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Abstract—This paper describes how decentralized control
theory can be used to analyze the control of multiple cooperative
robotic vehicles. Models of cooperation are discussed and related
to the input/output reachability, structural observability, and
controllability of the entire system. Whereas decentralized control
research in the past has concentrated on using decentralized
controllers to partition complex physically interconnected sys-
tems, this work uses decentralized methods to connect otherwise
independent nontouching robotic vehicles so that they behave in a
stable, coordinated fashion. A vector Liapunov method is used to
prove stability of two examples: the controlled motion of multiple
vehicles along a line and the controlled motion of multiple vehicles
in formation. Also presented are three applications of this theory:
controlling a formation, guarding a perimeter, and surrounding a
facility.

Index Terms—Autonomous vehicles, cooperative robots, decen-
tralized control, stability.

I. INTRODUCTION

I
N RECENT years, there has been considerable interest in the

control of multiple cooperative robotic vehicles, the vision

being that multiple robotic vehicles can perform tasks faster and

more efficiently than a single vehicle. This is best illustrated

in a search and rescue mission where multiple robotic vehicles

spread out and search for a missing aircraft. During the search,

the vehicles share information about their current location and

the areas that they have already visited. If one vehicle’s sensor

detects a strong signal indicating the presence of the missing

aircraft, it may tell the other vehicles to concentrate their efforts

in a particular area.

Other types of cooperative tasks range from moving large

objects [1] to troop hunting behaviors [2]. Conceptually, large

groups of mobile vehicles outfitted with sensors should be

able to automatically perform military tasks like formation

following, localization of chemical sources, demining, target

assignments, autonomous driving, perimeter control, surveil-

lance, and search and rescue missions [3]–[6]. Simulation and

experiments have shown that by sharing concurrent sensory

information, the group can better estimate the shape of a chem-

ical plume and, therefore, localize its source [7]. Similarly, for
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a search and rescue operation, a moving target is more easily

found using an organized team [8], [9].

In the field of distributed mobile robot systems, much

research has been performed, and summaries are given in

[10] and [11]. The strategies of cooperation encompass the-

ories from such diverse disciplines as artificial intelligence,

game theory/economics, theoretical biology, distributed com-

puting/control, animal ethology, and artificial life.

Much of the early research concentrated on animal-like co-

operative behavior. Arkin [12] studied an approach to “cooper-

ation without communication” for multiple mobile robots that

are to forage and retrieve objects in a hostile environment. This

behavior-based approach was extended in [13] to perform for-

mation control of multiple robot teams. Motor schemas such as

avoid-static-obstacle, avoid-robot, move-to-goal and maintain-

formation were combined by an arbiter to maintain the forma-

tion while driving the vehicles to their destination. Each motor

schema contained parameters such as an attractive or repulsive

gain value, a sphere of influence, and a minimum range that

were selected by the designer. “When interrobot communication

is required, the robots transmit their current position in world

coordinates with updates as rapidly as required for the given

formation speed and environmental conditions.” [13]

Another behavior-based approach includes Kube and Zhang

[14]. Much of their study examined comparisons of behaviors of

different social insects such as ants and bees. They considered a

box-pushing task and utilized a subsumption approach [15], [16]

as well as adaptive logic networks (ALN). Similar studies using

analogs to animal behavior can be found in Fukuda et al. [17].

Noreils [18] dealt with robots that were not necessarily homo-

geneous. His architecture consisted of three levels: functional

level, control level, and planner level. The planner level was the

high-level decision maker. Most behavior-based approaches do

not include a formal development of the system controls from

a stability point of view. Many of the schemes such as the sub-

sumption approach rely on stable controls at a lower level while

providing coordination at a higher level.

More recently, researchers have begun to take a system-con-

trols perspective and analyze the stability of multiple vehicles

when driving in formations. Chen and Luh [19] examined de-

centralized control laws that drove a set of holonomic mobile

robots into a circular formation. A conservative stability require-

ment for the sample period is given in terms of the damping

ratio and the undamped natural frequency of the system. Simi-

larly, Yamaguchi studied line formations [20] and general for-

mations [21] of nonholonomic vehicles, as did Yoshida et al.

[22]. Decentralized control laws using a potential field approach

to guide vehicles away from obstacles can be found in [23] and
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[24]. In these studies, only continuous-time analyses have been

performed, assuming that the relative position between vehicles

and obstacles can be measured at all times.

Another way of analyzing stability is to investigate the con-

vergence of a distributed algorithm. Beni and Liang [25] prove

the convergence of a linear swarm of asynchronous distributed

autonomous agents into a synchronously achievable configura-

tion. The linear swarm is modeled as a set of linear equations

that are solved iteratively. Their formulation is best applied to re-

source allocation problems that can be described by linear equa-

tions. Liu et al. [26] provide conditions for convergence of an

asynchronous swarm in which swarm “cohesiveness” is the sta-

bility property under study. Their paper assumes position infor-

mation is passed between nearest neighbors only, and proximity

sensors prevent collisions.

Also of importance is the recent research combining graph

theory with decentralized controls. Most cooperative mobile

robot vehicles have wireless communication, and simulations

have shown that a wireless network of mobile robots can be

modeled as an undirected graph [27]. These same graphs can be

used to control a formation. Desai et al. [28], [29] used directed

graph theory to control a team of robots navigating terrain with

obstacles while maintaining a desired formation and changing

formations when needed. When changing formations, the

transition matrix between the current adjacency matrix and all

possible control graphs are evaluated. In the next section, the

reader will notice that graph theory is also used in this paper to

evaluate the controllability and observability of the system.

Other methods for controlling a group of vehicles range

from distributed autonomy [30] to intelligent squad control and

general purpose cooperative mission planning [31]. In addition,

satisfaction propagation is proposed in [32] to contribute

to adaptive cooperation of mobile distributed vehicles. The

decentralized localization problem is examined by Roumeliotis

and Bekey [33] and Bozorg et al. [34] via the use of distributed

Kalman filters. Uchibe et al. [35] use canonical variate analysis

(CVA) for this same problem.

In this paper, we address the stable control of multiple ve-

hicles using large-scale decentralized control techniques. The

objective is to first analyze whether a large group of robotic

vehicles, which is spread over an extensive spatial terrain, is

input/output reachable and structurally controllable and observ-

able. This depends on the communication paths available be-

tween vehicles and the information transmitted and received.

Once we know that a system is structurally controllable and ob-

servable, we use provably asymptotically stable control laws to

regulate the coordinated motion of the vehicles. The stability of

these control laws is proven with a vector Liapunov technique.

The approach taken in this paper differs from previous efforts

in that the analysis techniques are scalable to very large dimen-

sions and they ensure stability even under structural perturba-

tions such as communication failures and parameter variations.

While this depth of analysis may not be necessary when con-

trolling smaller numbers of vehicles, the formalism introduced

here is necessary when tens to hundreds, possibly thousands, of

vehicles are involved. With hundreds of vehicles, it is not fea-

sible to experimentally determine the interaction gains and the

communication rates between vehicles necessary to stabilize the

system. The analysis techniques discussed in the following sec-

tions allow the system designer to determine the required sam-

pling periods for communication and control and the theoret-

ical limits on the interaction gains between each vehicle. Both

continuous time and discrete time examples are given with sta-

bility regions defined for up to 10 000 vehicles. While this paper

only addresses linear problems, these analysis techniques have

also been applied to more complex nonlinear problems [44],

opening a new and exciting area of research in nonlinear control

of large-scale swarms of vehicles.

The following section describes the model of cooperation

used in the analysis. This is followed by a stability analysis of

two cases: the controlled motion of multiple vehicles along a

straight line, and the controlled motion of multiple vehicles in a

formation. The remaining sections discuss how this theory has

been implemented on a test platform for several applications.

II. MODEL OF COOPERATION

In this section, a group of robotic vehicles is modeled as a

large dimensional interconnected system. It is a well-known

fact that testing controllability and observability is a difficult

numerical problem for large dimensions. Because of this,

simple binary tests have been developed which test for input

and output reachability and structural controllability and ob-

servability [36]. These tests are valid not only for the nominal

nonlinear system but also for perturbed systems where the

exact system parameters are unknown. Once controllability and

observability have been assured, vector Liapunov techniques

exist for testing asymptotic stability of the overall system. The

analysis below shows some of the progress made in under-

standing how these techniques can be used in the design of

large-scale distributed cooperative robotic vehicular systems.

Suppose that the overall system is denoted by

(1)

where is the state of (e.g., , position, orien-

tation, and linear and angular velocities of all vehicles) at time

, are the inputs (e.g., the commanded wheel

velocities of all vehicles), and are the outputs (e.g.,

Global Positioning System (GPS)-measured , position of all

vehicles). The function describes the

dynamics of , and the function describes

the observations of . We can partition the system into inter-

connected subsystems given by

(2)

where is the state of the th subsystem at time

, are the inputs to , and are the

outputs of . The function describes

the dynamics of , and the function

represents the dynamic interaction of with the rest of

the system . The function represents

observations at derived only from local-state variables of ,

and the function represents observations at
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derived from the rest of . The independent subsystems

are denoted as

(3)

To determine input and output reachability and structural con-

trollability and observability, we want to determine which in-

puts, outputs, and state variables affect each other through ei-

ther a linear or nonlinear relation. To perform this operation, it

is convenient to write the state interconnection function as

(4)

where the matrices and and the

elements of the matrices are

(5)

(6)

where , , and . Similarly, the

observation interconnection function may be written as

(7)

where and the elements of the matrix are

(8)

where and . Using these definitions, the

interconnection matrix of is a binary

matrix defined as

(9)

where the matrices , , and . The

three rows and columns of the interconnection matrix represent

the coupling between the state, input, and output variables. For

large-scale systems, the interconnection matrix is often repre-

sented as a directed graph mapping state, input, and output vari-

ables from one subsystem to another subsystem. By searching

this directed graph, it is possible to check for input and output

reachability of the system [36]. Input reachability tells us if we

can reach all the state variables from the input variables, while

output reachability tells us if we can reach all the output vari-

ables from the state variables.

Mathematically, it is possible to check for input and output

reachability using the reachability matrix

(10)

where , , is the Boolean OR

operator ( ), and is the

Boolean AND operator ( ).

For two binary matrices and , the

Boolean operations and

are defined by and .

The system is input reachable if and only if the binary

matrix has no zero rows, and it is output reachable if and

only if the binary matrix has no zero rows. The system is

input-output reachable if and only if the binary matrix has nei-

ther zero rows nor zero columns. A system is structurally con-

trollable if it is input reachable and the corresponding directed

graph has no dilations, essentially meaning that there are enough

input variables available to independently control all state vari-

ables. More formally, a directed graph is said

to have a dilation if there exists a subset , such that

the number of distinct vertices of from which a vertex in

is reachable, is less than the number of vertices of . In

this definition, the set of input variables is , the set of state

variables is , and is the set of edges connecting the set

of vertices . No dilation exists when the generic rank

where and are the same as and ex-

cept the “1” elements can take on any value. Similarly, a system

is structurally observable if it is output reachable and the corre-

sponding directed graph has no dilations (i.e.,

generic rank ).

Feedback may be added to the system with

(11)

where the feedback interconnection function is given by

(12)

and and the elements of the matrix are

.
(13)

where and . With the feedback interconnec-

tion matrix denoted by , the system interconnection

matrix becomes

(14)

Again, the reachability matrix ( ) may

be used to determine input/output reachability and structural ob-

servability and controllability.

Note that in most prior research on decentralized control,

the state interconnection function is nonzero, while

the feedback interconnection function is zero. In other
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Fig. 1. One-dimensional control problem. The top line is the initial state. The
second line is the desired final state. Vehicles 0 and 3 are boundary conditions.
Vehicles 1 and 2 spread out along the line by using only the position of their left
and right neighbor.

words, typically it is desirable to stabilize a complex intercon-

nected system using only decentralized controllers. However,

in the case of multiple nontouching robotic vehicles, we have

many noninterconnected systems, but we want to connect these

systems through communication so that they behave in a coor-

dinated fashion. For this case, the state interconnection func-

tion is zero and feedback interconnection function

is nonzero.

As an example, let us analyze a simple one-dimensional

problem in which a linear chain of interdependent vehicles is

to spread out along a line as shown in Fig. 1. The objective is

to spread out evenly along the line using only information from

the nearest neighbor.

Assume that the vehicle’s plant is modeled as a simple inte-

grator and the commanded input is the desired velocity of the

vehicle along the line. A feedback loop and a proportional gain

are used to control each vehicle’s position. Fig. 2 shows a

block diagram of the control system. The dynamics of each sub-

system are

(15)

where is the position of the th vehicle, is the control input,

and is the observation. Assume the control of each vehicle is

a function of the two nearest vehicles’ observed positions and

the boundary conditions on the first and last vehicle are 1 and 0,

respectively. Then

(16)

where is the interaction gain between vehicles. The intercon-

nection matrix of this system is

(17)

Fig. 2. Control block diagram of the N vehicle interaction problem.

where

...
. . .

(18)

and is the identity matrix of dimension . In this problem,

the reachability matrix is a

matrix of all ones, meaning that any state, input, or output can

reach any other state, input, or output. Since the system is input

and output reachable and there are no dilations, we know that

the system is structurally observable and controllable.

III. STABILITY OF LARGE-SCALE SYSTEMS

Once we know that a system is structurally observable and

controllable, the next question to ask is that of connective sta-

bility. Will the overall system be globally asymptotically stable

under structural perturbations? Analysis of connective stability

is based upon the concept of vector Liapunov functions, which

associate several scalar functions with a dynamic system in such

a way that each function guarantees stability in different por-

tions of the state space. The objective is to prove that there exist

Liapunov functions for each of the individual subsystems, and

then prove that the vector sum of these Liapunov functions is a

Liapunov function for the entire system.
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To simplify matters, we will assume that the control function

has already been chosen and the closed-loop dynamics of the

system can be written as

(19)

The interconnection function can be written as

(20)

where and the elements of the fundamental inter-

connection matrix are

.
(21)

where and .

The structural perturbations of are introduced by assuming

that the elements of the fundamental interconnection matrix that

are one can be replaced by any number between zero and one,

i.e.

.
(22)

Therefore, the elements represent the strength of coupling

between the individual subsystems. A system is connectively

stable if it is stable in the sense of Liapunov for all possible

[36]. In other words, if a system is connectively

stable, it is stable even if an interconnection becomes decoupled,

i.e., , or if interconnection parameters are perturbed, i.e.,

. This is potentially very powerful, as it proves that

the system will be stable if an interconnection is lost through

communication failure.

For linear systems such as in Fig. 2, the linear system dy-

namics may be written as

(23)

and the Liapunov function for each individual subsystem is

where is a positive definite matrix.

For the system to be connectively stable, the following test

matrix must be an M matrix (i.e., all leading

principal minors must be positive) [36]

(24)

where the symmetric positive definite matrix satisfies the

Liapunov matrix equation and

and are the minimum and maximum eigenvalues of the

corresponding matrices.

In the example, the test matrix becomes

...

...
. . .

(25)

For , this test matrix is an M matrix (i.e., the system

is connectively stable) if . For , the system is

Fig. 3. Discrete time-control block diagram ofN vehicle interaction problem.

connectively stable if . For , the system is

connectively stable if . Notice how the range of the

interaction gain gets smaller for larger sized systems. It can be

shown that as the number of interacting vehicles increases, the

interaction gain range reaches a limit of for infinite

numbers of vehicles. Since the structural perturbations or pa-

rameter uncertainties are included in the term , this example

shows the robustness of the control to variations in interaction

gain decreases as the number of vehicles increase.

This same analysis can also be performed in the discrete do-

main [37]. Consider a discrete dynamic system described by

(26)

and a Liapunov function . The test matrix

is

(27)

where , and

and the superscript denotes the Her-

mitian operator.

Inserting a zeroth-order hold function before the integrator in

Fig. 2, we can transform our example problem above into the

discrete time domain as shown in Fig. 3. The sampling period

is denoted by . The sampling period is both the communica-
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Fig. 4. Stability region for the N = 2 vehicle case.

tion and position update sample time. The state equations of the

system are

(28)

If , the resulting test matrix is

...

...
. . .

(29)

and if , the test matrix is as shown in (30) at the

bottom of the page. For , the test matrix is an M matrix,

and the system is connectively stable if

(31)

Fig. 4 illustrates the stability region for the case of .

The dark region represents stable combinations of the interac-

tion gain and (proportional control gain multiplied by the

sampling period). The white region represents unstable combi-

nations of and . We refer to the dark region as a stability

“house” due to the shape of the stable zone. The size of this sta-

bility house varies only with . As is increased, the house

gets smaller in width but maintains the same height and shape.

Fig. 5. Stability region for the N = 10000 vehicle case.

The size of the stability house is a measure of the robustness

of the closed-loop system to parameter variations in interaction

gain , sampling period , and proportional control gain .

Fig. 5 shows the stability region for .

For this particular example, another way to check the sta-

bility of this linear system is to check that the eigenvalues of

the system matrix are within the unit circle. There is a special

formula ([38, p. 59]) for the eigenvalues of given by

(32)

From this formula, we can see that as , the cosine term

becomes unity. This implies that must stay between 0.5 and

0.5 for less than one in order to maintain stability. For

greater than one, the admissible values taper off parabolically

(the sloped “roof”) until .

It is instructive to look at the step response of one and two ve-

hicles to understand why the interaction gain limits on the sta-

bility house converges so quickly to 0.5. The step responses of

a single vehicle with varying are shown in Fig. 6(a)–(c). A

single vehicle is stable when ; however, the step

response will overshoot for . The step responses

of two interconnect vehicles with the same values of are

shown in Fig. 6(d)–(f). With an interaction gain of 0.5, two ve-

hicles are stable if (note this range is smaller

than for a single vehicle). When , we can see that

the overshoot of each vehicle is amplified by the other until both

...

...
. . .

(30)
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Fig. 6. Step response. (a) Single vehicle with K T = 0:1. (b) Single vehicle with K T = 1. (c) Single vehicle with K T = 1:7. (d) Two vehicles with
K T = 0:1 and  = 0:5. (e) Two vehicles with K T = 1 and  = 0:5. (f) Two vehicles with K T = 1:7 and  = 0:5.

go unstable. When more vehicles are involved, any amount of

overshoot can cause the whole group to go unstable.

It must be remembered that the above example assumed that

the sampling period for both communication and position are

the same. It can be shown that if the position sampling period is

much less than the communication sampling period , then the

stability region is independent of and only dependent on the

interaction gain . In the limit, the position feedback loop may

be modeled as a continuous time system and the zeroth-order

hold may be moved outside the position feedback loop. As long
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as the position feedback loop is stable ( ), then there

will be no overshoot in driving the vehicle, and the vehicle will

stop at the desired position given by at each

communication sample period. Intuitively, this result is obvious.

Several conclusions can be drawn from this stability analysis.

First, asymptotic stability of vehicle positions depends on ve-

hicle responsiveness , communication sampling period ,

and vehicle interaction gain . If the vehicle is too fast (large

), or the sample period is too long (large ), then the vehi-

cles will go unstable. There is a dependence on interaction gain

for stability as well. Second, the interaction gains can be used to

bunch the vehicles closer together or spread them out. Third, the

stability region shrinks as the number of vehicles increases,

but only to a defined limit.

To further demonstrate the power of this stability analysis,

let us next consider the stability of a formation-control problem

where the desired position of each vehicle is a function of the

position of all the vehicles. To simplify the problem, we will as-

sume that the vehicles’ and positions can be independently

controlled. This assumption is valid if each vehicle’s position

is controlled at a faster servo rate using the inverse Jacobian

control law given in the appendix. Considering only the po-

sition of the vehicles, the dynamics of each subsystem is again

assumed to be

(33)

where is the position of the th vehicle, is the control input,

and is the observation. In the previous example, the control of

each vehicle is dependent on the position of the two neighboring

vehicles. For formation control, the control of each vehicle is

a function of all the vehicle positions. Assume the control of

each vehicle is a constant position offset plus the sum of the

position of each vehicle multiplied by an interaction gain .

(34)

In this example, the feedback interaction matrix is a matrix

of all ones and the reachability matrix is also a matrix of all ones.

Since the system is input and output reachable and there are no

dilations, we know that the system is structurally observable and

controllable. The resulting stability test matrix is

(35)

and it is an M matrix (i.e., the system is connectively asymptoti-

cally stable) if and only if . It is interesting to note that

when , the vehicles will converge to their offset for-

mation position about the average position of the vehicles given

by . While this condition is stable, it is not

asymptotically stable because the group does not converge to

the origin. In order to make the vehicles converge in their for-

mation and the entire group to move to the origin, the interaction

gain . Of course, when driving the vehicles in forma-

tion from point A to point B, the origin is moved along the line

connecting the two points, and the and values are computed

with respect to the new origin.

Fig. 7. RATLER vehicles around the laptop base station.

IV. EXPERIMENTAL TEST PLATFORMS

To test the analysis provided in the previous sections, a

squad of semiautonomous all-terrain vehicles was developed

for remote cooperative sensing applications (see Fig. 7). The

system has been used to demonstrate the feasibility of using

a cooperative team of robotic sentry vehicles to investigate

alarms from intrusion detection sensors and to surround and

monitor an enemy facility.

The “Roving All-Terrain Lunar Explorer Rover” (RATLER)

vehicles are electric, all-wheel drive vehicles with two com-

posite bodies joined by a passive central pivot. This flexible

structure, when combined with an aggressive asymmetric

tread on custom carbon-composite wheels, provides agile

off-road capabilities. With a PC104 Intel 80486, the RATLER

vehicles are fully equipped with a wide range of sensors

and peripherals. Software on the vehicles is currently a

single-threaded DOS-based application for simplicity. The

vehicles have been programmed to operate either through

teleoperation or autonomously. The RATLER vehicles rely on

radio frequency (RF) signals for communications. Currently,

the vehicles are outfitted with differential GPS receivers and

two spread-spectrum RF modems. One modem is for interve-

hicle and base-to-vehicle communication, and the other is for

the differential GPS correction. Video cameras communicate

with the base station via a separate RF video link.

A laptop computer is used as the base station. A Windows

NT application was written to control the vehicles from the base

station. A graphical user interface (GUI) displays vehicle status

information and allows the operator to monitor the vehicles’ po-

sitions on a Geographic Information System (GIS) map—either

aerial photo or topological data, as well as viewing the live video

from a selected vehicle (see Fig. 8). Mission-specific control

modes such as teleoperation, formation following, autonomous

navigation, and perimeter surveillance can be initiated and mon-

itored using this GUI interface.

There are two modes of communication between the base sta-

tion and the vehicles: a star network and a token-ring network. In

the star network, all radio communication is coordinated by the

base station. In the token-ring network, each node (either vehicle

or base station) speaks only when it receives the token. In our

case, an actual token packet was not needed, since each vehicle

has an identification number and communication order is deter-

mined from this number. All messages are broadcast in half-du-

plex mode so that each vehicle knows when the other vehicles
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Fig. 8. Base station’s GUI displays vehicle status, remote sensor status, video,
and GPS position on a GIS map.

or the base station has transmitted a message. If a node does not

communicate when expected, a timer on the next node expires,

signaling that the next node should transmit. The token-ring net-

work is more fault tolerant than the star network, since there is

no single point of failure, as there is with the star network. Also,

the token-ring network allows the vehicles to continue to operate

in perimeter surveillance mode even if the base station is shut

down.

V. FORMATION CONTROL

The goal of formation control is to develop a simple user in-

terface that allows a single operator to guide multiple robot vehi-

cles. The ability to maintain a formation is useful for conducting

searches and for moving the squad from place to place. This ca-

pability has been implemented using the base station’s GUI. The

decentralized formation control law described in the previous

section is used by each vehicle to keep the vehicles in formation

while driving the group to a desired destination. To initiate for-

mation control, the operator graphically places the vehicles into

a relative formation as shown in Fig. 9. Initially, each vehicle

is sent a relative offset and the initial formation location com-

mand. Each vehicle determines its own destination by adding its

individual offset to the formation command. Subsequent moves

only require broadcasting the new formation location command.

In the current implementation, orientation is not considered, so

the vehicles always traverse nominally the same distance as the

formation moves along. A formation always remains aligned to

the compass frame rather than to a lead vehicle’s frame.

VI. PERIMETER SURVEILLANCE

The goal of robotic perimeter surveillance is to use a cooper-

ative team of robotic sentry vehicles to investigate alarms from

miniature intrusion detection sensors (MIDS) [39]. In our tests,

we used four different types of MIDS including magnetometer,

seismic, passive infrared, and beam-break (or active) infrared.

The MIDS are hidden on a defensive perimeter and broadcast

unique identification codes to the vehicles when the sensors are

tripped.

The vehicles are outfitted with receivers to detect when the

sensors are tripped. The vehicles are also programmed to main-

tain an internal representation of the location of the MIDS sen-

Fig. 9. On the left, the current vehicle locations are displayed. On the right,
the user may drag and drop vehicle icons to arrange any desired formation.

Fig. 10. Perimeter being guarded by robot sentries.

sors and the other vehicles. Additional software was also added

to the base station to enter and display the MIDS information.

As the sensors are hidden, the operator enters the MIDS at-

tributes at the base station, including:

1) the type of sensor;

2) the GPS location of the sensor;

3) the number of RATLERs to attend the alarm;

4) the priority of the alarm.

The operator draws a perimeter on the GIS map as shown in

Fig. 10. The MIDS information and the perimeter region are

sent to all the vehicles.

Once the operator places the vehicles in the MIDS sentry

mode, the vehicles spread out uniformly along the perimeter

maintaining equal distance between their two nearest neighbors

using the control law described in the previous sections. An

interaction gain of 0.5 is used in the tests. The line that the

vehicles are to be controlled on is the curved perimeter in Fig. 10.

Differential GPS is used to locate and guide each vehicle. An

RF radio on each vehicle is used to broadcast its GPS position

to the others. Each vehicle has a communication time slot of

220 ms, which results in a total communication sample period
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of 1.1 s for four vehicles and a base station. The differential

GPS sample period is 200 ms. As the previous section points

out, stable control is guaranteed as long as the differential

GPS sample period is faster than the communication sample

period, and the vehicle has a faster inner position-control loop

based on the GPS position.

When a sensor is alarmed, the vehicles decide, without base

station intervention, which of the vehicles can best investigate

the intrusion, and how the remaining vehicles should adapt to

maintain the perimeter using the same control law.

To maintain the perimeter, the vehicles periodically broadcast

(they take turns transmitting every 220 ms) their location and

the status of the sensors. In this way, each vehicle can maintain

a local representation of where the other vehicles are and which

sensors have been tripped. When a vehicle receives an alarm

signal, it broadcasts to the other vehicles which alarm has been

tripped. If one vehicle receives an alarm and the others do not,

the other vehicles will receive the alarm through this broadcast.

The base station displays the location of the vehicles and the

MIDS sensors on a GIS map. When a MIDS sensor is alarmed,

the icon of the MIDS sensor changes color. The user display also

indicates which vehicles are moving to investigate the alarm.

The determination of which vehicles attend an alarm is made

independent of the base station. When an alarm is received, each

vehicle computes its distance to the alarmed sensor as well as

the distance of the other vehicles to the same sensor. If the ve-

hicle is closest to the alarmed sensor within the number of ve-

hicles that are to attend the sensor, then it will head toward the

alarm. That is, unless a MIDS of higher priority is alarmed, in

which case it heads toward the MIDS of higher priority. All of

these decisions occur once per second; therefore, a vehicle may

be heading toward one alarmed MIDS, when a higher priority

MIDS is alarmed, causing it to change directions. When a ve-

hicle is not attending an alarm, it tries to maintain an equidistant

position around the perimeter from the other unalarmed vehicles

using the control law described in the previous section.

VII. SURROUND TASK

In addition to the formation control and perimeter surveil-

lance tasks, an interactive playbook capability has been de-

veloped where the operator can guide individual vehicles or

the entire group using drawing tools. In Fig. 11, the operator

has used a drawing tool bar to outline the obstacles and indi-

cate goal regions. A simple attractive and repelling potential

field algorithm is used to generate the desired paths for the

vehicles. The algorithm uses the distance and direction to the

nearest goal, obstacle, and neighboring vehicle to determine

the gradient used to update the vehicle’s position as each

vehicle moves from its initial position to the closest goal.

The distance to the closest goal and obstacle is computed as

described in [40]. After the closest obstacle, goal, and vehicle

positions are computed, the direction of the vehicle is given by

(36)

where ( , ) is the vehicle’s position, ( , ) is the closest

attractive point (goal), ( , ) is the closest repulsive point

Fig. 11. Base station control window. The initial positions of the vehicles were
at the lower left corner of the screen. The vehicles first follow their assigned
paths. Once they reach the end of their paths, the vehicles use the obstacles
and attractors to navigate to their final positions on the goal attractors. To avoid
collision between the vehicles and to uniformly cover the goal attractors, the
vehicles are also repulsed by each other. The obstacles are drawn in red, the
goals are drawn in green, and the vehicle paths are drawn in black.

(obstacle), ( , ) is the closest vehicle, and , , and

are positive gains. The closest obstacle, goal, and vehicle

positions and the potential gradient are updated every 220 ms.

The stability of (36) can also be proven using the same decen-

tralized control techniques discussed in the previous section. To

simplify the problem, assume that the and position can be

controlled independently, and assume that vehicle dynamics of

the two closest vehicles are

(37)

If and , then the control can be written

as

(38)

where . The resulting stability test matrix is

(39)

which is an M matrix if . When ,

the two vehicles stabilize at and

where and are the initial

positions of the two vehicles. When , both vehicles

asymptotically converge to the origin. In this particular appli-

cation, we do not want the vehicles to converge to the origin,

so we chose , which pushes the vehicles away from

each other until they are a desired distance apart, after which

the repulsive term is disabled.

In Fig. 11, six RATLER vehicles were used to surround a

facility. The vehicles were initially located in the lower left-hand

corner of Fig. 11. This is also where the base station was placed.

The facility to be surrounded was located approximately 200 m

on the other side of a rough motocross course. It is important to

note that the base station’s coordinates were obtained directly

from a registered aerial photograph and neither surveying nor

GPS integration was used. This fact demonstrates the feasibility

of a fast-response squad of mobile robots.
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When specifying the vehicle paths, the operator can either

draw the paths of individuals or groups of vehicles, or draw

goal and exclusion regions to be used by all vehicles, or do

both. Drawing goal and exclusion regions is a simple way

of specifying paths for several vehicles at once. However,

there are circumstances when we need to specify the path of

individual vehicles, such as when creating a diversion. For

the test, the operator drew several different paths (displayed

as black lines in Fig. 11) toward the facility. Groups, or in

this case, pairs of robots were assigned a single path. The

paths were chosen to follow the motocross course so that deep

ditches and heavy brush could be avoided. However, these

predefined paths ended short of the facility.

Goal and exclusion regions were used to specify the re-

maining vehicle path to the facility. The operator defined

the goals (displayed as green lines) and the exclusion zones

(displayed as red lines) on the GIS map. In Fig. 11, a goal

line is drawn on the backside of the facility. Two different

predefined paths terminate near this surrounding goal. Each of

these paths was assigned two robots. Therefore, four robots are

expected to participate in the surround task. The remaining two

robots were assigned a path that goes near the main entrance

of the facility. The nearest goal at the end of this path is inside

the main entrance to the facility. These two vehicles were

intended to act as a diversion, while the first four vehicles were

strategically positioned to watch the rear door.

Once the mission is fully defined, the operator at the base

station can view a simulation. In the simulation, the vehicles

first follow their predefined paths. Once they reach the end, the

potential field algorithm is used to plan the remaining path to

the goal. This simulation is important since the potential field

approach to path planning can be trapped by local minimum.

After the operator previews the plan, the predefined paths, and

the exclusion zone and goal polygons are downloaded to the

vehicles. On board the vehicle, the same potential field-path

planner directs the vehicle to the goal region while avoiding

the exclusion regions, neighboring vehicles, and live obstacles.

The true position of neighboring vehicles is obtained from the

RF network, as each vehicle continually broadcasts its location

and status. The vehicles naturally spread out along the goal

region because of the repulsive forces between vehicles.

While the test was being performed, the vehicles were mostly

able to stay on the motocross course using differentially cor-

rected GPS. The aerial photograph is known to be optically

warped, which means that it cannot be calibrated accurately for

all regions. However, since the differential transmitter was ini-

tialized based on the coordinates taken from the map, the cal-

ibration is locally very good. When the vehicles strayed from

their course, they ran into obstacles. On-board tilt sensors com-

bined with a simple obstacle recovery algorithm allowed for all

but one of the robots to successfully navigate the motocross

course. The vehicle that failed to reach the goal was intended

to be part of the diversion.

In the test, four vehicles reached the surrounding goal and

spread out evenly along this partial perimeter (see Fig. 12). One

vehicle entered the front gate. It took about one-half hour to set

up, transporting the vehicles and initializing the differential sta-

tion. It took another one-half hour to execute, including drawing

Fig. 12. Four RATLER vehicles surrounding the backside of the facility.

the paths, goals, and obstacles, downloading the information to

the robots, and executing the mission.

VIII. CONCLUSION

In this paper, decentralized control theory is applied to the

control of multiple cooperative mobile robotic vehicles. We

mathematically described how to determine if a cooperative

system is input/output reachable, structurally controllable and

observable, and connectively stable. We illustrated the use of

these techniques on two simple problems and we showed how

these simple examples are applicable to multirobot formation

control, perimeter surveillance, and surround problems. The

stability analysis was used to determine limits on system

parameters such as the interaction gain between vehicles, on

the responsiveness of the vehicles, and on the sampling period

for communication and position feedback, and to see how these

limits vary as a function of the number of vehicles.

APPENDIX

In this appendix, we describe the control method used to
drive each RATLER vehicle to a desired position. The RATLER
vehicle is modeled as a skid-driven system, since the wheels
on each side of the body are controlled with the same inputs.
The typical nonholonomic problem (controlling three degrees
of freedom with only two control inputs) is transformed into a
holonomic problem by only controlling the position of a point
in front of the middle of the vehicle and leaving the orientation
unconstrained (see Fig. 13).

When controlling the RATLER vehicle, the inverse Jacobian
control law described below is applied in a feedback loop that is
updated every 10 ms. This lower level control loop linearizes the
vehicle’s , response to the desired , commands from the
higher level multivehicle control modeled in the previous sec-
tions. Being a skid-driven vehicle with a short wheel base, the
RATLER vehicles can turn quickly, and the transient response
of turning is negligible compared to the transient response of
moving in the , directions. At the communication sampling
rate of 1.1 s for four vehicles, the lower level control loop makes
the vehicle’s response in and position appear as identical in-
dependently driven values.

The control law is also convergent to the goal position as long
as the estimate of the angle to the goal is within 90 of the
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Fig. 13. Schematic of vehicle.

actual angle. This can be shown by considering a linear pertur-
bation of nonlinear dynamics of the vehicle.

(A1)

where is the ( , ) position of the point on the ve-
hicle and orientation , are the commanded right and
left linear wheel velocities, are the first-order vehicle
dynamics, and and are linearized operating points. This
can be rewritten as

(A2)

where

The first-order model of a skid-driven vehicle is

(A3)
or

where is one-half the wheel base, is the distance between
the vehicle center and point , and is the orientation of the
vehicle. If , then and . Since

, then

(A4)

We choose the control to be a weighted inverse Jacobian,
which is a function of the estimated state . Then

(A5)

where

and is a linearized operating point. The matrix is chosen
to drive , to the desired reference position, yet leave
unconstrained. Considering only the position of the vehicle

(A6)

or

(A7)

For , must be positive definite
[43]. It can be shown that for the skid-driven dynamics in (A3),
this occurs if and only if .
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