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Abstract—Thermostatically controlled loads (TCLs) such as
refrigerators, air-conditioners and space heaters offer significant
potential for short-term modulation of their aggregate power
consumption. This ability can be used in principle to provide
frequency response services, but controlling a multitude of
devices to provide a measured collective response has proven
to be challenging. Many controller implementations struggle to
manage simultaneously the short-term response and the long-
term payback, whereas others rely on a real-time command-
and-control infrastructure to resolve this issue. In this work we
propose a novel approach to the control of TCLs that allows
for accurate modulation of the aggregate power consumption of
a large collection of appliances through stochastic control. By
construction, the control scheme is well suited for decentralised
implementation, and allows each appliance to enforce strict
temperature limits. We also present a particular implementation
that results in analytically tractable solutions both for the global
response and for the device-level control actions. Computer
simulations demonstrate the ability of the controller to modulate
the power consumption of a population of heterogeneous appli-
ances according to a reference power profile. Finally, envelope
constraints are established for the collective demand response
flexibility of a heterogeneous set of TCLs.

Index Terms—power system control, load management, de-
mand response, thermostatically controlled loads, frequency re-
sponse, stochastic control

NOTATION

A. Model parameters

Ton asymptotic cooling temperature

Toff room temperature

Tmax maximum temperature threshold

Tmin minimum temperature threshold

α temperature relaxation constant

von(T ) heating rate of on-appliances

voff(T ) heating rate of off -appliances

Pon maximum power consumption

B. Steady state descriptors

π0 steady state duty cycle

P0 steady state average power consumption

T̄0 steady state average temperature

C. Control variables

Π(t) target relative power consumption

v(T, t) average heating rate of on and off appliances

β(t) linear control variable
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D. Dependent variables

P (t) actual power consumption

Tlow(t) temperature of coldest appliance (≥ Tmin)

Thigh(t) temperature of warmest appliance (≤ Tmax)

θ(t) temperature of particular appliance

T̄ (t) ensemble average temperature

f(T, t) probability density of all appliances

fs(T, t) density of appliances in state s ∈ {on, off}
Φ(T, t) net on-off density flux

ronoff(T, t) stochastic switch-off rate

roffon (T, t) stochastic switch-on rate

I. INTRODUCTION

THERMOSTATICALLY controlled loads (TCLs) consist of

an electrical heating or cooling element that is controlled

by a thermostat. The thermostat modulates the power used for

heating/cooling in order to maintain a system’s temperature

near a setpoint value. In its most common implementation,

the thermostat makes use of a temperature deadband around

the setpoint value. When the upper deadband threshold is

exceeded the system switches to a cooling state, either by

switching on the cooling mechanism or by switching off the

heating mechanism, and conversely, when the lower deadband

threshold is exceeded the system switches to a heating state.

For TCLs that are controlled using a temperature deadband,

small fluctuations in temperature are acceptable as long as the

target temperature is approximately maintained over time. This

insensitivity to temperature fluctuations means it is possible

to shift demand from one moment in time to another without

noticeably affecting the quality of service. Because a large

number of TCLs is connected to the grid at all times, tapping

into the collective flexibility offered by these loads has large

potential benefits.

In 1979, Schweppe proposed to use such ‘energy type usage

devices’ for the provision of frequency services [1] to the

electricity grid. By monitoring the grid frequency devices can

respond to frequency deviations by decreasing (in case of

low frequency) or increasing (in case of high frequency) their

instantaneous power consumption. This use case was analysed

in detail by Short et al. [2] for fridge-freezers on the Great

Britain (GB) network. Recently, Aunedi et al. [3] have carried

out an assessment of the economical and environmental impacts

of frequency regulation by frequency-responsive refrigerators

for the GB system. Their study has found substantial benefits,

especially for future generation portfolios with an increased

penetration of renewables.

This illustrates the collective ability of responsive TCLs to

contribute to the efficient operation of the grid. However, it is
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not straightforward to design a satisfactory control algorithm for

these applications, because individual appliances typically have

only two power states (on and off). A multitude of devices must

therefore be controlled in harmony to provide a dependable

service to the network. There are four main challenges that

must be addressed to make optimal use of the demand response

potential offered by TCLs.

1) Accurate control across a range of time scales. TCLs

must respond to frequency events within seconds and

execute a well-managed return to normal operation (the

‘payback’ phase) over a time span of approximately one

hour. Even longer periods are required for other dynamic

demand opportunities such as energy arbitrage.

2) Freedom to design complex responses. The system

operator or demand response aggregator should have

the freedom to design complex responses in accordance

with the technical and commercial requirements of

the network. This design should take into account the

physical capabilities of the TCLs.

3) Reliable distributed response. Real-time communication

between a central controller and a large number of ap-

pliances requires a costly communications infrastructure

that is sensitive to disturbances. It is therefore desirable

to implement decentralised control based on locally

available control signals (frequency, time). In cases where

the collective response must be subject to centralised

adjustment (for example by the TSO) the controller

should be insensitive to latency of the communication

channel.

4) Satisfy per-appliance quality of service constraints. De-

livering the collective response to the grid should not

impact the primary function of the TCLs: dependable

temperature control. Therefore any demand response

controller must deliver the response without violating the

quality of service requirements (e.g. temperature limits)

for each individual appliance.

Currently available methods address one or more of these

challenges, but not all at the same time.

Initial controller designs [2], [4] have been heuristic modifica-

tions of regular deadband controllers. Although such controllers

provide an effective initial response to frequency deviations,

careful analysis of their long term response shows a tendency

for devices to synchronise their cooling cycles. This interferes

with the diversity of demand on the network, and may result

in self-reinforcing frequency oscillations [5]. Ad hoc solutions

to synchronisation have been proposed (e.g. [6], [7]) but those

generally require careful tuning of parameters for specific

scenarios, and still do not provide full control over the power

profile beyond the initial response.

The traditional deadband controller can be extended to

allow for tracking of arbitrary power profiles by adjusting

the temperature setpoint in real time [8]–[10]. This approach

usually assumes the availability of a real-time communication

infrastructure [11]. A drawback of this approach is that the

single control parameter (temperature setpoint) limits the

range of available response actions, especially when strict

per-appliance temperature limits are enforced. Furthermore,

current implementations rely on a number of analytical and

numerical approximations [12] that complicate the analysis

and design of response actions.

Sinitsyn et al. [13] take a very different, non-perturbative

approach to constructing load profiles. The on-off sequence

resulting from a regular deadband controller is modified in order

to provide a qualitatively desirable response whilst guaranteeing

a return to diversified steady state operations. This results in a

class of control strategies (‘safe protocols’) that can provide

short-term power pulses without long-term synchronisation.

However, the small number of safe protocols constructed in

this way provides only a limited set of building blocks for the

design of complex responses.

The stochastic controller by Angeli and Kountouriotis [5]

is suitable for fully decentralised implementation. It ensures

through random switching that devices do not become syn-

chronised, thereby avoiding the long-term instability of simple

setpoint controllers. The controller adjusts the properties of

the steady state distribution and thereby exerts a slow control

over the temperature distribution and power consumption of a

population of fridges. This design fully eliminates the payback

phase, but in doing so it prolongs the time it takes for appliances

to regain their steady state temperature, and limits the ability

to implement rapid load changes.

In this paper we present a novel control strategy for TCLs

that for the first time addresses all four challenges listed

above. It results in an ability to track arbitrary power profiles

(within limits) using independent actions of a heterogeneous

collection of TCLs, which enables an unprecedented range

of demand response scenarios without onerous constraints on

the communications system. To illustrate the power of this

approach we further introduce a simple controller for which

the resulting control actions can be determined analytically.

This provides an additional level of insight into the theoretical

control framework, and allows for an explicit computation

of the contribution that the TCLs can make collectively in

terms of power and energy levels. This analysis is extended

to derive envelope constraints for the collective flexibility of

heterogeneous appliances.

In section II we present the overall control framework,

wherein TCLs are controlled in a fully decentralised manner by

letting each appliance independently target a reference power

profile. It is discussed how this feature may be used to enable

either fully autonomous control or semi-autonomous control,

depending on requirements. The (statistically) accurate tracking

of the reference power profile is enabled by a transformation of

the dynamic equations of appliance temperatures that exposes

the net heating rate v(T, t) as a suitable control parameter. The

collective power consumption of TCLs can thus be modulated

by controlling the population-averaged rate of heating or

cooling. Finally, we demonstrate that appropriate device-level

control actions can be derived from this population-level control

approach.

Section III considers the specific case of TCLs with linear

first order thermal models. For this common class of models

we determine the relation between temperature and power

consumption. This is used to derive generic limits on the

flexibility of appliances, expressed in terms of energy and
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(instantaneous) power consumption.

In section IV we present an illustrative example of a

controller that is designed according to the framework presented

in section II. The control function v(T, t) is defined to be a

linear function of T , which enables an analytical derivation

of the controller’s properties. For an arbitrary target power

profile we derive expressions for the temperature distributions,

required global and local control actions, and bounds on

the flexibility (power and energy) of the controller. At an

appliance level the implementation of the controller requires

only basic mathematical operations that can easily be performed

by unsophisticated appliances.

An algorithm for simulating individual device actions is given

section V, followed by results that demonstrate the ability of

a heterogeneous population of appliances to follow a complex

reference power curve. Finally, the aggregate demand response

flexibility of such a heterogeneous population is assessed and

it is shown that this can be represented by envelope constraints

that are characterised by four aggregate parameters.

II. CONTROL FRAMEWORK

A. General approach

We propose to control the aggregate power consumption of

TCLs in a decentralised manner by letting each appliance inde-

pendently target a relative power curve Π(t). Each appliance

a controls its power consumption P a(t) in such a way that

E[P a(t)] = P a
0 Π(t), (1)

where P a
0 is its time-averaged steady state power consumption.

The notion of expectation used in this expression is with respect

to the statistical ensemble of all possible initial conditions

of appliance a (temperatures, states) and – for stochastic

controllers – all possible control sequences. The reference

curve Π(t) is identical for all appliances, and by definition a

dynamic response action starts and ends with Π(t) = 1 (steady

state).

If the response of each appliance satisfies Eq. (1), then

it is easy to see that Π(t) also modulates the global power

consumption P total(t):

E[P total(t)] =
∑

a

E[P a(t)]

=
∑

a

P a
0 Π(t)

= P total
0 Π(t), (2)

where P total
0 is the steady state aggregate power consumption.

Furthermore, because the appliances are statistically indepen-

dent of each other, the relative deviations from the expectation

will decrease approximately as 1/
√
N , where N is the number

of appliances. For large N we may therefore assume

P total(t) ≈ P total
0 Π(t). (3)

The resulting high-level control framework is illustrated

in Fig. 1. The block on top represents the demand response

designer that establishes the desired demand response pattern.

In the following we will assume that this role is fulfilled by

the system operator, but depending on regulatory and market

power response model

technical 

aims

commercial

aims

appliance

flexibility

demand response designer

desired relative 

power curve Π(t)

device 

characteristics

power response 

model
locally available

signal (freq., time)

appliance n

local

controller

broadcast to 

appliances

power consumption Pn(t)

1

2

3

P1(t)

P2(t)

P3(t)

Figure 1. High level overview of the control framework. The demand response
designer establishes a power response model based on technical and commercial
aims, and constrained by the appliances’ flexibility. The power response model
is distributed to each appliance. In combination with a locally available global
signal this enables each appliance to independently establish the desired relative
power curve Π(t). A local controller then modulates the power consumption
of the appliance in accordance with Eq. (1).

arrangements this task could also be performed by demand

response aggregators.

The desired relative power curve Π(t) may by linked

dynamically to the condition of the power system, e.g. for the

provision of frequency response services. Broadcasting such a

curve in real time to all appliances would require a reliable

low-latency communication channel, which is expensive and

sensitive to disruptions. Instead, we propose that the system

operator creates a power response model which is distributed

to the appliances. The power response model specifies how

the relative power curve Π(t) can be computed as a function

of a locally available signal, such as the grid frequency or the

current time. This way, each appliance is able to independently

construct the desired relative power curve Π(t). For example,

the appliances may be instructed to modulate their power
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consumption linearly in response to changes in the grid

frequency.

In a basic implementation the power response model may be

embedded in the appliance during production. This approach

results in fully autonomous operation and lends itself well to

the provision of hardwired primary response to grid frequency

deviations. However, this mode of operation ignores the

potentially significant benefits that result from an ability to

update the power response model periodically. Updating the

power response model on an hourly or daily basis would

allow the system operator to schedule primary and secondary

response services that are optimally suited to characteristics

of the power system, which change throughout the day, week

and year. Furthermore, it would enable the provision of energy

arbitrage services that reduce peak load, generation cost and/or

ramp constraints.

We refer to this as ‘semi-autonomous’ operation, because

the updates occur on a time scale (hours - days) that is larger

than that of the actual response (seconds - minutes). In contrast

with direct centralised control there is no need for real-time

communication with the appliances, so the latency of the

communication channel is not critical; it is sufficient for the

channel to be dependable. The smart metering infrastructure

that is currently being rolled out has such characteristics, as its

primary aim is to support dependable retrospective billing. It is

therefore well suited to support the proposed semi-autonomous

control of TCLs.

When allocating demand response it is critical that the system

operator knows that the desired curve Π(t) can be realised

by the appliances without violating their quality of service

requirements. This prerequisite has two consequences. First,

the system operator needs access to information regarding the

aggregate capability of the participating appliances, including

their total load and their ability to modulate their power levels

and temperatures. If two-way communication is available, such

information may be obtained directly from the appliances or

their aggregators. Otherwise, it may need to be inferred from

shipping numbers and targeted experiments. Second, the system

operator needs efficient means to assess the compatibility of

device parameters and any proposed power curves. For the

controllers under consideration in this paper, a sufficient set of

aggregate parameters and conditions to establish compatibility

with a proposed power curve Π(t) are provided in section V-C.

Taking Eq. (1) as a starting point, the following sections

focus on the design of the local controller for a single appliance

that modulates its power consumption according to the desired

relative power curve Π(t). Because only a single appliance is

considered the use of the superscript a is suspended until

section V, where the case of multiple and heterogeneous

appliances is explicitly reintroduced.

B. Generic appliance model

In this work we consider thermal appliances with an internal

state that is fully characterised by the temperature and can

therefore be modelled by a first order ODE. For simplicity

we use the example of refrigerators throughout this paper,

although the same ODE model can trivially be applied to other

thermostatically controlled loads such as air conditioning units,

resistive space heaters, etc. Furthermore, we assume that each

device exists in either an ‘on’ or ‘off’ state, but extensions

to devices with fractional power states are conceivable. The

evolution of the temperature θ(t) of an appliance in state s is

thus determined by the differential equation

dθ(t)

dt
=

{

von(θ(t)), when s =on

voff(θ(t)), when s =off
(4)

where von(·) < 0 is the (active) cooling rate and voff(·) > 0
the (passive) heating rate.

A typical refrigerator controller uses a deadband

[Tmin, Tmax] around a temperature setpoint Tset. When the

temperature reaches the lower bound Tmin the appliance

switches off, and when the temperature reaches the upper bound

Tmax it switches back on. A popular approach to enabling

demand response from TCLs is to extend this control strategy

by shifting the upper and lower temperature bounds in unison

[2], [8]–[11]. In this work we enlarge the scope for control

by including both deterministic and stochastic switching as

follows:

1) Variable thresholds. The appliance always switches off

when the lower temperature threshold Tlow(t) is reached,

and switches on when the upper temperature threshold

Thigh(t) is reached. This guarantees that the temperature

of an individual appliance never exceeds the interval

[Tlow(t), Thigh(t)], provided that the rate of change of the

thresholds does not exceed the maximum heating/cooling

rate of the appliances.

2) Stochastic switching. For intermediate temperatures θ ∈
(Tlow(t), Thigh(t)) switching is controlled by stochastic

switching rates ronoff(θ, t) (on → off) and roffon (θ, t) (off

→ on). These rates may be set to zero to recover

conventional setpoint controllers.

-4000 -2000 0 2000
t @sD
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stochastic switching event

Figure 2. Illustrative temperature trace of a single refrigerator controlled by a
hybrid threshold-stochastic controller. A linear thermal model as in (19) was
employed, using model parameters from Table I. The device is controlled by
the linear controller of section IV with the control signal shown in Fig. 5.

This control approach is illustrated in Fig. 2, which plots

the temperature trace of a single refrigerator. For t < 0 the

controller acts like a regular deadband controller and the temper-

ature oscillates between the constant bounds Tlow(t) = Tmin
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and Thigh(t) = Tmax. After t = 0 the lower temperature

limit Tlow(t) changes gradually and the threshold switching is

augmented by occasional stochastic switching.

C. Temperature distribution formulation

Instead of individual appliance temperatures we will consider

the probability density fs(T, t) of a population of fridges over

temperatures T and the binary state variable s ∈ {on, off}.

fon(T, t) describes the distribution of fridges that are on at

time t, and foff(T, t) those that are off. Together, they satisfy

the normalising constraint
∫

∞

−∞

[fon(T, t) + foff(T, t)] dT = 1. (5)

The concept of a probability density on the temperature axis

has also been used in [5], [8], [14]. Intuitively, the probability

density is that of a large population of identical appliances with

randomised (independent) internal states. However, the density

fs(T, t) can also be interpreted as the probability distribution

for the state of a single appliance with random initial conditions

[5]. This subtle change in interpretation is significant, as it

reveals the fact that we do not physically require a large

population of identical appliances to make statements regarding

expected behaviour.

Analogous to [5], we write down the evolution equations for

fon(T, t) and foff(T, t), but we include unspecified temperature-

dependent heating and cooling rates voff(T ) and von(T ) and

switching rates ronoff(T, t) and roffon (T, t).

∂

∂t
fon(T, t) =− ∂

∂T
[von(T )fon(T, t)]

− ronoff(T, t)fon(T, t) + roffon (T, t)foff(T, t),
(6a)

∂

∂t
foff(T, t) =− ∂

∂T
[voff(T )foff(T, t)]

+ ronoff(T, t)fon(T, t)− roffon (T, t)foff(T, t).
(6b)

These equations are valid on the interval [Tlow(t), Thigh(t)]
and are supplemented by the following flux balance boundary

conditions, representing appliance switching at the lower/upper

temperature thresholds.

fon(Tlow, t)

[

dTlow(t)

dt
− von(Tlow)

]

= foff(Tlow, t)

[

voff(Tlow)−
dTlow(t)

dt

]

(7a)

fon(Thigh, t)

[

dThigh(t)

dt
− von(Thigh)

]

= foff(Thigh, t)

[

voff(Thigh)−
dThigh(t)

dt

]

(7b)

D. The control function v(T, t)

The probability density fs(T, t) is defined with respect to

two variables that have a fundamentally different character:

temperature and appliance state. The temperature is a physical

property of the appliances that is critical to the quality of

service (preserving food) and that changes only gradually.

The appliance state, however, is a control lever that can be

changed instantaneously. In the following, we reformulate

equations (6) to reflect this qualitative difference. This will

expose a convenient control parameter for the expected power

consumption associated with a distribution.

First we eliminate the appliance state by summing equations

(6a) and (6b). We obtain the continuity equation for the

temperature-only probability density f(T, t):

∂

∂t
f(T, t) = − ∂

∂T
[v(T, t)f(T, t)] , (8)

where

f(T, t) ≡fon(T, t) + foff(T, t) (9)

v(T, t) ≡von(T )fon(T, t) + voff(T )foff(T, t)

fon(T, t) + foff(T, t)
. (10)

f(T, t) is the probability density of temperatures, regardless

of device status; v(T, t) is the average heating rate of all

devices with temperature T , which dictates the ‘flow’ of devices

along the temperature axis. Clearly, this must satisfy von(T ) ≤
v(T, t) ≤ voff(T ) and because there are only two device states

there is a one-to-one correspondence between the value of

v(T, t) and the relative size of fon(T, t) and foff(T, t). Using

definitions (9) and (10), the boundary conditions (7) simplify

to

dTlow(t)

dt
=v(Tlow(t), t) (11a)

dThigh(t)

dt
=v(Thigh(t), t). (11b)

Equations (8) and (11) show that the evolution of the temper-

ature density f(T, t) is fully determined by the heating rate

v(T, t), which is illustrated using a schematic example in Fig.

3.

T

f HT,0L

T

vHTL

T

f HT,tL

Figure 3. Schematic representation of the way the heating rate profile
v(T ) controls the evolution of the temperature distribution f(T, t). For this
illustrative example a constant heating rate profile v(T, t) = v(T ) was used.

The main innovation of the control approach introduced in

this paper is the use of v(T, t) itself as a control parameter.
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This approach inverts the standard formulation of the control

problem in which the population properties are derived from

and expressed in terms of the appliance-level switching rates

ronoff(T, t) and roffon (T, t) and the temperature bounds Tlow(t)
and Thigh(t). In this approach, the lower/upper temperature

setpoints are defined implicitly through (11). Similarly, the

on/off switching rates can be determined using the asymmetric

complement of equation (8). Subtracting (6b) from (6a) yields

∂

∂t
[fon(T, t)− foff(T, t)] =

− ∂

∂T
[von(T )fon(T, t)− voff(T )foff(T, t)]− 2Φ(T, t),

(12)

where we have introduced the shorthand

Φ(T, t) = ronoff(T, t)fon(T, t)− roffon (T, t)foff(T, t) (13)

representing the net switching flux of appliances from the on to

the off state. We solve (12) for Φ(T, t) and use the equalities

fon(T, t) =

(

voff(T )− v(T, t)

voff(T )− von(T )

)

f(T, t) (14a)

foff(T, t) =

(

v(T, t)− von(T )

voff(T )− von(T )

)

f(T, t) (14b)

to express it as a function of f(T, t) and v(T, t):

Φ(T, t) =
∂

∂t

[(

v(T, t)− 1
2 (voff(T ) + von(T ))

voff(T )− von(T )

)

f(T, t)

]

+
∂

∂T

[( 1
2v(T, t)(voff(T ) + von(T ))

voff(T )− von(T )

)

f(T, t)

]

− ∂

∂T

[(

voff(T )von(T )

voff(T )− von(T )

)

f(T, t)

]

. (15)

Note from Eq. (13) that the value of Φ(T, t) does not fully

determine the switching rates ronoff(T, t) and roffon (T, t). This

is to be expected because the flux contributions of devices

switching on and off (at any given temperature T ) cancel out.

This indeterminacy is resolved by minimising the total rate of

switching. In combination with the fact that switching rates

must be positive this results in the following choice:

ronoff(T, t) =max

(

0,
Φ(T, t)

fon(T, t)

)

(16a)

roffon (T, t) =max

(

0,
−Φ(T, t)

foff(T, t)

)

(16b)

We note that the choice to minimise the overall rate of switching

is also beneficial from a device perspective, as it reduces the

mechanical stress on the compressors of the refrigerators.

E. Two stage control of the expected power consumption

We return to the interpretation of f(T, t) as the probability

density for the temperature of a single appliance with random

initial conditions. At each instant an appliance’s compressor

is either on or off (in case of a refrigerator), so its power

consumption is either Pon (maximum power consumption) or

nil. However, we can compute the expected fractional power

consumption π(t) = E[P (t)]/Pon as

π(t) =

∫

∞

−∞

fon(T, t) dT

=

∫

∞

−∞

(

voff(T )− v(T, t)

voff(T )− von(T )

)

f(T, t) dT. (17)

Here, the expectation is an average over all possible initial

conditions and - for stochastic controllers - all possible control

sequences. The fractional power consumption π(t) ∈ [0, 1] and

the relative power consumption Π(t) are related by

Π(t) =
π(t)

π0
, (18)

where π0 is the steady state fractional power consumption,

equal to the duty cycle.

Note in Eq. (17) that π(t) depends on both f(T, t) and

v(T, t). Whereas the former is a slowly evolving density, the

latter can be controlled directly by switching appliances on

and off. Furthermore, we know how to compute device level

switching rates (16) and temperature limits (11) from the

variables f(T, t) and v(T, t). Together, these properties enable

us to formulate a two-stage approach for the control of the

expected power consumption in accordance with the desired

relative power curve Π(t). This is illustrated in Fig. 4 and

further explained below.

• The first stage is the ensemble control problem. At this

stage, each device considers a (hypothetical) ensemble of

identical appliances. Based solely on its own thermal

model and temperature limits it computes a suitable

population-level response for achieving the desired relative

power curve Π(t). The steady state temperature distribu-

tion f(T, 0) is computed as a starting point, and a heating

profile v(T, t) is chosen in accordance with the target

power consumption Π(t) and Eq. (17). The co-evolution

of the temperature distribution f(T, t) and heating rate

profile v(T, t) follows from the continuity equation (8),

as illustrated in Fig. 3.

• The second stage is the device control problem. This

determines an appliance-level control strategy that is

compatible with f(T, t) and v(T, t) as determined in

the first stage. Specifically, for the hybrid deterministic-

stochastic controller described in section II-B, this stage

computes the switching rates ronoff(T, t) and roffon (T, t) from

the on-off flux Φ(T, t) using Eq. (16). The deterministic

switching temperatures Tlow(t), Thigh(t) are computed

from Eq. (11).

Finally, having determined a device-specific controller,

individual appliances are switched on or off in accordance

with this control strategy: switching always occurs when

the temperature reaches the bounds Tlow(t) and Thigh(t),
and stochastically according to ronoff(T, t) and roffon (T, t) for

intermediate temperatures.

III. LINEAR THERMAL MODEL

In this section we determine properties of generic TCL

controllers in combination with the common linear first order
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ensemble

control problem

temperature distribution f(T,t)

heating rate profile v(T,t)

switching rates

temperature thresholds

thermal model

quality of service

constraints

current device 

temperature

desired relative

power curve Π(t)

device

control problem

compressor

on/off switching

power consumption Pa(t)

Figure 4. Components of the local controller that is embedded in each
appliance. For a relative power curve Π(t) the controller consecutively solves
two sub-problems: first it determines an adequate ensemble response and for
this response it computes a compatible set of switching rates and temperature
thresholds. This two-stage procedure results in a control model that is used to
switch the state of the compressor on and off. The controller modulates the
power consumption Pa(t) in such a way that E[Pa(t)] = Pa

0
Π(t) (Eq. (1)).

The inputs in various stages are indicated by dotted boxes. See Fig. 1 for the
embedding of the local controller into the overall control framework.

refrigerator model [4], [15], for which the heating/cooling rates

are given by

von(T ) =− α(T − Ton) (19a)

voff(T ) =α(Toff − T ). (19b)

Here Toff and Ton are the asymptotic temperatures for the off

and on states, respectively, and α is a temperature relaxation

constant constant that quantifies the rate with which the

temperature of the appliance equilibrates with its surroundings.

The quantity 1/α is also known as the thermal time constant.

The appliance temperature evolution in the absence of switching

is thus given by

T a(t) =

{

Ton + (T a(t0)− Ton)e
−α(t−t0), when sa =on

Toff + (T a(t0)− Toff)e
−α(t−t0), when sa =off

(20)

We note that the population-level results in the remainder of

this section do not depend on the details of the controller, and

are thus applicable to any on-off controller for first order linear

thermal models.

A. Temperature and power consumption

The fractional power consumption π(t) as a function of

f(T, t) and v(T, t) is determined by substituting (19) into

(17).

π(t) =

∫

∞

−∞

(

Toff − T − v(T, t)/α

Toff − Ton

)

f(T, t) dT (21)

=
1

Toff − Ton

[

Toff − T̄ (t)− v̄(t)

α

]

, (22)

where T̄ (t) is the average temperature and v̄(t) is the average

rate of heating at time t. In the steady state v̄ = 0, resulting

in the following relation between the steady state average

temperature T̄0 and the duty cycle π0:

π0 =
Toff − T̄0

Toff − Ton
. (23)

By definition v̄(t) = dT̄ (t)/dt, so Eq. (22) can be inter-

preted as a differential equation for T̄ (t). Expressed as a

function of the relative power consumption Π(t) = π(t)/π0 it

reads

dT̄ (t)

dt
= −α

[

T̄ − Toff + (Toff − T̄0)Π(t)
]

. (24)

It is easily verified that the ensemble averaged temperature T̄
changes as that of a single appliance with a variable relative

cooling rate P (t) = π0Π(t)Pon. Solving the differential

equation results in

T̄ (t) =Toff + (T̄ (t0)− Toff)e
−α(t−t0)

− α(Toff − T̄0)

∫ t

t0

Π(t′)e−α(t−t′) dt′. (25)

Taking the limit t0 → −∞ further simplifies this to

T̄ (t) = Toff − α(Toff − T̄0)

∫ t

−∞

Π(t′)e−α(t−t′) dt′. (26)

This result shows that the average temperature is determined

by the exponentially smoothed reference power curve Π(t).

B. Energy and power constraints

The primary function of thermostatically controlled loads

such as refrigerators is to maintain a compartment at a desired

temperature. The provision of system services should not

excessively impact this task, so it is natural to require that the

temperature each individual appliance must remain within an

acceptable interval [Tmin, Tmax] at all times. This constraint

limits the permissible power profiles Π(t), both in terms of

energy and power.

1) Capacity for energy services: The energy constraint

reflects the ability to sustain a reduced power level, effectively

allowing the power system to ‘borrow’ energy from the

appliances. This effective store of energy is fully depleted

when each appliance attains the upper temperature limit Tmax,

so that T̄ = Tmax. Conversely, the amount of stored energy

is maximised when each appliance is at its lower temperature

limit Tmin, so that T̄ = Tmin. An optimal controller that is able

to fully utilise the temperature range is therefore constrained

to the interval

Tmin ≤ T̄ (t) ≤ Tmax. (27)
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Using equation (26) this translates into the following constraint

for the reference power profiles:

1−
(

Tmax − T̄0

Toff − T̄0

)

≤ α

∫ t

−∞

Π(t′)e−α(t−t′) dt′

≤ 1 +

(

T̄0 − Tmin

Toff − T̄0

)

. (28)

This expression clearly expresses the link between the tem-

perature margin (Tmax − Tmin) and the energy bounds. By

setting Π(t) to a constant value Πsustained we find the following

inequality for power levels that can be sustained indefinitely

without violating Eq. (27):

1−
(

Tmax − T̄0

Toff − T̄0

)

≤ Πsustained ≤ 1 +

(

T̄0 − Tmin

Toff − T̄0

)

. (29)

Note that Eq. (26) implies that operating at a constant

power level eventually results in a constant average temperature.

Specifically, this means the steady state temperature can always

be restored asymptotically by operating at the steady state

power level Π = 1. Therefore it is not a strict requirement

to ‘pay back’ the borrowed energy after an initial demand

reduction. This convenient property was used successfully

in [5] to avoid fluctuating power levels during the recovery

phase. However, even when a payback phase is not strictly

required it may nevertheless be useful to temporarily boost

power consumption in order to speed up the recovery of the

average temperature.

2) Instantaneous power consumption: It is not possible to

derive similar generic bounds for the instantaneous power

consumption without specifying (elements of) the controller

implementation. In principle, the full range of fractional power

levels between π(t) = 0 and π(t) = 1 can be attained simply

by randomly selecting a fraction π(t) of appliances that will

be in the ‘on’ state.

The exception to this simple result are appliances that

cannot be switched on and off because doing so would

immediately cause a violation of their quality of service

constraints. The fraction of appliances for which this applies is

usually vanishingly small, especially in the initial stages of a

demand response action. Therefore we state the following

approximate result in the absence of a specific controller

implementation:

0 / Π(t) /
1

π0
. (30)

In section IV-D2 we will determine instantaneous power bounds

for the specific controller developed in the next section.

IV. LINEAR CONTROLLER

Section II introduced a two stage approach to controlling the

aggregate power consumption of thermostatically controlled

loads, and section III derived generic bounds for the collective

demand response abilities of loads that have linear thermal

models. In this section we build on these results and introduce

a particular controller implementation. The proposed linear con-

troller does not make full use of the flexibility of the appliances,

but its simple functional form results in an analytically tractable

control problem. This property makes it an attractive choice

as an illustrative example. Furthermore, the linear controller

has two desirable features:

1) It reduces to the traditional setpoint controller in the

steady state.

2) It does not permit any fridges to exceed their maximum

temperature Tmax.

A. Steady state: setpoint controller

Most thermostatic loads are controlled by a traditional

setpoint controller, where – in the case of a refrigerator –

the cooling is switched on when an upper temperature bound

Tmax is reached, and switched off when the lower temperature

bound Tmin is reached. This type of controller minimises the

number of start-stop cycles for a given temperature interval

[Tmin, Tmax]. We take this setpoint controller as the basis for

our responsive demand controller, requiring identical behaviour

in the steady state. Specifically, we take the steady state

switching temperatures to be equal to the strict temperature

limits: [Tlow(0), Thigh(0)] = [Tmin, Tmax], with the assumption

that the system is in steady state at t = 0.

The steady state temperature distribution f(T, 0) fol-

lows from Eq. (12), using Φ(T, t) = 0 (no stochastic

switching) and v(T, t) = 0 (steady state). This implies

voff(T )von(T )f(T, 0) = constant, and normalising f(T, 0) on

the interval [Tmin, Tmax] results in

f(T, 0) =
C

(Toff − T )(T − Ton)
(31)

with

C =
Toff − Ton

log
(

(Tmax−Ton)(Tmin−Toff )
(Tmin−Ton)(Tmax−Toff )

) . (32)

The steady state duty cycle (fractional power consumption) π0

is determined by inserting (31) into (21) and setting v(T, 0) =
0:

π0 =
log

(

Tmax−Ton

Tmin−Ton

)

log
(

(Tmax−Ton)(Tmin−Toff )
(Tmin−Ton)(Tmax−Toff )

) . (33)

The average temperature T̄0 then follows from Eq. (23).

B. Control parameter

In order to modulate the power consumption we parametrise

the heating rate profile v(T, t) (the control function) to obtain

a control parameter. Eq. (22) suggests choosing v(T, t) as a

linear function of T , so we propose

v(T, t) = αβ(t)(T − Tmax). (34)

The heating/cooling rate of the refrigerator population is there-

fore controlled by the dimensionless control parameter β(t),
with the convention that β(t) < 0 corresponds to a net heating

effect (reduced power consumption) and β(t) > 0 corresponds

to a net cooling effect (increased power consumption).

Because v(Tmax, t) = 0 for any choice of β, we find that

Thigh(t) = Tmax at all times (cf. Eq. (11b)). As a result,

appliance temperatures will not exceed Tmax, in line with the

quality of service requirements. Unlike the upper temperature
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threshold, the lower temperature threshold Tlow(t) is dynamic

under this controller. Its evolution is computed by solving the

differential equation (11a) with the initial condition Tlow(0) =
Tmin, resulting in

Tlow(t) = Tmax − (Tmax − Tmin)e
∫

t

0
αβ(t′) dt′ . (35)
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Figure 5. Ensemble control using the appliance thermal model as specified
in Table I. Top: reference relative power curve and the lower limit given by
Eq. (46). Middle: Minimum, mean and maximum temperatures of the ensemble.
Bottom: Value of the control parameter β(t) plotted alongside upper and lower
limits representing the constraints in Eq. (43).

Inserting (34) into (22) and solving for β(t) expresses the

control parameter as a function of the ensemble-averaged

relative power consumption Π(t) = π(t)/π0:

β(t) =
Π(t)(Toff − T̄0)− (Toff − T̄ (t))

Tmax − T̄ (t)
. (36)

Together, equations (26) and (36) provide the means to

determine the mean temperature T̄ (t) that results from a given

power profile Π(t), and the value of β(t) that is required to

achieve this power profile. Note that this response depends

only on the constant system parameters α, Tmax, Ton and Toff .

As a result the controller is able to solve the ensemble control

problem without resorting to numerical integration of PDEs,

which is especially appealing for embedded applications.

Figure 5 shows the evolution of the average temperature T̄ (t)
and the control parameter β(t) for a particular relative power

curve Π(t) that reduces the devices’ power consumption to

50% of the steady state level and maintains this for 15 minutes.

A mild increase in power consumption (payback) is used to

reinstate the initial condition almost exactly by 55 minutes

after the initial power reduction.

C. Temperature distribution

For the particular control scheme defined by (34) the differ-

ential equation (8) can be solved on the interval [Tlow(t), Tmax]
to obtain the temperature distribution at any time t. Using (31)

as the initial condition we obtain

f(T, t) = −CS(t) [(T − Tmax) + S(t)(Tmax − Toff)]
−1

× [(T − Tmax) + S(t)(Tmax − Ton)]
−1

(37)

with

S(t) = e
∫

t

0
αβ(t′) dt′ (38)

We remark that the full solution f(T, t) corresponds to the

steady state solution f(T, 0) scaled by a factor S(t) around

T = Tmax and subsequently renormalised. This important

result and the related expression (35) are of course a direct

consequence of the restrictive form of (34). Figure 6 shows four

snapshots of the temperature distribution f(T, t), illustrating

this linear scaling.

2 3 4 5 6 7
T @°CD-500

0

500

1000

1500

2000

2500

3000

t @sD

Tlow T Tmax

Figure 6. Snapshots of the temperature distribution f(T, t) at t =
{−500s, 500s, 1500s, 2500s}, for the response in Fig. 5. Dotted lines indicate
the evolution of Tlow(t), T̄ (t) and Tmax.

It is clear that the distribution returns to its steady state form

at any time t∗ on which the following equality holds

∫ t∗

0

β(t′) dt′ = 0. (39)

Because the physical state of an appliance is fully determined

by its temperature T , having a steady state distribution implies

that the ensemble is in the steady state. We conclude that the

time t∗ marks the end of a control action.
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D. Energy and power constraints

The linear controller defined by Eq. (34) was selected for

its analytical tractability and designed specifically for dynamic

demand reduction and the subsequent recovery process. For

this reason it does not make full use of the physical capacity

of the appliances. In this section we analyse the energy and

power constraints associated with the linear controller, and

compare these with the generic bounds for appliances with

linear thermal models obtained in section III-B. We note that

extensions to more elaborate control schemes that also permit a

net absorption of energy from the grid are possible but beyond

the scope of this paper.

1) Energy: The linear controller results in a scaling of

the steady state temperature distribution f(T, 0) by a factor

S(t) around T = Tmax. In order to ensure that no appliance

exceeds the temperature range [Tmin, Tmax] we must restrict

the controller to S(t) ≤ 1 (see Eqs. (35) and (38)). This

is especially relevant for refrigerators, in which inadvertent

freezing must be avoided. In terms of the average temperature,

this implies

T̄0 ≤ T̄ (t) ≤ Tmax. (40)

As a result, the energy bounds in Eq. (28) are reduced to

1−
(

Tmax − T̄0

Toff − T̄0

)

≤ α

∫ t

−∞

Π(t′)e−α(t−t′) dt′ ≤ 1. (41)

A comparison with Eq.—(28) demonstrates that the controller is

optimal with respect to available energy for demand reduction.

Note that whereas increased power consumption levels Π(t) >
1 are not permitted initially, they may occur during the recovery

phase that follows on an initial demand reduction (i.e. when

T̄ (t) > T̄0).
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Figure 7. Graphical construction of the physical constraints on the control
parameter β(t) using parameters from Table I. Appliance temperatures are
distributed between Tlow(t) ≥ Tmin and Tmax and their heating/cooling
rates are bounded by voff and von. The permissible range of v(T, t) =
αβ(t)(T − Tmax) is shown in grey.

2) Power: The range of accessible instantaneous power

levels is related to the permissible range of β(t). The linear

controller exerts increasing control over devices as their

temperatures deviate more from Tmax. The range of β is

constrained by those values at which all devices at Tlow(t) (the

coldest appliances at time t) are forced to be either on or off.

This range is illustrated in Figure 7. In particular, the minimum

and maximum values of β(t) are given by the solutions of

voff(Tlow(t)) = αβmin(t)(Tlow(t)− Tmax) (42a)

von(Tlow(t)) = αβmax(t)(Tlow(t)− Tmax). (42b)

This results in the following constraint for β(t):

− Toff − Tlow(t)

Tmax − Tlow(t)
≤ β(t) ≤ Tlow(t)− Ton

Tmax − Tlow(t)
. (43)

This constraint on the control parameter β(t) can be trans-

formed into a constraint on instantaneous power consumption

by using expression (36) to substitute β(t) and using the scaling

solutions

T̄ (t) = Tmax − (Tmax − T̄0)S(t) (44)

Tlow(t) = Tmax − (Tmax − Tmin)S(t) (45)

to eliminate Tlow(t) and T̄ (t). Surprisingly this results in

constant lower and upper bounds for the normalised power

level Π(t):

(Toff − Tmax)(T̄0 − Tmin)

(Tmax − Tmin)(Toff − T̄0)
≤ Π(t) ≤

(Tmax − T̄0)(Tmax − Ton) + (Toff − Tmax)(Tmax − Tmin)

(Tmax − Tmin)(Toff − T̄0)
.

(46)

Provided that this power constraint and the temperature (energy)

constraint (41) are satisfied, it is guaranteed that a particular

appliance can track the reference power profile Π(t) in terms

of its expected power consumption. The important implication

is that there is no need to perform detailed device-level

simulations to ascertain whether a certain response is feasible.

The parameter values from Table I result in a duty cycle π0 =
0.24 and average temperature T̄0 = 4.59◦C. The corresponding

temperature and power constraints for the linear controller are

4.59◦C ≤ T̄ (t) ≤ 7.00◦C

0.84 ≤ Πsustained ≤ 1

0.44 ≤ Π(t) ≤ 2.44.

E. Appliance switching rates

The solution of the ensemble control problem, represented by

the control parameter β(t), gives rise to a device-level control

strategy through the temperature thresholds Tmax, Tlow(t) and

the switching rates ronoff(T, t) and roffon (T, t). The switching rates
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follow from the switching flux Φ(T, t). Substituting the linear

heating/cooling rates defined in Eq. (19) into Eq. (15) yields

Φ(T, t) =
∂

∂t

[(

v(T, t)/α+ T − 1
2 (Toff + Ton)

Toff − Ton

)

f(T, t)

]

+
∂

∂T

[( 1
2v(T, t)(Toff + Ton − 2T )

Toff − Ton

)

f(T, t)

]

− α
∂

∂T

[(

(Toff − T )(Ton − T )

Toff − Ton

)

f(T, t)

]

. (47)

Defining

Ξ(T, t) =
(voff(T )− von(T ))Φ(T, t)

f(T, t)
, (48)

allows Eqs. (16) to be rewritten as

ronoff(T, t) =max

(

0,
Ξ(T, t)

voff(T )− v(T, t)

)

(49a)

roffon (T, t) =max

(

0,
Ξ(T, t)

von(T )− v(T, t)

)

. (49b)

In order to evaluate Ξ(T, t) the following shorthand notation

is introduced for relative and linearly scaled temperatures.

τ[label] = T − T[label]

τ̂[label] = T − Tmax + (Tmax − T[label])e
∫

t

0
αβ(t′) dt′

In terms of these,

v(T, t) =αβ(t)τmax

voff(T ) =− ατoff

von(T ) =− ατon

f(T, t) =
−CS(t)

τ̂onτ̂off
.

The derivatives in (47) can be evaluated using (8) to eliminate

the ∂f(T, t)/∂t term and the fact that

∂f(T, t)

∂T
= −

(

τ̂off + τ̂on
τ̂off τ̂on

)

f(T, t). (50)

This results in

Ξ(T, t) =ατmax
dβ(t)

dt
+ α2

(

τ̂off + τ̂on
τ̂off τ̂on

)

× (τoff + β(t)τmax) (τon + β(t)τmax)

− α2(1 + β(t)) (τoff + τon + β(t)τmax) (51)

Rather than computing dβ(t)/dt using a numerical approx-

imation, we may also use (36) and dT̄ (t)/dt = v̄(t) =
αβ(t)(T̄ (t)− Tmax) to restate it as follows

dβ(t)

dt
=

1

Tmax − T̄ (t)

[

dΠ(t)

dt
(Toff − T̄0)

+ αβ(t)
(

Toff − Tmax −Π(t)(Toff − T̄0)
)

]

(52)

In summary, for a given reference power profile Π(t) and

control parameter profile β(t), Eqs. (49)-(52) provide an

analytical expression for the computation of the stochastic

switching rates ronoff(T, t) and roffon (T, t). Together with the

upper temperature bound limit Tmax and the lower temperature

bound Tlow(t) as defined in (35) this fully specifies the device

controller.

V. IMPLEMENTATION

Simulations of individual device actions are used to illustrate

the results obtained in the previous sections. The behaviour of

N appliances is simulated, optionally with different parameters

for each device. The default parameters are listed in Table I.

The devices are controlled by a common reference power

curve Π(t). Recall that Π(t) = 1 represents steady state power

consumption, and each response action must start and end at

this value.

For simplicity, the appliances are assumed to operate in

‘fire and forget’ mode: they aim to deliver a predetermined

power response Π(t) that is triggered by an initial frequency

event. This response is not adjusted dynamically in response to

changes in the power system frequency, so the full trajectory

of the control parameter β(t) can be computed in advance.

The more general case where β(t) is adjusted on the fly to

track a dynamic power profile Π(t,∆freq) does not lead to a

fundamentally different control strategy, but would require a

more elaborate algorithm for simulation.

Table I
MODEL PARAMETERS FOR SIMULATION

Ton −44◦C
Toff 20◦C
Tmax 7◦C
Tmin 2◦C
α 1.37× 10−4s−1

Values for the temperature thresholds and room temperature
are taken from [7] (second order fridge model). The values
for Ton and α were fitted to reproduce the duty cycle (0.24)
and steady state cycle duration (52 minutes) of the second
order model with an approximate first order model.

A. Algorithm

The switching actions and times for each appliance are

computed using an event-driven kinetic Monte Carlo method.

In the algorithm description the index a is used to indicate

quantities and functions specific to appliance a. The appliances

are initialised at time ta0 with temperature T a
0 and state sa0

according to the steady state distribution. Subsequent switching

events to states saj occur at times taj and associated temperatures

T a
j , where j = 1, 2, . . .. The algorithm also makes use of the

function θa(t|T ′, t′, s′) (the solution of Eq. (4)) that reflects the

temperature of appliance a at time t, starting from temperature

T ′ and state s′ at time t′ ≤ t.

1) For each appliance a ∈ {1, . . . , N}
a) Compute the appliance duty cycle πa

0 using (33).

b) Compute the steady state average temperature T̄ a
0

using (23).

c) Verify that the reference power profile Π(t) sat-

isfies the energy constraints (41) and the power

constraints (46). If not, abort and readjust Π(t)
(see section V-C for more information).

d) Compute the average temperature curve T̄ a(t) using

(26).

e) Compute the control parameter βa(t) using (36).

f) Compute ron,aoff (T, t) and roff,a
on (T, t) using (49) and

(51).
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g) Determine initial state of the appliance

• Set ta0 = tstart
• Randomly select a state sa0 ∈ {off, on}, using

the steady state duty cycle πa
0 as the probability

of selecting the on state.

• Randomly select an appliance temperature T a
0 ac-

cording to the steady state distributions fa
on(T, 0),

fa
off(T, 0), using Eqs. (31) and (14) and an accept-

reject sampling procedure.

h) Store {ta0 , sa0 , T a
0 }.

i) Set j = 0
j) While taj < tmax, do

i) If saj = off

A) Compute the upper threshold switching time

tdon by solving θa(tdon|T a
j , t

a
j , s

a
j ) = T a

max

with (20).

B) Compute R(t) =
∫ t

ta
j

roff,a
on

(

θa(t′|T a
j , t

a
j , s

a
j ), t

′
)

dt′ for

t ∈ [taj , t
d
on] using (49b) and (51).

C) Draw a uniform random number u ∈ (0, 1)
D) If R(tdon) < −log (u)

• Set taj+1 = tdon.

• Set T a
j+1 = Tmax

else

• Solve R(tson) = −log (u) for tson.

• Set taj+1 = tson.

• Set T a
j+1 = θa(tson|T a

j , t
a
j , s

a
j )

E) Set saj+1 = on

Else (if saj = on)

A) Compute the lower threshold switching

time tdoff by solving θa(tdon|T a
j , t

a
j , s

a
j ) =

Tlow(t
d
off) with (20) and (35).

B) Compute R(t) =
∫ t

ta
j

ron,aoff (θa(t′|T a
j , t

a
j , s

a
j ), t

′) dt′ for

t ∈ [taj , t
d
off ] using (49a) and (51).

C) Draw a uniform random number u ∈ (0, 1)
D) If R(tdoff) < −log (u)

• Set taj+1 = tdoff
• Set T a

j+1 = Tlow(t
d
off)

else

• Solve R(tsoff) = −log (u) for tsoff
• Set taj+1 = tsoff
• Set T a

j+1 = θa(tsoff |T a
j , t

a
j , s

a
j )

E) Set saj+1 = off

ii) Store {taj+1, s
a
j+1, T

a
j+1}.

iii) Increment j → j + 1.

k) Use P a
on and the stored series {tai }, {sai } and {T a

i }
to reconstruct the appliance power and temperature

curves P a(t) and T a(t).

2) Compute the empirical normalised power curve Π̂(t) =
(
∑

a P
a(t))/(

∑

a π
a
0P

a
on).

B. Simulation results

Figures 8-10 show results obtained using device-level

simulations. Figure 8 (top) shows the on-off sequences of 20

0 1000 2000 3000

t

PHtL

Figure 8. On/off status for 20 individual appliances (top; high=on, low=off),
shown alongside the reference power profile (bottom; dashed) and the empirical
normalised power profile of N = 1000 appliances (bottom; solid curve). For
reference, kinks in the reference power profile are marked by dotted vertical
lines.

individual appliances using the parameters from Table I. They

were controlled using the piecewise linear reference power

curve shown below (dashed; identical to the curve in Figure 5).

It is evident that after the initial load reduction (linear reduction

between t = 0s and t = 10s) devices are less likely to be in

the on state, reducing the aggregate power consumption. This

situation is reversed during the payback phase, with devices

switching back to the the on state. The empirical aggregate

power profile generated by N = 1000 appliances (solid) is

overlaid on the reference power profile for comparison.

0 1000 2000 3000
t @sD

2

3

4

5
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7

T @°CD

Figure 9. Graphical representation of switching behaviour of 1000 appliances
for the reference power curve shown in Fig. 8. Red dots represent individual
devices switching off (heating); blue dots represent devices switching on
(cooling).

Figure 9 offers a global view at the switching process. In this

temperature-time plot each dot represents a switching event:

blue for fridges switching on (cooling) and red for fridges
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switching off (heating). In the steady state (t < 0) devices

only toggle their power state when they reach the temperature

thresholds Tmin and Tmax. After the trigger event at t = 0, the

lower temperature setpoint Tlow(t) increases gradually before

eventually returning to Tmin. During the control action a large

number of appliances is seen to undergo stochastic switching

at intermediate temperatures. This ensemble result may be

compared to the temperature trace of a single appliance in

Figure 2.

0 1000 2000 3000 4000 5000

t @sD

0.2

0.4

0.6

0.8

1.0

1.2

P

0 30 60 90

0.5

0.75

1

Figure 10. Aggregate power consumption of 100,000 refrigerators with
randomised parameters. The reference power curve drops to 50% of nominal
capacity within 10s after the trigger at t = 0 and remains at that level for 20
seconds (primary response), followed by another 30 minutes at 75% (secondary
response). The borrowing phase is followed by a payback phase at 120% of
nominal capacity.

Figure 10 presents the results from a larger study with

100,000 appliances and a different reference power profile.

This study illustrates three distinct properties of the proposed

controller. First, as the number of appliances is increased

from 1,000 to 100,000, the statistical fluctuations around

the reference power level decrease as expected. Second, the

example demonstrates the potential for using more complex

power curves to provide flexible services to the power grid.

The durations of the first two power plateaus correspond to

the classification of frequency response services by National

Grid (Great Britain’s Transmission System Operator): primary

response (ready in 10s, maintain until 30s) and secondary

response (ready in 30s, maintain for 30 mins) [16]. In

this case, the controller reduces the power consumption to

50% of the nominal amount as primary response and to

75% as secondary response. Third, the results in figure 10

demonstrate that a coherent response does not require the use

of identical appliances. For this simulation, the Tmin, Tmax

and α parameters for each appliance were based on the values

in table I, but uniformly random multipliers between 0.8 and

1.2 were applied independently for each parameter and each

device.

C. Heterogeneous appliances

The algorithm presented in section V-A starts by verifying

the feasibility of the requested power profile for each appliance

individually, and rejects the profile if it is not compatible

with the appliance’s quality of service constraints. In a well-

designed implementation such a situation should never occur,

as it is the responsibility of the demand response designer to

ensure compatibility with all devices under its control before

broadcasting the desired response. The designer could perform

this task by comparing a proposed response with a database

of appliance models, but the construction and maintenance

of such a database is no trivial task. Moreover, this approach

potentially results in a very large number of constraints that

must be verified.

As an alternative we propose to use a simpler sufficient

condition that aggregates the abilities of all appliances into a

single flexibility envelope. It is clear that the power constraint

(46) will be satisfied for each appliance if and only if

max
a

(Πa
min) ≤ Π(t) ≤ min

a
(Πa

max), (53)

where [Πa
min,Π

a
max] represents the range of accessible power

levels for appliance a. Furthermore, the energy constraint (41)

for each appliance is characterised by the minimum sustained

relative power level Πa
sustained,min = 1− (T a

max− T̄ a
0 )/(T

a
off −

T̄ a
0 ) and the thermal relaxation parameter αa. Equation (41)

is satisfied for all appliances if, for all t,

max
a

(Πa
sustained,min) ≤ αmax

∫ t

−∞

Π(t′)e−αmax(t−t′) dt′ ≤ 1,

(54)

where

αmax = max
a

(αa) (55)

reflects the appliance with the lowest thermal time constant.

Note that equation (54) is a sufficient but not a necessary

condition for feasibility, because the appliance with the highest

value of Πa
sustained,min is not necessarily the one with the

highest value of αa.

Using these envelope constraints the response designer needs

only four aggregate parameters to guarantee the feasibility of

a solution: the upper and lower instantaneous power limits

(53), the lower sustained power limit (54) and the highest

temperature relaxation constant (55). These four parameters

can be obtained either through direct communication with the

appliances or through intermediate aggregators. In the example

used for Fig. (10) the parameters Tmin, Tmax and α were varied

through multiplication by random factors in the range [0.8, 1.2],
resulting in the aggregate bounds

0.90 ≤ Πsustained ≤ 1

0.46 ≤ Π(t) ≤ 2.36

αmax = 1.64× 10−4s−1. (56)

In this case, the lower bounds for instantaneous and sustained

power result from the appliance with the highest Tmin and

lowest Tmax; the upper instantaneous power limit is associated

with the device with the lowest values of Tmin and Tmax.

As explained in section II-A it is not desirable to broadcast

the relative power curve Π(t) directly to the devices in real

time. Instead a power response model is supplied that enables

the devices to compute the desired relative power curve on the

fly from local observables. The designer should therefore verify

that no valid combination of input parameters can result in a

violation of the energy and power constraints of the appliances

under its control.
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VI. SUMMARY AND DISCUSSION

A. Control framework

In this paper we have introduced a novel control frame-

work for controlling the aggregate power consumption of

thermostatically controlled loads (TCLs). It controls each

appliance independently in such a way that its expected power

consumption tracks a relative power consumption profile Π(t).
For a large number of appliances the statistical fluctuations will

average out and the aggregate power consumption approaches

a well-defined (diversified) value P total
0 Π(t). The profile Π(t)

is limited only by the physical properties of the appliances and

their quality of service requirements.

The control framework permits a straightforward decen-

tralised implementation. This can be used either for fully

autonomous operation, which may be desired for primary

frequency response, or semi-autonomous operation, which

allows for adjustment of the devices’ response to changing

power system requirements. In the latter case the demand

response designer (i.e. the system operator or a demand

response aggregator) periodically defines a power response

model that is broadcast to the devices. This power response

model instructs appliances how to construct a target profile

Π(t) as a function of locally available global signals such as

the grid frequency or the time. In a typical application the grid

frequency may be used to trigger a frequency response action, or

a clock signal may be used to trigger services at particular times.

Crucially, this semi-autonomous mode of operation does not

require a low-latency communication channel, because actions

on short time scales are determined locally by the embedded

controllers. The power response models may therefore be

updated over a high-latency channel, such as a smart meter

infrastructure that is built with metering as its primary purpose.

Central to the control approach in our work is the ability

to accurately control the expected power consumption of an

appliance. This allows for the precise shaping of the aggregate

demand response, matching it to the system’s requirements. The

degree of control this requires is made possible by expressing

the state of an appliance as a probability distribution on the

temperature axis. In contrast with existing methods in the

literature we have inverted the resulting control problem by

taking a collective property, the net heating rate v(T, t), as a

control parameter. The on-off switching rates and threshold

temperatures - the parameters that physically control the

appliance - are then derived from v(T, t) instead of the other

way around. This choice enables the separation of the control

problem into two stages: a first stage in which a suitable heating

rate profile is determined that will result in the desired ensemble

power consumption Π(t), and a second stage in which this

solution is translated to a controller for an individual appliance.

The controller in each appliance makes use of a first order

thermal model for that appliance to solve both control problem

stages. Such a model could be provided at the factory, for

example by embedding an appropriate thermal model for the

particular make and model of appliance. However it is also

conceivable that smart devices tune their own internal model

through measurements and thus adapt to their installation

environment and usage patterns. In the case of a refrigerator,

apart from the regular temperature thresholds this could include

the heating/cooling rate (affected by the heat capacity of its

contents) and ambient temperature.

As explained in section V-C, the system operator can

guarantee the controllability of a heterogeneous group of

appliances as a single entity by using a ‘lowest common

denominator’ envelope model for their collective flexibility.

In the case of the linear controller, this flexibility envelope is

characterised by four parameters. Together with the average

aggregate power consumption P0 these can be used to design a

feasible demand response pattern. Note that the linear controller

is quite restrictive in its inability to absorb energy from the

grid, resulting in an upper bound for the sustained power

that is equal to the steady state value. Generalisations of this

controller can relax this constraint, resulting in an additional

flexibility parameter representing the upper bound. Note also

that while it may be possible to control highly diverse TCLs

as a single group this may severely restrict the services that

can be delivered. In practice it will often be advantageous to

define control clusters consisting of similar appliances so that

demand response actions can be adapted to the characteristics

of the appliances in each cluster.

B. Linear thermal model

In section III we have considered generic limits to flexibility

resulting from the physical characteristics of TCLs and their

quality of service constraints. This analysis has been applied

to the case of TCLs with first order linear thermal models.

For this simple but common model it is possible to determine

the evolution of the population-averaged temperature from the

aggregate power consumption alone - regardless of the specifics

of the controller. Temperature limits for individual appliances

can thus be translated into energy and power limits for the

aggregate dynamic power response of thermostatic loads.

The analysis has also demonstrated that a so-called ‘payback’

period of increased power consumption is not strictly required

after a period of reduced power consumption: operating at the

steady-state power level will eventually restore the steady-state

temperature. However, in practical applications it will often

be desirable to include a payback period in order to speed up

the return of the average temperature to its steady state value.

The two stage control approach allows the system operator to

optimally schedule the payback profile in accordance with the

system’s characteristics.

C. Linear controller

In section IV we have introduced a specific controller design

where the heating profile v(T, t) is a linear function of T .

This functional form results in elegant scaling expressions

for the temperature distributions and enables the derivation of

analytical expressions for both controller stages. Moreover, the

controller guarantees that no single device ever exceeds the

temperature range [Tmin, Tmax].
Power and energy limits have been derived specifically for

this controller. A comparison with the generic bounds for linear

thermal models shows that the linear controller is optimal

with respect to energy provision for load reduction. However,
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the controller is unable to absorb excess energy from the

grid (for high-frequency services) nor can it reduce power

consumption to zero. Both limitations can be overcome with

more complex controller implementations based on the same

framework, but the linear model sacrifices such flexibility for

conceptual and notational clarity. In addition, the existence of

analytical expressions for the power and energy limitations is

beneficial because it allows the demand response designer to

rapidly check whether TCLs can deliver a proposed response

curve. This allows for a straightforward embedding of the

constraints in the response design process, which typically

takes the form of an optimisation problem.

e have provided an algorithm for the resulting device-level

controller that does not require advanced computational meth-

ods other than numerical integration, so it can be implemented

in relatively unsophisticated tools and appliances. The algorithm

has been used for simulations with up to 100,000 appliances,

demonstrating the ability of the controller to accurately track a

reference power profile. The presented implementation makes

the simplifying assumption that the desired power response

Π(t) is known in advance, but it is easily generalised to cases

where Π(t) is computed dynamically from locally available

input signals.

D. Extensions and improvements

The simple linear controller that has been used to illustrate

the decentralised control framework for TCLs may serve as

a basis for the development of increasingly sophisticated

controllers. For example, it may be extended to permit a

larger range of instantaneous power levels, or to enable the

absorption of excess energy from the grid (high-frequency

services). Extensions - perhaps approximate - to appliances with

second or higher-order thermal models may also be considered.

Furthermore, although the current implementation minimises

the overall switching rate of appliances, it does not strictly

minimise the time between switching events for individual

appliances. Because the switching in between the threshold

temperatures is stochastic, an appliance may occasionally be

requested to cycle more than once in a short period, and it

may be unable to comply in practice if this conflicts with the

compressor lockout requirements. The method described here

may be expanded to allocate switching events preferentially

to devices that have not recently switched and, if the lockout

period is strictly enforced, slight deviations from the desired

curve may need to be tolerated.

The control framework is able to accurately modulate

aggregate power consumption across a range of time scales. In

addition to the provision of frequency response, this property

also makes it suitable for the provision of energy arbitrage

services, where TCLs are used to relax constraints on the

dispatch of generators [17]. TCLs can reduce their power

consumption at times when the generation mix is very expensive

or carbon-intensive, and shift their demand to adjacent time

periods. Of course, when the high and low pricing periods are

many hours apart (e.g. night and day), the thermal storage

capacity of the TCLs may not be sufficient to enable a

significant load transfer between these periods. If that is the

case, the TCLs’ flexibility may still be used to alleviate ramping

constraints between such periods. The ability to specify an

arbitrary relative power curve Π(t) makes it possible to deliver

both frequency and energy arbitrage services simultaneously,

so long as their simultaneous provision does not exceed the

physical constraints of the appliances. In such a scenario, the

TCLs would commit to a certain power consumption pattern for

energy arbitrage and simultaneously provide agreed frequency

services that are activated only when a frequency drop is

observed. The appliance’s power response model would contain

both components and should be designed in such a way that

the appliance always maintains sufficient operating margins to

provide the contracted frequency services if the need arises.

Finally, this paper has not attempted to determine the optimal

choice of Π(t) (and therefore the power response model). This

optimal choice is the result of an interplay between technical

and commercial aims, and the limits of the appliances and

their controller. Determining the optimal power profile Π(t)
is a first step to determining the value of demand response

services, and will be the subject of future work.
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