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I. FIXED MODES
AND DECENTRALIZED CONTROL

A. WHAT ARE FIXED MODES?

Consider a finite-dimensional time-invariant linear system,

possibly with multiple inputs and outputs, and suppose that the

system is either not completely controllable or not completely

observable. Then, as is well known, no matter what feedback

controller one connects to the system, so long as the controller

has available to it the system inputs and outputs and nothing

more, the modes which are uncontrollable or unobservable will

remain as modes of the closed-loop system. If the controller
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is linear, finite-dimensional and time-invariant, this means

that the closed-loop characteristic polynomial will have a zero

or zeros which are independent of the particular control de-

sign, and which identify the system fixed modes. Such fixed

modes also have the interpretation of being the eigenvalues as-

sociated with the uncontrollable or unobservable part of the

system matrix. If the modes are unstable, there is then no way

that the system can be controlled so as to achieve any of the

common design objectives – be they based on optimal control,

pole positioning, or whatever. On the other hand, if there are

no fixed modes, or if there are such modes which are stable, it

is possible to select one of an array of design

advance a particular objective.

In this chapter we study the possibility of

procedures to

observing and

controlling the modes of a system when the controllers are con-

strained to being decentralized. (The term is explained below.)

Of particular concern to us will be the exploration of the fixed

mode idea, introduced above in our recollection of results ap-

plying with conventional, or centralized, controllers. TO do

this, we must first clarify our meaning of the word decentral-

ized, and this is best done with the aid of Fig. 1, which il-

lustrates the tuo-channeZ case. The system’s inputs and outputs

are each supposed to be divided into two sets (any one scalar

input or output can, if desired, be in more than one set) . The

control structure is then such that the channel 1 inputs can be

derived by feedback of channel 1 outputs, but can in m way de-

pend on channel 2 inputs or outputs. The analogous statement

is true for the channel 2 inputs. Of course, one can also con-

sider three-channel, four-channel, etc., generalizations. The

key ideas however remain much the same.
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VI

V2

Y,

Y2

Fig. 1. prototype system with decentralized controller.

Decentralized control structures are typically appropriate

for large-scale systems. For example, mOSt power systems nor-

mally contain more than one generator, and at each generator

measurements

plied to it.

some measure

are taken on that generator and local controls ap-

Though in any power system, there is naturally

of centralized control, total centralization would

be out of the question on grounds such as complexity, relia-

bility, difficulty of update in times of expansion, and so on.

Many social systems also exhibit elements of decentralized con-

trol – a company with several operating divisions for example,

in which each operating division has autonomy.

Now suppose that the system being controlled is linear,

finite-dimensional, and time-invariant. Suppose further that

it is represented by state-variable equations which are con-

trollable and observable. (This minimality is equivalent to

there being no centralized fixed modes, or fixed modes of the

type described in the first paragraph, if centralized control-

lers are used.) Next, suppose that decentralized controllers

are used. Then there are some key consequences.
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(1) If the controllers are restricted to being linear, and

nondynamic, i.e., u, = K,y. + v
1

i for some constants Ki, it is
11

possible for the closed-loop characteristic to have a zero SO

which is independent of the K,; see [1].
1

An example appears

in the next section.

(2) If the controllers are permitted then to be linear,

time-invariant, and finite-dimensional, the new characteristic

polynomial still has the same zero, SO, which is for obvious

reasons termed a decentralized fixed mode.

By analogy with the centralized case, one might imagine that in

these circumstances, one is encountering an unobservable or un-

controllable mode. Pursuing the analogy, one might therefore

conclude that the use of nonlinear/time-varying/distributed con-

trollers will not allow elimination of the decentralized fixed

mode with characteristic frequency so. As it turns out, however,

the analogy is not safe to pursue: under circumstances set out

later in the chapter, one can eliminate the mode — by using lin-

ear, time-varying controllers. This means that for linear, time-

invariant systems which are to be controlled via a decentralized

controller, the controller may have to be time-varying, if the

closed loop is to be stable, or to have a prescribed degree of

stability.

The first clue that such a result might be possible was pro-

vided by [2], which showed that, using a mixed closed-loop/open-

loop decentralized strategy the state of a wide class of systems

could be forced to zero. This result allowed an arbitrary ini-

tial state, and encompassed some systems with decentralized fixed

modes (though not all) . If it were true that the decentralized

fixed mode had the same characteristics and properties as the cen-

tralized fixed mode, the result would not have been achievable.
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We have referred above to the possibility of eliminating a

decentralized fixed mode by using a time-varying controller.

It perhaps should be emphasized that removing an unstable fixed

mode is one thing; specifying a decentralized controller design

to achieve, for example, a prescribed degree of stability is

another. Once we have described how the fixed mode can be elim-

inated, we shall describe how controller design can be approached.

However, we caution the reader that we are far from being able

to answer such questions as: How much performance do we lose,

or more generally how do we characterize the various trade-offs,

in replacing a centralized controller by a decentralized con-

troller?

B. DECENTRALIZED FIXED

MODES – AN EXAMPLE

Consider the transfer fraction matrix

[d
1 1

S(s + 1) s - 1

w(s) = (1)

s -1 1“

S(5 + 1 S+l

It is not hard to check that a minimal state variable realiza-

tion is defined by

1000

0000

00-10

10 0 0 -1

[

11 -1 0
y.

o -1 2 1

x+

x.

o 1’

10

10

01

[1

‘1

‘2

(2a)

(2b)

Now suppose decentralized constant feedback is applied, i.e.,

‘1 = klyl + Vl (3a)

‘2
= k2y2 + V2. (3b)
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Here, kl and k2 are constant gains, and v~ and v* are external

inputs. The feedback is decentralized since U1 is allowed to

depend only on Yl (rather than yl and y2), and U2 is allowed

to depend only on y~. The closed-loop system matrix is

1 0 0 o“

0000

00-10

0 0 0 -1

+

L

01

10

10

01

‘1 0
0

‘21
11 -1 0

0 -1 2 11.

I
1

‘1.
‘1
o

-k2

‘1

‘1

-k2

2k2

-kl

-1 - kl

‘2

o

1
o“

2k2 -l+k2j

The closed-loop characteristic polynomial is now the character-

istic polynomial of this matrix, which can be evaluated as

(s - 1)[s3 + S2(2 - k2)

+ .S(1- kl - k2 - k1k2) + kl - 2klk2].

The key point is that s = 1 is a zero of the closed-loop charac-

teristic polynomial, irrespective of the values assumed by kl,

‘2”
AS such, s = 1 is an example of a decentralized fixed mode.

c. CHARACTERIZATION OF DECEiVTRALIZED

FIXED MODES

The first formal treatment of decentralized fixed modes ap-

peared in [1]. However, this reference did not indicate how

one could characterize fixed modes without first evaluating the

characteristic polynomial of the closed-loop system and

observing somehow that it had a zero that was invariant

respect to kl, k2 selections. We indicate here several

terizations.

then

with

charac-
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State Variable Characterization [31

Suppose the system is

.

x = ‘x + ‘l”l + ‘2”2’ Y1 = Cix’ Y2 = C;x (4)

and is minimal. (The superscript prime denotes matrix trans-

position.) Suppose also the feedback is of the form Ui = Kiyi

+ vi, i = 1, 2. Then there is a decentralized fixed mode if

and only if for some eigenvalue A of A, one of the following

conditions holds:

rank
\I -AB1

1

AI -AB2

< dim A, rank 1<dim A. (5)

c;
o[ c; 0]

Remarke.

(1) For the example above, take i = 1 and check that the

first condition holds:

. -+
I /iI-AB.I

rank

1 %

= rank

L

o 1
00 0 0 0-

01 001

00 201

1
00 020

0 -1 2 1 0,

= 3 < 4 = dim A. (6)

(2) More than two channels can be considered; see [31 for

details of the form taken by the extensions to (5).

(3) The conditions (5) are a subset of those necessary to

ensure that a decentralized system is observable and control-

lable from one channel alone, after constant gain feedback has

been applied around the second channel [4-6]. This idea is im-

portant for the sequel, so we develop it further here. But ob-

serve first that for the example of Section IIr if U2 = k2y2/
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-,,..

then (as shown by simple algebra) there is lack of controlla-

bility from Ul, irrespective of k2. Now to understand the re-

sult of [4-6] further, suppose the second condition

for x = SO, an eigenvalue of A. Since

[ u’;-A:][_;c,:]=[s0’-’;%%;

in (5) holds

the rank of the right-hand side is less than dim A for all K2.

A fortiori
i
.s

[

s I - A - B2K2Cj
o

rank

1

< dim A.

c;

(7)

This is a condition for unobservability of the Pair [A + B2K2C~#

.ll “ Since it is perhaps not well known, we indicate how it

relates to a more familiar condition. From (7) we conclude

there exists w # O with

[

sI-A
o

1

- B2K2% w = ,

c;

whence

(
,i

C;W = o,
)A + ‘2K2C2 w = ‘iw

and so

( )
i

.; A + B2K2C; w = 0“

In summary, the second condition of (5) implies that if feedback

‘2
= K2y2 is applied around channel 2, the resulting one-channel

system is unobservable for all K2. The unobservable mode is

s , while the unobservable state may depend on K2.
o
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It is also easy to see that if the second condition of (5)

holds and feedback ul = Klyl is used to ‘create a one-channel

system with input U2 and output y2, then this system will be

uncontrollable for all K1. Similar results also hold if the

first condition in (5) holds.

The main result of [4-6] proves this type of result both

ways. We shall note the precise formulation subsequently.

Matrix Fraction Char~cterization [311

Suppose that W(s) = A-l (s)B(s) is a left matrix fraction

description of W(s), with A(s), B(s) coprime polynomial matrices.

Define

as

‘1

Ai(s), Bi(s) for i = 1, 2 by rewriting A(s)Y(s) = B(s)u(s)

S)yl + A2(S)Y2 = Bl(s)u. + B~(S)Ua. (8)

Then there is a decentralized

sarily a zero of det A(s) , if

conditions holds:

1 L L

fixed mode at SO, which is neces-

and only if one of the following

rank[A1(sO) B1(sO)I < dim Al(so)

rank[A2(sO) B2(sO)I < dim A2(sO).

Transfer Fraction Matrix

Characterization (71

Suppose that

[1[

q(s)
‘ll(S) ‘12(S)

1[ 1
up)= .

Y2(S) ‘21(S) ‘22(S)
U2(S)

Then if SO is a simple zero of the open-loop

polynomial, it is also a decentralized fixed

(9)

(lo)

characteristic

mode if and only

1
This section can be omitted by the reader unfamiliar with

matr{x fraction descriptions of linear finite-dimensional systems.
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if the following is true:

w(s) =

No entry has a I
I ‘o

is a simple zero of character-
1

pole at so 1 istic polynomial of this block
I

------------ -------~----------------------------------

I

Every entry has a I No entry has a pole at so

zero at s /
o I

I

(11)

Should So be a multiple zero of the open-loop characteris-

tic polynomial, the transfer function matrix characterization,

in contrast to the state variable and matrix fraction charac-

terizations, becomes more complicated. See [7] for details.

The example of Section I,B is immediately seen as conform-

ing to the pattern for W(s) in Eq. (11),

There is an important intuitive idea

tern for W(s). Let us suppose that W(s)

with s = 1.
0

behind the above pat-

is a 2 x 2 matrix, and

that we apply feedback in two stages. In the first stage feed-

back U2 = k2y2 is applied around channel 2 as illustrated in

Fig. 2. In the second stage (not illustrated) , feedback U1 =

klyl will be applied around the resulting one-channel system.

u,

Fig. 2.

kz

System with control round channel 2.

.
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3 ‘Jfll no pole
1

at so

% +
~ W21 zero W,2 pole

at so at so
+

+

— w 22 no
pole at +

at so

Fig. 3. Redrawing of scheme of Fig. 2.

Consider the redrawing of the Fig. 2 scheme as in Fig. 3

with W(s) possessing the structure of Eq. (11). It is im-

mediately clear that there is a pole-zero cancellation between

’21
and w

12’
and that this cancellation exists for all k2.

Therefore, the one-channel system will be uncontrollable. (of

course, if w21 has the pole and W12 the zero, SO will be an

unobservable mode for the one-channel system.) Consequently,

whatever value of kl is selected for the feedback around the

one-channel system,
‘o

will remain as a zero of the closed-loop

characteristic polynomial. Since so is then invariant with re-

spect to the choice of kl and k2, it is a decentralized fixed

mode.

Figure 3 also illustrates, at least intuitively, several

other important ideas.

(1)
lf ’21

(s) ~ O, then plainly there is no decentralized

control strategy which could vary any of the poles of W12 which

are not poles of Wll or w22. Thus a prerequisite for elimi-

nating a fixed mode associated with a pole of w12 only is that
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—

w~~ } 0; similarly, a prerequisite for eliminating a fixed mode

associated with a pole of w21 is that W12 } O. Such conditions

are termed connectivity conditions.

(2) If k2 is not a constant feedback law, but is replaced

by k2(s), the transfer function of a time-invariant dynamic

system, the pole-zero cancellation will still take place, and

so the fixed mode will remain. For rational k2(s), this is

established in [1] and for possibly irrational k2(s) , in [3].

(3) If k2 is a time-varying operator of some description,

for example, a periodically switched, piecewise constant gain,

then

This

the pole-zero cancellation will in genera2 no Zonger occur.

is because, as is well known, a linear time-invariant

integro-differential operator and a linear time-varying operator

do not commute [example: With D ~ d/dt,

Dk(t) [x(t)] = k(t)D[x(t)J + i(t)x(t),

i.e., Dk(t) # k(t)D unless ~(t) ~ 01. Such conunutativity would

be needed in Fig. 3 in order to juxtapose W21 and W12. Of

course, without the pole-zero cancellation, there is no fixed

mode. So this argument suggests that we could eliminate the

fixed mode by making k2 time varying.

(4) Let us consider a different form of intuitive argument

for the same conclusion as the remark above. With W12 posses-

sing an unstable pole at so, we know that to stabilize it, there

would need to be a possibility for signals at the frequency so

to enter w12. On the other hand signals with frequency so can-

not pass through w21. Now suppose that k2 varies sinusoidally

at frequency juo, where so + jwo~ So - juO are not zeros of

’21”
Then if a signal at frequency SO t juO enterS W211 it will

leave it, and then be modulated by k2 with the result that the
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output of k2 can contain a frequency SO. This is the pre-

requisite for eliminating the unstable pole. This intuitive

argument also gives some insight into what sort of period would

be appropriate:

is not close to

‘f ’21”
If the

one should select T = 2T\W0 so that s
o

f joo

SO, or, for that matter, to any other zero S1

time variation in k2 is not sinusoidal, but

nevertheless periodic, the conclusion is less clear, since the

“modulating action” is more complex.

Note that these arguments do not show definitively that one

is able to eliminate a fixed mode, let alone that one can, for

example, stabilize using a decentralized controller a system

with an unstable fixed mode. They simply open the door to

showing that it might be possible, as was done in [8] and as

explained in the

II. ELIMINATING

FIXED MODES

CONTROLLERS

A. THE TECHNICAL

We consider a

.

x = ‘x + ‘l”l

remainder of this chapter.

DECENTRALIZED

WITH TIME-VARYING

LEMMAS

system in state variable form:

+ ‘2”2’ Y1 = Cix’ Y2 = C;x
(12)

and begin by asking the question, When, w{th feedback of the

form u2 = K2(t)y2, will the system be observable from yl? We

first derive two necessary conditions.

It is clear on intuitive grounds that we need centralized

observability as

{A, [cl c;]’} is completely observable. (13)

Formally, if this condition were not satisfied,
{
A + B2K2(t)C;,

[C; c;]’} would not be observable (observability is preserved
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with output feedback) , and a fortiori

be unobservable.

The second necessary condition is

{ }
A + B2K2(t)Cj, C2 would

Either [A, Cl] is observable, or C~(sI - A)‘1B2 t 0. (14)

If the first alternative holds, then it is trivial that

K2(t) ~ O ensures observability from output 1. [Actually, it

then follows that almost any constant control law U2 = K2y2

ensures observability. For the observability condition can be

formally viewed as one requiring that the rank of a certain

matrix take a certain value, where the entries of this matrix

( )“
are entries of C; A + B2K2C~ 1 for i = Of ...~ dim A - 1. Re-

garding the entries of K2 as variables, observability then fol-

lows if and only if at least one of a number of determinants,

which evaluate as multivariable polynomials in the entries of

‘2’
is nonzero. If a multivariable polynomial is nonzero for

one choice of variables, it will be nonzero for almost all such

choices. The selection K2 = O guarantees one of the polynomials

is nonzero.1

Suppose then the first alternative in Eq. (14) fails. We

first give an intuitive argument for the necessity of the second

alternative. With the first alternative failing, it is evi-

dently necessary to somehow pass information contained in the

observations at the second output to the first output. This is

done by passing the y2 information to the second input, via U2

= K2Y2, and then allowing the internal system connection from

defined by the transfer function matrix C~(SI - A)
-1

‘2
to yl –

xB—
2

to carry the information right through to YIO If, how-

-1
ever, C~(sI - A) B2 ~ O, no information can get through via

this mechanism.
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Now we turn to a formal argument for the necessity of Eq.

(14). With U2 = K2(t)y2, the closed-loop transition matrix

$K2(t, a) satisfies.

iK (t, U) = A+ (t, o) + B2K2(t)Cj$K (t, u)
2 ‘2 2

whence

I
t

OK (t, U) = eA(t-u) + eA(t-T) B2K2(T)c~@K2(~r u) d~.
2 0

-lB
NOW if C~(sI - A) z = (),then C~eA(t-a)B

2
= O for all t, u,

and we have

C~@K (t, u) = C~eA(t-u).

2

The observability Grammian associated with [A + B2K2(t)C~,

Cl] is now

/

s+L
W(s, s + L) ~ $; (t, S)CIC~$K (t, S) dt

s 2 2

J
s+L= ~eA(t-s)l’clcjeA(t-s) dt

s
(15)

and is accordingly nonsingular for all L > 0 if and only if

[A, Cl] is observable.

Having now seen the two necessary conditions Eq. (13) and

Eq. (14) which are prerequisites to securing observability from

channel 1 via feedback around channel 2, it is appropriate to

recall the precise form of the result of [4-6], which indicates

when constant feedback around channel 2 will suffice.

Theorem 1. Consider the system Eq. (12). Then Eq. (13),

Eq. (14), and

[1

~1 -AB2
rank ~ dim A

c;
o

(16)
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for all A constitute necessary and sufficient conditions for the

existence of a K2 such that [A + B2K2C~, Cl] is observable.

We stress that Eqs. (13) and (14) have been shown to be

necessary conditions for the existence of a control law with K2

constant or time-varying, which achieve observability of [A +

B2K2%’ 51”

necessary for

the thrust of

alone are the

However, we have not asserted that Eq. (16) is

the existence of a time-varying gain, and indeed

this chapter is to show that Eqs. (13) and (14)

necessary and sufficient conditions for the ex-

istence of a time-varying gain guaranteeing observability of

[A +B2K2(t)Cj, Cl]. Even should Eq. (16) fail, i.e., even if

there are decentralized fixed modes, there is, as we shall show,

no difficulty in achieving observability.

Our first result is for plants with U2, y2 scalar:

Lemma 1. Assume the observability condition Eq. (13) holds

-1
and C~(sI - A) B2 t O. Let K2(t) ❑ O on [s, sl] and K2(t) =

K2 # O on [sl, s + L] for arbitrary s , L with s < S1 < s + L.
1

Suppose further that u21 Y2 are scalar. Then W(s, s + L), see

Eq. (15), is nonsingular.

Proof.
-1

Suppose temporarily that C~(sI - A) B2 is scalar

and that W(s, s + L)y = O for some y # O, to obtain a contra-

diction. Using the definition of W(O, ●) in Eq. (15) (first

equality only!), we see that

~!eA(t-s)
1

y=o, t G [s, Sll

Cje
( )A+B2K2Cj (t-sl) Asl

e y=o, tG [S1, S+L).

Asl
Set 6 = e y and recognize that a’e

At _
i3= O on an interval if
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and only if a’A1fi= O Vi. Then for all i

)

i

C~Ai8 = O,
(c; A + B2K2% 6 =

o.

Let q be the least nonnegative integer for which CIA B
‘ q z+ o.

Note that q exists since C~(SI - A)‘1B2 # 0. Then the second

equation implies (using the first) that

C~AqB2K2 o
.0

. .
*

c;AqB2K2

* * CjAqB2K2 “ “

* * * ● 0

.0

%

C;A

C;A2

●

.

6=0

(17)

whence for all i

+% = O.

But now C~A1~ = O and C~A16 = 0’ ‘ith 6 # 0“
This contradicts

the observability assumption (13).

-1
Now suppose C~(SI - A) B2 is a vector, and let C~j denote

the jth row of Cl, and

/

s +L

Wj(s, s+L) ~
‘.$ (t, S) dt.

@~2(t~ ‘)cljcll K2
s

Then

(18)

z Wj(s, s +L)
(19)

W(S, s + L) =

j

and W(s, s + L)y = O if and only if Wj(s, s + L)Y = O, since

each W. (s, s + L) is individually nonnegative definite.
Arguing

1

as above? we conclude that for all j, i

C’.Ai6 = 0, C~Ai~ = O (20)

1]

and again, Eq. (13) is violated.
Vvv
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In Lemma 1, U2 and y2 are restricted to being scalars. We

now remove this restriction. The idea is as follows. Suppose

that C~(sI - A)
-lB

~j # o. Then we use K2(t) to switch in turn

each component of y2 to the jth component of U2. More speci-

fically:

Lemma 2. With notation as above, suppose that Eq. (13)

holds and that the jth column of C~(sI - A)-1B2 is not identi-

cally zero. Let ei denote a unit vector with 1 in the ith po-

sition, and let p2 denote the dimension of y2. Take

K2(t) = O, t E [s, Sll

K2(t) = k e.e’
12 -J 1’

t E [sl, S21

(21)
K2(t) 3 k e.e’

22 J 2’
t E [s2, S31

●

✎

✎

K2(t) ~ k
I

p22ejep2’
tE[s s+L]

P~’

with s < S1 < s
2

< ● ** s + L, and ki2 # O for all i. Then

W(s, s + L) is nonsingular.

Proof. Suppose for convenience that C; has only one row.

In the contrary case, the argument can be extended, just as for

Lemma 1. Then W(s, s + L)y = O implies

C; exp[A(t - s)]y = O, t E [s, Sll

C; exp[(A + B2jk12e~C~)(t - sl)] exp(Asl)Y = 0, t c [s1s21

C; exp[(
)A + ‘2jk22e;c~ ‘t

- s2)] exP[(A + B2jk12e~C~) (.2 - s,)]

x exp(Asl)y = O, t ● [s2, S31
.
●

“. (22)
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Arguing as in the proof of

Asl
imply, for 61 = e y, and

Lemma 1, the first two equations

all i

= o.

Let 62 = exp[(A + B2k12e~C~)(s2 - sl)]~l. Then it is easy to

see that

C:Ai62 = O,
‘:%A1~2 = 0“

(23)

Now take the first of these identities with Eq. (22). One ob-

tains by the same arguments

e;%A1~2 = 0“

Proceeding in this fashion, we construct a vector 6 , nonzero
P2

if and only if y is nonzero, such that, for j = 1, 2,
● ..r PO,

and all i

C~Ai6 =
P2

Equivalently,

This provides

o, e~C’A16 = O.
]2 P2

(25)

a contradiction to an assertion that W(s, s + L)

is nonsingular. Vvv

Let

enough

(1)

(2)

us summarize. To have W(s + L) nonsingular, it is

to have [A, Cl] observable (then one can take K2(t) ~

o);

-1
if [A, Cl] is not observable, to have C~(sI - S) B2

3 0 and to have

[1
AI - A B2

rank ~ dim A

c;
o

for all A (then almost all constant K2 will suffice);
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(3) if [Ar C,] is not observable, and if
L

[1
SI
o

-AB2
rank < dim A

c;
o

for some so (which is then

to have C~(sI - A)‘1B2 ; O

form described in Lemmas 1

a decentralized fixed mode) ,

(then a switched K2 of the

and 2 will suffice) .

Let us add one final piece of intuition to points (2) and

(3) above. If [A, Cl] is not observable, we need to get the

information seen by channel 2 through somehow to the output of

channel 1. If K2 = O, then on channel 1, we are observing only

what Cl allows us to observe. But if K2 # O, the output infor-

mation on channel 2 is fed back to influence the input of chan-

nel 2 and then, because C~(sI - A)-lB2 # O, some of this shows

up at the channel 1 output. That part of the state which Cl

could not observe (and which C2 can then observe) shows up, in

an admittedly mangled fashion at output 1; as it turns out, the

processing can sometimes be unraveled and the state then observed,

Howeverr it may be the case that the separate contributions

to yl [the direct contribution associated with C~(sI - A)
-1

‘1

and that due to feedback of y2 and U2 and transmission through

C~(sI - A)
-1

B2] are not separately resolvable when K2 is con-

stant. Why then will time-varying K2 allow resolution? If

‘2
= O, the first contribution alone is present, and can be

evaluated; then when K2 # O, the first contribution

crude terms, subtracted off, allowing evaluation of

contribution.

can be, in

the second

This is not inconsistent with there being a fixed mode with

frequency so; for one value of K2, one particular state is un-

observable, and for a different value of K2, a different state
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is unobservable. No one state is unobserved for all values of

‘2’
so that time variation of K permit observation of all states.

2

B. FORMAL RESULTS

Let us suppose that there is given the decentralized two-

channel system {A, [Bl B2] , [Cl C2]} where {AI [c; q’} is
completely observable, C~(sI - A)

-1
B2 # O, and there is a de-

centralized fixed mode s
o

such that

‘ankrO:;A:1< ‘imA-
Let K2(”) be periodic with period L and vary as described in

Lemma 2. Let ‘cbe

[~, T + 2L]. Then

(m + l)L] for some

W(T, T + 2L) .2

an arbitrary time and consider any interval

this contains a subinterval [s + mL, s +

integer m, and so

W(s + mL, s+(m+l)L)=W(s, s+L).

Thus W(T, T + 2L) is bounded below away from zero uniformly for

T e (-m, 0). It is also bounded above for all ‘r,as is easily

seen. Hence the pair [A + B2K2(t)C~, Cl] is uniformlY completely

observable [9-11]. (The significance of this is explained fur-

ther below.)

Of course, if [A, Cl] is observable, or if it is not observ-

able but there is no fixed mode of the type described the above

conclusion is still valid. However, the use of a time-varying

feedback law is not essential to achieve observability.

It is not hard now to see that if K2(t) takes any P dif-

fering piecewise constant values where p > P2 + 1, and is peri-

odic, the uniform complete observability condition still holds.

The observability is characterized by the failure of certain

multivariable equalities in the entries of K2 at each of its

constant values. Now , there exist periodic gain selections for
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which the equalities do not all hold, so that for almost all

such selections they will fail to hold. (To extend from p2 + 1

to p2 +2andthenp2+3~ ... distinct values of K2, regard

any set of p2 + 1 values as a set of P2 + 2 specialized so that

two values are the same.)

Now consider the controllability question. By duality, it

is clear that we need to require {A, [B~ B2]} controllable. If

[A, Bll is controllable, then almost any K2(t), constant or

time-varying and including K2(t) ~ O, will ensure controllabil-

ity from channel 1. If [A, Bl] is not controllable, it is nec-

essary that C~(sI - A)‘lB1 $ 0. Then if there are no fixed

modes, almost any fixed K2 will ensure that [A + B2K2C~, Bl] is

completely controllable. If there are fixed modes, then K2

should take at least dim U2 + 1 distinct piecewise constant

values in a periodic fashion. For almost all selections of such

values, [A2 +B2K2(t) C;, Bl] will be uniformly completely con-

trollable.

-1
Notice that with K2 nonzero and with C~(SI - A) B1 } 0,

any generic input applied on channel 1 will give rise to a sig-

nal at the input of channel 2. In this way, even though [A, Bll

may not be controllable, one will have some opportunity to in-

fluence all the states.

By combining the controllability and observability results

we see that if {A, [Bl B2], [Cl C2]} is controllable and observ-

-1
able, and if C~(sI - A) Bl $ 0, C;(SI - A)-1B2 > 0 then the

following applies:

(1) If there are no fixed modes, almost any constant K2

uill ensure ~A + BOK9C~, B,, C,] is controllable and observable.
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(2) If there are fixed modes almost ang selection of a

piecetiise constant, periodic K2(t) taking at least max(dim U2 +

1, dim y2 + 1) distinct values will ensure that (A2 + B2K2(t)C~,

B~, Cl] is uniformly completely controllable and observable.

-1
If C~(sI - A) B1 = O, we need [A, Bll completely control-

lable and if C~(sI - A)-1B2 = O, we need [A, Cl] completely ob-

servable for these conclusions to remain true.

What now is the significance of these conditions? If (1)

holds, then conventional linear system design methods can be

applied to channel 1 to position poles, minimize a linear-

quadratic index, etc. If (2) holds, then linear-quadratic de-

sign methods may be applied [11] to secure an exponentially

stable state estimator and an exponentially stabilizing state

feedback law.

periodic gains

In case we

save that CA +

The estimator and feedback law will then have

[12].

work in discrete time, the same results hold~

B2K2(t)Cj, Bl, Cl] may have uncontrollable/un-
.

observable modes at the origin. (These modes of course are un-

likely to create any difficulties in a control problem.) Since

any periodic discrete-time system can be treated as a time-

invariant system (by redefining the sampling interval as one

period), other techniques of linear system theory, e.g., those

appropriate to pole positioning, can be applied to the single-

channel design problem.

Another important observation is that even for a system

with no decentralized fixed modes, it may be easier to control

if time-varying feedback is used on channel 2 than if constant

feedback is used. Indeed, this will certainly be the case if

the given system is close to having a fixed mode, in the sense,
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for example, that the structure of Eq. (11) for W(s) could be

achieved if poles or zeros were perturbed slightly.

Last, we comment that we have discovered examples where with

‘2
=p2>l, only two different piecewise constant values are

required for K2(t) , in order to make a system with a fixed mode

observable and controllable from channel 1. This means that it

may be possible to improve on the main result.

c. MULTICHANNEL SYSTEMS

Up to now, we have studied two-channel systems. Now we dis-

cuss p-channel systems for p > 2. With each channel of a p-

channel system, associate a node of a p-node graph, and draw a

directed arc connecting node i to node j just in the case

Cj(sI - A)-lBi j!O. A path {jl j2 ● *O jr} from node jl to jr

is a set of arcs connecting jl to j2 to j3 ● ** to jr. In the

p-channel system, if there is nonzero (decentralized) feedback

from output to input in each of channels jl, j2, .../ jr, and

if {jl j2 “00 jr} is a path, it will be possible for signals in-

serted at the input jl to affect the output of all channels ji

along the path – irrespective of whether there is an arc con-

necting jl to ]l.

A system is termed strongly connected if there is a path

between any two nodes. It is not hard to see that a system is

strongly connected if and only if for every partition of the

channels into disjoint sets A and B we

An alternative condition is that there

channels for which the system transfer

triangular.

In [5], it is explained that every

have C~(sI - A)‘lBB 7’0.

is no ordering of the

function matrix is block

time-invariant system

can be regarded as a collection of strongly coupled subsystems

which have only one-way, or no, connections between them.
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Moreover, many questions of decentralized control can be ana-

lyzed by considering them in relation to the individual strongly

connected subsystems.

Let us now note the

odic gains are present.

variation to the idea required if peri-

In the definition of connectivity for

a constant gain system above, where a transfer function matrix

must not be identically zero, we require that the corresponding

collection of transfer function matrices be all not identically

zero, where each transfer function is now associated with an

interval in which the gains are constant. Thus if in the time-

invariant case, there is a connectivity condition C’ (s1 - A)
-lB

j!O and if A is replaced by a periodically varying A(t), switch-

ing between Al and A2, we require that C’ (s1 - Al)
-1

B j! O and

C’(SI - An)‘lB $ 0.

and

L

We now assert:

Lemma 3. Consider a p-channel strongly connected system

suppose a (p - 1)-channel system is formed by putting feed-

back of the form u = -K y
P PP

around the pth channel, with K
P

periodic and piecewise constant. Then for generic Kp, the re-

sulting (p - 1)-channel system is strongly connected.

Proof. Consider any two nodes jl, jr of the graph associ-

ated with the (p - 1)-channel system derived after introducing

feedback to the original p-channel system. Before the intro-

duction of this feedback, these two nodes, regarded as nodes of

the graph of the p-channel system, define the end points of a

path because the p-channel system is strongly connected. We

distinguish

Case 1: The path does not include node p;

Case 2: The path includes node p.
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Let W.. denote Cj (s1 - A)
-lB

i (or the collection of such]1

quantities), and fi.. denote the corresponding quantity resulting
]1

after feedback. Under case 1, we have W. .
3~3~

+0, .... w.
~rJr_l

~ o. Since for one specialized feedback, viz., u s O, we have
P

E. = w.
32]1 32]1

/zo, ....R. = w.
3rjr_1 3rjr_1

t O it follows that

for almost all feedback, i.e., generically, we must have W.
32j1

)40, ....=. 1 O; i.e., a path connects jl to jr for the
lrjr_l

(P - 1)-channel system – the same path in effect as in the p-

channel system.

For case 2, suppose the path is jl, j2r .... jk, P, ]k+2/

. ../ jr. Arguing as for case 1, we know that generically

i. $0, ...tw. $ 0, w. 30, . . ..Fj j *O.
32]1 ]kjk-1 ]k+s]k+z r r-1

We must show that generically, F. * o. If W. $ 0, we
Jk+2jk 3k+2jk

can apply the case 1 argument. So assume that W. : 0.
]k+2jk

Then

i. = -w .
‘k+2Jk

K (I + WPPKP)-lW
]k+2p P pjk

as an easy calculation shows. Since W.
3k+2p

; O, and Kp is arbi-

trary, we have for generic K that ~.
P

$ 0. Consequently
3k+2jk

in the graph of the (p - 1)-channel system, there is a path 11,

.... jk, jk+2/ ‘../ ]r connecting nodes jl to jr. This estab-

lishes the strong connectivity result.

We remark that the above result is actually true for more

complicated (e.g., dynamic) feedback. Howeverr we need only

the present form.

It is not hard to verify that if a system with periodic

time-varying gains is not strongly connected, it can be decom-

posed into a collection of strongly connected subsystems which

can only have one-way connections between them and that, as for

the time-invariant case, decentralized control questions must

,,

I



[
..

::
,..,).

DECENTRALIZED CONTROL USING TIME-VARYING FEEDBACK 111

be analyzed by considering the individual subsystems. Accord-

ingly, to explain the main ideas of the section, we confine

attention to a three-channel, strongly connected system.

Suppose we aim to use feedback on channels 2 and 3 to pro-

vide (uniform) controllability and observability at input and

output 1. Temporarily consider channels 1 and 2 together as a

single channel A. It is immediately clear that unless using

channel A one can observe and control the system with a feedback

gain around channel 3, there is no possibility of doing the

same with channel 1, given feedback around channels 2 and 3.

Using the earlier ideas, we see observability and control-

lability from channel A can be achieved by feedback around chan-

nel 3; in case there are no fixed modes, this feedback around

channel 3 can be constant, and almost any constant feedback

gain suffices. If,”however, there is a decentralized fixed mode

associated with the channel A, channel 3 pair a constant gain

will not suffice, but a piecewise constant periodic gain taking

at least P3 different values [03 = 1 + max(dim U3, dim Y3)]

will suffice.

With this feedback, there now results a system with two

channels, 1 and 2, which is possibly periodically time varying,

and which is uniformly controllable and observable. By virtue

of Lemma 3 it is, at least for generic periodic or constant

gains around channel 3, strongly connected. The question arises

as to whether we can now apply feedback around channel 2 to

make the system uniformly controllable and observable from chan-

nel 1. The answer is yes; we shall argue simply the observ-

ability.
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If this two-channel system is time invariant, the result

is immediate by the earlier results. So suppose that it is de-

scribed by {A(t), [Bl B21} where A(t) is periodic and piecewise

constant. Let us assume that A(t) in fact takes the value ~

in [s, s+T,), xin [S+T,, S+T)O Observability means that
L L

if there exists y for which

then y = O. [This can be checked by examining the

Grammian over (s, s + T).] Equivalently (take 6 =

equations

imply 6 = O. If the “frozen” systems {~, [Bl B2],

observability
~Tl

e y), the

[Cl C2]} and

{X, [Bl B21 , [Cl C2]} were to have no fixed modes (other than

any associated with lack of centralized controllability and

observability) , then constant feedback around channel 2 would

generically produce uniform controllability and observability

at channel 1. However, it is obvious from the definition of

fixed modes that if the original three-channel system has fixed

modes, so must each of the frozen two-channel systems. We now

explain what is done in this case.

For convenience, suppose that Y2 is a scalar. We then take

‘2
= K2(t)y2 where K2(t) = O, t E [S, S1), K2(t) = ~2, t E [S1,

~ , K2(t) = O, t= [S + Tl, S2), K2(t) = ~2, t G [S2, S+T)s+T)

with K2(t) periodic. If yl is a null vector of the observabil-

ity Grammian over [s, s + T] of
{
A(t) + B2K2(t)Cj,

}c1 ‘
then

C; exp(~t)yl = O
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C; exp
[(
~+BRC’

222 )1
t exp(Xsl)yl = 0

[
C; exp(~t) exp (A + B2~2C~)(Tl + s - Sl)

1
exp(lisl)y = O

[(Ciexp fi+B2~2c;)tlexp(fi( 52-s -Tl))

[(

—
x exp

)A + B2K2% (Tl + s - Sl)1
exp(Asl)yl = O. (26)

Arguing as earlier,
1

and using the fact that C~(sI - ~)- B2 j!O

in the light of strong connectivity, we conclude from the first

two equations that

for all t, and in fact if 6 = exp [( )~ + B2~2Cj (Tl + s - S1)] x

exp(~sl)yl, then

(27)

In a similar manner the last two equations in Eqs. (26) yield

C~eAt6 = O, C~eAtd = O. (28)

However, as argued above, the observability of the two-channel

system implies that in Eqs. (27) and (28) we have 6 = O, and

thus y = O; i.e., the single-channel system is observable.

The above analysis applies for scalar y2. The earlier tech-

niques can be used to derive the result for vector y2.

The procedure for coping with a p-channel system when p > 3

is a straightforward extension of the procedure for a three-

channel system. Assuming the p-channel system is strongly con-

nected and meets a centralized controllability and observability

condition, one successively applies feedback around channels p,

P -1, .... 2. The feedback can be constant only if there are

no fixed modes associated with any of the frozen systems en-

countered at any stage in the procedure. Otherwise, it must be
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periodic and piecewise constant, taking a certain minimum num-

ber of values that is readily computable at each stage. The

end result is that for generic values for all the feedback

gains, the one-channel system is uniformly controllable and

observable.

D. AREAS FOR FURTHER STUDY

The results presented here open up further areas for re-

search on linear decentralized control. Let us indicate several

of these.

(1) Suppose a system is to have a decentralized controller

structure and the aim is to observe and control it from one

channel having put feedback (periodic if need be) around the

other channel. How should one systematically select the value

of the feedback around the second channel and the period in the

nonconstant case, for example, to achieve a good compromise be-

tween system performance for a nominal plant and robustness to

plant uncertainty or variations?

(2) Presumably, if piecewise constant periodic feedback

around channel 2 ensures uniform observability and controllabil-

ity from channel 1, many, if not almost all, periodic feedbacks

which are not piecewise constant will have the same effect.

How can such feedbacks be characterized?

(3) The controller structures studied in this chapter have

no dynamics in all but one channel. The controller on the re-

maining channel has dynamics with state variable dimension ap-

proximately equal to that of the system being controlled. How

could one distribute the controller complexity more evenly

across the different channels?
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(4) Recent unpublished work of which the authors are aware

shows that piecewise constant, periodic feedback controllers

around a periodic single-input, single-output system operating

in discrete time can very frequently be used to generate a dead-

beat response. This raises questions as to whether such ideas

could be wedded to the ideas of this chapter to show that de–

centralized, piecewise constant, periodic controllers could pro-

vide a deadbeat response for a very wide class of systems.
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