
Decentralized control of sound radiation using iterative loop recovery

Noah H. Schillera and Randolph H. Cabell

NASA Langley Research Center, Structural Acoustics Branch,

Mail Stop 463, Hampton, VA 23681, USA

Chris R. Fuller

Virginia Tech, Department of Mechanical Engineering,

131 Durham Hall, Blacksburg, VA 24061, USA

Short Title: Decentralized control using iterative loop recovery

(Dated: 08 September 2009)

Abstract

A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from

periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be

limited due to modeling error introduced by the unmodeled interaction between neighboring control units.

Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control

system will be robust without making the controller overly conservative. Therefore an iterative approach

is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error

introduced by neighboring control loops, requires no communication between subsystems, and is relatively

simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is

representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve

significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring

control units.
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I. INTRODUCTION

Active sound and vibration control is desirable in many aerospace applications because of the

potential size and weight savings relative to passive treatments such as poro-elastic foam. However

despite the possible benefits, active noise control has been largely restricted to niche applications,

focused on local regions in space or tonal disturbances. Global attenuation of broadband noise,

which is desirable for large commercial aircraft, has only been demonstrated on laboratory scale

systems.1–3 Significant implementation issues must be addressed to extend existing control strate-

gies to larger systems such as full-scale commercial transports.

A promising approach uses structural control inputs to reduce the vibration and sound radiation

from the fuselage. These structural inputs can be generated with compact piezoceramic actuators

integrated in the structure, while feedback signals from accelerometers or piezoelectric transducers

provide performance measures for the controller. While promising, this approach requires a large

multiple-channel control system to reduce sound radiation from the entire fuselage. Although it is

possible to use fully-coupled controllers, the approach is not practical on large systems with many

inputs and outputs. Fully-coupled, or centralized, control requires a high level of connectivity,

which can result in excessive wiring and weight. In addition, centralized control is computationally

expensive, and can be particularly sensitive to transducer failures.

Since the fuselage of an aircraft is naturally segmented into bays by ring frames and stringers,

one option is to assume that actuator/sensor pairs on the same bay are coupled while neglecting

the coupling between transducers on neighboring bays. This approach, referred to as decentralized

control, tends to be simple, computationally efficient, and scalable since each subsystem is con-

trolled independently. Unfortunately if the neglected coupling between neighboring bays is signif-

icant, the approach can compromise both the stability and performance of the control system.4 As

a result, there has been considerable interest in inherently robust control strategies, such as direct

velocity feedback.5,6 These strategies allow for independent design and implementation of each

control unit without concern for the global stability of the system. For example, it can be shown
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that if an actuator and sensor are collocated and dual, then any passive control law will guaran-

tee the unconditional stability of the closed-loop system.7 Unfortunately, real transducer pairs are

never perfectly collocated and dual, which can create high-frequency stability problems. In addi-

tion, the conservative nature of this control strategy tends to sacrifice performance in exchange for

robust stability, hence the approach is referred to as low-authority control.

High-authority control, on the other hand, tends to sacrifice robust stability in exchange for

closed loop performance. One such approach, active structural acoustic control (ASAC), uses

structural control inputs to reduce the overall radiated sound power.8,9 The advantage of ASAC

is that it can require fewer control channels and less control power than active vibration control

strategies like direct velocity feedback. This is true because ASAC suppresses or restructures the

structural modes that radiate most efficiently without expending energy on inefficient radiators.10

While this technique was originally developed for feedforward control applications, it can also

be implemented using modern feedback control techniques.11 In particular, the structural acoustic

control problem can be solved using linear quadratic Gaussian (LQG) theory. The advantage of

LQG theory is that it provides analytical design procedures that can be used to calculate optimal

control laws. While optimal control theory can be very powerful, the performance of the controller

necessarily depends on the fidelity of the plant model from which the controller is designed.12

Poorly modeled dynamics can destabilize the closed-loop control system. As a result, optimal

control has been used with limited success in decentralized configurations.4

The goal of this work is to combine the power of optimal control theory with the simplicity

and scalability of decentralized control. In particular, this paper describes a scalable decentralized

control approach based on an iterative improvement procedure. The paper begins with a brief

description of decentralized control along with a discussion of its limitations. An optimal LQG

control strategy is then described. Since LQG designs can have arbitrarily poor stability margins,

two methods known as frequency shaping and loop transfer recovery (LTR) can be used to improve

the robust stability and performance of the system. However, both techniques assume uncertainty
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bounds are known a priori, which is not always true. Therefore an iterative scheme is presented

to account for the lack of a priori information. In addition to describing the control methodology,

this paper also presents results from a numerical study used to evaluate the proposed approach.

II. CONTROL METHODOLOGY

The control methodology is discussed in this section. The overall objective is to reduce the

sound power radiated from a stiffened panel using a scalable control strategy, hence only decen-

tralized strategies are considered. A decentralized control strategy implies that each control unit is

designed and implemented independently using information local to each bay. A notional view of

the approach is shown in Fig. 1, where the control unit on each bay of the stiffened panel consists

of a piezoceramic actuator and four accelerometers providing feedback signals. The following

subsection discusses the consequences of using local control units on a coupled structure. Back-

ground information pertaining to LQG control and loop transfer recovery is then presented along

with a description of the proposed control strategy.

Figure 1: Decentralized control on a stiffened panel.
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A. Decentralized Control

A block diagram of a two-channel decentralized control system, representing two of the six

control units depicted in Fig. 1, is shown in Fig. 2(a). The control input to bay 1, u1, is based on

sensor response y1 only, while input u2 on bay 2 is based on sensor response y2 only. The grey

box in the figure represents the actual structure, or plant, which can be written in matrix form as

G =

⎡⎢⎢⎢⎣ G11 G12

G21 G22

⎤⎥⎥⎥⎦ (1)

where Gi j denotes the transfer function from the ith actuator to the jth sensor. In the context of

this work, the diagonal terms of G model the response between actuator/sensor pairs on the same

bay, while the off-diagonal terms capture the coupling between actuators and sensors on differ-

ent bays. Decentralized control is particularly effective if the plant is diagonally dominant (i.e.

G11G22 >> G12G21) since the cross-coupling between the ith input and the jth output is neglected

during the design process. Cross-coupling can have the effect of increasing the uncertainty in the

dynamics of the local control loop on each bay. As an illustration, the block diagram in Fig. 2(a)

can be rearranged as shown in Fig. 2(b), where the controller on bay 1 is represented as additional

dynamics between the control input and sensor response on bay 2. Notice that while the controller

C2 is designed for the nominal subsystem model G22, the cross-coupling terms (G12 and G21) and

the controller C1 introduce an additional path from u2 to y2. Therefore, the combined model from

u2 to y2 is

G2 = G22 +∆A1 (2)

where ∆A1 = G21C1G12/(1−C1G11) is the additive error introduced by C1. If the local control

system designed for G22 is not robust to the modeling error introduced by C1, then the coupled

system will be unstable. Therefore effective decentralized control requires local controllers that

are robust to uncertainty created by neighboring controllers.

Although Eq. 2 expresses the influence of a neighboring controller in terms of additive uncer-
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Figure 2: Standard block diagram of a two-channel decentralized control system (top), and an alternative

representation highlighting the additional path from u2 to y2 through C1 (bottom).

tainty, a more useful representation is in terms of multiplicative uncertainty, which is obtained by

rewriting Eq. 2 as

G2 = G22 (1+∆M1) (3)

where (1+∆M1) is the multiplicative error, and the multiplicative uncertainty ∆M1 is defined as

∆M1 = ∆A1/G22. In this example,

∆M1 =

(
G21G12

G11G22

)(
C1G11

1−C1G11

)
. (4)

Notice that the first term in parentheses provides a measure of the diagonal dominance of the

plant. This term will be large if the product of the cross-coupling terms is large with respect to

the product of the diagonal terms. The second term in Eq. 4 is the complementary sensitivity

function, T1. Robust stability is obtained when ∆M1 is small. Hence, the control system designed

for subsystem 2 must be robust at frequencies where the plant is not diagonally dominant and at

frequencies where T1 is large. Unfortunately since decentralized control units are designed using

only local information, there is no way of knowing the cross-coupling terms or the complementary

sensitivity function at design time.
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In addition to introducing dynamics that are not included in the local plant model, neighboring

control loops also change the characteristics of the disturbance. Figure 2(b) shows that the sensor

response y2 contains contributions from disturbance d2 and d1, due to the controller C1 on bay 1.

As a result, the disturbance at y2 becomes d2 +d1C1G12/(1−C1G11). Disturbance variations are

undesirable because the controller is typically designed to be optimal with respect to a specific

disturbance. If the disturbance changes due to a controller on a neighboring bay, then the closed-

loop system may not be optimal with respect to the actual disturbance, thereby degrading closed-

loop performance. In summary, neighboring control loops introduce both modeling error and

disturbance variations.

While it is important to fully appreciate the problems introduced by decentralized hierarchies,

the next step is to incorporate this understanding into the design process. How do we design

decentralized control units that meet our performance requirements and tolerate the modeling

error and disturbance variations introduced by neighboring control units? The solution presented

in this paper relies on LQG control theory, which is summarized in the following section.

B. Linear quadratic Gaussian (LQG) control

LQG controllers are designed by independently solving optimal state regulation and state es-

timation problems.13 The state regulation problem is solved by finding the optimal feedback gain

matrix, K, that minimizes a quadratic function containing performance and control effort terms.

Performance is expressed in terms of the state vector, x, while the control effort is expressed in

terms of the input vector, u. Unfortunately the full state vector is rarely known in practice, and

hence is usually reconstructed using a stochastic estimator, as shown in Fig. 3. In this diagram the

plant is represented as

ẋ = Ax+Bu+Ew

yv = Cx+ v

(5)
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where x is the state vector, u is the input, A is the state matrix, B is the input matrix, C is the

output matrix, E is the noise input matrix, yv is the plant output, w is the disturbance, and v is

measurement noise. The estimator consists of a model of the plant with an additional feedback

loop used to ensure the state estimates, x̂, converge to x sufficiently fast. The feedback signal is

generated by multiplying the measurement error yv− ŷ by the observer gain matrix L. Since the

feedback signal is generated using the noisy output measurement yv, increasing the magnitude of

L amplifies measurement noise. Therefore, the optimal choice of L involves a trade-off between

measurement noise sensitivity and convergence speed.

Figure 3: LQG diagram.

C. Loop transfer recovery

While full-state feedback has guaranteed stability margins, incorporation of the estimator into

the loop can result in arbitrarily poor stability margins due to errors in the state estimates.12 In

response to this problem, loop transfer recovery (LTR) was developed by Doyle and Stein14 to

asymptotically "recover" the robustness properties of the full-state feedback design. As the name
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implies, the robustness of the regulator is recovered by making the LQG loop transfer function15

HLQG =−K (sI−A+BK +LC)−1 LC (sI−A)−1 B (6)

approach that of the state regulator

HLQR =−K (sI−A)−1 B. (7)

This is achieved by modifying the design of the state estimator by injecting fictitious noise at

the plant input, as depicted by z in Fig. 4. If the plant is stabilizable, completely observable,

time-invariant and also minimum phase, then the LQG design will asymptotically recover the

characteristics of the state regulator as the amplitude of z approaches infinity.13

Figure 4: Plant model with fictitious noise, z, injected at the plant input.

However there are practical limitations associated with the loop recovery approach. For in-

stance, full loop recovery relies on pole-zero cancellations, and hence is only guaranteed if the

original plant is minimum phase. Because non-collocated transducers are rarely minimum phase,

full recovery is rarely possible. Fortunately partial loop recovery, which is achieved by incremen-

tally increasing the amplitude of the fictitious input noise, is often adequate to obtain an acceptable

design that accounts for plant uncertainty.

Partial loop recovery can also be obtained in specific frequency bands by adding fictitious

noise in frequency bands where improved stability margins are required.16 This enables different

performance/robustness trade-offs in different frequency bands.17 Frequency shaped loop recovery

can also be obtained by adding noise through the disturbance path. This is possible because the

estimator design only depends on the ratio of process to measurement noise,13 so fictitious noise
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at either the plant input or disturbance increases the ratio of process to measurement noise. In

both cases, the magnitude of the estimator gain matrix L will increase, resulting in partial loop

recovery.

D. Iterative loop recovery

The control strategy described in this paper relies on frequency shaped loop recovery to account

for changes to the dynamics and disturbance caused by control systems on neighboring bays. The

control system on each bay is assumed to be non-minimum phase, making full loop recovery im-

possible. Therefore frequency shaped loop recovery is implemented by increasing the amplitude

of the disturbance model in select frequency bands where the interaction between neighboring con-

trol units destabilizes the control system. Since it is difficult to predict the frequency bands where

destabilizing interactions will occur,18 an iterative approach involving disturbance estimation and

redesign of the LQG controller is used.

Figure 5 depicts the proposed control strategy which is implemented independently on each bay.

The dynamics of the ith bay, are denoted Gi(z). This bay is excited by a disturbance di(n), which on

an aircraft could correspond to a combination of turbulent boundary layer excitation, propulsion

noise, and aerodynamic forces due to irregular flow. A model of the physical system Ĝi(z) is

assumed to be generated using a separate system identification process. An initial estimate of the

disturbance is generated using the observed plant response, and then a nominal LQG controller is

designed. Although the structure in the figure resembles internal model control,19 the input to the

online controller Ci(z) is the observed error signal yi(n) instead of the disturbance estimate d̂i(n).

The disturbance estimate can be expressed as

d̂i(z) = ui(z)
(
Gi(z)− Ĝi(z)

)
+di(z). (8)

If the plant model is perfect, then the estimate will accurately track changes in the disturbance

(i.e. d̂i(n) = di(n)). However it is important to consider the case when Ĝi(z) ∕= Gi(z). In fre-

quency bands where modeling error is destabilizing the amplitude of the disturbance estimate will
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be larger than the initial disturbance estimate (i.e. ∣D̂i(k)∣ > ∣D̂′i(k)∣, where D̂i(k) is the current

disturbance estimate and D̂′i(k) is the initial disturbance estimate). Although increasing the ampli-

tude of the disturbance model tends to improve robustness by exploiting loop recovery, decreasing

the amplitude can have the opposite effect and make the LQG controller more sensitive to model-

ing error. Therefore the disturbance model is updated by taking the maximum of both the current

disturbance estimate and the previous disturbance model on a frequency-by-frequency basis.

Figure 5: A diagram of the iterative control strategy.

In order to implement this procedure, the spectral density of the disturbance is estimated as

Sdd(k) = D̂i(k)D̂∗i (k) (9)

where D̂i(k) is the discrete Fourier transform of one record of the disturbance estimate, D̂∗i (k) is

the complex conjugate of D̂i(k), and k is the discrete frequency index. The spectral density of the

new disturbance model Sppnew is then computed as

Sppnew(k) = (1−α)max [Sdd(k),Sppold(k)]+αSdd(k) for all k (10)

where Sppold(k) is the spectral density of the old disturbance model, and α is a leakage parameter.
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Note that if the leakage parameter is set to zero, then the disturbance model can only increase.

However, a leakage parameter of 0.1 is used in this work to track slow changes in the actual distur-

bance. The leakage parameter reduces the magnitude of the disturbance model if the disturbance

estimate is consistently low.

Note that Sppnew is the spectral density of the desired disturbance model, not the model itself.

Since the phase of the disturbance model is arbitrary for simple LQG systems, spectral factoriza-

tion is used to fit the magnitude response with a stable and minimum phase plant.20

The iterative frequency-shaped LQG/LTR strategy accounts for parameter variations introduced

by neighboring control loops, requires no communication between control systems, and is rela-

tively simple. The following sections describe a numerical study that was used to evaluate the

proposed approach. Note that this approach has also been successfully used in preliminary labo-

ratory experiments, which are described in a separate report by Schiller.21

III. NUMERICAL MODEL

The stiffened flat panel depicted in Fig. 6 is used to represent the sidewall of an aircraft fuselage.

While many academic studies consider simply-supported or clamped plates, those models are not

representative of the aircraft fuselage at low frequencies where the structural wavelengths are

long and the motion of both the panel and stiffeners is important.22 In addition, those simple

models neglect the structural coupling between bays, which can destabilize decentralized control

systems.4 The numerical model used here consists of a 1.27 mm thick flat clamped aluminum

panel partitioned into six bays by a horizontal stringer and two vertical ring frames. The inverted

hat-section stringer shown in Fig. 6 is made from 1.02 mm thick aluminum while the frames are

made of 1.27 mm aluminum.

A finite element model of the stiffened panel was created using two-dimensional CQUAD4

elements to represent the aluminum plate and one-dimensional CBEAM elements for the stiffen-

ers. The size of the elements was selected such that the model had at least 6 elements per flexural
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Figure 6: Diagram of the stiffened panel.

wavelength through 1.8 kHz. To achieve this, 143 elements were used in the x-direction and 38

elements were used in the y-direction. The elements along the edges of the panel were clamped,

yielding a model with 26,484 degrees of freedom.

A normal modes analysis was used to identify the generalized mass and stiffness matrices, and

to extract the 200 lowest frequency transverse modes. This was necessary to capture the dynamics

through 1.8 kHz. The generalized mass and stiffness matrices were then used to create a state-

space model of the structure. For this study, a modal damping ratio of 1% was used for all modes.

The structural model was then augmented to include the dynamics of the piezoelectric actuators

as described by Clark et al.23 The sound power radiated by the structure was estimated using a

reduced order radiation model24 containing 6 radiation modes, which account for more than 99%

of the power radiated from the structure below 1 kHz. The final structural acoustic model contains

418 states describing 200 structural modes and 6 radiation modes. The structure is excited by

a broadband spatially correlated excitation, which is representative of a normally incident plane

wave. This type of excitation was modeled using 150 correlated point loads distributed over the

structure.

The control transducers consist of accelerometers and surface-mounted piezoceramic patches.
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Specifically, 0.07 m by 0.29 m piezoelectric actuators were mounted in the center of each bay, and

four accelerometers were located in a diamond pattern around each actuator. When integrated, the

summed response from each set of accelerometers provides an estimate of the volume velocity of

the bay. This transducer configuration was selected based on the controller/transducer complexity

work performed by Gibbs et al.3

IV. RESULTS AND DISCUSSION

Numerical simulations are used to study the limitations of decentralized LQG control and eval-

uate the performance of iterative loop recovery. The results of two simulations are discussed. First,

the need for iterative loop recovery is established by examining interactions between controllers on

two neighboring bays. The advantage of disturbance estimation and loop recovery is demonstrated

on these two bays. The performance of iterative loop recovery is then evaluated on a system with

independent control units on each of the six bays of the panel. Since modern control systems are

typically implemented digitally, all simulations are performed in discrete-time with a sample rate

of 3 kHz.

In both simulations, the LQG controllers are designed by independently solving optimal state

regulation and state estimation problems. The state regulator is found by calculating the optimal

feedback gain matrix that minimizes a quadratic function containing performance and control

effort terms. The performance variable is assumed to equal the sensed variable (i.e. the volume

velocity estimate) while the magnitude of the control effort weighting term is used to vary the

trade-off between performance and control effort. For these simulations, the measurement noise

is assumed to have a flat magnitude of -60 dB relative to 1 m/s, while disturbance models are used

to capture the shape of the process noise. Since each controller has a single input and output, the

phase of the disturbance model is arbitrary. Therefore disturbance models are initially generated

by fitting the magnitude of the local open-loop response with 55th order minimum phase models.

Although the full structural acoustic model contains 418 states, reduced order local control models
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are used to design each controller. Therefore, each LQG controller contains 130 states.

A. Decentralized control of two bays

Initial simulations are performed by implementing independent LQG controllers on two neigh-

boring bays of the stiffened panel. The two bays and corresponding transducer layouts are depicted

in Fig. 7. The power spectrum of the summed velocity on bay 3 due to the disturbance only (the

open-loop response) is indicated by the black line in Fig. 8. When feedback control is implemented

on bay 3 only, the corresponding closed loop response is indicated by the dash-dotted blue line in

Fig. 8. The controller reduces the response, relative to the open loop response, near the resonances

at 200, 600, and 950 Hz, and slightly increases the response around 1250 Hz. The dashed red

line in Fig. 8 shows the response on bay 3 when feedback control is simultaneously implemented

on bays 3 and 4. In this example, the interaction between the two control units causes excessive

spillover at 175 and 1237 Hz. In the context of this work, spillover is the undesired amplification

of the response with respect to the open-loop response.

Adding a control unit on bay 4 introduces dynamics that are not included in the initial plant

model of bay 3. The plant variations affect both the stability margins and performance of the

control system. For instance, the left hand side of Fig. 9 shows the Nyquist diagram for the control

unit on bay 3 from 0 to 177 Hz. The dash-dotted blue line shows the polar plot of the open-loop

frequency response, G3(s)C3(s), where G3(s) is the nominal model of bay 3. In this case, the

control system has a gain margin of 4.5 dB and a phase margin of 35 degrees. The dashed red line

shows the polar plot of G̃3(s)C3(s), where G̃3(s) is the modified plant that includes the dynamics

of the controller on bay 4. The gain and phase margins of this system are only -0.73 dB and

10 degrees, respectively. Although the coupled system is stable, excessive spillover is observed

around 175 Hz (indicated in the figure with red circles) where the polar plot passes close to the

Nyquist point (-1,0). Similarly, the right hand side of Fig. 9 shows the Nyquist diagram from 1 to

1.25 kHz. Once again, the additional dynamics introduced by the controller on bay 4 destabilizes
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Figure 7: Transducer layout with control on bay 3 (top) and control on bays 3 and 4 (bottom).

the control system. The open-loop frequency response function of the combined system passes

close to the Nyquist point at 1237 Hz (identified in the figure using red circles), which causes the

large spike in the closed-loop response at that frequency.

In addition to introducing plant variations, the interaction between the two control units also

changes the shape of the disturbance, as shown in Fig. 10. The thin black line shows the open-loop

power spectrum of the summed velocity on bay 3, which corresponds to the nominal disturbance

spectrum for that bay. The dashed red line shows the power spectrum of the summed velocity on

bay 3 with control only on bay 4, which shows the change in the disturbance due to the addition of

a neighboring control unit. While changes in the disturbance spectrum do not affect the stability

margins, they can affect closed-loop performance. Feedback controllers are typically designed

such that the sensitivity function (output over the disturbance) is much less than unity over a small
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Figure 8: (Color online) Open and closed-loop response using decentralized LQG control.
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Figure 9: (Color online) Polar plots of the nominal open-loop frequency response function G3(s)C3(s)

(dash-dotted blue line) and the modified open-loop frequency response function G̃3(s)C3(s) (dashed red

line) from 0 - 177 Hz (left) and from 1 - 1.25 kHz (right).

bandwidth where the disturbance has significant energy in exchange for small increases over a

large range of frequencies where the disturbance has little energy. Therefore changes in the shape

of the disturbance model can degrade the closed-loop performance of the system.

To account for both plant and disturbance variations, the controller on bay 3 is updated using

the online disturbance estimate. The online disturbance estimate, obtained with control on both

bays 3 and 4, is shown with the dash-dotted cyan line in Fig. 10. Notice that the estimate closely
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tracks the actual disturbance (dashed red line) over much of the frequency band. However the

disturbance estimate exceeds the actual disturbance at 175 Hz and 1237 Hz where the modeling

error is destabilizing. Using Eq. 10, a new disturbance estimate is computed and then used to

redesign the LQG controller. The resulting closed loop response, shown as the dash-dotted cyan

line in Fig. 11, illustrates the benefit of using an updated disturbance model to account for plant

and disturbance variations caused by neighboring controllers.

0 500 1000 1500
−50

−40

−30

−20

−10

0

10

20

30

 

 

M
ag

ni
tu

de
 [ 

dB
 r

e.
 1

 m
/s

 ]

Frequency [Hz]

no control
control on bay 4
dist. estimate

Figure 10: (Color online) Amplitude of the disturbance on bay 3.
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Figure 11: (Color online) Open and closed-loop response on bay 3 with controllers on two bays.
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B. Decentralized control of six bays

Simulations are also used to evaluate the full decentralized control system depicted in Fig. 12.

In this case, all six controllers are designed independently without information pertaining to neigh-

boring designs. Four different sets of controllers are evaluated beginning with relatively conser-

vative LQG controllers and progressing to more aggressive designs (i.e. reduced effort weighting

term). The open and closed-loop response (summed velocity) on bay 3 is shown in Fig. 13. Only

the response of bay 3 is shown since similar trends are also observed on the other five bays. As

the controllers become more aggressive, the closed-loop response deteriorates at 175, 205, and

1237 Hz. The interaction between the six control units causes spillover at these frequencies, lim-

iting achievable performance.

Figure 12: Decentralized control of 6 independent control units.

Figure 14 shows the open and closed-loop response on bay 3 when the iterative control ap-

proach is used. As in the previous example, relatively conservative LQG controllers are used

initially. However instead of simply redesigning the controllers using a more aggressive effort

weighting term, the disturbance models are also updated based on closed-loop system measure-

ments. The redesigned controllers are then implemented and the update procedure is repeated. The
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Figure 13: (Color online) Open and closed-loop response on bay 3 using decentralized LQG controllers on

all six bays.

closed-loop responses corresponding to the first five design iterations are shown in Fig. 14. The fi-

nal response, shown with the dashed brown line, achieves an integrated reduction of 13.7 dB from

50-1000 Hz without excessive spillover. While not shown, similar reductions are also achieved on

the other five bays.
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Figure 14: (Color online) Open and closed-loop response on bay 3 using iterative loop recovery on all six

bays.

Finally consider the global performance of the control system in terms of the radiated sound
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power from the entire stiffened panel. Figure 15 compares the open-loop response, shown with

the thin black curve, with the closed-loop responses achieved with the standard decentralized

approach and the iterative strategy. The dash-dotted green curve corresponds to the standard de-

centralized approach in which the plant and disturbance models are designed based on open-loop

measurements. Although this approach achieves a 5.7 dB integrated reduction from 50-1000 Hz,

performance is limited due to the destabilizing interaction between the local control units at 175,

205, and 1237 Hz. On the other hand iterative loop recovery, shown with the dashed brown line,

achieves a 27 dB peak reduction and 7.7 dB integrated reduction in radiated sound power from

50-1000 Hz without large peaks caused by the interaction between local control units.
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Figure 15: (Color online) Radiated sound power from the stiffened panel.

V. CONCLUDING REMARKS

Decentralized controllers introduce unavoidable errors due to the unmodeled coupling between

subsystems. Since accurate uncertainty bounds are not known in advance, it is difficult to ensure

the decentralized control system will be robust without making the controller overly conserva-

tive. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery.

The approach accounts for modeling error introduced by neighboring control loops, requires no

communication between subsystems, and is relatively simple. The approach is implemented by
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updating the disturbance model and redesigning the controller using local closed-loop measure-

ments. This strategy was evaluated numerically using six independent control units mounted on a

stiffened structure representative of the fuselage of an aircraft. Results demonstrate that updating

the disturbance model based on closed-loop system measurements can improve the robust stability

and performance of the control system with respect to standard decentralized strategies. In partic-

ular, the iterative control system achieved a 7.7 dB integrated reduction in radiated sound power

from the stiffened aircraft-style panel.
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Collected figure captions

FIG. 1. Decentralized control on a stiffened panel.

FIG. 2. Standard block diagram of a two-channel decentralized control system (top), and an

alternative representation highlighting the additional path from u2 to y2 through C1 (bottom).

FIG. 3. LQG diagram.

FIG. 4. Plant model with fictitious noise, z, injected at the plant input.

FIG. 5. A diagram of the iterative control strategy.

FIG. 6. Diagram of the stiffened panel.

FIG. 7. Transducer layout with control on bay 3 (top) and control on bays 3 and 4 (bottom).

FIG. 8. (Color online) Open and closed-loop response using decentralized LQG control.

FIG. 9. (Color online) Polar plots of the nominal open-loop frequency response function

G3(s)C3(s) (dash-dotted blue line) and the modified open-loop frequency response function

G̃3(s)C3(s) (dashed red line) from 0 - 177 Hz (left) and from 1 - 1.25 kHz (right).

FIG. 10. (Color online) Amplitude of the disturbance on bay 3.

FIG. 11. (Color online) Open and closed-loop response on bay 3 with controllers on two bays.

FIG. 12. Decentralized control of 6 independent control units.

FIG. 13. (Color online) Open and closed-loop response on bay 3 using decentralized LQG

controllers on all six bays.

FIG. 14. (Color online) Open and closed-loop response on bay 3 using iterative loop recovery

on all six bays.

FIG. 15. (Color online) Radiated sound power from the stiffened panel.
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