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SUMMARY

We address the synthesis of controllers for a swarm of

robots to generate a desired two-dimensional geometric

pattern specified by a simple closed planar curve with

local interactions for avoiding collisions or maintaining

specified relative distance constraints. The controllers are

decentralized in the sense that the robots do not need to

exchange or know each other’s state information. Instead,

we assume that the robots have sensors allowing them to

obtain information about relative positions of neighbors

within a known range. We establish stability and convergence

properties of the controllers for a certain class of simple

closed curves. We illustrate our approach through simulations

and consider extensions to more general planar curves.

KEYWORDS: robot swarms, decentralised control; motion

planning.

1. Introduction

We consider the deployment of a robotic team in an urban

environment that can autonomously perform surveillance

monitoring of specified areas, e.g., perimeter survil-

lance/boundary coverage, with additional applications in

cooperative manipulation where robots can transport/capture

large objects by surrounding it, and cordoning off hazardous

regions after chemical spills or biological terrorist attacks.

In all these problems, the robots must have the ability to

organize and generate complex shapes in two dimensions,

often maintaining constraints with respect to neighbors for

communication. In these situations, it is often difficult, if not

impossible, to efficiently manage or control the team through

centralized algorithms or tele-operation. Accordingly, it

makes sense to develop strategies where the robots can

be programmed with simple but identical behaviors that

can be realized with limited on-board computational,

communication, and sensing resources.

In nature, the emergence of complex group level behaviors

from simple agent level behaviors are often seen in the

group dynamics of bee1 and ant2 colonies, bird flocks,3

and fish schools.4 These systems generally consist of

large numbers of organisms that individually lack either

the communication or computational capabilities required

for centralized control. As such, when considering the

* Corresponding author. E-mail: mya@seas.upenn.edu

deployment of large robot teams, it makes sense to

consider such “swarming paradigms” where agents have the

capability to operate asynchronously and can determine their

trajectories based on local sensing and/or communication.

In this paper, we present a scalable approach that allows a

swarm of robots to synthesize shapes and patterns in two

dimensions while maintaining nearest neighbor constraints.

Our main contribution is the synthesis and analysis of

gradient based decentralized controllers that allow a large

team of robots to converge to some desired two-dimensional

boundary curve while maintaining inter-agent constraints via

local interactions. The stability and convergence properties

of these controllers for a certain class of simple closed curves

are established. Lastly, we consider the extension of our

methodology to more general planar curves.

This paper is organized as follows: Section 2 presents

related work in motion planning and control of large groups

of robots. The problem is formulated in Section 3 and

our methodology is presented in Section 4. The properties

of our controller, including stability and convergence, are

discussed in Section 5. A method for synthesizing general

two dimensional patterns and shapes using radial basis

functions is presented in Section 6. Section 7 summarizes our

simulation results. Finally, we discuss directions for future

work in Section 8.

2. Related Work

Our goal is to synthesize decentralized feedback control

laws to enable a team of robots to align themselves along

boundaries of two-dimensional shapes while satisfying inter-

agent constraints. We would like these controllers to be

decentralized in the sense that agents do not need to exchange

or know each other’s state information, rather we will assume

that the agents have the necessary sensors to infer the relative

positions of other agents within a given range. Additionally,

we would like simple controllers that can be identically

implemented at the agent level and result in provably correct

group level behavior, i.e., a strategy consistent with the

swarming paradigm.

One of the earliest works to take inspiration from

biological swarms for motion generation was presented by

Reynolds in 19875 where he proposed a method for generat-

ing visually satisfying computer animations of bird flocks,

often referred as boids. Almost a decade later, Vicsek et al.

showed through simulations that a team of autonomous
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agents moving in the plane with same speeds but different

headings converge to the same heading using nearest

neighbor update rules.6 The theoretical explanation for

this observed phenomena was provided by Jadbabaie

et al.7 and Tanner et al. extended these results to provide

detailed analysis of the stability and robustness of such

flocking behaviors.8 These works show that teams of

autonomous agents can stably achieve concensus through

local interactions alone, i.e., without centralized coordi-

nation, and have attracted much attention in the multi-robot

community.

Previous works in group coordination using decentralized

controllers to synthesize geometric patterns include the

works by Albayrak et al.9 and Suzuki et al.10 Albayrak et al.

considered line and circle formations,9 while Suzuki et al.

considered more general geometric patterns.10 However, both

approaches required each robot to have full knowledge of

the positions of all the other robots. The use of decentralized

leader-follower controllers to synthesize robot formations

was proposed by Desai et al.,11 however, the approach

required the assignment of different controllers and set

points to different robots which makes scaling to large

groups difficult. Asymptotic stability of decentralized leader-

follower formation control for a group of nonholonomic

robots in SE(2) with fixed interconnection topologies was

presented by Fierro et al.12 A navigation function based

approach for multi-robot navigation and coordination is

presented by Tanner et al.13 and Loizou et al.14

In general, leader-follower controllers require labeling

of robots; Ogren et al. relaxed this assumption in the

development of coordination strategies for a group of

unidentified, holonomic robots.15 Similar approaches for

multi-robot manipulation were presented by Song and

Kumar16 and Pereira and Kumar17 respectively. Chaimowicz

et al. extended these approaches to arbitrary shapes and

established convergence to patterns that approximate the

desired shape.18 Correll et al. experimentally compared three

distributed algorithms for boundary coverage for a robotic

swarm.19 In addition, they modeled a robotic swarm as a

collection of probabilistic finite state machines and presented

a methodology for system identification of both the linear

and non-linear robotic swarm systems for parts inspection

applications.20 Although experimental and simulation results

were shown in these works, they did not provide theoretical

results for stability and convergence.

Other recent works in formation control include the work

by Sepulchre et al.21 where a complete communication

interconnection topology is used to stabilize a group of agents

in circular orbits to isolated relative equilibria in the plane.

Paley et al.22 extended these results to include elliptical

and superelliptical orbits and relaxed the communication

interconnection topology to undirected circulant graphs.

The stabilization of multiple agents to star-shaped orbits

with relative arc-length constraints was presented by Zhang

et al.23, 24 In these works, boundary coverage is achieved

by maintaining inter-agent separation distances specified in

terms of the arc-length of the boundary of interest rather than

inter-agent Euclidean distances. The problem of detecting

and tracking a specific environmental boundary where the

control laws were determined using a partial differential

equation approach was discussed by Bertozzi’s group.25

Lastly, the surveillance of an environment with obstacles

was achieved by Kerr et al.,26 where individual robots in a

swarm were modeled as gas particles. Unlike the works by

Peng, Fierro, and Loizou,12,14,16 these works treat individual

agents as point particles.

Belta et al. presents a different approach to the

shape generation/formation control problem.27 Control

abstractions for groups of planar robots were derived along

with decentralized controllers such that motion planning for

the group can be achieved in a lower dimensional space. They

showed how groups of robots can be modeled as deformable

ellipses, and presented decentralized controllers that allowed

the control of the pose and position of the ellipses. The

approach was extended to teams of heterogeneous robots by

building a hierarchy of ground and air vehicles which allowed

groups to split and merge,28 and to robot teams in three

dimensions.29 Formations for small teams of robots can also

be achieved by modeling the team as controlled Lagrangian

systems on Jacobi shape space.30 More recently, the problem

of positioning a team of robots to generate different shapes

in two and three dimensions was formulated as a second-

order cone program.31 Lastly, a coordination strategy that

stabilizes a group of vehicles to an arbitrary desired group

shape derived from spatial networks of interconnected struts

and cables, i.e., tensegrity structures, was presented by Nabet

et al.32

In this work, we build on the results of Chaimowicz18 and

Hsieh,33 and in the spirit of the works by Belta, Chaimowicz,

and Michael27, 28, 29 mentioned previously, we address the

synthesis of decentralized controllers that guarantees the

convergence of the team to the boundary of some desired

shape as well as the stability of the resulting formation,

all the while maintaining inter-agent constraints through

local interactions. While our approach is similar the works

of Zhang et al.,23,24 we take a slightly different approach

to the pattern generation problem and consider inter-agent

constraints that are functions of Euclidean distances between

agents rather than arc-lengths. Lastly, our strategy does not

require inter-agent communication and can be achieved via

sensing alone. This may be relevant in applications like

persistent surveillance where limited bandwidth must be

preserved to enable robots to communicate with each other

in order to integrate and fuse the information acquired by

various sensors.

3. Problem Formulation

Assume a swarm of N planar fully actuated robots each with

the following dynamics

q̇i = vi (1a)

v̇i = ui (1b)

where qi = (xi, yi)
T , vi , and ui respectively denote the ith

agent’s position, velocity, and control input. Thus, the robot

state is a 4 × 1 state vector xi = [qT
i vT

i ]T . We define the

configuration space as Q ⊂ R
2N , and the configuration of

the swarm of robots as q = [qT
1 . . . qT

N ]T ∈ Q. Similarly, the
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state space vector is given by x = [xT
1 . . . xT

N ]T ∈ X ⊂ R
4N .

In general, we consider all systems of N agents whose

individual dynamics can be transformed into (1) via some

diffeomorphic state transformation.

Our goal is to design control inputs that will drive the

group of N robots to the boundary (curve) of a desired

smooth, compact set, i.e., shape, while maintaining inter-

robot constraints. This is relevant for applications such as

perimeter surveillance or surrounding an object for capture

and/or transportation. Thus, the controller synthesis problem

for pattern generation is to find a controller that can drive

the team to the desired boundary while:

[P1] avoiding collisions with other agents, or

[P2] maintaining specified proximity constraints with other

agents, such as for communication maintenance.

We outline our methodology in the following section.

4. Methodology

4.1. Assumptions and definitions

For a given desired shape, S, whose boundary is denoted

by ∂S, assume ∂S is a two dimensional planar curve in

an obstacle-free workspace that can be described by an

implicit function, s(x, y) = 0. In general, we will assume

that the boundary curves of interest are regular closed, simple,

smooth planar curves enclosing star shaped sets. The regular

and simple assumptions are necessary to ensure that the

closed curves do not self intersect.34

In situations, where it is important that the team maintains a

connected communication network or specific team members

remain within a prescribed range of one another to enable

grasping of objects for transportation/manipulation, we will

further require the team to maintain a desired interconnection

topology. We use a proximity graph, G = (V, E), to model

the inter-robot constraints, where V and E denote the set of

vertices and edges of G. Each robot is then represented by a

vertex in V and proximity relations between pairs of robots

are represented by the edges in E . As such, for any two

robots represented by a, b ∈ V , we say a and b are adjacent

or neighbors, denoted by a ∼ b, if a is in the neighborhood

of b and b is in the neighborhood of a, and as such the edge

(a, b) ∈ E . In our analysis, robot i’s neighborhood is defined

as the ball Bi = {q|‖qi − q‖ ≤ d}, where d > 0 denotes the

interaction range. For the constraints under consideration,

we choose d = δ for collision avoidance or d = � for

proximity maintenance. In practice, whether for collision

avoidance or proximity maintenance, this prescribed range

can be determined based on the communication and/or

sensing hardware, performance requirements within a given

environment, and/or experimental results. For any proximity

graph G, the the N × N adjacency matrix is defined as:

Aij =

{

1 if j ∈ Ŵi

0 otherwise
.

Given a set of inter-agent constraints, we encode the

information in a desired proximity graph, Gd , such that every

inter-agent constraint is represented by an edge. Thus, the

graph Gd represents the desired interconnection topology

and we denote its associated adjacency matrix as Ad . We

will assume that the desired proximity graph is always a

subgraph of the initial proximity graph to ensure the team

initializes in a feasible configuration.

Lastly, since our goal is to synthesize decentralized

controllers that will allow a team of robots to converge to

the boundary while satisfying inter-agent constraints, we

note that given d > 0, the length of ∂S naturally imposes

an upper bound on the number of robots, denoted by e.g.,

Nmax > 0, that can fit on the boundary. Similarly, the length

of the boundary will naturally impose a lower bound, Nmin,

on the number of robots that can effectively cover the desired

boundary given a fixed sensing range. We refer the interested

reader to the Appendix for a brief discussion on determining

Nmax and Nmin.

In this work, we are primarily concerned with convergence

to the desired boundary and as such we will make the

following additional assumptions:

1. N < Nmax;

2. ρmin > δ, where ρmin denotes the smallest radius of

curvature of ∂S;

3. mins∈[
πρ0

2
,L− πρ0

2
]‖q0(s) − q(s)‖ > δ for any q0(s) ∈ ∂S,

where s ∈ [0, L] denotes the arclength and ρ0 denotes

the radius of curvature at q0.

Assumption 1 ensures all agents with finite interaction

range will be able to converge to the desired boundary

while satisfying all constraints. Assumptions 2 and 3 ensure

convergence by excluding boundaries with sharp turns and

star shapes with narrow passages, e.g., hourglass shapes,

that may result in robots repelling each other away from the

boundary when avoiding collisions.

4.2. Controller synthesis

4.2.1. Shape functions. For a desired shape, S, we define

the shape function, f : R
2 → R, such that f is positive

semi-definite in Q and for all (x, y) ∈ ∂S, i.e., points on

the curve s(x, y) = 0, f (x, y) = 0. In general, for any

parameterization s(x, y) = 0, f = (s(x, y))2 is a candidate

shape function. For star shapes, we choose f = s2 such that

1. s(x, y) is at least twice differentiable on Q; and

2. s(x, y) is polar at some q̂, where q̂ exists in the interior of

S, i.e., s has a unique minimum at q̂.

Shape functions of this form have level set curves that are

consistent with the desired boundary curve, i.e., if the desired

boundary curve is convex then so are the level sets of f . This

is relevant for stability and convergence analysis. Figure 1

shows the shape function for a compact set enclosed by Piet

Hein’s superellipse and its corresponding level set curves.

4.2.2. Shape discrepancy functions. To determine the

peformance of our controller, we define the shape

discrepancy function, φS : Q → R, such that φS is real

analytic and positive semi-definite, whose zero isocontour is

identically the boundary of the desired shape S. While there
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Fig. 1. (a) The shape function for S enclosed by Piet Hein’s superellipse, s(x, y) = | x
a
|r + | y

b
|r − 1 with a = b = 7 and r = 2.5. The

boundary is shown in white. (b) The level set curves for the corresponding shape function with the boundary shown by the dashed line.

are many choices for this measure, we use the definition

φS(q) =
∑

i

f (qi). (2)

Thus, the shape discrepancy function provides a measure of

how close the team is to ∂S.

4.2.3. Controller. For the system of N robots with dynamics

given by Eq. (1), consider the following feedback policy for

each robot

ui = −∇if (qi) − c vi −
∑

j s.t. Ad
ij =1

∇igij (‖qij‖) (3)

where c > 0 is a constant scalar and qij = qi − qj . The first

term of (3) drives the agent toward the desired curve while

the second term adds damping to the system. The function

gij (‖qij‖) in the third term is an artificial potential function

whose gradient models the interactions between each robot

and its neighbors in the neighborhood given by Bi . In the

remainder of the paper, we will denote gij (‖qij‖) as simply

gij . Lastly, ∇i denotes the partial derivatives with respect to

the coordinates of the ith robot.

When solving problem [P1] (see Section 3), consider the

following candidate function for gij :

gij =
1

(‖qij‖)k1
(4)

where the postive even scalar k1 is chosen such that

the interaction forces are negligible when ‖qij‖ > δ and

repulsive when 0 < ‖qij‖ ≤ δ, thus ensuring collisions do

not occur. Similarly, for problem [P2] (see Section 3), where

the maintenance of a specific proximity graph is required,

consider the following candidate function:

gij =
1

(� − ‖qij‖)k2
(5)

where the positive even scalar k2 is chosen such that the

interaction forces are negligible when ‖qij‖ < � − ǫ and

attractive when � − ǫ ≤ ‖qij‖ ≤ �, with 0 < ǫ < �.

Figure 2 shows some candidate functions for gij with the

corresponding ∇igij . It is important to note that both (4)

and (5) result in gradients of the form ∇igij = − dgij

d‖qij ‖qij

and thus ∇igij = −∇jgij . Finally, we note that the desired

interconnection topology, Gd , for problem [P1] is a position

dependent graph while Gd for problem [P2] is a static graph

whose edges are determined by the inter-agent constraints

specified a priori.

5. Analysis

In this section, we study the stability and convergence

properties of the controller given by Eq. (3) for the system of

N robots each with dynamics given by Eq. (1). The system

is in equilibrium when q̇ = 0 and v̇ = 0 or equivalently

q̇i = vi = 0

v̇i = −∇f (qi) − c vi −
∑

j s.t. Ad
ij =1

∇igij = 0 (6)

where c > 0 for all i = 1, . . . , N .

Our first lemma shows that the equilibrium points of the

N robot system are extremal points of the shape discrepancy

function.

Lemma 5.1. For a system of N robots each with dynamics

(1), shape function, f , and control (3), the set of equilibrium

points satisfy the necessary condition for the shape

discrepancy function to be at an extremum.

proof. When the system is in equilibrium, (6) simplifies to

ui = −∇f (qi) −
∑

j s.t. Ad
ij =1

∇igij = 0



Decentralized controllers for shape generation with robotic swarms 695

Fig. 2. (a) A potential function of the form given by Eq. (4) with k = 4. (b) Gradient of the potential function shown in (a) with respect
to ‖qij‖. (c) A potential function of the form given by Eq. (5) with k = 4 and � = 5. (b) Gradient with respect to ‖qij‖ of the potential
function shown in (c).

Recall ∇if = 2s∇is and as such, when summed over all

agents, we obtain

∑

i

ui =
∑

i

⎛

⎝2s(qi)∇s(qi) +
∑

j s.t. Ad
ij =1

∇igij

⎞

⎠ = 0.

Since ∇igij = −∇jgij , the second term sums to zero,

resulting in

∑

i

ui =
∑

i

s(qi)∇s(qi) = 0.

This is identically the necessary condition for the shape

discrepancy function to be at an extremum, i.e.,

∇φS(q) = ∇
∑

i

f (qi) =
∑

i

s(qi)∇s(qi) = 0. (7)

�

The next proposition concerns the stability of the system.

To show that our proposed controller is stable, consider the

following positive semi-definite function:

E(q, v) = φS(q) +
∑

i

∑

j s.t. Ad
ij =1

gij +
1

2
vT v. (8)

One can interpret E as an artificial energy function for the

system. In this next proposition, we will use this function to

show that the proposed controller drives the system toward a

stable equilibrium configuration.

Proposition 5.2. Given the set S whose boundary is given

by the closed, smooth curve s(x, y) = 0, consider the

system of N robots with dynamics (1), each with feedback

control law (3). For any initial condition given by (q0, v0) ∈
	0, where 	0 = {(q, v) ∈ X|E(q, v) ≤ e0} with e0 > 0, the

system converges to some invariant set, 	I ⊂ 	0, such

that the points in 	I minimize the shape discrepancy

function.

Proof. We begin by showing the set 	0 is compact. Given

e0, the set 	0 is closed by continuity of E. To show

boundedness, given E ≤ e0, we can conclude that both

(φS +
∑

i

∑

j gij ) ≤ e0 and vT v ≤ e0. Moreover, φS ≤ e0,

which implies f (qi) ≤ e0 for all i = 1, . . . , N . Since the

shape function f is a radially unbounded function, f (qi) ≤
e0 implies bounded ‖qi‖ and consequently bounded ‖qij‖
when

∑

i

∑

j gij ≤ e0. We note this is not always true in the

general case where bounded gij only implies bounded ‖qij‖.

Lastly, given cvT v ≤ e0, then ‖v‖ is bounded by
√

e0/c.

Thus, 	0 is compact.

The time derivative of E is given by

Ė =
∑

i

(

∇f (qi)
T q̇i + vT

i v̇i

)

+
∑

i

∑

j s.t. Ad
ij =1

∇ig
T
ij q̇i
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Recall q̇i = vi and v̇i = ui which is given by (3). Substituting
these into the above equation results in

Ė =
∑

i

∇f (qi)
T vi +

∑

i

vT
i

⎛

⎜

⎝
−∇f (qi) − c vi −

∑

j s.t. Ad
ij

=1

∇igij

⎞

⎟

⎠

+
∑

i

∑

j s.t. Ad
ij

=1

∇ig
T
ijvi

=
∑

i

∇f (qi)
T vi −

∑

i

vT
i ∇f (qi) − c

∑

i

vT
i vi

−
∑

i

∑

j s.t. Ad
ij

=1

vT
i ∇igij +

∑

i

∑

j s.t. Ad
ij

=1

∇ig
T
ijvi

= −c vT v.

Recall from Section 4.2, c is a positive scalar constant used to

add damping to the system. Then, Ė = 0 if and only if v = 0.

By LaSalle’s Invariance Principle, for any initial condition

in 	0, the system of N agents with dynamics (1), converges

asymptotically to the largest invariant set 	I , where 	I =
{(q, v) ∈ X|Ė(q, v) = 0} and 	I ⊂ 	0.

Furthermore, 	I contains all equilibrium points in 	0 and

as such, by Lemma 5.1, satisfy the necessary condition for

φS to be at an extremum. �

The above proposition states the convergence of the system

of N agents to equilibrium points that satisfy the necessary

condition for φS to be at an extremum, however, it does not

guarantee the final positions of the robots to be on ∂S. To

show this, we begin with the following proposition which

shows the set 	S , defined as

	S = {(q, v)|s(qi) = 0, vi = 0, ∇igij = 0 ∀i},

is a stable subset of 	I .

Proposition 5.3. Consider the system of N robots each with

dynamics (1) and feedback control (3). For convex gij , the

set 	S is a stable submanifold and 	S ⊂ 	I .

Proof. From (8) the system’s artificial potential energy, P ,

is given by

P = φS +
∑

i

∑

j s.t. Ad
ij =1

gij

To show that 	S is a stable submanifold, it suffices to show

that the Hessian of P , HP , is positive semi-definite on ∂S.

HP is given by

HP =
(

HI
φ + HII

φ

)

+
∑

i

∑

j s.t. Ad
ij =1

Hgij
(9)

HI
φ and HII

φ are 2N × 2N block diagonal matrices with

∇is(qi)∇is(qi)
T and s(qi)H (qi) respectively on the ith

diagonal block with H (qi) defined as the 2 × 2 matrix of

partial derivatives of s(q) evaluated at qi . Hgij
is a 2N × 2N

matrix with
∂2gij

∂q2
i

and
∂2gij

∂q2
j

in the i, i and j, j entries,
∂2gij

∂qi∂qj
in

the i, j and j, i entries, and zero everywhere else. We note

that for convex gij , all Hgij
are symmetric positive semi-

definite matrices. Since s(qi) = 0 for all qi ∈ ∂S, HP is the

sum of positive semi-definite matrices and therefore positive

semi-definite. Thus, the set ∂S is a stable submanifold.

Furthermore, when q ∈ ∂S and q̇i = v̇i = 0 with ∇igij = 0

for all i, then (q, v) ∈ 	S ⊂ 	I by Proposition 5.2. �

We note that Lemma 5.1 and Propositions 5.2 and 5.3 can

be extended to include boundaries defined by a collection of

disjoint convex regions.

The following propositions concern the convergence of

the team to the desired boundary for different desired

interconnection topologies. We begin with the case when

no interconnection topology is imposed, i.e., no inter-agent

constraints.

Proposition 5.4. For any smooth star shape, S, the system

of N robots each with dynamics (1), control law (3) with

gij = 0 for all i, j , the system converges to 	S ≡ ∂S for any

initial condition in 	0.

Proof. For any desired circular boundary centered around q̂,

the boundary can be parameterized by the following implicit

function

s(q) = ‖q − q̂‖ − R = 0

with f (q) = s2(q) as the corresponding shape function.

The system equilibrium condition is given by (6) which

simplifies to ∇if (qi) = 0 ∀i when all gij = 0. Furthermore,

for any initial condition in 	0, the system converges to the

invariant set 	I . For the circular boundary, 	I ≡ 	S ≡ ∂S.

By Proposition 5.3, ∂S is stable and by Proposition 5.2,

the system converges asymptotically toward the circular

boundary.

For any smooth star shape, S̄, there exists a diffeomorphic

transformation that maps the boundary of the star shape onto

the boundary of the circle given by s(q) and the interior and

exterior points of the star boundary to interior and exterior

points of the circular boundary.35 Since such a diffeomorphic

map exists, stationary points are diffeomorphically mapped

between the circular and the star boundary. Thus, from

Lemma 5.1, the system is in equilibrium when qi ∈ ∂S̄

for all i. And from Proposition 5.2, the system converges

asymptotically toward ∂S̄. �

In the remainder of the section, we prove the convergence

of N robots to the desired boundary curve for two desired

interconnection topologies. These desired interconnection

topologies can be either static proximity graphs for maintaing

team cohesion or dynamic position dependent proximity

graphs for collision avoidance. In both scenarios, the edges

of the proximity graphs will represent the constraints that

need to be maintained. We begin with the convergence of the

team to ∂S with gij given by Eq. (4) and remind the reader

of the key assumptions outlined in Section 4.1.

1. N < Nmax;

2. ρmin > δ;

3. mins∈[
πρ0

2
,L− πρ0

2
]‖q0(s) − q(s)‖ > δ for any q0(s) ∈ ∂S,

where s ∈ [0, L] denotes the arclength and ρ0 denotes

the radius of curvature at q0.
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Proposition 5.5. Given a smooth star-shaped set, S, and

the system of N robots, each with dynamics (1) and control

law (3), such that N and ∂S satisfy the above assumptions,

then the system with only repulsive interaction forces under

arbitrary interconnection topologies and initial conditions in

	0, can only be in stable equilibrium if qi ∈ ∂S for all i.

Proof. Recall, that the system equilibrium condition is given

by

∇if = −
∑

j s.t. Ad
ij =1

∇igij ∀i = 1, . . . , N.

Assume N and ∂S satisfy the above assumptions and the

system of N robots is in stable equilibrium such that not

all qi ∈ ∂S, i.e., s(qi) �= 0 for some i’s. Without loss of

generality, assume S is centered about q̂ and let θi ∈ [0, 2π)

denote the angle between the vector (qi − q̂) and the

horizontal axis. Let qN denote the agent with the maximum

value of θi in the team. Then θj < θN for all qj ∈ BN .

For every qi , we choose a body-fixed coordinate frame

such that the basis is given by unit vectors in the directions

of (qi − q̂) and (qi − q̂)⊥. Then for every ∇NgNj for qN , we

denote the component of ∇NgNj in the direction of (qN − q̂)

as (∇NgNj )‖ and the component of ∇NgNj in the direction of

(qN − q̂) as (∇NgNj )⊥. Since θN is the maximum θ for all N

agents,
∑

j s.t. Ad
Nj =1 ∇NgNj would result in a net force on qN

that would push qN away from its neighbors in BN . In other

words, the net force from the neighbors of qN would result

in pushing qN in the direction given by (qN − q̂)⊥ such that

θN would increase. Thus, for qN to be in stable equilibrium,

∇Nf must have a component that is equal and opposite in

the (qN − q̂)⊥ direction. For this to happen, either ρmin <

δ or mins∈[
πρ0

2
,L− πρ0

2
]‖q0(s) − q(s)‖ < δ which violates our

assumption on ∂S since the radius of curvature increases

monotonically as one moves away from the boundary. Thus,

the system can only be in stable equilibrium when qi ∈ ∂S

for all i. �

We note that while it may be possible that the net

repulsive forces exerted on a particular agent by its

neighbors sum to zero, this does not imply the system

as a whole is in equilibrium. As shown in the previous

proposition, such stable configurations would result in

violating our assumptions on ∂S. Our final proposition

proves the convergence of the team to convex boundaries

while maintaining a desired proximity graph where the edges

of Gd are specified a priori and gij are of the form given by

Eq. (5).

Proposition 5.6. For any smooth convex shape,S, the system

of N robots with dynamics (1), control law (3), a tree

Gd where the edges represent attractive forces, and initial

conditions in 	0, can only be in stable equilibrium if qi ∈ ∂S

for all i.

Proof. Once again, the equilibrium condition is given by

∇if = −
∑

j∈Ni

∇igij ∀i = 1, . . . , N.

Assume the system of N robots is in stable equilibrium such

that not all qi ∈ ∂S, i.e., s(qi) �= 0 for some i’s. Denote the

level set of f evaluated at qi as ŝqi
. Since ∂S is convex, the

level sets of f are also convex. Furthermore, for any qi ∈ R
2,

ŝqi
lies entirely to one side of the tangent line defined by

∇if
⊥. Additionally, since the level sets do not intersect, given

qi and qj such that s(qi) > 0 and s(qj ) > 0, s(qj ) > s(qi)

implies qj lies outside the level set ŝqi
. Similarly, given qi

and qj such that s(qj ) > s(qi) implies qi lies outside the level

set ŝqj
.

Since the system is in stable equilibrium, for every qi

there exists a qj such that Aij = 1, f (qj ) > f (qi), and qj

lies in the halfplane, defined by ∇if
⊥, that does not contain

sqi
. Define qN = arg maxi f (qi). If s(qN ) > 0, then for qN

to be in stable equilibrium, there must exist a qk such that

ANk = 1, f (qk) > f (qN ), and qk lies in the halfplane that

does not contain sqN
. This contradicts the definition of qN

and thus the system cannot be in equilibrium.

If s(qN ) < 0, we must show that the equilibrium

configuration cannot be a stable one if the desired

interconnection topology is a tree. To achieve this, consider

any leaf node k, the equilibrium condition for qk is given

by ∇kf = −∇kgkl with Akl = 1. This implies ∇kf = −∇lf

for every leaf node k. This resulting configuration is unstable

since any slight perturbation about the point (qk − ql)/2

results in non-zero velocities for agents k and l.

If s(qN ) = 0, this implies s(qi) = 0 for all i ∈ {1, . . . , N −
1}. Thus, equilibrium can only be reached when qi ∈ ∂S for

all i.

To show that ∇igij = 0 for all i, j pairs, again consider the

equilibrium condition of any leaf vertex qu in Gd given by

∇uf = −∇uguv (10)

where v denotes a neighbor of qu such that Auv = 1. Since

the only equilibrium is when all qi are on ∂S, ∇uf = 0 and

thus ∇uguv = 0 for all leaf vertices. Further, since ∇igij =
−∇jgij , then ∇vguv = 0 for every neighbor qv of each leaf

vertex qu.

Denote V1 as the set of leaf vertices of Gd and consider

the subgraph Gd
1 = Gd \ V1. Since Gd is a tree, Gd

1 is also a

tree. Then ∇vguv = 0 for each neighbor qv of every qu ∈ V1

which implies that every leaf vertex qm of Gd
1 , must also

have equilibrium conditions of the form given by Eq. (10).

Thus, on the boundary, for each neighbor qn of qm, ∇mgmn =
−∇ngmn = 0. By induction, we can conclude that ∇igij = 0

for all i, j pairs. �

The above proof can be extended to show convergence to

star shaped ∂S if we require the largest radius of curvature

of ∂S, denoted by ρmax, satisfies the condition ρmax < �.

Furthermore, the above proof can be extended for arbitrary

Gd , however the inter-agent constraints are not guaranteed to

be satisfied, i.e. ∇igij �= 0.

6. Toward General 2D Shapes

Often times there are applications which may require the

team of robots to converge to boundaries of shapes where

closed form parameterizations are not always available.
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Fig. 3. Implicit function for a letter “P”. (a) Constraint points used to generate the function. (b) Shape function with the zero isocontour
depicted in white.

Under these circumstances, one approach is to synthesize

complex boundaries through the interpolation of a set of

points located along the desired boundary curve. We refer

to these points as constraint points. Toward this end, we

propose the synthesis of general shape functions using radial

basis functions (RBFs).

A radial basis function can be described in terms of a center

point qc and a function h(r), where r defines the Euclidean

distance between any point q and the center qc. The term

radial comes from the fact that h evaluates exactly the same

for all points at a fixed radius from qc. Then given a set of m

constraint points, qck
, the general shape function, f , is given

by

f (q) =
∑

k

wkh(‖q − qck
‖). (11)

where wk denotes scalar weights.

In this work, we choose h(r) = r2log(r) to be our

candidate RBF. To generate a specific shape function, we

first specify a set of constraint points qck
, for k = 1, . . . , m,

along the desired boundary curve. Additionally, we will

specify at least one constraint point inside and/or outside the

desired boundary which will allow us to avoid degenerate

solutions when obtaining the weights, wk . Then, the weights

for each RBF, is determined by solving a system of linear

equations of the form Mw = b where M is an m × m matrix

of coefficients whose ij th entry is given by h(‖qci
− qck

‖),

w denotes the vector of weights, and b is a vector of scalars

whose ith entry is chosen to assume the desired value of

f (qci
). This is a common approach used in computer graphics

for generating three dimensional models and computer

animations.36,37

It is important to note that unlike the shape function defined

in Section 4.2, the general shape function obtained via this

construction is only guaranteed to be zero at the chosen

constraint points along the boundary. Thus, this approach, by

construction, may result in trapping robots in regions other

than the desired boundary, i.e., regions with local minima.

However, this can often be resolved by adding new constraint

points that do not alter the zero isocontour but effectively

change the function’s overall gradient. Nevertheless, the main

advantage of this approach is the flexibility it affords when

synthesizing general shape functions since complex two

dimensional boundaries can be generated by interpolating

an adequate number of constraint points. Lastly, the resulting

surfaces generated by the radial basis functions are smooth by

construction, thus allowing the use of the gradient controllers

given by Eq. (3).

The boundary of a ‘P’ shape synthesized using this

approach is shown in Fig. 3. The function was generated

using the constraint points shown in Fig. 3(a).

7. Simulations

We illustrate the algorithm presented in the previous sections

with some simulation results. We begin with the case when

S is star and consider teams consisting of approximately

40 robots to demonstrate the scalability of the algorithm.

Figure 4 shows the initial and final positions and the

trajectories of the team for: (i) no interactions, gij = 0;

(ii) collision avoidance only and gij given by Eq. (4); (iii)

proximity maintenance only with a path graph as the desired

proximity graph, i.e., robot i maintains constraints with

robots i − 1 and i + 1 and no constraints between robots

1 and N , and gij given by Eq. (5); and (iv) both collision

avoidance and proximity maintenance with a path graph as

the the desired proximity graph and gij given by the sum of

Eq. (4) and (5). In these results, we chose δ = 2, � = 10,

and k1 = k2 = 4. Note the difference in the final positions

resulting from the different gij choices.

For boundaries where close form solutions are not

available, we provide simulation results using the approach

discussed in Section 6. The function depicted in Fig. 5 was

created using 95 constraint points and the zero isocontour is

given by the disjoint boundaries of the letters L, U, I, and Z.

Figure 6 shows a simulation snapshot of 90 robots spreading

out along this isocontour. For the simulation depicted in

Fig. 7, we first generated implicit functions forming the

letters G, R, A, S, P and achieved dynamic shape change

by switching to the desired shape function once the initial
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Fig. 4. A 40-robot team converging to the star shaped boundary, denoted by the black solid line in (a), using the control law given (3)
with δ = 2, � = 10, k1 = k4 = 4. The solid circles represent the robots and the empty circles denote the circular region around the robot
defined with radius δ. Robot trajectories are the solid lines connecting the solid circles and the ×’s used to denote the initial positions. (a)
Initial position of the team with respect to the desired boundary. (b) Trajectories of the robots when gij = 0 for all i and j . (c) Trajectories
of the robots when gij is given by (4), i.e., collision avoidance only. (d) Trajectories of the robots when gij is given by (5), i.e., proximity
maintenance. The desired proximity graph is a path graph. (e) Trajectories of the robots when gij is the sum of Eqs. (4) and (5), i.e.,
collision avoidance and proximity maintenance.

pattern was achieved. Figure 7 shows the shape function for

each letter and a snapshot of the simulation for each letter, in

which the robots are represented by the small circles. Each

of these functions was generated using an average of 40

constraint points. As expected the robots are attracted to and

spread along the desired boundaries.

We note that when synthesizing patterns composed of

disjoint unions of complex boundaries, the ability of the

team to align themselves along the desired boundaries often

depends on the initial positions of the individual robots

since the convergence results obtained in Section 5 do not

Fig. 5. Function composed of 95 radial basis functions that has the
string “LUIZ” as its zero isocontour.

extend to these patterns. Consider the letter “P” shown

in Fig. 3. If all robots start from outside the shape, they

will have to overcome the minima imposed by the outer

curve to reach the inner boundary of the shape. Here the

minima is not an undesired local minima but rather a

boundary that must also be reached. In the simulations

presented here, the initial distribution of the robots is

roughly uniform which allowed the team to converge to

both boundaries. In general, local minima situations may

potentially be resolved using approaches such as random

exploration.

Fig. 6. Snapshot of a simulation where 90 robots converge and
spread along the isocontour depicted in the previous figure.
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Fig. 7. Simulations of 55 robots tracking different functions to form the letters G, R, A, S, P. The figures on the top row show the functions
generated for each letter, while the figures on the bottom row show snapshots of the simulation (robots are the small circles).

8. Conclusions

We have presented decentralized controllers for generating

formations that conform to specified two dimensional

patterns with constraints on proximity. These controllers can

be used to deploy multiple robots to surround buildings or

fenced off areas, or to self-assemble robots to build a two

dimensional structure. The algorithm was shown to be stable

and convergence to the boundary was established for star

shapes in both the absence and the presence of inter-agent

interactions. Convergence to the boundary of more general

shapes with different interactions was shown in simulation.

One direction for future work includes the extension of

our convergence results to the boundaries given by the union

of disjoint convex sets and time-varying boundaries. We also

acknowledge the need to implement sensing on individual

robots to obtain local state information. It may not be

reasonable to expect small, resource-constrained robots to be

able to sense their individual states. However, it is difficult to

get robots to perform tasks like pattern generation in a fixed

coordinate frame without a hardware (or software) solution

to the localization problem. The important point is that the

robots need only local state information and the algorithm is

completely decentralized.

Acknowledgements

The authors would like to thank Drs. Adam Halasz and

Savvas Loizou from the University of Pennsylvania for

discussions on stability and convergence. We would also

like to thank our reviewers for their valuable comments.

We gratefully acknowledge the support of ARO Grants

W911NF-05-1-0219, W911NF-04-1-0148 and CNPq grants

305127/2005-5 and 490743/2006-4.

References
1. N. F. Britton, N. R. Franks, S. C. Pratt and T. D. Seeley,

“Deciding on a New Home: How Do Honeybees Agree?,”
Proceeding of Royal Society of London B, vol. 269, 2002,
pp. 1383–1388.

2. S. C. Pratt, “Quorum sensing by encounter rates in the ant
temnothorax albipennis,” Behav. Ecolo. 16(2), (2005) pp. 448–
496.

3. I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R.
Franks, “Collective memory and spatial sorting in animal
groups,” J. Theo. Bio. 218, (2002) pp. 1–11.

4. J. K. Parrish, S. V. Viscido and D. Grunbaum, “Self-organized
fish schools: An examination of emergent properties,” Biol.
Bull. 202, (2002) pp. 296–305.

5. C. W. Reynolds, “Flocks, Herds and Schools: A Distributed
Behavioral Model,” Proceedings of the 14th annual conference
on Computer Graphics (SIGGRAPH’87), (ACM Press, 1987),
Baltimore, Maryland, USA pp. 25–34.

6. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet,
“Novel type of phase transition in a system of self-driven
particles,” Phys. Rev. Lett. 75(6), 1226–1229 (1995).

7. A. Jadbabaie, J. Lin and A. Morse, “Coordination of
groups of mobile autonomous agents using nearest neighbor
rules,” IEEE Trans. Autom. Control, July 2003 48(6),
pp. 988–1001.

8. H. G. Tanner, A. Jadbabaie and G. J. Pappas, “Flocking in
fixed and switching networks,” Trans. Autom. Control 52(5),
863–868 (2007).

9. O. Albayrak, Line and Circle Formation of Distributed
Autonomous Mobile Robots with Limited Sensor Range (PhD
thesis, Naval Postgraduate School, Monterey, CA, 1996).

10. I. Suzuki and M. Yamashita, “Distributed anonymous mobile
robots: Formation of geometric patterns,” SIAM J. Comput.,
28(4), 1347–1363 (1999).

11. J. P. Desai, J. P. Ostrowski and V. Kumar, “Modeling and
control of formations of nonholonomic mobile robots,” IEEE
Trans. Robot. Autom. 17(6), 905–908 (2001).

12. R. Fierro, P. Song, A. Das and V. Kumar, “Cooperative control
of robot formations,” Cooperative Control and Optimization:
Series on Applied Optimization (R. Murphey and P. Paradalos,
eds.) (Kluwer Academic Press, 2002) pp. 79–93.

13. H. G. Tanner and A. Kumar, Formation Stabilization of
Multiple Agents Using Decentralized Navigation Functions.
(MIT Press, 2005).

14. S. G. Loizou and K. J. Kyriakopoulos, “A feedback based
multiagent navigation framework,” Int. J. Syst. Sci. 37(6), 377–
384 (2006).

15. P. Ogren, E. Fiorelli and N. E. Leonard, “Formations
with a Mission: Stable Coordination of Vehicle Group
Maneuvers,” Proceedings of 15th International Symposium on
Mathematical Theory of Networks and Systems, Notre Dame,
Illinois, USA (Aug. 2002) pp. 267–278.

16. P. Song and V. Kumar, “A Potential Field Based
Approach to Multi-Robot Manipulation,” Proceedings of
IEEE International Conference on Robotics and Automation,
Washington, DC (May 2002) pp. 1217–1222.

17. G. A. S. Pereira, V. Kumar, and M. F. M. Campos,
“Decentralized algorithms for multi-robot manipulation via
caging,” Int. J. Robot. Res. (IJRR), July-August 2004 23,
pp. 783–795.

18. L. Chaimowicz, N. Michael and V. Kumar, “Controlling
Swarms of Robots Using Interpolated Implicit Functions,”
Proceedings of the 2005 International Conference on Robotics



Decentralized controllers for shape generation with robotic swarms 701

and Automation (ICRA05), Barcelona, Spain, (2005) pp. 2487–
2492.

19. N. Correll, S. Rutishauser and A. Martinoli, “Comparing
Coordination Schemes for Miniature Robotic Swarms: A
Case Study in Boundary Coverage of Regular Structures,”
Proceedings of 10th International Symposium on Experimental
Robotics (ISER) 2006, Rio de Janeiro, Brazil, (2006) pp. 471–
480.

20. N. Correll and A. Martinoli, “System Identification of
Self-Organizing Robotic Swarms,” Proceedings of 8th Int.
Symposium on Distributed Autonomous Robotic Systems
(DARS) 2006, Rio de Janeiro, Brazil (2006) pp. 31–40.

21. R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization
of planar collective motion, part 1. All-to-all commu-
nication,” IEEE Trans. Autom. Control 52(5) 811–824
(2005).

22. D. Paley, N. E. Leonard and R. J. Sepulchre, “Collective Motion
of Self-Propelled Particles: Stabilizing Symmetric Formations
on Closed Curves,” Proceedings of the 45th IEEE Conference
on Decision and Control (Submitted), San Diego, CA, (2006)
pp. 5067–5072.

23. F. Zhang and N. E. Leonard, “Coordinated patterns of unit
speed particles on a closed curve,” Syst. Control Lett. 56(6),
397–407 (2007).

24. F. Zhang, D. M. Fratantoni, D. Paley, J. Lund and N. E.
Leonard, “Control of coordinated patterns for ocean sampling,”
Int. J. Control 80(7), 1186–1199 (2007).

25. A. Bertozzi, M. Kemp and D. Marthaler, “Determining
environmental boundaries: Asynchronous communication and
physical scales,” Coop. Control, (2004) vol. 309, pp. 25–42.

26. W. Kerr and D. Spears, “Robotic Simulation of Gases for a
Surveillance Task,” Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 2005,
Edmonton, Alberta, Canada, (August 2005) pp. 2905–2910.

27. C. Belta, G. A. S. Pereira and V. Kumar, “Abstraction and
Control of Swarms of Robots,” International Symposium of
Robotics Research’03, Sienna, Italy, (2003) pp. 224–233.

28. L. Chaimowicz and V. Kumar, “Aerial sheperds: Coordination
Among Uavs and Swarms of Robots,” Proceedings of the 7th
International Symposium on Distributed Autonomous Robotic
Systems (DARS2004), Toulouse, France (2004) pp. 231–240.

29. N. Michael, C. Belta, and V. Kumar, “Controlling Three
Dimensional Swarms of Robots,” Proceedings of IEEE
International Conference on Robotics and Automation (ICRA)
2006, Orlando, FL (April 2006) pp. 964–969.

30. F. Zhang, M. Goldgeier, and P. S. Krishnaprasad, “Control of
Small Formations Using Shape Coordinates,” Proceedings of
of 2003 International Conference of Robotics and Automation,
Taipei, Taiwan (2003) pp. 2510–2515.

31. J. Spletzer and R. Fierro, “Optimal Positioning Strategies
for Shape Changes in Robot Teams,” Proceedings of the
IEEE International Conference on Robotics and Automation,
Barcelona, Spain (Apr. 2005) pp. 754–759.

32. B. Nabet and N. E. Leonard, “Shape Control of a Multi-
agent System Using Tensegrity Structures,” IFAC Workshop on
Lagrangian and Hamiltonian Methods for Nonlinear Control,
Nagoya, Japan (2006) pp. 329–339.

33. M. A. Hsieh and V. Kumar, “Pattern Generation with Multiple
Robots,” Proceedings of International Conference on Robotics
and Automation (ICRA) 2006, Orlando, FL (Apr. 2006) pp.
2442–2447.

34. M. P. do Carmo, Differential Geometry of Curves and Surfaces,
Upper Saddle River, New Jersey (Prentic-Hall Inc., 1976).

35. E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Trans. Robot. Autom. 8,
501–518 (1992).

36. G. Turk and J. F. O’Brien, “Shape Transformation Using
Variational Implicit Functions,” Proceedings of the 26th
Annual Conference on Computer Graphics (SIGGRAPH 99),
ACM Press/Addison-Wesley Publishing Co., Los Angeles,
California, USA (1999) pp. 335–342.

37. G. Turk, H. Q. Dinh, J. F. O’Brien and G. Yngve,
“Implicit Surfaces That Interpolate,” Proceedings of the
International Conference on Shape Modeling & Applications,
IEEE Computer Society, Geneva, Italy (2001) pp. 62–73.

Appendix: The Determination of Nmax and Nmin

Given an interaction range or a fixed sensing radius d > 0,

Nmin and Nmax can be determined purely geometrically. To

accomplish this, begin by selecting an initial point on ∂S

and placing a circle of radius d centered at this point. Next,

select another point on ∂S by going along the boundary in

a counter-clockwise direction. Select this next point such

that a circle of radius d centered at this second point is

tangent to the first circle. By repeating this process, one will

be able to generate a sequence of circles centered at points

on the boundary that are tangent to one another. Since the

boundary and the d are both finite, one can continue this

process until one can no longer fit a circle centered at a

point on ∂S without intersecting any of the previous circles.

Thus, the number of tangent circles drawn at the end of

the process gives Nmax. A similar procedure can be used to

determine Nmin.
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