bonus rate back to b zero. The mechanism once again enters a

Listen state. If the suggestion is not an improvement, then the clockwise path

is followed. The agent pays a penalty to the market maker, and then the

mechanism goes back to a listen state.

If no agent sends in an improvement, the bonus rate b climbs to 100%

and then the mechanism enters the (terminal) closed state. Stated another

way, if no agent can provide an improved solution when o�ered the entire

improvement �b � 100%�, then the process is terminated. The intuition be-

hind this termination rule is that the system should stop when costs of further

improvements exceed the bene®t in the improved solution.

3.3 Theoretical properties of the process

The purpose of this section is to present some rough ideas about properties

CPCA might be expected to possess. Because there is no fully worked out

theory about the behavior of such complicated mechanisms in such complex

environments, what follows must necessarily be only a beginning in evalu-

ating the properties of the process.

These properties are logical properties that follow from the rules of the

CPCA process. Theories of agent behavior in a particular CPCA application

will be addressed later in section 4.

CPCA creates a competitive game. Given several agents willing to submit

suggestion messages, the structure of rewards in the CPCA mechanism cre-

ates a competitive game between these agents. There are several dimensions

to this competition. Among agents who can ®nd and submit similar sug-

gestions, only the ®rst agent to submit the suggestion will obtain the bonus

payment. Similarly, agents who submit suggestions that involve greater

amounts of improvement may tend to receive larger payments than agents

who are only able to ®nd smaller improvements.

CPCA provides incentives to lower costs. Because the CPCA mechanism in-

volves resetting the bonus rate to 0% and increasing it gradually for each
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new improvement, agents who have the lowest costs for submitting an im-

provement will be the ®rst to be o�ered a su�cient incentive to submit a

suggestion. Thus agents who can perform low-cost searches or agents who

already have information are favored by CPCA over those who have high

costs of participation.

CPCA terminates in ®nite time. The CPCA mechanism always terminates

when Q� � is bounded from above and agents' costs of ®nding improvements

are positive and bounded from below. CPCA can terminate with the initial

solution S0 when the constrained optimization environment is too di�cult

for the agents to solve it.

CPCA has monotone accuracy. The CPCA mechanism encourages more

accurate solutions over less accurate solutions. In a scheduling environment

E; S�� is more accurate than S� if F �S���Q�S��� > F �S���Q�S��. If the

solutions S�� and S� are submitted to CPCA, then no matter the order of

submission, CPCA will result in S�� and never S�.

CPCA is outcome-oriented. The CPCA mechanism rewards agents for in-

formation no matter the source. Participation in and rewards from the

mechanism are not related to the level of e�ort that went into creating the

solution, or whether the solution is a result of existing knowledge, new

knowledge, private or public information. All that matters is whether the

suggested solution S� has F �S��Q�S�� greater than the value Q�S� of the best
schedule S that the process had found.

CPCA relies upon voluntary participation. With the exception of the market-

maker, agents under CPCA are not required to participate in any way.

Agents will voluntarily participate in order to a�ect the schedule or to receive

bonus payments.

CPCA is incentive compatible. Since an agent submitting a suggestion can be

paid as much as 100% of the improvement, if an agent has or can obtain a

suggestion that improves the value of the schedule by more than the cost to

the agent, then eventually CPCA provides a su�ciently high incentive for the

agent to submit the information. Similarly, if an agent has or can obtain a

suggestion, but only at a cost higher than the bene®t, then CPCA does not

provide a su�cient incentive to obtain or submit the information. E�ciency

of CPCA is compatible with individual incentives and the incentives created

by the process.

Under CPCA, information cascades may lead to competitive behavior. The

onset of competition might emerge as a kind of cascade e�ect, under the
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following argument. If agent j knows of a valid CPCA improvement and

believes with certainty that others will ®nd and submit the improvement,

then agent j should submit the improvement before another agent submits it.

Only in that way does agent j collect the bonus. If competition is ®erce, then

immediate submission might be warranted. Agents will believe competition is

®erce if a number of agents submit often and appear to submit immediately.

Thus, a common belief in ®erce competition produces incentives under which

®erce competition would occur.

4 Applying the CPCA to the BICAP railroad auction

The CPCA procedure will be merged with a bidding procedure known as

BICAP.23 In BICAP, agents bid for access to railroad tracks and are free to

increase their bids in an attempt to compete for the available rights. A central

computer continuously calculates potential allocations based on maximizing

the total bid from trains relative to some feasibility constraints. This infor-

mation is reported as feedback to the agents. Agents can, if they wish, in-

crease their bids, causing a new allocation to be calculated. The auction ends

when a certain time period elapses with no further increases in the bids.

When the auction ends, the potential allocation becomes the actual alloca-

tion of track rights, and the agents receiving an allocation must pay their

bid(s).

Replacing the electronic central computer in BICAP with CPCA will

require careful consideration about how these two auction processes interact.

Ideally, CPCA should be used merely to replace the central computer in

BICAP. CPCA should, ideally, not a�ect the incentives to bid generated in

BICAP. Attempts to achieve a minimal interaction will de®ne the interface

between BICAP and CPCA. Data obtained in the laboratory experiments

that follow will provide an opportunity to examine both CPCAs computing

performance and its e�ect on BICAPs economic properties.

4.1 Issues

Level of feedback to agents. BICAP with a central computer provided

feedback on the potential scheduling immediately after each bid.

BICAP� CPCA, by depending upon others to calculate schedules, may take

much longer, provide less accurate schedules that are subject to change, and

may provide a much lower level of feedback concerning the e�ect of recent

bids on the potential schedule that might be implemented.

23 Recall that BICAP stands for Binary Con¯ict Ascending Price, and is an auction for allocating

access to railroad tracks that was described in Brewer and Plott (1996).
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Minimal BICAP/CPCA interaction. Even slight changes in the rules of

auction procedures have been known to cause dramatic and debilitating

results.24 Only by avoiding any obvious pitfalls will the resulting

BICAP� CPCA mechanism be suitable for testing via laboratory proce-

dures.

Elimination of arbitrage. One obvious pitfall involves the following scenario.

If the bonus rate b is non-zero immediately after a bid, the bidder might be

able to submit a suggestion message and reclaim a portion of the bid. Sup-

pose, for example, the bids on A and B are 300 and 299 respectively, and that

the schedule is fAg, and that the bonus rate b is 50%. A bidder who bids 400

on B could try to submit the suggestion fBg. The CPCA bonus to this bidder

would be 50%��400ÿ 300� � 50%�100 � 50. This payment of 50 should be

seen as an arbitrage opportunity. Such an arbitrage opportunity, although it

provides information to CPCA, distorts bidding in BICAP. Agents might bid

much more than their value for trains, because they anticipate recapturing a

portion of bids.

Simultaneous or sequential operation. CPCA scheduling could operate only

after BICAP bidding has concluded, or the two mechanisms could operate

simultaneously. Simultaneous operation involves greater challenges to the

incentive structures of both processes, because it involves additional inter-

actions that can not occur if the mechanisms are operated in sequence.

4.2 Interface

Simultaneous operation of BICAP and CPCA was chosen, with the CPCA

mechanism reset immediately after every BICAP bid. One interpretation of

such a rule is that every time the bid changes, the scheduling environment EB

has changed through the change in the function QB�S�, which is a sum

depending directly on the bids in B. In resetting CPCA, the current best

schedule is retained. The function Q� � is changed to re¯ect the new bids.

The most important e�ect of this rule, which reduces the possibility of

arbitrage, is that the bonus rate b is reset to 0%. Thus, submitting a CPCA

suggestion immediately after a BICAP bid results in CPCA processing the

suggestion, but awarding a zero bonus.

This method of reducing the BICAP � CPCA arbitrage relies on a degree

of competition in the CPCA process. It is possible that an agent might

submit a BICAP bid, know how it changes the bid maximizing schedule, wait

a time and then submit the CPCA suggestion message. In such a case an

arbitrage is still possible, but it is limited by the competition among agents to

24 For an example, see Cason and Plott (1996) regarding an EPA pollution permit market.
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submit suggestions. The amounts received in this way are likely to be small,

and will not drastically a�ect the incentives to bid under BICAP.

4.3 Summary of BICAP � CPCA

Operationally, the BICAP� CPCA mechanism can be summarized as fol-

lows. The mechanism starts with a null potential allocation S� � [, no bids,

and a clock showing s � s0 seconds remaining in the auction unless some

agent sends in a bid. Certain BICAP and CPCA information is publicly

available throughout the process ± public knowledge includes the physical

con®guration of the tracks PC � �R;C� (which is su�cient to determine the

feasibility function FPC�S�), and the high bids B (which are su�cient to de-

termine QB�S�). As time elapses the clock s counts down toward zero and the

CPCA bonus rate b increases. If someone submits a bid on a train route that

is higher than current high bid for that route, B is altered. Any change in B

requires resetting CPCA, because the criterion function QB�S� has changed.
Therefore, the clock is reset to s � s0 seconds and the bonus rate b is re-

set to 0%. If someone submits a CPCA suggestion S� such that

F �S��QB�S
�� > F �S��QB�S�, then the potential allocation is changed to S**,

the agent is paid their CPCA bonus b�QB�S
�� ÿ QB�S��, the clock is reset to

s � s0 seconds and the bonus rate is reset to b � 0%. At some point, agents

stop submitting bids and suggestion messages, the clock s counts down to

s � 0 (and b reaches 100%) and the auction terminates. Upon termination,

the potential allocation becomes the ®nal allocation. Agents then pay their

bids in B on the allocated trains in S� and receive the right to run their

respective train(s).

4.4 Questions for empirical study

The purpose of this section is twofold: (i) to de®ne criteria that will be used to

measure the performance of the BICAP� CPCA mechanism in the experi-

ments that follow, and (ii) to give a few rough theories about the behavior of

agents under CPCA that might help to explain its failure or success as a tool

for decentralized computing.

Is CPCA e�ective?

Here we are interested in knowing whether CPCA is e�ective at producing

the same bid revenue maximizing schedules that a computer can. That is, if

the ®nal BICAP bids are given by B and the ®nal CPCA schedule is S, does S

produce the maximum bid revenue from the given bids and physical con-

®guration of the trains? Put another way, does S solve OPTIMIZE�EB�
[where EB de®ned in section 2.2]?
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De®nition. The Computing E�ectiveness of CPCA is the ratio
Q�SCPCA�

Q�SOPT
B �

where S the CPCA schedule, and SOPT
B is a non-null solution of OPTIMI-

ZATION �EB�.

Example. Suppose there are only three trains A;B;C, and that every pair of

trains has a con¯ict. Then the set of feasible schedules is simply

F � ffAg; fBg; fCg; f[gg. Suppose that the bids B are 100 for A, 400 for B,

and 500 for C, and that the CPCA schedule is S � fBg. The solution to

OPTIMIZATION�EB� is the schedule with the highest bid revenue,

which is fCg. So SOPT
B � fCg. The computing e�ectiveness ratio is then

Q�fBg�=�QfCg� � 400=500 � 80%.

Much of previous research uses a di�erent ratio called ``allocation e�-

ciency'' that involves comparing the sum of values V generated in auction-

based scheduling experiments with the ideal, e�cient scheduling of section

2.2. That comparison is not the primary goal here. Computing e�ectiveness is

primarily concerned with the computational challenges inherent in con-

strained maximization of the sum of bids within auction-based scheduling.

The computing e�ectiveness ratio de®ned here measures the extent to which

CPCA has met this computational challenge.

Does CPCA work without destroying the bidding incentives in BICAP?

The key question behind this idea is whether the outcome of an auction

mechanism depends on the means of computing. The following conjecture

hypothesizes that this is not the case.

The CPCA computational invariance conjecture. If CPCA is computationally

e�ective then CPCA will not a�ect closing bid prices in a combinatorial

auction, so long as the bonus for submitting a proposal immediately after a

bid is zero.

The conjecture involves a view that CPCA is solely a tool for computing

the bid maximizing feasible schedule. As long as the computation is e�ective,

the ®nal bid prices should be dependent on the railroad environmental

parameters �PC;EC� rather than on the method by which computing takes

place.

The bid revenue and total surplus of BICAP� CPCA could be compared

to these statistics for BICAP with central computing. This would necessitate

some experiments that duplicate the Brewer and Plott (1996) experimental

environments where BICAP was previously tested.

The relevant statistics are:

Bid-Revenue BR �
P

s2S�
B�s�

Total Surplus TS � Train Operators' Profit� Bid Revenue
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Are CPCA costs competitive or monopolistic?

Under perfect competition, CPCA costs should be low for simple problems.

The exact level of computational costs will be determined by the competitive

supply of suggestion information.

Under monopoly, only one agent has the relevant CPCA suggestion in-

formation. This agent can wait until the bonus rate is 100% before sub-

mitting the information. Thus, under monopoly, one expects that the CPCA

costs will be quite high and perhaps as much as 100% of BICAP bid revenue.

5 Experimental procedures

This section describes the design and conduct of experiments to examine

bidding and computing behavior of BICAP � CPCA. The parameters of

these experimental environments will be related, in a straightforward way, to

an environment used for initial research on the BICAP auction. In this way

some comparison of economic variables between the earlier research and this

research will be possible ± it will be possible to examine whether taking

BICAPs computational chores out of the computer code and giving them to

the agents through CPCA caused any unusual e�ects in the combined

BICAP� CPCA mechanism. In addition, it will be possible to assess the

performance of the combined BICAP � CPCA mechanism.

5.1 General

A total of six experimental sessions were conducted. Table 1 summarizes the

environments studied in each experiment.

Table 1. Summary of experiments performed with three-track testbeds

Environment Experiment Proposers P Periods Subjects

Separable tracks SIP1 3 independent

agents

3 13 Caltech student

S1 All buyers 3 10 Caltech students

S2 All buyers 1a 10 Georgia State

business students

Combined tracks C1 All buyers 3 10 Caltech students

C2 All buyers 2a 10 Caltech students

C3 All buyers 1a 10 Georgia State

business students

aTime did not allow running additional periods
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As can be seen from the table, four of the sessions were conducted at

Caltech and two of the sessions were conducted at Georgia State University.

Subjects were undergraduate and graduate students, and were recruited via

¯yers and a computer network announcement.

Sessions proceeded as follows. Subjects were seated at a computer ter-

minal. The experiment instructions (see Appendix C for a sample ± there are

slight di�erences across experiments) and train value sheets were passed out.

The instructions were read, and there was a question and answer period. The

subjects spent 5 to 10 minutes practicing with the experiment software, and

then there was another question and answer period. Depending on time, 1 to

3 periods were conducted for actual cash payments. Periods ended when no

agent bid for 30 seconds, so there was no ®xed ending time for a period. In

practice, periods took from 20 to 30 minutes and sometimes a bit longer. At

the end of the experiment, subjects were paid their earnings. If a subject made

an error entering a bid, they were urged to notify the experimenter so that the

error could be corrected. A number of such errors were corrected.

Cash payment included a show up fee of from $2 to $5, plus their pro®ts

from the BICAP� CPCA mechanism. Subjects received a row of train val-

ues from a table like Table 2, and did not know anything about other sub-

jects, values or the probability distribution. A subject's BICAP pro®t (or

loss) was the di�erence between train value and ®nal bid for each scheduled

train for which they were the high bidder Their CPCA pro®t depended upon

participation and submission of train system schedules according to the rules

of section 3.2. Individual subject payments tend to fall in a broad range of $5

to $40 for a 1±3 hour session.

Subjects who lost money in a period had these losses deducted from

earnings in pro®table periods, and from the show up fee if necessary. A few

subjects could not earn very much pro®t from equilibrium BICAP activity,

and so their earnings were mostly from the show up fee and CPCA sug-

gestions. Although no attempt was made to vary redemption value rates

across subjects, a two-tiered, progressive franc to dollar ratio was used for

experiments SIP1, S1, C1, and C2. Subjects earned 10 cents per franc for the

®rst 20 francs, and then 2 cents per franc after that.25 A ¯at 3 cent franc to

dollar ratio was used for rewarding subjects in experiments S2 and C3.

Each of the four sessions lasted approximately 2±2.5 hours and used 10

subjects (except experiment SIP1, 13 subjects). Some sessions did not proceed

as quickly as others, thus di�erent amounts of data were collected: some

sessions are 1 period, some 2 periods, and some are 3 periods.

5.2 The railroad testbeds: Physical con®guration parameters

Recall from section 2 that a railroad scheduling environment consists of a

physical con®guration and an economic con®guration. The physical con®g-

25 Although it is possible that high initial franc values might lead `poor' agents to compete more

aggressively in CPCA and depress CPCA costs, such an e�ect was not noted.
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uration determines the sets of trains that are feasible. A feasible set of trains

can have simultaneous access to the railroad tracks without causing a con¯ict

or collision.

Figure 2 shows the physical con®guration of the tracks and the con¯icts

between the trains in the testbed. In the ®gure, each row de®nes a particular

testbed that will be used in experiments. The row shows a name for the

testbed along with a physical layout of tracks in this model railroad, followed

by a diagram of the con¯icts in this railroad. The diagram represents a

con¯ict in C by a direct link between the two con¯icting trains. For example,

Figure 2. Testbed railroads for the experiments
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in the single track ``BP96'' testbed, there is a con¯ict between trains fA;Bg
and trains fD;Eg but not between trains fD; F g.

Environment ``BP96'' is a portion26 of the environment used for the ex-

periments reported in Brewer and Plott (1996). It consists of one track with

trains R � fA; . . . ;Gg. The layout shows a single track between two points.

The con¯icts are shown graphically in the box to the right. The con¯ict graph

directly connects pairs of trains that are in con¯ict. Thus, trains A and B are

in con¯ict because a line connects train A and train B in the con¯ict graph.

But trains A and D are not in con¯ict because there is no line directly con-

necting A and D.

Environments ``S'' and ``SIP'' involve three independent tracks, where

each track has a copy of the 7 trains in the BP96 environment. Because the

tracks are not physically connected, the scheduling of one track does not

a�ect the scheduling of the other tracks. Independence of the tracks is

shown in both the physical diagram for the tracks and in the train con¯ict

diagram.

Environment ``C'' involves a harder problem. Each of three tracks still

contain the con¯icts of environment S, but there are additional con¯icts

because the tracks now cross. The additional con¯icts in the con¯ict diagram

show that the scheduling of one track is now dependent on the scheduling of

the other tracks. For example, if trains fA;D; F g are scheduled on track 1,

then the trains fO;R; T g can not be scheduled on track 2 and train H can not

be scheduled on track 3.

The di�culty of computing optimal schedules in these environments is

related in a straightforward way. Complexity theory says that this type of

scheduling problem is NP-complete, meaning that solution time can (but

need-not) scale exponentially with the number of con¯icting trains. This

suggests that environment ``C'' is more complex than ``S'' which is similar in

complexity to ``BP96''. Page (1996) takes an alternative view and gives two

measures of computational di�culty, one of which is important for the train

problem. The measure of cover size de®nes di�culty relative to the hardest

separable sub-problem that must be solved. This type of di�culty is most

important to parallel processes like CPCA. Each physical con®guration will

now be examined brie¯y in terms of the di�culty of the associated scheduling

problem.

When each train has a positive additive value, the BP96 environment

contains 5 schedules that, depending on the values of the trains, could be

optimal: fA;D; F g, fA;Eg, fB;C;Eg, fB;C; F g, and fGg. Any other schedule

either leaves out a possible train or causes con¯ict.

The di�culty of the ``S'' environment is determined by the 3 separate

copies of the BP96 environment that are contained. Although there are

53 � 125 schedules that need to be searched for the best schedule, optimal

26 In the original experiments, two additional trains H and I were in the testbed. Because these

trains did not con¯ict with any of the trains in fA; . . . ;Gg, they were not relevant to the

scheduling of the con¯icting trains, and are not relevant to the discussions of this paper.
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schedules can be determined in steps. The fact that the tracks are indepen-

dent suggests that only 15 comparisons need to be made: a schedule for track

1 can be determined ®rst, then a schedule for track 2, and then a schedule for

track 3.

The di�culty of the ``C'' environment is much higher, because the

tracks can no longer be scheduled in isolation. There are 139 di�erent

schedules that need to be considered. While there may be ways to reduce

the number of comparisons from 139 to some smaller number, the inter-

dependence of the con¯icts on the tracks does not make any obvious

methods apparent.

5.3 The railroad testbeds: Economic con®guration

The economic con®guration of the testbeds are identical, and are given by

the set of agents I � f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g along with an assignment of

train values for each train and agent such as that shown in Table 2. Each

agents values are private information, and agents are not given any infor-

mation about the distribution of values.

Table 2 gives the train values for period 1 of the experiments. It is im-

portant to note that these train values are exactly the same values as were

used in the BP96 experiments. The values for period 1 of the BP96 experi-

ments became the values of the trains on track 1 in the experiments reported

here. The values for period 2 of the BP96 experiments became the values of

the trains on track 2 in Table 2. The values for period 3 of the BP96 ex-

periments became the values of the trains on track 3 in Table 2.

Periods 2 and 3 of the experiments use di�erent train values, which in the

interests of space are not shown. However, the link to the BP96 experiments

is maintained. Period 2 of the new experiments used periods 4, 5, and 6 of the

BP96 experiments for the train values for tracks 1, 2, and 3 respectively.

Period 3 of the new experiment used periods 7, 3, and 4 of the BP96 ex-

periments to obtain the train values on tracks 1, 2, and 3.

Isomorphic physical and economic con®gurations of the BP96, ``S'', and

``SIP'' scheduling environments imply that important BICAP variables, such

as ®nal bid prices, bid revenue, allocation e�ciency, and aspects of bidding

behavior, should be related across these 3 sets of experiments. For example,

bidding behavior observed in the BP96 experiments in period 5 should cor-

respond-under the isomorphism ± to bidding behavior to be observed in

period 2, track 2 of the ``S'' or ``SIP'' experiments.

The ``C'' environments, although they involve identical train values to the

``S'' environments, do not involve an identical physical con®guration. The

substantially di�erent nature of the feasible set will make the comparison of

economic variables impossible between the earlier BP96 environment and the

``C'' environment. The purpose of the ``C'' environment is to provide ob-

servations with a harder problem.
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5.4 BICAP � CPCA Con®guration

Train scheduling agents

The set of scheduling agents, who could submit CPCA proposals, was the

same as the set of train operator agents, who could bid, in all the experiments

except experiment SIP1.

Table 2. Train redemption values Vj[r] for Period 1 in the experiments

Period 1 ± Track 1

Agent id# Train A Train B Train C Train D Train E Train F Train G

0 332 232 878 708 746 426 2619

1 946 521 321 241 739 265 2491

2 302 198 307 270 1013 645 1329

3 1699 645 307 206 306 217 509

4 1282 454 1634 1447 341 134 2543

5 801 354 933 465 936 561 2339

6 389 242 387 117 583 348 423

7 320 132 1405 974 528 360 594

8 708 332 309 188 1635 1421 2005

9 372 277 341 138 395 284 1549

Period 1 ± Track 2

Agent id# Train H Train I Train J Train K Train L Train M Train N

0 368 133 683 346 320 108 1604

1 1124 980 319 269 340 291 93

2 303 219 335 168 1359 641 373

3 305 171 371 149 524 177 466

4 403 325 463 237 475 382 124

5 692 487 320 267 1027 515 1625

6 405 315 370 194 375 284 570

7 413 311 417 343 430 377 531

8 558 340 354 270 577 224 304

9 362 154 320 96 312 206 1710

Period 1 ± Track 3

Agent id# Train O Train P Train Q Train R Train S Train T Train U

0 425 365 360 116 500 310 598

1 319 241 337 263 463 194 1843

2 528 382 350 117 306 206 1570

3 1858 615 840 662 384 264 412

4 456 376 1227 964 315 105 206

5 660 405 342 217 328 169 1336

6 413 227 314 248 368 257 382

7 448 290 371 274 943 774 1387

8 312 267 1025 657 482 341 247

9 300 109 451 244 309 257 1731
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In experiment SIP1, the scheduling agents were 3 additional subjects that

did not bid on the trains. Only these 3 agents could make proposals. Several

questions are addressed by this design. Would CPCA still work with such a

small group of scheduling agents? Would agents, somehow, implicitly collude

to extract large bonuses from the system? Should agents who suggest

schedules be independent of the agents who are bidding, or is a system where

bidders can suggest schedules actually more desirable?

Timing

In the experiments, the BICAP� CPCA timer was set from 30 to 60 seconds

depending on the subjects. Longer times reduced subjects anxiety about

rushing to bid, but longer times also allow subjects to delay the process when

they increase bids by only 1 Fr at a time.

5.5 Software

Identical versions of the BICAP� CPCA rules were implemented in two

di�erent versions of the software. The di�erences in the software that are

relevant to the experiments reporter here primarily revolve around the user

interface.

Version 1

The experiments that ran at Caltech involved a DOS version of the software.

This software displayed a table of bids on the screen and a set of keyboard

commands that could be used to enter a new BICAP bid or send a CPCA

scheduling suggestion. Color codes indicated the current CPCA scheduling

information. The software was a modi®cation of the software used in the

BP96 experiments.

Version 2

The experiments that ran at Georgia State involved a LINUX27 version of

the software. This software displayed bids and proposals on separate screen

windows. The mouse was used instead of the keyboard to select a command.

The use of the mouse and graphical windows made describing and using the

software much easier.28 The LINUX software, while not DOS compatible,

27 LINUX is a full-featured, free version of UNIX that was developed by a collaboration of

thousands over the internet. It is named for its principle architect, Linus Torvalds. This

operating system was chosen because at the time, DOS/Windows based systems could not easily

provide the desired multi-user internet capabilities.
28 The subjects did not need to know anything about LINUX. As the displays were mouse

driven, the subject simply clicked on a button corresponding to the desired action ± bidding or

suggesting a schedule.
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could be run on the internet and thus allows the potential for larger exper-

iments in the future.

6 Experimental results

This section will provide analysis, support, and discussion for four primary

results of the experimental laboratory research.

Principal ®ndings

Result 1. The Computation Procuring Clock Auction (CPCA) exhibited

computational e�ectiveness inducing agents to compute schedules that max-

imize bid revenue.

Result 2. CPCA exhibited computational robustness in inducing some agents

to make up for the shortfalls of others. Such robustness involves the ability

of the CPCA process to aggregate information from di�erent sources.

Result 3. CPCA exhibited low total costs for suggestion incentives. Costs are

relatively low even over a wide range of concentrations of computing ac-

tivity. A form of competition seems to be present even when only a few

agents are submitting suggestions.

Result 4. Observation of BICAP � CPCA bidding behavior sustains a con-

jecture of computational invariance in comparison with behavior of

BICAP� Central Computin. BICAP bidding incentives, as evidenced by

BICAP bidding behavior revenue, do not seem to be adversely a�ected by

the introduction of CPCA as the computing technique.

The argument involved in this series of results is one of proof of principle

and design consistency. Result 1 shows that CPCA can be e�ective as a

computational technique in this testbed railroad scheduling application. The

Computation Procuring Clock Auction provides su�cient incentive to in-

duce the agents to compute the bid maximizing potential allocations and to

submit this information as CPCA proposals before the end of the round in

every experiment studied.

It is not enough to know that CPCA exhibited adequate performance as a

decentralized computing mechanism. The mere fact that a mechanism can

work in a few cases does not logically imply that it will work in the general

case or even in similar cases where it has not been tested. For this reason,

laboratory researchers have acknowledged the importance of examining the

design consistency of a mechanism. The idea is to answer not only the

question `Did CPCA work?', but to also examine other questions: `Why did

it work?'; `Did it work for the right reasons?'. Results 2 through 4 will show

that CPCA is operationally consistent with economic principles implicit in its

design.
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6.1 Result 1. Computational e�ectiveness

Data

Section 4 provides a discussion of the measure of CPCA computing e�ec-

tiveness that will be used here to analyze the experimental data.

Recall that

Computing E�ectiveness � QB�S
CPCA�

QB�SOPT
B

�
,

where SCPCA is a schedule produced by the CPCA process and SOPT
B a

schedule that produces maximum bid revenue at BICAP bids B. The SOPT
B

schedules were not directly observable to agents or the experimenter, but can

be calculated from the observed bids in the experiment, and are the standard

against which the performance of the CPCA process is being judged. Recall

that the function QB�S� is the sum of current bids for the schedule S.

If the CPCA process works correctly ± if CPCA is computationally ef-

fective ± then the total bid revenue from the schedule that CPCA produces,

QB�S
CPCA�, will equal the maximum possible bid revenue from these bids,

QB�S
OPT
B �. Thus, computational e�ectiveness is indicated by a ratio value of

100% and lack of e�ectiveness is indicated when the ratio is below 100%.

Ratio values above 100% are not possible.

Table 3 shows the calculation of the CPCA Computing E�ectiveness at

the close of each experimental period. From left to right, the table is read as

follows. The ®rst two columns give the experimental environment (envi-

ronment S or environment C),29 experiment number and the period number.

Column 3 gives the observed ®nal BICAP � CPCA allocation. Column 4

gives the allocation that would maximize bid revenue to the scheduling

authority given the bids submitted by the agents in that round. This bid

maximizing schedule in Column 4 is the schedule that CPCA is supposed to

induce agents to compute. Column 5 gives the related measure of CPCA

computing e�ectiveness: the ratio corresponding to the sum of bids at the

observed [col. 3] allocation divided by the sum of bids at the bid revenue

maximizing [col. 4] allocation.

Analysis and support

Table 3 shows that in each experiment, CPCA achieved 100% computing

e�ectiveness for the ®nal schedules and allocations. This data provides the

necessary support to establish that CPCA is computationally e�ective in the

testbed environments.

29 Recall that environment ``C'' is more di�cult than environment ``S'', and that within an

experimental environment the matrix of train values V were varied from period to period within

an experiment, giving rise to di�erent patterns of bidding and di�erent computational problems

in each case.

Decentralized computation procurement and computational robustness 69



Discussion

Table 3 clearly shows that CPCA always terminated at the bid maximizing

feasible allocation in each period of each experiment. But it is possible to

show more. In this discussion it will be shown that CPCA ®nds the 100% bid

revenue maximizing schedule many times in a period, changing in response

to the bids submitted by the agents. It does not calculate these new schedules

instantly, and it occasionally misses a few opportunities to provide feedback,

with most of the missing feedback occurring at the ®rst minutes of each

period. However, from the middle to the end of the each period, the CPCA

process provided, with a several second delay, similar scheduling feedback to

what a central computer could provide.

While CPCA was shown to be e�ective in calculating the ®nal schedules,

it is also important to ask how CPCA performed in calculating the potential

schedules during the BICAP � CPCA process. Recall that in the BICAP

process with central computing, the computer calculates ± after each bid ± a

new schedule showing the e�ect of that particular bid on the potential

scheduling outcome. CPCA decentralizes this task, relying on agents to

submit suggestions about which schedules will provide higher revenues.

Proper feedback to bidders in the BICAP process depends critically on the

computing e�ectiveness of the CPCA process.

Time series data for computing e�ectiveness within a period tend to re-

semble Figures 3.1±3.3 in that 100% computing e�ectiveness is lost and

regained many times during a period. This pattern in the ®gure is caused by a

repeating pattern of events in the data: some agents submit pivotal bids that

change the bid maximizing feasible allocation and thus cause the denomi-

nator of the computing e�ectiveness ratio to increase. This causes the com-

Table 3. Computing e�ectiveness of CPCA: Final allocations

Experiment Period System allocation

realized in

experiment

S*OBS

Bid revenue

maximizing

allocation at

closing bids on

trains S*MAX(BOBS)

CPCA computing

e�ectiveness
Q�S�

OBS
;B�

QMAX�B�

S1 01 BCEIJLPQS BCEIJLPQS 1.0

02 BCEHKMPQS BCEHKMPQS 1.0

03 ADFHKMPQS ADFHKMPQS 1.0

SIP1 01 ADFIJLPQS ADFIJLPQS 1.0

02 BCEHKM*PQS BCEHKMPQS 1.0

03 ADFHKMPQS ADFHKMPQS 1.0

S2 01 ADFIJLORT ADFIJLORT 1.0

C1 01 ADFILPQS ADFILPQS 1.0

02 GHKMPQS GHKMPQS 1.0

03 ADFNPQS ADFNPQS 1.0

C2 01 BCEHLORT BCEHLORT 1.0

02 BCEHLORT BCEHLORT 1.0

C3 01 BCEHLORT BCEHLORT 1.0
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putation e�ectiveness to drop. CPCA then gives agents an incentive to ®nd

and submit new scheduling proposals appropriate to these new bids. The

agents eventually respond each time, increasing the computing e�ectiveness

ratio back to 100% . Figure 3 shows that the CPCA schedule is acting as an

e�ective running approximation of the bid maximizing feasible allocation.

Another measure of the interim e�ectiveness of CPCA involves com-

paring the time of arrival of pivotal bids ± bids which change SOPT
B ± and the

time of arrival of subsequent CPCA suggestion messages. The ®gures give an

idea but not the entire pattern of the data. For that reason, the raw data was

examined in detail. A di�erent experiment ± experiment S1 ± was examined.

For the ®rst 3 to 4 minutes of experiment S1, period 1, �T � 1756 to

T � 1960�, the CPCA schedule is being updated but does not follow the bid

maximizing schedule very well. Intuitively, this suggests that the agents are

only beginning to learn how to solve the relevant constrained improvement

Figure 3. a CPCA computing e�ectiveness during period 1, experiment C1. b CPCA computing

e�ectiveness during 2, experiment C1. c CPCA computing e�ectiveness during 3, experiment C1
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problem. However, there is a time when CPCA begins to track the changes in

the bid maximizing potential allocations. After 51=2 minutes �T � 2071�, in
experiment S11, each pivotal bid is followed, within 7 to 23 seconds, by a

suggestion message that updates the CPCA schedule to once again match the

bid revenue maximizing schedule. This pattern continues for the remainder

of the period, which lasted just over 17 minutes. The pattern of data in the

other experiments, while not presented due to space, is fairly similar. CPCA

does occasionally skip improvements later in the period, but most of the

skipped improvements are concentrated in an initial ``learning'' phase of each

round.

6.2 Result 2. Computational robustness

Computational robustness means that a number of agents participate in the

CPCA process, and that when some of these agents fail to calculate or submit

information, other agents correct for these failures.

Demonstrating CPCA computational robustness involves identifying

features in the experimental data that reveal failures of individual agents and

corrections by other agents.

Data

The data analysis identi®es the omissions of some agents involved in the

CPCA process and how other agents corrected for these omissions. A new

table categorizing the CPCA suggestion messages was compiled from the raw

data of various experiments and is included as Table 4. A CPCA suggestion

message is categorized a ``Complete Solution'' if the suggested schedule is in

fact the bid revenue maximizing schedule. Otherwise, the suggestion message

is categorized a ``Partial Solution''. A ``Partial Solution'' is still an im-

provement over the current schedule but is not the bid revenue maximizing

schedule.

The number of partial and complete solution suggestion messages is

tallied for each experiment and period, and by what type of agent submitted

the suggestion.

A pivotal bidder is the agent whose recent bidding activity has changed the

schedule that ought to be adopted. For example, if the schedule can be fAg
or fBg, and the current schedule is fAg, and some agent places a very high

bid on fBg that ought to change the schedule, then that agent would be a

pivotal bidder. The schedule need not actually change from fAg to fBg.
Others are simply agents who were not the pivotal bidder at the time the new

schedule was suggested.

Analysis and support

The argument supporting CPCA computational robustness involves three

elements.
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(A) A number of di�erent agents participate in the CPCA process as

shown by Figure 4.

(B) The categorization of CPCA suggestion messages in Table 4 indicates

that some pivotal bidders who did submit a CPCA suggestion message after

their bid failed to submit a complete solution, but only submitted a partial

solution. A partial solution means that an improved schedule was submitted,

but this schedule did not maximize bid revenue from the available high bids.

This indicates that agents are not always submitting30 scheduling informa-

tion that is associated with their bids.

(C) The computational e�ectiveness of CPCA exhibited in Result 1 shows

that a complete solution is eventually submitted to CPCA. At the end of the

period, the CPCA schedule matches the bid revenue maximizing schedule

because some other agent submitted a complete solution. Thus, some agents

in CPCA are shown to correct for the failure of others.

Discussion

Result 2 shows that in the laboratory testbed environments, some agents can

and do correct for the omissions of others. Intuition involved in the design of

the process suggest two factors relevant towards extending this result to

future research and possible application.

Result 2 suggests that the payment of bonuses to agents who submit

information to CPCA is probably an important part of the process. In a

world of ideally rational bidders, one could consider abandoning the CPCA

bonus payments. Pivotal bidders would always understand how their bid

a�ected the bid revenue maximizing schedule, and would automatically

provide updates to CPCA because otherwise their pivotal bids would not be

included in the ®nal CPCA schedule. A pivotal bidder who did not submit a

CPCA suggestion message would not change the schedule, and their bid

would be worthless.

Table 4 shows that when pivotal bidders send CPCA suggestion message,

the suggested schedule is often a full solution for the bid maximizing

schedule. However, the same table shows that the pivotal bidders sometimes

Figure 4. CPCA participation

30 It is also true that the agents might be unaware of whether their bid is su�ciently high to

change the schedule. However, we can not observe what agents are aware of ± only their bids and

suggestion messages are observable.
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submit partial solutions, which suggests that they either do not fully un-

derstand the e�ect of their pivotal bid or are acting in some strategic manner.

In these cases, it is important that other agents are rewarded for ®nding

improved schedules.

CPCA functions well because it does not allow the bid revenue from a

schedule to go down but it accepts any schedule change that causes bid

revenue to increase. Because CPCA provides no rules for evaluating how an

agent calculated an improved schedule or who the agent is, the design of the

CPCA process makes possible both omissions and the correction of omis-

sions. The fact that a mistake is an omission by a pivotal bidder, who might

normally be assumed to know the intent of his bid, and the fact that a

correction was submitted by someone who merely guessed a better schedule,

are facts never evaluated formally within the process. In this way, CPCA

impartially accepts and aggregates di�erent kinds of information.

6.3 Result 3. Costs of CPCA incentives

CPCA exhibited low total costs for suggestion incentives. Costs are relatively

low even over a wide range of concentrations of computing activity. A form

of competition seems to be present even when only a few agents are sub-

mitting suggestions.

Data

In a given period of a given experiment, the sum total CPCA bonuses paid

across the agents ranged from 10 Fr to 350 Fr. The total bid revenue was in

the range of 6000±8000 Fr.

Table 4. Partial vs. full solution CPCA proposals

Experiment CPCA proposals by

pivotal bidders

CPCA proposals by others

Partial solution Full solution Partial solution Full solution

SIP11 4 4

SIP12 9 4

SIP13 6 4

S11 0 4 7 1

S12 1 6 8 8

S13 4 1 15 5

S21 0 0 11 2

C11 2 6 5 5

C12 1 1 7 5

C13 1 7 24 38

C21 2 4 20 3

C22 1 12 27 28

C31 0 1 7 0

Total S+C 12 42 131 95
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Figure 5 explores the relationship between the concentration of rewarded

CPCA activity in the experimental environment, and the total cost of CPCA.

On the horizontal axis, the code for the experiment and period is given (e.g.,

C12 indicates period 2 of experiment C1) along with the HHI concentration

of the bonus payments. The vertical axis shows the total cost of CPCA

incentives that were paid out to agents in that period, as a percentage of the

bid revenue.

This HHI index is a standard Hirschmann-Herfandahl index, familiar in

industrial organization theory, applied to the CPCA bonus payments re-

ceived by the agents. In this case, the HHI equals the sum of the squares of

the CPCA bonus shares of all the agents in a particular period. For example,

suppose in a period agent 1 received a 30 Fr CPCA bonus payment, and

agent 2 received a 20 Fr CPCA bonus payment, and other agents received

nothing. Then the sum total of the bonus payments is 50 Fr across the

various agents, and agent 1 received 60% of this whereas agent 2 received

40% and other agents received nothing. The HHI is the sum of the squares

of the percentage shares. In this example the HHI � 602� 402 � 02 �
3600� 1600 � 5200. Thus in pure monopoly the HHI would be

1002 � 10; 000. If all ten agents received an equal 10% share of the CPCA

bonus payments, the HHI would be 102 � 10 � 100 � 10 � 1000. As shown in

the graphs, the observed HHI of the CPCA bonuses varies among the

di�erent experiments and periods.

Analysis and support

Figure 5 shows that the CPCA bonus payments typically consume 1% ±5%

of BICAP bid revenue. This is a low cost when compared to the monopoly

outcome. A monopolist could wait until the bonus rate was 100%, and

collect 100% of BICAP bid revenue as a CPCA bonus.

The ®gure shows that even when the CPCA activity was fairly concen-

trated, costs do not rise as might otherwise be expected. This supports a

conjecture that competition exists and induces agents to reveal information

Figure 5. Total cost of bonuses vs. concentration
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at low bonus rates. Agents do not tend to wait for higher bonus rate levels,

even when only 2 or 3 agents are submitting suggestions.

Discussion

While the result shows that CPCA costs are low, an understanding of the

nature of the competition within the CPCA process is desirable in order to

understand why the costs are low.

Pivotal bidders play a role in keeping CPCA costs low in two ways. First,

from Table 4 many pivotal bidders submit full CPCA solutions that detail

how their bid changes the bid revenue maximizing schedule. These submis-

sions are often made shortly after a bid, and at a zero or low CPCA bonus

rate. Attempts from pivotal bidders to insure that their bid is included in the

schedule present serious competition to agents who are merely watching the

process, and might keep overall CPCA costs low.

The ¯uctuating nature of the bonus rate timer is another factor that might

keep CPCA costs low. Figure 6 shows the bonus rate for the C1 experiment.

Other experiments display similar data. Recall that the bonus rate uniformly

increases from 0% to 100%, so long as no bid or suggestion messages are

received. Any BICAP bid or CPCA suggestion message that meets the im-

provement rule requirements will cause the CPCA bonus rate to be reset to

Figure 6. CPCA bonus rate (experiment C1, periods 1±3)
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0%. Thus, a graph of the bonus rate will indicate low bonus rates at times of

high bidding activity and high bonus rates at times of low bidding activity.

The noisy nature of the bonus rate introduces some uncertainty for an

agent who has information to submit to CPCA and wants to maximize their

payment for the information.

Figure 7 provides a graphical depiction of two risks caused by the noisy

bonus rate. The data shown is taken from period 1 of experiment C1.

One risk involves the fact that the agent does not know how long he will

have to wait for the bonus to climb to 20%, 50%, or some other target level.

The longer an agent must wait, the higher the likelihood is that someone else

will claim the bonus for the information.

A second risk that agents face when submitting CPCA suggestions occurs

when the bidding is very active. An agent wanting to submit a CPCA sug-

gestion does not know if another agent will be pressing the bid key a few

tenths of a second before he presses the suggestion key. If another agent

submits a bid, the computer running the BICAP� CPCA process will reset

the CPCA bonus rate to 0%. If the agent submitting the CPCA suggestion

does not notice this, and submits the suggestion anyway, then they will

receive a bonus of zero. While this does reduce CPCA costs, it does increase

the risks for agents who compute improved schedules. Questions from agents

during the experiment showed that agents did encounter this e�ect in the

process.31

6.4 Result 4. Conjecture of computational invariance

A conjecture that CPCA does not a�ect BICAP bidding revenues can be

sustained.

Figure 7. Risks faced by CPCA participants seeking larger CPCA bonuses (experiment C1,

period 1)

31 Complaints from experimental agents usually took the form of a ``computer bug'' report or a

report that something unfair was happening. Agents were told individually that a chance existed

that someone else placed a bid at roughly the same time that they entered a suggestion. The

bonus rate would be determined by which event was processed ®rst by the mechanism.
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Data

Figure 8 shows a comparison of the total BICAP revenue from the experi-

ments of Brewer and Plott (1996) [BP96] and the new experiments reported

here �SIP1; S1; and S2�. Figure 8 shows the revenues in economically com-

parable environments.

From the discussion of section 5.3, the BP96 environment and the SIP1,

S1, and S2 experiments should produce comparable patterns of bidding.

There is a one to one correspondence between the physical and economic

con®gurations of the trains on a particular track of the S environment and of

the trains fA; . . . ;Gg of the BP96 environment.

Analysis and support

Figure 8 shows that the BICAP bid revenue is a slightly higher in the new

experiments, where CPCA was used for train schedule calculation, than in

the BP96 experiments, where a central computer was used for train schedule

calculation.

Comparable track environments produce similar revenues in both the

BP96 and the BICA� CPCA experiments.

This data shows that CPCA did not noticeably reduce the BICAP bid

revenue. If anything, the bid revenue increased slightly.

The data also shows that in later periods, the revenue followed theoretical

predictions just as in earlier periods. There is no trend away from the the-

oretical predictions. Thus, CPCA does not somehow encourage agents to

collude over time.

Figure 8. Comparison of bid revenue from BICAP, BICAP+CPCA and theoretical upper and

lower bounds
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Discussion

While results 1±3 involve relatively ``clean'' data and strong results, result 4 is

stated as a sustained conjecture. Several pieces of evidence exist that point to

mixed results. Future experiments in a variety of environments may help to

resolve the questions at hand.

What does it mean for the BICAP mechanism to be relatively `unharmed'

by a transition from central computing of schedules to CPCA computing of

schedules? The idea is that the same economic principles that make BICAP

relatively e�cient should also be observed to operate in BICAP� CPCA.

Thus, the bid revenue is only a part of the possible evidence that might

need to be examined in order to make a complete determination. Other

sources of evidence that could be compared would include the ®nal train

schedules for each agent, the ®nal bid prices, whether or not a one stage nash

equilibrium was reached, and the nature of agent bidding behavior during

the auction.

Mixed results from the analysis of this evidence is summarized below.

� Allocation e�ciencies32 were in the range 90±100% in 10 of the 13

experimental periods. On average, the allocation e�ciency with

BICAP� CPCA is fairly high: 91:5% in the ``S'' environments and

93.6% in the ``C'' environments. With BP96, in a much simpler envi-

ronment, the average was 97%. The somewhat lower e�ciencies were

expected as a result of studying the much more complex environments

and as a possible cost of using a procedure like CPCA.

� Low allocation e�ciencies exhibited in 3 periods point to possible causes

of di�culties in the mechanism. The two lowest cases of allocation e�-

ciency are 67% in period 1, experiment SIP1; and 77% in period 3,

experiment C1. In the case of SIP1 period 1, the overbidding of agent 0

and agent 2 caused the low e�ciency. In the case of C1 period 3, over-

bidding did not occur. However, agents 1 and 4 could have submitted

bids that would have greatly improved their individual pro®ts and the

overall allocation e�ciency, but failed to do so.

� Overbidding was a problem in 5 of the 13 experimental periods. Over-

bidding means that some agent bid over his redemption value by a large

amount. Because 3 of these ``overbid'' periods occurred in the SIP1 ex-

periment, this overbidding does not seem to be related to arbitrage cap-

ture strategies between BICAP and CPCA as mentioned in section 4.

Recall that in the SIP1 experiment, bidders could not enter scheduling

proposals. Thus, overbidding is not directly related to a strategy to

overbid and then submit a related scheduling proposal. When overbid-

ding occurred, other agents usually took advantage by not bidding as

32 Allocation e�ciency is determined by comparing the sums of the values (e.g., from table 1) at

the ®nal schedule to that obtained by solving the e�cient scheduling problem of section 2. Thus

an allocation e�ciency of 100% means that the most valuable trains are scheduled to be run by

those agents who value them the most.
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high on complementary schedules.33 Thus, overbidding did not always

a�ect the total bid revenue by very much.

� Nash-like (NE1) bidding equilibrium were frequently not obtained. In

contrast, in the BP96 experiments, NE1 were frequently obtained. A NE1

pro®le of bids exists when no agent can submit a pivotal bid that increases

his or her own pro®t. Not counting the 5 periods where overbidding

occurred, 6 of the 8 remaining periods involved a failure by one or more

agents to recognize a `valuable' pivotal bidding opportunity. In this case,

`valuable' means that the agent could have increased their pro®t by at

least 100 Fr by submitting another bid. Instead, the agents allowed the

clock to run out and the mechanism to close.

Mistakes by subjects may be the problem here and certainly exist in many

other types of experiments.34 The tasks which subjects must perform are

fairly complex, and include watching a constantly updating screen and

comparing the bids with their own values on separate redemption value

sheets. The subjects must form a bidding strategy that is consistent with their

own objectives and the complex interdependencies of the feasibility con-

straints, and they must execute this strategy on an unfamiliar35 software

system. Thus the fact that BICAP� CPCA works at all is strong evidence for

the value of future research. The 2nd version of the software, which was used

for the experiments at Georgia State, had a friendlier36 user interface ± and

data from a future series of experiments may resolve many of the problems

reported here.

33 For example, Figure 2 shows that in all environments, trains A and D are in competition with

trains B and C. If trains A and D are scheduled, B and C can not be scheduled, and vice versa. If

someone overbids on A, then the bidder for train D need not bid as high in order to help insure

that the total bid on A and D beat the total bid on B and C.
34 For example, in a large number of experiments that use market systems, agents sometimes

trade at prices far from the equilibrium simply because one of the agents mistyped his bid or ask.

Usually, successive trades return to the equilibrium price and there is little e�ect on total

revenues or e�ciency; just a decrease in the pro®t of error prone agents. In auctions, mistakes

can have a more permanent e�ect on the data. An e�ort was made to correct errors reported by

subjects, but subjects did not always announce their overbidding as a typo.
35 Although a practice period was provided after reading the instructions, it is safe to say that the

subjects had never seen this software before and were unfamiliar with its weaknesses.
36 In a new series of 1997 experiments currently in progress, changes in the software have

improved the ability of subjects to cope with their environment. The addition of redemption

values to the screen displays and the display of warning messages about overbidding has reduced

it considerably. Bidding over the redemption value causes a box to appear where the subject is

warned and then asked if they still wish to enter the bid. Overbidding still sometimes occurs, but

not at the levels reported in this initial series of experiments. These developments suggest that

subject error is responsible for much of the problems reported here.
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7 Conclusions

This paper began with questions concerning the large scale feasibility of

smart markets. The question posed was whether it might be possible to

develop techniques for ®nding or calculating bid maximizing feasible allo-

cations in a way that might allow smart markets to function at larger and

larger scales. In particular, the technique was to rely on economic rather than

technical concepts ± the idea was not to ®nd a better mathematical algorithm

for ®nding optimal solutions, but rather, to develop an incentive structure

that would cause partial solutions and, eventually, a best known solution to

be revealed. At the same time, the technique for computing bid maximizing

potential allocations should only minimally a�ect the incentives for bidding

in the market.

The answer is that such an incentive system can be constructed. The

Computation Procuring Clock Auction (CPCA) is such an incentive system.

Experiments were performed where CPCA successfully replaced the central

computing aspects of the BICAP smart auction. In several testbed environ-

ments, CPCA always obtained the bid maximizing potential allocation by the

close of each period. Often, CPCA potential allocations tracked the bid

maximizing schedule within several seconds of any changes. The variety of

environments in which CPCA was tested shows that its ability to ®nd opti-

mal solutions is not a ¯uke or an accident of choice of experimental proce-

dures.

A conjecture can be sustained that CPCA provided e�ective computation

because it provided incentives similar to those mentioned by Hayek (1945)

for problems of much larger scale. CPCA functioned e�ectively because:

� CPCA gives agents the incentives to compute improvements or changes

to small parts of the big problem of how to schedule the railroad network.

Computation occurs in parallel by many agents.

� CPCA provides for an information transfer capacity through the po-

tential allocation. The potential allocation summarizes information about

the best known schedule ± an agent does not need to know why the solution

has changed in order to react with new BICAP bids for trains and/or a new

CPCA proposal to change the solution for scheduling trains on the tracks.

� Pro®tability in the marketplace regulates the activities of the agents in

regards to providing e�ective information or computation. Whenever an

information or computation activity can be pro®table, CPCA encourages it.

Whenever information or computation activity is unpro®table, the incentives

in the market discourage it. In CPCA we do not know whether agents'

computational activities were pro®table, because the costs are the costs of

human e�ort and are probably varied and unobservable.

� CPCA does not strictly prevent or prohibit activities on the grounds

that they are not the best technical means of solution. Many types of com-

putation and information are provided by agents in the marketplace that are

very di�erent from what would be suggested by technical experts desiring a

complete, central solution. CPCA solutions may partially depend on agents'
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abilities in understanding the strategy of other agents' BICAP bids, a type of

knowledge that would be very di�cult to program into a computer.

As an algorithm for optimization, CPCA has some interesting features

that might be useful in many other applications besides smart market ap-

plications. The algorithm by which CPCA computes the bid maximizing

potential allocation is likely to be very di�erent than the one that a computer

programmer or operations research specialist would construct for this type of

problem.37 In CPCA calculation of optima are not centrally controlled or

dispatched and there is no control to prevent the duplication of e�ort ±

several agents might be simultaneously searching for very similar solutions.

Whether duplication of e�ort would necessarily point to an ine�ciency is

a potential point for future debate about computing mechanisms. Huberman

and Hogg (1995) and Huberman, Lukose, and Hogg (1997) have developed

the idea of computational portfolios, where a number of di�erent techniques

are simultaneously tried for solving the same problem. The idea is that on a

multiprocessing computer that can support a number of simultaneous pro-

grams, choosing a level of time sharing between a number of solution

techniques is similar to choosing a portfolio of stocks in ®nancial theory. The

solution techniques each have an uncertain ex ante yield in terms of time to a

solution. Thus, a combination of techniques would involve a tradeo� be-

tween speed of solution and variance of solution time, just as a portfolio of

stocks involves a tradeo� between performance and variance. CPCA would

appear to be compatible with such techniques for computation, as it causes a

market portfolio of solution techniques to evolve based on performance.

In addition, evidence exists suggesting that CPCA also procures substi-

tutes for computation when they are available. In the experiments, agents

often knew what e�ect a bid had on the value of certain allocations and were

able to gain a small bonus by immediately revealing this information. These

agents might be said to have what Hayek (1945) referred to as the knowledge

of particular circumstances of time and place. The CPCA procedure caused

the revelation of this special type of information that would be di�cult to

otherwise incorporate into a computing algorithm ± information such as

personal, strategic reasons for a particular bid and the ability to guess

strategic reasons for others' bids. In addition, CPCA also gave agents in-

centives to undertake more extensive searches of the allocations when such

simple rules-of-thumb would be ine�ective.

While the current series of experiments shows that CPCA is an e�ective

computational tool that can also elicit knowledge that is di�cult to include in

formal computer programs, future series of experiments are required to

further determine CPCA's properties. Can CPCA cause agents to appro-

37 Usually the push is for better algorithms and/or faster computers. The novel idea of interactive

optimization, as suggested by Fisher (1986), involves linking human and computer abilities in

solving optimization problems. No one, to my knowledge, proposes linking competing humans

who have various computing abilities at their disposal.

82 P. J. Brewer



priately use available computing tools when these tools are costly? In the

current experiments, the only costs to computation for the agents was the

cost of their own mental e�ort. Because CPCA does not place restrictions on

what an agent does to construct a solution proposal, any algorithm or

computer program for ®nding or approximating optima could be used with

CPCA. In more complicated computational environments, various computer

programs or other tools might have real economic costs as well as potential

bene®ts. The CPCA procedure would help determine a parallel algorithm

where agents were willing to undergo computing costs associated with the use

of certain tools or techniques in order to gain the possible CPCA bonus.

More complex environments need to be studied to determine how e�ective

CPCA would be in these situations. Eventually, ®eld tests might even be

warranted. Perhaps CPCA, or something like it, could eventually be used as

a means of rewarding teams of sophisticated, optimization research spe-

cialists who compete and/or collaborate to solve problems of importance to

industry.

Appendix A

The many potential uses of CPCA as a computation mechanism, and in

particular its use within allocation mechanisms such as smart markets,

requires that the CPCA rules be stated in a su�ciently clear and general

fashion so that its compatibility with other mechanisms can be ascer-

tained.

Here we take an approach familiar to those who work with dynamical

systems or state-machines. The mechanism has a state. In CPCA, the state is

assumed to be public information and common knowledge (e.g. agents know

that other agents have access to the state).

The operation of a mechanism, in general, can be described as follows.

The mechanism starts in a universal initial state we will call [. The mech-

anism changes states only by processing messages, which may arrive asyn-

chronously from agents or be a special ``message from time''. The message T

will be considered as a message that some uniform time interval has passed.

In this way, the description of a mechanism's reaction to the passing of time

can be placed in the same framework as its reaction to messages from agents.

The mechanism may or may not have terminal states, from which further

changes are impossible. The terminal states, when they exist, may occur in

operation either through messages from the agents or messages from time. In

some allocation mechanisms, the terminal state provides a ®nal allocation

that is to be implemented. In CPCA, the terminal state will give the ap-

proximate mathematical solution of a constrained optimization problem.

The reaction of a mechanism to a message is given by a transition rule.

The transition rule speci®es an initial state, a message or messages, and a

®nal state. If the mechanism is at the initial state, and the message or se-

quence of messages is received, then the state of the mechanism changes to

the ®nal state. If a transition rule does not exist for a given mechanism initial
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state and agents message, then a transition does not occur ± the message is

ignored.

A taxonomy of transition rules can make useful distinctions in required

and optional transitions in mechanisms. When only one transition rule exists

for a given state, that transition is called a required transition. A required

transition must occur in order for processing in the mechanism to continue.

When many possible transition rules exist for a given state, then at this state

there are many optional transitions. This taxonomy of transition rules may

help to identify bottlenecks that occur because of the limited abilities of

agents involved in required transitions.

The notation used for required and optional transitions follows below.

Required transitions

notation

Statefvariablesg �������������!
sender!messages

NewÿStatefvariablesg

interpretation

If the mechanism is at the initial State, then for the mechanism to con-

tinue operations, the sender must send the indicated message or messages,

and then the mechanism state changes to the New_State.

notation

Statefvariablesg ^ �applicability condition� �������������!
sender!messages

NewÿStatefvariablesg

interpretation

If the mechanism is at the initial State, and the applicability condition is

satis®ed, then for the mechanism to continue operations, the sender must

send the indicated message or messages, and then the state changes to the

New_State.

Optional transitions

notation

Statefvariablesg � �������������!
sender!messages

NewÿStatefvariablesg

interpretation

If the mechanism is at the initial State, and the sender sends the indicated

messages, then the mechanism state changes to New_State.

notation

Statefvariablesg^ �applicability condition� � �������������!
sender!messages

NewÿStatefvariablesg

interpretation

If the mechanism is in the initial State, and the applicability condition is

satis®ed, and the sender sends the indicated messages, then the mechanism

state changes to New_State.
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A rough description of the CPCA mechanism is as follows. The states of

CPCA are a null initial state[, a listening state Lf g, a veri®cation state V { },

and a terminal closed state Cf g. The agents include a market maker and a

number of computing agents. The market maker starts the process by pro-

viding details of the constrained optimization environment. This message

causes a transition from the [ state to a Lf g state. In the state Lf g, CPCA
will accept improvement messages from agents, and proceed to state V f g,
where the improvement will be veri®ed by the market maker, and cause

CPCA to enter another Lf g state. Time a�ects the Lf g states in a manner

that makes it more pro®table for agents to send improvement messages.

Eventually, if no improvement messages are sent, time will cause the

mechanism to enter a terminal Cf g state.

CPCA states

[ ± Null state

LfQ; F ; xn;Bg ± Listening State

variables for Lf g
Q � value function (maximand)

F � feasibility function (constraints)

xn � n-th iterated potential solution

B � bonus rate

V fQ; F ; xn;B; i; x
�g ± Veri®cation State

variables for V f g
Q; :F :x:B ± as above

i; x� ± potential improvement

CfQ; F ; xng ± Auction closed.

Transition rules

The market maker has the option to start the auction by providing the details

of the constrained optimization environment.

[ � �������������!
mm!E�Q;F �

LfQ; F ; x0 � [;B � 0%g

Time raises the bonus to 100% then closes the auction if no messages

arrive from the agents.

LfQ; F ; xn;B � 0%g � ���!
T

LfQ; F ; xn;B � 1%g�

���!
T

. . . � ���!
T

LfQ; F ; xn;B � 99%g�

���!
T

LfQ; F ; xn;B � 100%g � ���!
T

CfQ; F ; xng

The market maker has the option to monotonically increase the value

function

LfQ; F ; xn;Bg � �������������!
mm!DE�jDQj�

LfQ� jDQj; F ; xn;Bg
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Agents have the option to suggest improvements x� to the current po-

tential solution xn

LfQ; F ; xn;Bg � �������������!
i!S�i;x��

V fQ; F ; xn;B; i; x
�g

The market maker must verify and pay agents who submit bona®de

improvements.

V fQ; F ; xn;B; i; x
�g^

�F �x�� ^ �Q�x�� > Q�xn��� ��������������������!
mm!A�x���P�i;B��Q�x��ÿQ�xn���

LfQ; F ; xn�1

� x�;B � 0%g

The market maker must reject and penalize agents for incorrect im-

provement submissions.

V fQ; F ; xn;B; i; x
�g ^ :�F �x�� ^ �Q�x��

> Q�xn��� �����������������!
mm!R�x���P�i;ÿpenalty�

LfQ; F ; xn;Bg

Formal description of the BICAP mechanism

Transition rules

The market maker has the option to start the BICAP mechanism by

providing the details of the trains and con¯icts.

[ � �����������������!
mm!E�R;C�

LfR;C;B � 0;H � 0; S � [ g

Agents have the option to place a bid b on a train r 2 R.

LfR;C;B;H ; Sg � �����������������!
i!B�b;r�

V fR;C;B;H ; S; i; b; rg

The market maker must verify that a new bid is above the current high

bid, and if so, must announce the new high bids. The mechanism then enters

a wait state while the new bid maximizing feasible schedule S, is computed.

V fR;C;B;H ; S; i; b; rg ^ �b > Br� �����������������!
mm!A�b;r�

W fR;C;B � �. . . ; b; . . .�; H � �. . . ; i; . . .�g

The market maker must reject any new bid that does not exceed the

current high bid for that train.

V fR;C;B;H ; S; i; b; rg ^ :�b > Br� �����������������!
mm!R�b;r�

LfR;C;B;H ; Sg

A computing agent (which might be the market maker or a machine

controlled by the market maker) must compute the new bid maximizing

feasible schedule whenever a wait state is entered.

W fR;C;B;Hg �����������������!
comp!Sched�S�

LfR;C;B;H ; Sg

Formal description of the BICAP+CPCA mechanism

Transition rules
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The market maker has the option to start the BICAP� CPCA mecha-

nism by providing the details of the trains and con¯icts to BICAP. The

CPCA environment �Q�x�; F �x�; x0� is determined from R and C.

[ � �����������������!
mm!E�R;C�

LfR;C;B � 0;H � 0; S � [g

Agents have the option to place a bid b on a train r 2 R.

LfR;C;B;H ; Sg � �����������������!
i!B�b;r�

V fR;C;B;H ; S; i; b; rg

The market maker must verify that a new bid is above the current high

bid, and if so, must announce the new high bids and send a CPCA envi-

ronment change message.

V fR;C;B;H ; S; i; b; rg ^ �b > B r� ��������������������!
mm!A�b;r��DE�DQ�DB�

LfR;C;B � �. . . ; b; . . .�;H � �. . . ; i; . . .�; Sg

The market maker must reject any new bid that does not exceed the

current high bid for that train.

V fR;C;B;H ; S; i; b; rg ^ :�b > Br� �����������������!
mm!R�b;r�

LfR;C;B;H ; Sg

Appendix B: Experimental instructions.

BICAP+CPCA 8/9/94, 8/10/94, Experiment C1, C2

The instructions that follow are original. In experiments S1 and SIP1, similar

instructions were used but the con¯ict diagram was replaced with the ap-

propriate diagram from Figure 2.

In experiments C3 and S2, the two-tiered redemption values were not

used. In these experiments there was a constant payment in cents per franc.

Instructions

This is an experiment in the economics of market decision making. The

instructions are simple, and if you follow them carefully and make good

decisions you might earn money which will be paid to you in cash.

In this experiment, we are going to conduct a computerized market over a

sequence of trading periods. The items to be sold are called projects, and are

designated by letters of the alphabet (project A, project B, project C, etc...).

You may try to purchase any number of projects as you wish. The value to

you of any particular project is detailed on your attached set of redemption

value sheets. The redemption values vary from period to period and from

person to person. You must pay careful attention to make sure you are using

the correct period number sheet in evaluating which project(s) you wish to

purchase. [note: the information on the redemption sheets is your own pri-

vate information, do not reveal it to anyone.] At the end of each period,

project(s) you have purchased are redeemed by the experimenter for the

amounts indicated on these sheets.
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Your trading pro®ts in a period are determined by the di�erence in the

redemption amount you receive for the projects you purchased and the

amount you paid for them.

i.e. trading profit=(total project redemption value)ÿ (total purchase price)

For example, if BUYER 43 purchases project C in the market for 500 and

project N for 200 and her redemption value from her sheet is 750 for C and

300 for N , then BUYER 43's trading pro®t is

750 (value of C) ÿ 500 (payment for C) � 300 (value of N ) )200(payment

for N ) � 350 (pro®t) .

Each project can be sold to one and only one buyer during each period.

The projects are sold via an auction, carried out using the computer termi-

nals. Buyers will have an opportunity to bid on each project as many times as

they wish. To bid, follow the instructions at the bottom of the screen. Bids

are not binding until the SEND key is hit. Bids which are lower than the

current bid on the screen are ignored. Once a bid for a project is sent into the

system, and becomes the current bid, the bidder is obligated to honor it until

someone else bids higher on the same project, at which point the lower bid is

deleted from the system.

There is an additional complication. Not all combinations of projects

are possible. For example, it could be that if X is sold, that Y or Z

cannot be sold. Incompatible groups of projects are detailed on an at-

tached sheet.

The computer will accept proposals for which objects should be sold. The

PROPOSERs earn pro®t for making proposals which are ACCEPTED for

consideration. At the end of the period, the computer will use the best

proposal submitted to determine which projects it will sell.

A PROPOSAL consists of a list of proposed objects to be sold by the

computer. The computer allways keeps the current proposal on display.

Projects included in the proposal are green on the display and items which

were not included are red. At the beginning of the period, the current pro-

posal is the proposal that none of the projects are sold.

A new proposal is ACCEPTED if there are no incompatible groups of

projects in the proposal, and if the value of the new proposal given the

current bids is higher than the value of the current proposal.

The proposer earns pro®t for ACCEPTED proposals. For each AC-

CEPTED proposal, a PROPOSAL BONUS is paid. Bonuses accumulate

over the period.

PROPOSAL BONUS � amount of improvement � bonus percentage.

The bonus percentage starts at 0% and rises as time left on the PERIOD

TIMER decreases. When the timer indicates half the time left, the bonus will

be 50%, and when the timer indicates 1 second left, the bonus will be close to

100%.

If you wish to make a proposal, type in the proposal by listing the object

letters which should be accepted, then hit the [F1] key. You may propose any

set of projects that you wish, but it will not be ACCEPTED unless it meets
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the criteria above (no con¯icts, improves sum of bids). The period begins

with the current proposal being to sell nothing.

It is important to emphasize the di�erence between Proposals and Bids.

Remember that a PROPOSAL is a recommendation to the computer con-

cerning which projects it should sell, given the BIDS already entered into the

system. These bids might be your own, or they might be another BUYERs

bids. Since projects are sold to the highest bidder, it is allways necessary to

BID on projects which you are attempting to purchase. The projects you

wish to purchase must also be in the best proposal received by the end of the

period in order for you to actually purchase the projects. However, this

proposal does not need to be made by the same person who is bidding on the

projects.

At the beginning of each period, a PERIOD TIMER is set to 60 seconds

and is reset to this value whenever an acceptable bid or proposal is made.

When the timer reaches 0, the period closes.

At the end of each period, the computer noti®es each buyer of any suc-

cessful bids. Successful bid(s) must be paid, and the bidder receives the in-

dicated projects.

Unsuccessful bids are not displayed. Unsuccessful bidders pay nothing,

and receive nothing.

At the end of the period, buyers should ®ll out their BUYER RECORD

SHEET and calculate any pro®ts (or losses) from the period. The total bonus

from proposals is also displayed on the screen when the period closes, and

this should be included in the pro®t calculation.

Currency:

The currency used in these markets is ``francs''. At the end of each period of

the experiment francs will be converted to dollars. This will occur according

to the following formula:

Losses: $0:02 � francs
1±10 francs: $0:20 � francs, or 5 francs � $1

10-in®nity francs: $1:80� 0:02 � francs.
Therefore, if you gain 10 francs either formula gives $2:00
Gain 100 francs, $3:80.
Gain 500 francs, $11:80.
If you lose 50 francs, then thats $1.

Remember, conversion to dollars occurs at the end of each PERIOD of

the experiment.

Incompatible projects

Any proposal that contains an incompatible pair is not feasible.

The incompatible pairs of projects are shown via the following graph(s).

An incompatible pair of projects are directly joined by a line. For instance

A;C is an incompatible pair because a line directly connects A and C, but A

and E are compatible because there is not a line between A and E.
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Examples:

fA;D; F g is feasible since neither A;D, A; F or D; F are connected by lines in

the ®gures above.

fB;D; F g is not feasible since B;D is connected by a line.
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