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Abstract— This paper addresses the problem of cooperative
search in a given environment by a team of Unmanned Aerial
Vehicles (UAVs). We present a decentralized control model for
cooperative search and develop a real-time approach for on-
line cooperation among vehicles, which is based on treating
the possible paths of other vehicles as “soft obstacles” to
be avoided. Using the approach of “rivaling force” between
vehicles to enhance cooperation, each UAV takes into account
the possible actions of other UAVs such that the overall in-
formation about the environment is increased. The simulation
results illustrate the effectiveness of the proposed strategy.

I. INTRODUCTION
Control of networked multi-vehicle systems that are in-

tended to perform a coordinated task is currently an impor-
tant and challenging field of research [1], [2], [3], [4], [5].
This is due to the fact that collaborative teams of aerial and
ground vehicles can perform a number of highly beneficial
tasks in military and civilian applications. However, a major
obstacle to the realization of such systems still remains the
design of coordination and decision algorithms to achieve
complex, adaptable, and flexible system behavior.

This paper focuses on the multi-vehicle cooperative
search problem where a team of UAVs seeks to find targets
in a dynamic and risky environment. In this problem, the
vehicles treat all uncertain areas as possible destinations
in order to identify as many targets as possible. However,
due to the UAVs’ energy limitations and the various un-
certainties in complex scenarios, such as imperfect sensor
accuracy and “pop-up” threats, the UAVs cannot use the
exhaustive coverage path planning methods (e.g., Zamboni
search [6]) to explicitly pass over all points in the search
area. Thus the vehicles need highly autonomous path plan-
ning capabilities. Our research focuses on this problem. We
have previously proposed a decentralized control framework
for emergent coordinations among vehicles and developed
several heuristic cooperative path planning algorithms [7],
[8], [9]. Some other related works on the cooperative search
problem include [10], [11]. The UAV cooperative search
problem is also related to the multi-robot mapping and
exploration problem [12], [13] in the robotics area.

In this paper, we extend our previous method by explicitly
incorporating threats in the control model and in the co-
operative path planning strategies, which makes the search
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problem model fit more closely to real battlefield situations.
We formulate the updated search problem as a finite horizon
optimal control problem, develop a coordination method
based on therivaling force approach [7], and evaluate the
proposed scheme through simulation.

The remainder of the paper is organized as follows.
Section II presents the decentralized control model for
the multi-vehicle cooperative search problem. Section III
describes the proposed cooperative path planning strategy.
The rivaling force based coordination algorithm is given
in Section IV. Some simulation results and discussion are
presented in Section V. Section VI concludes the paper with
some final observations.

II. PROBLEM DEFINITION

We consider a team of UAVs engaged in searching for
targets in an environment of known size with the objective
to identify as many targets as possible and minimize the
loss or damage of the UAVs during the mission.

A. The Environment
The environmentis a boundedLx × Ly cellular area,

where each position is termed acell. The environment is
populated by stationary non-threatening targets and threats.
The number and locations of the targets are initially un-
known. We assume that there is at most one target in each
cell. There are alsoM stationary threats,γi, i = 1, . . . ,M ,
which have anti-craft capabilities, such as surface-to-air
missiles (SAMs). The threatγi is located at(xγ

i , yγ
i ) and it

hasa priori known attack regionφi which is the range over
which the threat is capable of destroying the UAVs witha
priori known kill probability pi

kill ∈ [0, 1].
B. The UAV Dynamics Model

The team consists ofN identical UAVs moving syn-
chronously in discrete time, searching the given environ-
ment for targets. Each UAV is equipped with a sensor (with
imperfect detection accuracy) and communication capabili-
ties. At each time step, the UAV can move from one cell to
another neighboring cell, subject to some maneuverability
constraints. In order to simplify the problem we start with
the assumption of perfect communication among UAVs,
which means that, at each time step, a UAV can receive the
sensing information and state information from other UAVs
instantaneously through communications. This assumption
will be relaxed later.

The state of UAV i at time t is denoted by
vi(t), which is comprised of three components:
vi(t) = [λi(t), oi(t), δi(t)]. The first component
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Fig. 1. Possible transition choices for agents in all8 orientations.

λi(t) = (xi(t), yi(t)) ∈ {1, 2, . . . , Lx} × {1, 2, . . . , Ly} is
the i-th vehicle’s position in the environment at timet.
The second elementoi(t) ∈ {0, 1, . . . , 8} is the vehicle’s
orientation defined by{0 (north), 1 (northeast),2 (east),
3 (southeast),4 (south), 5 (southwest),6 (west), and7
(northwest)}. The third elementδi(t) ∈ {0, 1} of the state
vi(t) is a flag indicating whether the UAVi has been
destroyed at timet, whereδi(t) = 1 means that the UAVi
is alive at timet.

The UAV’s dynamics is subject to its physical curvature
radius constraints, reflected in the fact that it can only
change its orientation by at most one step, that is,oi(t+1) ∈
{oi(t)− 1, oi(t), oi(t) + 1} mod 8. This essentially means
that the UAV’s maximum turning capability is45◦. Thus
each UAV has three possible positions for the next time step,
i.e. turn left, turn right or go straight, which is designated by
{l (left), f (front), r (right)}. Figure 1 shows this graphically
for various orientations.

The control decision for UAVi is its path selection at
each time stept, denoted byui(t) ∈ {l, f, r}. The UAV’s
state can also be changed by threats. The UAVi will be
destroyed with probabilitypj

kill in threatj’s attack region,
thus causing the vehicle’s state flagδi(t) = 1 to change
into δi(t + 1) = 0. The threat actions in the environment,
denoted byω(t) = [ω1(t), ω2(t), . . . , ωM (t)], determine the
transition ofδi(t), which is a stochastic event. In summary,
a vehicle’s transition function can be expressed as:

vi(t + 1) = fv(vi(t), ui(t), ω(t)) (1)

In our model, UAVs use theq-steps-ahead path planning
method [7], that is, each UAV plans its pathq steps ahead
of its current location, adding a new move at each time-
step. For simplicity, in this paper we useq = 1, but the
extension toq > 1 is straightforward. Thus, at time-step
t, the UAV i makes its path decisionui(t + 1). At time t,
the UAV executes anaction comprising the following three
steps:

1) It makes decisionui(t + 1) to choose a new orienta-
tion, oi(t + 2).

2) It then find its positionλi(t + 2) as the neighbor of
λi(t + 1) facing orientationoi(t + 2).

3) Finally, it executes its decisionui(t) and updates its
statevi(t+1) = [λi(t+1), oi(t+1), δi(t+1)] by going
to grid locationλi(t+1) with orientationoi(t+1) and
changingδi(t + 1) according to threat actionsω(t).

C. The UAV Information Base
UAVs use three cognitive maps, thetarget probability

map, P (t), the threat probability map, K(t), and the
certainty mapX (t) as its knowledge base for the mission. In
the target probability mapP (t), each cell(x, y) has a value
p(x, y, t) ∈ [0, 1] representing the probability of a target
being present in cell(x, y), termed thetarget probability:

p(x, y, t) = P (target present at(x, y)) (2)

The threat probability mapK(t) stores thethreat probabil-
ity of each cell(x, y) denoted ask(x, y, t) ∈ [0, 1] which
represents the probability that the UAV will be destroyed at
cell (x, y) by any threat. We have

k(x, y, t) = P (UAV destroyed at(x, y) by threats)

= 1−
n∏

j=1

(1− pj
kill(x, y)) (3)

wheren is the number of threats whose attack regions cover
position (x, y).

The certainty mapX (t) stores thecertaintyvalue of each
cell (x, y), denoted asχ(x, y, t) ∈ [0, 1], which corresponds
to the degree to which the cell has been searched. If
χ(x, y, t) = 0 then the cell has not been searched until
time t. On the other hand, ifχ(x, y, t) = 1 then the cell
has been fully searched. This factor is used to drive the
UAVs to explore the un-searched regions.

In the decentralized search model, each UAVi carries its
own cognitive maps,P i(t), Ki(t) and X i(t). The initial
values of the cognitive maps,P i(0), Ki(0) andX i(0) are
used to reflect thea priori knowledge about environment.
For example, if all targets are land-based, the locations
corresponding to a lake may begin withpi(x, y, 0) = 0
and χi(x, y, 0) = 1 (i.e., the location is free of targets).
The threat probability mapKi(0) is initialized according
to the locations and types of the known threats. The maps,
P i(t), Ki(t) and X i(t) are updated on-line using the
new information obtained by UAVi’s sensor scan and by
communication with other UAVs. The assumption of perfect
communication, in fact, makes the information base for all
UAVs the same, and we can use global mapsP (t), K(t)
andX (t).

In the certainty mapX (t), most cells typically begin with
a certainty of zero. Each time a UAV visits cell(x, y) and
makes a scan, the certainty changes according to the rule

χ(x, y, t + 1) = χ(x, y, t) + 0.5(1− χ(x, y, t)) (4)

This is a simple way to track the number of useful “looks”
each cell has had and captures the notion of diminishing
returns with each look. For the threat map, we assume
that the threats are all stationary and knowna priori. So
the threat probability map is time-invariant, that isK(t) =
K(0).

Next we discuss the update of the target probability map
P (t). As UAV i visits a cell (x, y) at time t, it makes
a sensor scan to detect targets. The resulting observation
is denoted bybi(x, y, t) ∈ {0, 1}, where bi(x, y, t) = 1



indicates a target detection andbi(x, y, t) = 0 indicates no
target detected. The sensor’s detection accuracy is charac-
terized by two parameters, the sensor detection ratepc and
the false alarm ratepf which are defined as:

pc = P (bi(x, y) = 1 | A) (5)

pf = P (bi(x, y) = 1 | Ā) (6)

whereA denotes the event that a target is actually located
in cell (x, y).

The update rule for the target probability, which is derived
based on Bayesian inference, is given by:

p(x, y, t) = bi(x, y, t)Λ1 + (1− bi(x, y, t))Λ2 (7)

where

Λ1 =
pcp(x, y, t− 1)

pcp(x, y, t− 1) + pf (1− p(x, y, t− 1))

Λ2 =
(1− pc)p(x, y, t− 1)

(1− pf )(1− p(x, y, t− 1)) + (1− pc)p(x, y, t− 1)

It can be shown that by using the above update equa-
tions, p(x, y, t + 1) > p(x, y, t) for bi(x, y, t) = 1 and
p(x, y, t + 1) < p(x, y, t) for bi(x, y, t) = 0 whenpc > pf .
Throughout this paper, we assumepc > 0.5 > pf , i.e., the
sensors are informative.

Finally, we use a binary variableζ(x, y, t) to indicate
whether a target has been confirmed or not in cell(x, y).
Initially, all cells except those with known targets have
ζ(x, y, 0) = 0. The condition for updating is:

ζ(x, y, t) =
{

1 if p(x, y, t) ≥ θ
0 else

(8)

whereθ is a pre-defined threshold close to1.

D. Optimal Control Problem Formulation
To accomplish the search task efficiently, each UAV needs

to find an optimal path to follow based on its knowledge of
the environment. In our model, the UAVs’ decision process
is decentralized in the sense that each UAV makes decisions
independently. This decentralized decision making problem
can be formulated as an optimal control problem as follows.

As defined, thei-th UAV’s decision at timet is to select
its move for timet + 1, ui(t + 1), leading to its position
at time t + 2. The decision is based on the environment
statexi(t), which is composed of the UAV’s cognitive maps
and its knowledge of all the vehicles’ states and decisions.
We definevi(t) = [vi

1(t), v
i
2(t), . . . , v

i
N (t)], wherevi

j(t) =
[λi

j(t), o
i
j(t), δ

i
j(t)] denotes vehiclei’s knowledge on ve-

hicle j’s state at timet; ui(t) = [ui
1(t), u

i
2(t), . . . , u

i
N (t)]

whereui
j(t) ∈ {l, f, r} denotes the vehiclei’s knowledge

on vehiclej’s decision at timet. Note that in practice,vi
j(t),

ui
j(t) might not be the same asvk

j (t), uk
j (t) respectively

because of communication limits under some scenarios.
However, due to the perfect communication assumption,
they are the same in this paper, which means that all the
UAVs share the same environment state represented by

x(t) = {P (t),K(t),X (t), v(t), u(t)}

where v(t) = [v1(t), v2(t), . . . , vN (t)] and u(t) =
[u1(t), u2(t), . . . , uN (t)]. Thus, for UAV i, its decision
ui(t + 1) is a function of the current environment state

ui(t + 1) = hi(x(t)) (9)

As the UAVs execute their decisions,u(t), their sensors
return the scan readingsb(t) = [b1(t), b2(t), . . . , bN (t)] and
the threats take actionsω(t) = [ω1(t), ω2(t), . . . , ωM (t)].
Both b(t) and ω(t) are stochastic quantities and they,
together with the vehicles’ actions, determine the new
environment state through a stochastic transition function,
fs:

x(t + 1) = fs(x(t), u(t), b(t), ω(t)) (10)

Equations (9) and (10) define the dynamics of the system,
with functionsh andfs depending on the specific cooper-
ative control strategy used. Note that the UAVs’ decisions
cause the environment state transitions which, in turn, affect
the decisions of the UAVs. The dynamics are stochastic due
to the stochasticity ofb(t) andω(t).

The objective of the search mission, which will lastTf

units of time, is to locate as many targets as possible
while minimizing UAV losses. This can be achieved by
cooperative path planning among the multiple UAVs such
that the following payoff function is maximized:

E{G(x(Tf ))−
Tf−1∑
t=0

J(x(t), u(t))} (11)

where the terminal payoff functionG(·) and the cost
function J(·, ·) are defined as

G(x(Tf )) :=
N∑

i=1

πvδi(Tf ) +
∑

(x,y)∈E

πtζ(x, y, Tf )(12)

J(x(t), u(t)) :=
M∑

i=1

c(ui(t)) (13)

The positive constantsπv and πt represent the weight
allocated to the importance of UAV safety versus target dis-
covery, whilec is a positive-valued function that represents
the cost of moving UAVi as designated byui(t). Because
we use identical UAVs and we assume the same cost for
moves in every direction,c is a constant function. The
first term in (12) represents the total number of surviving
UAVs, while the second term represents the number of
identified targets. Thus, the objective of the search problem
can be described as maximizing the terminal payoff function
G(x(Tf )).

Dynamic programming [14] is one possible approach for
this optimal path selection problem. However, it is com-
putationally prohibitive because of the large dimensionality
of the state space in this problem. Instead, we develop an
approximate dynamic programming method using a multi-
objective cost function, where the cooperation among UAVs
is achieved using the “rivaling force” approach [7].



III. C OOPERATIVEPATH PLANNING METHOD

In this section, we describe a path selection decision func-
tion h(x(t)), which the UAVs can use for cooperative path
planning based on their current information. The decision
function is based on the expected rewards associated with
each of the three possible paths for the next time step. The
reward definition takes into account the following four sub-
goals: 1) Target Confirmation, 2) Environment Exploration,
3) Threat Avoidance, 4) Cooperation.

The reward obtainable at the next step is calledimmediate
reward. However, a UAV should not select a path only with
the best immediate reward but a path that will bring more
rewards over the long term. Therefore, UAVs use a limited
look-ahead policy to select their paths in the proposed
path planning method, that is, they also consider longer
term rewards in their path selections. Next, we discuss the
heuristic estimation of the immediate reward and the long-
term reward, respectively.
A. Immediate Reward Estimation

The expected immediate reward for a UAV searching cell
(x, y) at timet+1, denoted asρ(x, y, t+1), is the payoff for
target confirmation and UAV survival. It is represented as a
multi-objective cost function which is a linear combination
of four types of rewards corresponding to the four sub-
goals:

ρ(x, y, t + 1) = ω1ρf (x, y, t + 1) + ω2ρe(x, y, t + 1)

+ω3ρt(x, y, t + 1)+ω4ρc(x, y, t + 1) (14)

where ρf (x, y, t + 1) is the target confirmation reward,
ρe(x, y, t + 1) is the environment exploration reward,
ρt(x, y, t+1) is the threat avoidance reward andρc(x, y, t+
1) is the cooperation reward. The definitions for these
rewards are given below. By changingωi, i ∈ {1, 2, 3, 4},
the relative importance of the four rewards can be scaled.

1) Target Confirmation Reward:To achieve the search
objective, the UAVs need to maximize the number of
confirmed targets. A UAV will get a rewardπt in one cell
if it can confirm a new target there. So the expected target
confirmation reward in cell(x, y) at time t + 1 is defined
as:
ρf (x, y, t + 1)

=P (new target confirmation in cell(x, y) at time t + 1) · πt

+P (non-target confirmation in cell(x, y) at time t + 1) · 0
=P (ζ(t) = 0 ∩ ζ(t + 1) = 1) · πt

=P (ζ(t) = 0 ∩ bi(x, y, t + 1) = 1 ∩ p(x, y, t) ≥ β) · πt

=P (ζ(t)=0)·P (bi(x, y, t + 1)=1)·P (p(x, y, t)≥β)·πt (15)

whereβ is a constant indicating the minimum probability
thatp(x, y, t) can take such that thep(x, y, t+1) (generated
using update Equation (7)) will be greater than the threshold
valueθ. The value ofβ can be obtained using (7) and the
specific values ofpc, pf andθ.

Let A denote the event that a target is actually located
in cell (x, y). Using the total probability theorem and
p(x, y, t) = P (A), pc = P (bi(x, y, t + 1) = 1 | A) and
pf = P (bi(x, y, t + 1) = 1 | Ā), we obtain:
P (bi(x, y, t + 1) = 1)

= P (bi(x, y, t+1)=1 |A)P (A)+P (bi(x, y, t+1)= 1 |Ā)P (Ā)

= (pc − pf )p(x, y, t) + pf (16)

Therefore, we get:

ρf (x, y, t + 1) =

{
[(pc − pf )p(x, y, t) + pf ] · πt

if ζ(x, y, t)=0 andp(x, y, t)≥β
0 else

(17)
The above equation indicates that each UAV should select

a path consisting of cells with high target probabilities.
2) Environment Exploration Reward:Since targets are

usually relatively sparse in the practical situations, it is
important for the UAVs to explore the environment to
obtain new information on potential targets. As discussed
before, the certainty valueχ(x, y, t) can be used to drive
the UAVs to explore un-searched regions. The environment
exploration reward,ρe, is defined as the expected certainty
increase caused by a UAV’s visit to cell(x, y):

ρe(x, y, t + 1) = E[χ(x, y, t + 1)− χ(x, y, t)]

= 0.5(1− χ(x, y, t)) (18)

We can see that the environment exploration reward
ρe(x, y, t) is a decreasing function ofχ(x, y, t). Hence, for
exploration purposes, it is better for the UAVs to visit cells
with lower certainty valuesχ(x, y, t).

It is easy to notice that the target confirmation reward and
environment exploration reward are not always mutually
compatible. These two imperatives can be viewed as the
classic exploration vs. exploitation tradeoff in game theory.

3) Threat Avoidance Reward :Due to the presence of
threats, UAVs can be destroyed, resulting in a reduction
in the terminal payoff functionG(·). The threat avoidance
reward ρt is defined as the avoided loss in the terminal
payoff function if a UAV is not destroyed in cell(x, y) at
time t + 1:

ρt(x, y, t + 1) = (1− k(x, y, t + 1))(πv + n̄(t + 1)πt) (19)

where n̄(t + 1) denotes the estimated average number of
targets which could be identified by the UAV from time
t + 2 until time Tf . Therefore,n̄(t + 1) should become
smaller ast increases. Note thatk(x, y, t + 1) is known
because the threat map is time-invariant. To gain threat
avoidance rewards, a UAV needs to avoid cells with high
threat probabilities.

4) Cooperation Reward :Since UAVs plan their paths
independently, it is natural that two or more UAVs may
choose the same paths because they all want to obtain the
associated high rewards. This will be more pronounced if
the UAVs happen to be very close and have overlaps in their
candidate positions for the next time step. These possible
overlaps in the search paths will waste the team’s search
effort and cause a reduction in the global payoff function.
We include a cost function that penalizes vehicles being
close to each other and heading in the same direction so as
to reduce the possible overlaps. In this paper, we utilize the
“rivaling force” based method to generate the cooperation
cost function. The cooperation reward,ρc, is defined as the
negative of the “rivaling force”,Fi:

ρc(x, y, t + 1) = −Fi(x, y, t + 1) (20)

where Fi(x, y, t + 1) is a function of other vehicles’
positions λj(t + 1) and orientationsoj(t + 1), j ∈
{1, 2, . . . , N}, j 6= i. Detailed information regarding the
generation of the rivaling force functionF defined by (27)
is given in Section IV.



B. Long-Term Reward Estimation
The long-term expected reward function is used to steer

UAVs away from decisions that may yield good immediate
payoffs but reduced benefits in the long-run. The long-term
expected reward, denoted byφ(x, y, t+1), is defined as the
maximum reward accumulated by following a path starting
at cell (x, y) over stept + 1 to t + T , T ≥ 1. Since each
UAV has three candidate positions to go in the next time
step, it has3T−1 possible paths over timet+1 to t+T . The
expected reward for pathj ∈ [1, 2, . . . , 3T−1] is denoted as
φj(x, y, t + 1) and is the sum of the accumulated rewards
in the path and the expected future reward aftert + T . Let
(xj

m, yj
m) denote a cell in pathj which the UAV will visit

at time t + m, where1 ≤ m ≤ T . The reward obtained by
the UAV in that cell at timet + m is given by:

ρl(xj
m, yj

m, t + m)

=

[
m−1∏
s=1

[1− k(xj
s, y

j
s, t + s)]

]
[ω1ρf (xj

m, yj
m, t + m)

+ω2ρe(xj
m, yj

m, t+m)+ω3ρc(xj
m, yj

m, t+m)] (21)

whereρf (xj
m, yj

m, t + m) is the target confirmation reward
in cell (xj

m, yj
m) at time t + m, ρe(xj

m, yj
m, t + m) is the

environment exploration reward andρc(xj
m, yj

m, t + m) is
the cooperation reward. The product

∏m−1
s=1 [1−k(xj

s, y
j
s, t+

s)] gives the probability that the UAV will still be alive to
reach that cell and obtain the reward. Due to the fact that
ρl(xj

m, yj
m, t + m) depends onp(xj

m, yj
m, t + m − 1) and

the positions and orientations of UAVs at timet + m, the
expected reward cannot be known at decision time stept
when m > 1. Hence, we need to find a way to estimate
these values. Here we simply use the corresponding known
values at timet to substitute the unknown values over time
t+1 to t+T −1 in (21). Thus we get the heuristic estimate
of ρl as:

ρ̄l(x
j
m, yj

m, t + m)

=

m−1∏
s=1

[1− k(xj
s, y

j
s, t + s)][ω1ρf (xj

m, yj
m, t + 1)

+ω2ρe(x
j
m, yj

m, t+1) + ω3ρc(x
j
m, yj

m, t+1)] (22)

Meanwhile, the future reward after timet + T following
path j can be denoted as:

ρj
a =

T∏
s=1

[1− k(xj
s, y

j
s, t + s)](πv + n̄(t + T )πt) (23)

So, the total expected reward for pathj can be denoted as

φj(x, y, t + 1) =
T∑

m=1

ρ̄l(xj
m, yj

m, t + m) + ω4ρ
j
a (24)

whereω4 is the same weight as in (14). And the expected
long-term rewardφ(x, y, t + 1) at cell (x, y) is

φ(x, y, t + 1) = max
j∈[1,2,...,3T−1]

φj(x, y, t + 1) (25)

It is obvious that, whenT = 1, the expected long-term
reward at cell(x, y) is the same as the immediate expected
reward given by (14). This definition of long-term reward
derives a way to allow the UAVs to look ahead in making
their decisions.

IV. COORDINATION METHOD

As discussed before, cooperation between vehicles does
not arise naturally in the proposed decentralized scheme
since every vehicle tries to optimize its own behavior.
Therefore, we develop a real-time approach to realize coop-
erative search using the concept of rivaling force developed
in [7]. The main idea is to avoid simultaneously searching
a cell by more than one UAVs. This is accomplished by
treating the areas around a UAV as “soft obstacles” to be
avoided in other vehicles’ path selections. The rivaling force
exerted by a UAV on a neighboring UAV is obtained by a
type ofartificial potential fieldmethod [15]. At each step, a
UAV considers in its path decision the overall rivaling force
which it is exerted upon it by other vehicles.

If UAV i plans to visit cell(x, y) at timet, it will receive
a rivaling force exerted by other vehicles. The magnitude
of the rivaling force coming from vehiclej depends on the
vehiclej’s position and orientation at timet. We can obtain
the minimum number of steps that vehiclej would need to
reach cell(x, y), denoted aslj(x, y, t), using vehiclej’s
position λj(t) and orientationoj(t). This variable reflects
the cost for vehiclej to search(x, y) in the near future.
Because the UAVs cooperate to achieve a group objective,
a higher cost for vehiclej searching(x, y) makes it more
appropriate for vehiclei to search the cell. In this case, the
rivaling force exerted by vehiclej upon vehiclei will be
small. Using an approach similar to the artificial potential
field method, we define the force exerted by vehiclej on
vehicle i in cell (x, y) at time t as:

Fij(x, y, t) =
1

lj(x, y, t)
(26)

The total rivaling force received by UAVi for moving to a
cell (x, y) at time t can be given as

Fi(x, y, t) =
N∑

j=1,j 6=i

Fij(x, y, t) (27)

Note that different UAVs may receive different rivaling
forces when located in the same cell because of differences
in the positions/orientations of neighboring UAVs. This
force is a penalty for UAVi for entering a cell that is a
suitable selection for other vehicles.

V. SIMULATION RESULTS

To assess the performance of the approach described
above, we simulated a team of five UAVs searching a20×20
cellular environment with 20 targets and 5 threats. There is
no a priori topographical information and no other sources
of information on target distribution. Thusχ(x, y, 0) = 0
andp(x, y, 0) = 0.5 for each cell(x, y) in the environment.
For all the simulation runs in this paper, the homogeneous
targets and threats are randomly assigned to the environment
while the UAVs’ initial locations and orientations are held
constant. The threats’ attack regions are set toφ = 2, the
threat probabilitypkill = 0.2, the UAVs’ sensor detection
rate pc = 0.8 and the sensors’ false alarm ratepf = 0.1.
All simulations were run for 250 time steps.
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Fig. 2. Number of targets found as a function of time: Comparison with
greedy and random search algorithms. All data is averaged over 50 runs.
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Fig. 3. Residual uncertainty as a function of time: Comparison with
greedy and random search algorithms.

We used two measures of performance:
• Number of targets found up to the current time-stept,

i,e., the number of cells withζ(x, y, t) = 1.
• The residual uncertainty left in the environment.

U(t) =

∑
(x,y)∈E

(1− χ(x, y, t))∑
(x,y)∈E

(1− χ(x, y, 0))
(28)

The performance of the proposed cooperative search al-
gorithm was compared to that of a random search and a
greedy search algorithm. In the random search strategy, the
vehicles do not use any available information about the
target and threat distributions but simply move in a random
direction within the search region. In the greedy search
strategy, the vehicles move at each step to the candidate
cells with highest reward for target confirmation and to
avoid damage to the UAV. The reward can be obtained
by using the immediate reward definition (14) in section
III-A with ω4 = 0. In this strategy, the UAVs can share
information about where other UAVs have searched so
that all the UAVs share the same maps but they perform
little distributed path selection in order to coordinate their
actions. In the proposed cooperative search method, the
vehicles will move to the cells with the highest reward
defined as (25), where we setT = 3.

Figure 2 shows the number of targets found by each
algorithm as a function of time. Figure 3 shows how the
mean residual uncertainty in the environment declines with
time for different search algorithms. This value gives a good

indication of the coverage of the search region. It is obvious
that the cooperative search method provides a significant
improvement on both performance measurements.

VI. CONCLUSION

In this paper, we have presented a formulation for the
cooperative search problem. The objective of the search
mission is to find and confirm as many targets as pos-
sible while minimizing UAV losses. A key issue for this
cooperative control problem is the design of a cooperative
scheme such that the team of vehicles perform path planning
cooperatively based on the information they get. We develop
a cooperative path planning algorithm based on a heuristic
multi-objective cost function method, which can overcome
the computational complexity of looking for an optimal
dynamic programming solution. The cooperation among
UAVs is achieved using a rivaling force approach. The
simulation results demonstrate that the heuristic approach is
an intuitive and computationally efficient method to tackle
the cooperative search problem.
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