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This paper presents a framework for provably safe decentralized trajectory planning
of multiple (autonomous) aircraft. Each aircraft plans its trajectory individually using
a receding horizon strategy based on mixed integer linear programming (MILP). A con-
strained, inertial, first-order linear model is used to capture the dynamics and kinematics of
the vehicle. Safety is guaranteed by maintaining, at each time step, a dynamically feasible
trajectory for each aircraft that terminates in a loiter pattern. Conflicts between multiple
aircraft are resolved in a sequential, decentralized fashion, in which each aircraft takes into
account the latest trajectory and loiter pattern of the other aircraft. Besides maintaining
feasibility, if the problem is too complex to be solved within the time constraints of a real-
time system, this approach also provides an a priori safe rescue solution consisting of the
previous trajectories and individual loiter patterns. Several examples of conflict situations
resolved by the proposed method are presented.

I. Introduction

T
he growing complexity of global air traffic has highlighted the shortcomings of the current air traffic

control infrastructure. In the current system, air traffic controllers use predefined routes and standard

procedures to ensure safe separation between the aircraft in their sector. By doing so, maintaining safety

remains a manageable problem for the controller; however, the routes followed by the individual aircraft are

often suboptimal. For example, the system disallows the aircraft to fly directly to the destination or to take

advantage of favorable winds.1 With the air space becoming more congested, delays are more frequent and

accidents caused by the air traffic controller more likely to occur.

Therefore, in recent years, the concept of Free Flight has emerged, which allows pilots to choose their own

routes, altitude and speed. Safe conflict detection and resolution schemes constitute the basis of such system,

and have been a topic of active research. Automating these procedures reduces the risk of human errors and

allows for optimization of the individual aircraft trajectories. Both noncooperative and cooperative conflict

resolution methods have been proposed. In the noncooperative case, the aircraft involved in the conflict do

not exchange information on their intentions and do not trust one another. Hence, a worst case approach is

adopted. Examples include the work of Tomlin et al., in which a game-theoretic method is outlined.1,2 Safe

protocol-based maneuvers are derived by precomputing reachability sets3,4 that account for the uncertainty

in the actions of the other aircraft. Although, theoretically, the method can be applied to any number of

aircraft, the computational requirements for more than three aircraft become prohibitive.

In cooperative conflict resolution schemes, the aircraft do exchange information on their positions and

intentions. Within this class of methods, one can further distinguish between centralized and decentralized

techniques, depending on whether the conflict is resolved by a central supervising controller or by each

aircraft individually. In the former case, the position of each aircraft is known to the central controller

who designs the individual trajectories for all aircraft, typically by solving one large optimization problem.

Several methods with hard anti-collision constraints have been proposed, including approaches based on

semidefinite programming,5 nonlinear programming,6 mixed integer linear programming,7–9 mixed integer
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nonlinear programming,10 and variational analysis.11 However, since the number of inter-vehicle combina-
tions in the planning problem increases polynomially as n(n − 1)/2 with the number of aircraft n involved
in the conflict, the computation times of these methods typically scale exponentially.

By using a receding horizon approach, where the problem is solved over a limited time horizon that is
shifted forward at each iteration, the computation time can be decreased. However, unless the problem is
solved to completion at each iteration – which defeats the purpose of using a receding horizon–, safety is
not guaranteed.12 Namely, the algorithms may fail to provide a solution in future time steps, due to aircraft
that are located beyond the surveillance and planning radius of the aircraft accounted for at the current time
step. For instance, when the planning horizon is too short and the maximum turn rate relatively small, the
aircraft might approach one another too closely before accounting for each other in their plans. As a result,
they might not be able to turn away in time, which would translate into the optimization problem becoming
infeasible.13

The scaling problem is also apparent in the field of unmanned aerial vehicles (UAV’s). In applications
where path planning and coordination of a large fleet of autonomous vehicles is required, centralized solutions
quickly become computationally intractable. Moreover, in these applications, the planning problem typically
needs to be resolved multiple times, as new information about the environment is often gathered while the
mission unfolds. Thus, a decentralized receding horizon (or model predictive control) planning strategy
seems a natural approach to solving the multi-vehicle trajectory generation problem. One such method is
proposed in Ref. 14, where static obstacles and other moving agents are accounted for by potential functions.
Although computationally attractive, the use of potential functions does not guarantee safety: obstacles and
other vehicles are captured using soft “constraints” in the cost function. In Ref. 15, an alternative algorithm
based on an iterative bargaining scheme is given. However, as the iteration might converge to an infeasible
equilibrium, again only soft safety guarantees exist.

In this paper, we present a model predictive control framework for decentralized, non-iterative cooperative
path planning of multiple aircraft with hard safety constraints. The novelty lies in the fact that safety is
guaranteed by explicitly computing and maintaining a safe trajectory for each aircraft, without having to
precompute an invariant set. Moreover, safety can be guaranteed for any number of interacting vehicles.
This is achieved by ensuring a priori that each aircraft can always transition to a dynamically feasible loiter
pattern. These loiter patterns act as safe “rescue” paths in case no feasible solution to a conflict can be
found in time.

In our previous work,12 the loiter principle was applied to the case of a single UAV navigating through
a cluttered environment. In this paper, we extend the method to the case of multiple aircraft. Conflicts are
resolved in a sequential, decentralized fashion in which each aircraft takes into account the latest trajectory
and loiter pattern of the other when updating its own path. We model the problem as a mixed integer linear
program (MILP) that needs to be solved in real-time. Applications of interest are commercial air traffic
control and coordination of multiple UAV’s.

The paper is organized as follows. Section II presents the problem formulation and Section III provides
a high level description of the algorithm. Section IV then gives the detailed MILP formulation with the
aircraft model and the loiter and avoidance constraints. In Section V, the framework is applied to some
example scenarios, and Section VI concludes with topics for future research.

II. Problem Formulation

A. Receding Horizon Planning

The problem tackled in this paper is that of computing optimal trajectories in 2D for a set of (unmanned)
aircraft while guaranteeing safety – to be defined later– at all times. Each aircraft individually computes
its trajectory towards a destination waypoint, accounting for the intentions of the other aircraft. Since
information on the latter is gathered online and changes as they update their own trajectories, each aircraft
adopts a receding horizon planning strategy: a new segment of the total path towards the destination is
computed at each time step by solving an optimization problem over a limited horizon of length T .7,16 The
cost function to be minimized can be a measure of time or fuel, or a more complex criterion such as visibility
or risk. The solution to the optimization problem provides the trajectory points and corresponding input
commands to the aircraft for the next T time steps. However, only the first of these input commands is
actually implemented, and the process is repeated at the next time step. As such, new information about
the state and actions of the (other) aircraft can be accounted for at each iteration.
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We assume that the destination of each aircraft i consists of a final position pi,f and a corresponding
speed vector vi,f with respect to an inertial coordinate frame. Together they constitute the final waypoint
or state xi,f = [p′

i,f v
′

i,f ]′. This waypoint is typically an intermediate state along a flight plan or mission
that was designed by a higher level decision unit. Given the state xi,t at a certain time step t, the trajectory
resulting from solving the path planning problem towards xi,f consists of a sequence xi,t of (T + 1) states
xi,t+k, k = 1 . . . T, and a corresponding sequence ui,t of T inputs ui,t+l, l = 1 . . . (T − 1):

xi,t =













xi,t

xi,t+1

...

xi,t+T













, ui,t =













ui,t

ui,t+1

...

ui,t+T−1













, pi,t =













pi,t

pi,t+1
...

pi,t+T













,

where – for notational convenience later on– we denote the position part of the trajectory separately as pi,t.
The plan starting at time step t must be computed during time step t − 1, i.e. when the aircraft is on

its way to xi,t. The latter state is part of the previous plan, which we assume to be accurately tracked.
As such, the aircraft will be in the predicted state xi,t when the next plan is executed. We will make this
assumption throughout the remainder of this paper. It implies that each aircraft can reliably assume that
all other aircraft are exactly following their trajectories as planned. Including robustness to uncertainties in
the latter is a topic of future research.

In what follows, we will denote the optimization problem for aircraft i that computes the trajectory
starting at time step t as Mi,t. It accounts for the (predicted) initial state xi,t, the destination waypoint
xi,f , and constraints xi,k ∈ Xk on the states and ui,k ∈ Uk on the input commands. We call a solution
acceptable if it is feasible and its cost lies within a predefined optimality gap. The details of how the
optimization problem is set up are postponed until Section IV.

B. Loiter Pattern Principle

To clearly state what we mean by safe trajectory planning for an autonomous vehicle, we introduce the
following definition:

Definition 1 (Vehicle Safety): We say that a vehicle is in a safe state, if from that state, there exists a
known dynamically feasible trajectory to a state or sequence of states that is obstacle- and collision-free, and
in which the vehicle can remain for an indefinite period of time. Safety then implies that the vehicle is in a
safe state at all times.

For example, for a helicopter, safety can be ensured by maintaining a feasible trajectory to a hover state
at an obstacle-free location. Similarly, for a rover, safety can be guaranteed by maintaining a feasible path
towards a full stop. Aircraft, on the other hand, have minimum speed requirements, and therefore another
type of “reachability” is required.

As was proposed in our previous work,12 safety for a single aircraft i can be guaranteed by ensuring
that the intermediate trajectory xi,t computed at each time step t terminates in a loiter pattern, i.e. by
constraining the last state xi,t+T in the planning horizon to be an ingress state to a loiter pattern Li,t+T

that lies outside of any no-fly zones. As such, at the next time step t+1, a feasible solution to the trajectory
optimization problem is always available a priori, namely, the remaining part of the previous trajectory
xi,t ending in the loiter pattern. Hence, in case at time step t + 1, no acceptable solution to the trajectory
optimization problem can be found within the timing limits of a hard real-time navigation system, the
previous trajectory can be followed as a safe backup plan. If necessary, the latter can be tracked all the way
from time step t to t + T , thus arriving at the ingress state xi,t+T of the loiter pattern Li,t+T , in which
the aircraft can remain for an indefinite period of time. Note that this safety principle assumes that the
waypoint sequence xi,t can be accurately tracked, which requires the plan to be robust to disturbances and
plant uncertainties.

We can now specialize the definition of safety to the case of an aircraft:

Definition 2 (Aircraft Safety): We say that an aircraft i is in a safe state xi,t, if from that state, there
exists a known robust, dynamically feasible trajectory xi,t ending in an obstacle- and collision-free loiter
pattern Li,t+T . Safety then implies that the aircraft is in a safe state at all times.
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C. Conflict Description

The principle of maintaining a reachable loiter pattern is key to ensuring safety in case of an encounter
between multiple aircraft. It will form the basis of our algorithm for safe trajectory planning and conflict
resolution. For simplicity of exposition, we assume that all aircraft are identical and that their planning
horizons are the same. Extending the framework to the more general case of different aircraft dynamics and
unequal planning horizons can be done at the cost of a more complicated notation. We start with some more
definitions:

Definition 3 (Conflict Zone): We denote by Ri,t ⊂ ℜ2 the subset of the inertial space that encompasses
the area in which all dynamically feasible trajectories lie that start at xi,t = [p′

i,t v
′

i,t]
′ and end in feasible

loiter patterns: ∀ui,t ∈ U = {U0, . . . ,UT−1} : pi,t ∪Li,t+T ⊂ Ri,t. We call Ri,t the conflict zone of aircraft i
at time step t.

As an initial condition (at t = 0) for the planning and conflict resolution algorithm, we now assume that
none of the conflict zones Ri,0 of the individual aircraft i (i = 1 . . . K) in the air space overlap. As such, at
their initial positions pi,0, all aircraft can safely plan their individual trajectories and loiter patterns without
accounting for the other aircraft.

Assumption 1 (Initial Safety): At t=0, we have R1,0

⋂

R2,0 . . .
⋂

RK,0 = ∅.

When the conflict zones of two or more aircraft start to overlap, however, the individually planned
trajectories might intersect and lead to a collision. Therefore, as soon as an overlap is detected, the aircraft
should account for each other’s trajectories when updating their plans. We call this a conflict, and define it
more formally as follows:

Definition 4 (Conflict): We say that aircraft i is involved in a conflict Cij,t with aircraft j 6= i at time
step t, if Ri,t ∩Rj,t 6= ∅.

Since an aircraft i computes the trajectory that starts at time step t during step t − 1, Ri,t needs to
be determined at t − 1 as well, based on the prediction of xi,t. To denote the set of aircraft that are then
involved in a conflict with aircraft i at time step t, and for which avoidance constraints must be formulated
to avoid collisions, we introduce the following notation:

Definition 5 (Avoidance Set): We denote by Ji,t ⊂ {1 . . . K} the subset of all aircraft j ∈ {1 . . . K}, j 6= i,
for which Ri,t ∩Rj,t 6= ∅. We call Ji,t the avoidance set of aircraft i at time step t.

If two aircraft i and j are involved in a conflict Cij,t, however, their avoidance sets Ji,t and Jj,t are not
necessarily the same: aircraft j can be involved in a conflict Cjk,t with another aircraft k, but Ri,t∩Rk,t = ∅.
Hence, to maintain safety, aircraft j must account for both i and k, whereas aircraft i only has to account for
j. However, although they are not directly in conflict, the trajectory of i will still be influenced by that of k
through the effect that k has on the trajectory of j. This indirect dependence plays a key role in maintaining
safety during the decentralized planning algorithm: aircraft k has to come into play when the conflict Cij,t

between i and j is solved. We therefore introduce the following set:

Definition 6 (Conflict Set): We denote by Si,t ⊂ {1 . . . K} the subset of all aircraft j ∈ {1 . . . K} for which
there exists an aircraft sequence k1, . . . , kS such that Ri,t ∩Rk1,t 6= ∅, Rk1,t ∩Rk2,t 6= ∅, . . . ,RkS ,t ∩Rj,t 6= ∅.
We call Si,t the conflict set of aircraft i at time step t.

Note that if j ∈ Si,t, we have Sj,t = Si,t. Hence, we can define one set St ≡ Si,t that groups all aircraft
that are connected through a chain of conflicts Cik1,t, . . . , CkSj,t at time step t. The aircraft in St and their
individual conflicts Cij,t form a connected graph. Any aircraft that do not belong to St will not come into
play in resolving this graph conflict Ct. Since two distinct graph conflicts are then fully decoupled, without
loss of generality, we can restrict ourselves to solving the case of a single graph conflict Ct.

D. Communication Requirements

To determine if a connecting conflict sequence exists between any two aircraft at any time, there needs to
be a communication link between all aircraft in the air space at all times. Alternatively, all aircraft i only
communicate with a central hub (either a ground station or leader aircraft) that keeps track of the positions
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pi,t and conflict zones Ri,t at all time steps, and determines the conflict set St from this information.
Moreover, if desired, this central entity can also perform the task of computing the avoidance sets Ji,t and
communicate these back to the respective aircraft i. An additional benefit is that it can maintain the clocks
of all aircraft synchronized, which will be crucial in the conflict resolution part of the algorithm.

Assumption 2 (Central Hub): We assume that a central hub H is present with which all aircraft i =
1 . . . K communicate. It keeps the clocks of all aircraft synchronized, and determines the avoidance sets Ji,t

and the conflict set St.

Although the existence of a central hub is not crucial to our safety framework, it simplifies the required
communication infrastructure and the presentation of the algorithm. The actual trajectory optimization
will still be done in a decentralized fashion, regardless of how information is exchanged between the aircraft.
Decentralizing the communication itself is an ad hoc networking problem for which multiple techniques
exist.17,18

To avoid collisions, aircraft i needs to account for the position sequence pj,t of all aircraft j ∈ Ji,t when
solving its trajectory optimization problem Mi,t. Moreover, to maintain future safety, its loiter pattern
Li,t+T should not intersect with any of the loiter patterns Lj,t+T of the aircraft j ∈ Ji,t. As will be shown
in Section IV, in our MILP planning algorithm, it suffices to describe all Lj,t+T by the coordinates of a
surrounding rectangle that is aligned with the inertial coordinate frame. The latter will then be considered
as a no-fly zone by aircraft i.

To solve its trajectory optimization problem Mi,t, aircraft i thus needs to obtain the latest trajectory
information of all aircraft j ∈ Ji,t, and vice versa, the latter need to know the trajectory of i. Hence,
either communication links between all aircraft in Ji,t and aircraft i need to be set up, or the information
can be distributed via the central hub. We now introduce the following notation to capture this trajectory
information:

Definition 7 (Plan): We denote by Pi,t the sequence pi,t of trajectory points starting at time step t and the
coordinates of a rectangle that is aligned with the inertial coordinate frame and surrounds the loiter pattern
Li,t+T of aircraft i. We call Pi,t the plan of aircraft i at time step t.

The plans Pj,t for all aircraft j ∈ Ji,t can then be included as avoidance constraints in the trajectory
optimization problem Mi,t. We will denote this as the problem Mi,t s.t. Pj,t,∀j ∈ Ji,t.

A key step in our conflict resolution algorithm is that the aircraft in St need to decide on an order Ot

in which each one updates its trajectory at time step t − 1. Again, the easiest way to accomplish this is to
let the central hub assign this order. Associated with it, is a sequence of non-overlapping time slots during
which a particular aircraft must start and end its trajectory optimization:

Assumption 3 (Conflict Order): We assume that the central hub H can determine an order Ot =
{ord(i), i ∈ St}, and a corresponding sequence of non-overlapping time slots {[tord(i),s, tord(i),f +∆tcomm), i ∈
St} that give the allocated start time tord(i),s and end time tord(i),f during which the aircraft with order number
ord(i) should solve its trajectory optimization problem at time step t − 1. ∆tcomm is the time required to
broadcast the plan Pi,t to the aircraft in Joi,t.

Since an aircraft might leave the conflict chain, or a new one might enter, the central hub must redetermine
St and Ot at every time step t − 1. Using the definitions from above, we can now formulate a decentralized
optimization strategy for safe trajectory planning and conflict resolution.

III. Safe Trajectory Planning Algorithm

A. Algorithm

Starting at t = 0, at each following time step t, let all aircraft i in the air space (i = 1 . . . K) execute the
following planning algorithm:

Start: Start at time t.

• Step 1: Predict the next state xi,t+1 and send it to the central hub H. Next, receive the avoidance
set Ji,t+1, the conflict order Ot+1, and (tord(i),s, tord(i),f ) from H.
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• Step 2a: If Ji,t+1 6= ∅, broadcast the current plan Pi,t to all aircraft in Ji,t+1 and go to Step 3. Else,
go to Step 2b.

• Step 2b: Solve Mi,t+1. If an acceptable solution xi,t+1 ∪ Li,t+T+1 is found before time t + 1, let the
new plan Pi,t+1 = pi,t+1 ∪ Li,t+T+1. Else, let Pi,t+1 = Pi,t \ pi,t. Go to End.

• Step 3: At time tord(i),s, solve Mi,t+1 s.t. Pj,t+1, j ∈ Ji,t+1 : ord(j) < ord(i) and s.t. Pk,t, k ∈ Ji,t+1 :
ord(k) > ord(i).

• Step 4: If an acceptable solution xi,t+1 ∪ Li,t+T+1 is found at tord(i),f , let the new plan Pi,t+1 =
pi,t+1 ∪ Li,t+T+1 . Else, let Pi,t+1 = Pi,t \ pi,t.

• Step 5: During (tord(i),f , tord(i),f + ∆tcomm), broadcast Pi,t+1 to all aircraft k ∈ Ji,t+1 : ord(k) >
ord(i).

End: End by time t + 1, and repeat.

By construction, this algorithm maintains safety for all aircraft: at each time step, there exists, a priori, a
collision-free dynamically feasible trajectory for each aircraft. Namely, since all other aircraft accounted for
the latest plan of the aircraft that is planning, the remaining part of its previous trajectory ending in a loiter
pattern can always be used as a safe “backup” plan. We formalize this in the following theorem:

Theorem: Given a conflict-free situation at time t = 0 (Assumption 1), the above planning algorithm will
maintain safe trajectories (Definition 2) for all aircraft i = 1 . . . K at all time steps.

Proof : We prove the safety property by using a double induction argument over the sequence of time steps
and over the sequence of aircraft within a time step. By Assumption 1, at t = 0, all aircraft are in a safe
state (as defined in Definition 2) and

⋂

i=1...K Ri,0 = ∅. Hence, by definition of Ri,0, all aircraft i have
non-intersecting plans at t = 0. They thus all have an a priori safe trajectory available at t = 1, namely,
Pi,0\pi,0 ending in non-intersecting loiter patterns Li,T at time step T , the length of the planning horizon.

Assume now that at time step t = k, all aircraft have safe plans Pi,k. Before computing its next plan
Pi,k+1, a particular aircraft i will know whether its avoidance set Ji,k+1 is empty or not by communicating
with the central hub H (Step 1). In case Ji,k+1 = ∅, any feasible solution to Mi,k+1 will be safe, since the
conflict zone Ri,k+1 does not intersect with that of any other aircraft. If an acceptable solution cannot be
found in time, Pi,k\pi,k, i.e. the previous plan excluding the current state, is still valid and available as a
safe backup plan at time step k + 1.

In case Ji,k+1 6= ∅, aircraft i will obtain its order number ord(i) ∈ {1 . . . |Sk+1|} from the central hub H,
where |Sk+1| is the cardinality of the conflict set. If ord(i) = 1, aircraft i is the first to update its trajectory
at time step k. Given that all plans Pi,k were safe, a safe solution to Mi,k+1 s.t. Pj,k+1,∀j ∈ Ji,k+1 continues
to exist, namely, Pi,k\pi,k. In the nominal case, Pi,k+1 will differ from Pi,k\pi,k. Since the updated plan
Pi,k+1 is constrained to avoid the existing trajectories Pj,k,∀j ∈ Ji,k+1, all other aircraft in the conflict set
Sk+1 remain in safe states.

Now, consider an aircraft i′ with ord(i′) > 1, and assume that it has a safe backup plan Pi′,k\pi′,k. It
will account i) for the previous plans Pj′,k for all following aircraft j′ ∈ Ji′,k+1 : ord(j′) > ord(i′) and ii) for
the new plans Pl′,k+1 of all prior aircraft l′ ∈ Ji′,k+1 : ord(l′) < ord(i′). Given that a safe plan Pi′,k\pi′,k

for aircraft i′ exists, the problem is feasible. Thus i) all aircraft j′ with ord(j′) > ord(i′) will still have safe
backup plans Pj′,k\pj′,k available when they update their paths, and ii) the new plans Pl′,k+1 of all aircraft
l′ with ord(l′) < ord(i′) will remain safe. Hence, by induction over the sequence of aircraft, safety for all
aircraft is maintained within time step k. As a result, each aircraft is in a safe state at the start of the next
time step k +1. Thus, using induction once more, given the safety assumption at t = 0, safety for all aircraft
is maintained over the sequence of time steps.

B. Remarks

1. Note that the algorithm is not a bargaining or convergence process: at a given time step, each aircraft
contributes only once to the solution of the conflict. As presented here, the algorithm should cycle through
the full conflict set Sk+1 before the next time step, i.e. the time at which all aircraft reach the first state
in their plans. However, the more aircraft that are involved in the conflict, the longer each aircraft will
typically take to solve its trajectory optimization problem. On the other hand, the allocated computation
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time scales inversely with the number of aircraft involved. Therefore, if necessary, for a particular cycle of
the algorithm, the central hub can distribute the computation times over several time steps. As long as
during this cycle, all other aircraft keep tracking the latest trajectories that they communicated, safety for
all aircraft is maintained. This is only the case, however, if no new aircraft enter the conflict chain during
that longer cycle. Since one iteration of the conflict resolution algorithm is now spread over more than one
time step, this can be guaranteed by computing conflict sets for longer planning horizons in Step 1 of the
algorithm. Alternatively, the central hub could command the new aircraft not to update its plan and to keep
tracking its latest trajectory, while it communicates this latest plan to the other aircraft. The latter can
then still include that plan as an avoidance constraint in their respective trajectory optimizations, without
making the problem infeasible.

2. Worst-case, if too many aircraft are involved in the chain conflict, and the problem becomes too
complex to be solved within the timing constraints of the algorithm, the aircraft will enter their (non-
intersecting) loiter patterns. The central hub can then decide on subsequent subsets of the conflict set
(including the possibility of one by one) and allocate as much time as needed to compute a way out of the
loiter patterns.

3. It is natural to assume that the first aircraft in the conflict order is favored, since it can update
its trajectory first. However, in our simulations this was not necessarily the case: we generally found that
most aircraft have to make equal efforts (in terms of deviating from their nominal trajectories towards their
destination) to resolve the conflict. Depending on the geometry of the individual trajectories, the first aircraft
could even be more constrained than the last one in the order sequence. Moreover, by randomly changing
the aircraft order at each time step, no single aircraft should have an a priori advantage over any other.

4. The algorithm is robust to communication failures. As soon as a broken communication link is
detected, the aircraft involved should execute their backup plans: they should keep following the trajectory
that was last broadcast and eventually enter their loiter pattern. The other aircraft can then keep accounting
for those same plans when updating their trajectories.

5. The formulation of the actual trajectory optimization problem should account for the discrete time
nature of the conflict resolution algorithm: its constraints must guarantee collision avoidance during the
continuous transition between the discrete trajectory sample points.

IV. Mathematical Formulation

In this section, we cast the trajectory planning algorithm described above in a mathematical framework
based on mixed integer linear programming (MILP). Although the model can readily be extended to account
for changes in altitude, we restrict ourselves to the two dimensional case. Moreover, MILP is not the only
trajectory optimization method which can be used to implement the safe planning algorithm.

A. Aircraft Model

1. Continuous Version

In our earlier work on path planning using MILP, an inertial double integrator model was used with additional
constraints to capture bounds on speed and turn rate.7,8 In this paper, we introduce an inertial velocity
control model and alternative turn rate constraints that capture the behavior of an actual aircraft more
accurately. As mentioned before, to simplify the notation, we assume that all aircraft behave according to
the same dynamics and constraints.

In what follows, we drop the subscripts i and t indicating the aircraft that is planning and the current
time step. Let p = (x, y) and v = (ẋ, ẏ) denote the inertial position and velocity vector respectively. Let
the inputs to the aircraft consist be an inertial reference speed vector u = (ẋcmd, ẏcmd). We then use the
following continuous, first-order velocity control model:

ẍ(t) = − 1
τ
ẋ(t) + k

τ
ẋcmd(t)

ÿ(t) = − 1
τ
ẏ(t) + k

τ
ẏcmd(t)

(1)
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in which τ is a time constant and k is a gain. In state space form, ẋ(t) = Ax(t) + Bu(t), we obtain:











ẋ(t)

ẏ(t)

ẍ(t)

ÿ(t)











=











0 0 1 0

0 0 0 1

0 0 − 1
τ

0

0 0 0 − 1
τ





















x(t)

y(t)

ẋ(t)

ẏ(t)











+











0 0

0 0
k
τ

0

0 k
τ











[

ẋcmd(t)

ẏcmd(t)

]

(2)

Note that the model is symmetric in the x- and y-coordinate, which is corrected for by adding inequality
constraints as follows. The magnitude of the reference and actual inertial velocity is bounded by a minimum
required speed vmin and a maximum achievable speed vmax:

vmin ≤ ||v(t)|| ≤ vmax

vmin ≤ ||u(t)|| ≤ vmax

(3)

Bounds on turn rate are captured by approximating the geometric profile that encompasses all inertial
acceleration vectors that are dynamically feasible. We assume that the latter is a rectangular area delimited
by the maximum forward and lateral accelerations afwd,max and alat,max. Since it is heading dependent,
the rectangle in which the inertial acceleration vector a = (ẍ, ÿ) must lie should be aligned with the velocity
vector at all times. This requirement can be modeled by the following set of inequalities, which are explained
in more detail in Ref. 19:

case 1 : afwd,max ≤ alat,max










||a(t) − αv(t)
v0

|| ≤ β

||a(t) + αv(t)
v0

|| ≤ β

||a(t)|| ≤ alat,max

(4)

case 2 : afwd,max > alat,max










||a(t) − α⊥

v⊥(t)
v0

|| ≤ β⊥

||a(t) + α⊥

v⊥(t)
v0

|| ≤ β⊥

||a(t)|| ≤ afwd,max

(5)

Here, v⊥ denotes the orthogonal complement of v, v0 indicates the magnitude of the current velocity and
α, β, α⊥ and β⊥ are appropriate constants that are determined by the shape of the rectangular profile.

2. Discrete Version

To make use of the above dynamics in a MILP framework, we introduce a discrete time version of the model
(A,B) and linear approximations of the inequality constraints. By introducing a sample time ∆t and using
the bilinear transform, we obtain the following constraints describing the discrete time vehicle dynamics:

xk+1 = Adxk + Bduk, k = 0, . . . , T − 1

x0 = [p′

0 v
′

0]
′

(6)

with
Ad =

(

I − ∆t
2 A

)−1 (

I + ∆t
2 A

)

Bd =
(

I − ∆t
2 A

)−1
B.

(7)

The quadratic inequality constraints (3), (4) and (5) are approximated by the edges of an N -sided polygon.
For the acceleration constraints (4), we obtain:

∀k ∈ [0, . . . , T − 1], ∀n ∈ [1, . . . , N ] :
(

ẋk+1 − ẋk

∆t
− α

ẋk

v0

)

sin

(

2πn

N

)

+

(

ẏk+1 − ẏk

∆t
− α

ẏk

v0

)

cos

(

2πn

N

)

≤ β (8)

(

ẋk+1 − ẋk

∆t
+ α

ẋk

v0

)

sin

(

2πn

N

)

+

(

ẏk+1 − ẏk

∆t
+ α

ẏk

v0

)

cos

(

2πn

N

)

≤ β (9)

(

ẋk+1 − ẋk

∆t

)

sin

(

2πn

N

)

+

(

ẏk+1 − ẏk

∆t

)

cos

(

2πn

N

)

≤ alat,max (10)
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and similarly for (5). To ensure a smooth input profile, these inequalities should also be formulated in terms
of the reference velocity commands (ẋcmd,k, ẏcmd,k) (for k = 0, . . . , T − 1). In the same way, the upper
bound of the velocity constraints (3) translates into:

∀k ∈ [0, . . . , T ], ∀n ∈ [1, . . . , N ] :

ẋk sin

(

2πn

N

)

+ ẏk cos

(

2πn

N

)

≤ vmax (11)

and similarly for the reference velocity commands. The minimum speed requirement in (3) can be handled
by ensuring that the speed vector lies outside an N -sided polygon rather than inside, as was the case for the
previous constraints. By introducing binary variables, we can capture this non-convex constraint as follows:

∀k ∈ [0, . . . , T ], ∀n ∈ [1, . . . , N ] :

ẋk sin

(

2πn

N

)

+ ẏk cos

(

2πn

N

)

≥ vmin − Mckn

N
∑

n=1

ckn ≤ N − 1 (12)

ckn ∈ {0, 1}

where M is a sufficiently large number. Again, these constraints should also be formulated for the reference
commands.

R

p

v

v

v

T

T

T

T

p

p

R

L

c

c

Figure 1. Safe trajectory ending in either a left or right turning loiter circle.

B. Loiter Circles

As discussed in Section II, the trajectory at each iteration is constrained to terminate in a loiter pattern.
Here, we choose this to be a left or right turning circle (see Figure 1), where the turn direction will be
decided upon by the optimization problem. The treatment here follows that of Ref. 12 in which more details
can be found. The loiter pattern is described by equally spaced sample points pR,θ along the circle. By
introducing a rotation matrix R(θ), these points can be expressed as linear transformations of the last state
xT = [p′

T v
′

T ]′ in the planning horizon, which is the ingress state of the loiter. For the right circle CR(xT ),
we obtain:

pR,θ = pR + R(θ)(αcv
⊥

T )

= (pT − αcv
⊥

T ) + R(θ)(αcv
⊥

T )

= pT + αc(R(θ) − I)v⊥

T

(13)

in which pR is the center of the circle. The parameter αc is a scaling factor that is determined by the maximum
turn rate of the aircraft. We thus let the radius of the loiter circle scale linearly with the magnitude of the
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ingress velocity vT . As such, by slowing down or speeding up, the aircraft has the flexibility to adapt the
size of its loiter circle to the state of the environment, i.e. to the trajectories and locations of the loiter
patterns of the other aircraft. Note, however, that the resulting turn radius corresponding to a particular
ingress speed is overestimated, thus introducing some conservatism in the loiter dynamics.

Similarly, any point pL,θ along the left loiter circle CL(xT ) can be expressed as:

pL,θ = pL − R(θ)(αcv
⊥

T )

= (pT + αcv
⊥

T ) − R(θ)(αcv
⊥

T )

= pT − αc(R(θ) − I)v⊥

T

(14)

with pL again the center of the circle. In the following, these geometric relations will be used to express the
avoidance constraints.

C. Avoidance Constraints

We assume here for simplicity that the conflict zone Ri of all aircraft i is a circle of fixed radius rreach, where
rreach is the maximum distance that can be traveled over the length of the planning horizon, including
a margin for the loiter circle. Denoting the radius of the loiter circle when flying at vmax by rmax, a
simple calculation yields rreach =

√

(T∆tvmax + rmax)2 + 4r2
max. Note that this is the most conservative

assumption: in general, an aircraft might not be able to reach the full area covered by the circle, and the
shape of the conflict zone will typically depend on the initial velocity vi,0.

The avoidance set Ji can then easily be determined: it consists of all aircraft that are within a distance
of 2rreach of aircraft i at time step t. In addition, Assumption 1 reduces to all aircraft being separated by
a distance greater than 2rreach: ∀i, j ∈ {1 . . . K}, i 6= j : ‖pi,0 − pj,0‖ > 2rreach. As discussed in Steps 2a
and 5 of the trajectory planning and conflict resolution algorithm, when the conflict set S 6= ∅, the aircraft
will communicate their plans P· to one another. Since we assumed that all aircraft can accurately follow
the planned trajectories, their waypoints and loiter circles can be considered as translating obstacles with
known motion by the aircraft that is currently planning. We now specify these constraints in more detail.

1. Regular Trajectory Points

Each trajectory point pj,k of aircraft j ∈ Ji is considered an obstacle that is present at time step k in the
planning horizon, if that point lies in the conflict zone Ri of the planning aircraft i, i.e. when pj,k ∈ Ri.
Denote the set of time steps for which the latter, holds as Tj ⊆ T = [0, . . . , T ]. Due to the discrete time nature
of the trajectories, the waypoints are considered square obstacles of dimension 2ds = 2(max(vmax∆t, dsafe)+
vmax∆t), where dsafe is the required safety distance around each aircraft. The lower left corner of the
waypoint obstacle pj,k = (xjk, yjk) is then given by (xmin,jk, ymin,jk) = (xjk − ds, yjk − ds), the upper right
corner by (xmax,jk, ymax,jk) = (xjk + ds, yjk + ds).

For the trajectory points (xik, yik), k ∈ Tj – that can include points on the loiter pattern if the aircraft
is using its backup plan,– the required safety distance with all other aircraft is then guaranteed at all times
during the planning horizon, if these points satisfy the following set of constraints:7

∀j ∈ Ji, ∀k ∈ Tj :

xik ≤ xmin,jk + Mbjk1

−xik ≤ −xmax,jk + Mbjk2

yik ≤ ymin,jk + Mbjk3

−yik ≤ −ymax,jk + Mbjk4
4

∑

n=1

bjkn ≤ 3

bjkn ∈ {0, 1}

(15)

Here, bjkn are binary variables and M is a sufficiently large positive number. The last constraint ensures that
at least one of the inequality constraints is active, thereby guaranteeing that the trajectory point (xik, yik)
lies outside the waypoint obstacles of the other aircraft. Note that the avoidance constraints presented here
are hard constraints, in contrast to potential function methods where safety cannot be guaranteed.
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2. Loiter Points

To ensure that the loiter circle of the planning aircraft i does not intersect with that of any of the aircraft
j ∈ Ji, we derive equivalent constraints for the sample points along the circle. Assume that there are
NL = ⌈ 2π

θs
⌉ of these, where θs denotes the discretization angle. Let the loiter circle of each aircraft j ∈ Ji be

contained within a square with lower left corner (xmin,jL, ymin,jL) and upper right corner (xmax,jL, ymax,jL).
These dimensions include a safety boundary that accounts for the continuous segments of the loiter circle of
aircraft i between its discrete sample points (see Ref. 12 for details). The two corner points, together with
the time step at which the loiter is initiated, is the only information that needs to be exchanged about the
loiter pattern.

The loiter square that needs to be avoided by the loiter points of the planning aircraft i can now be
considered a static obstacle. By introducing a binary variable d that selects either the right or left circle,
and by substituting expressions (13-14) for the sample points in the avoidance constraints (15), we obtain:

∀j ∈ Ji, ∀l ∈ [1, . . . , NL] :



















xiT − αc (cos lθs − 1) ẏiT − αc (sin lθs) ẋiT ≤ xmin,jL + Mbjl1 + Md

−xiT + αc (cos lθs − 1) ẏiT + αc (sin lθs) ẋiT ≤ −xmax,jL + Mbjl2 + Md

yiT − αc (sin lθs) ẏiT + αc (cos lθs − 1) ẋiT ≤ ymin,jL + Mbjl3 + Md

−yiT + αc (sin lθs) ẏiT − αc (cos lθs − 1) ẋiT ≤ −ymax,jL + Mbjl4 + Md

(16)



















xiT + αc (cos lθs − 1) ẏiT + αc (sin lθs) ẋiT ≤ xmin,jL + Mbjl1 + M(1 − d)

−xiT − αc (cos lθs − 1) ẏiT − αc (sin lθs) ẋiT ≤ −xmax,jL + Mbjl2 + M(1 − d)

yiT + αc (sin lθs) ẏiT − αc (cos lθs − 1) ẋiT ≤ ymin,jL + Mbjl3 + M(1 − d)

−yiT − αc (sin lθs) ẏiT + αc (cos lθs − 1) ẋiT ≤ −ymax,jL + Mbjl4 + M(1 − d)

(17)

4
∑

n=1

bjln ≤ 3

bjln, d ∈ {0, 1}

(18)

Here, the index l denotes the angle around the circle, and does not necessarily correspond to the exact
position of the aircraft on the circle after l time steps. Satisfying the above constraints ensures that no two
loiter circles intersect; together with constraints (15) and the backup plan principle, they guarantee safety
of each aircraft at all times.

D. Cost Function

Combined with an appropriate (piecewise) linear cost function, the state space equations (6) together with
the dynamic and kinematic constraints (8-12), the avoidance and loiter constraints (15-18), constitute a MILP
to be solved online at each iteration of the safe trajectory planning algorithm as outlined in Section III. In
our simulations, we used the following cost function for each aircraft separately:

min
xk,uk

JT =

T
∑

k=1

( q
′|xk − xf | ) − r(pf − p0)

′
vk (19)

It aims at proceeding towards the destination by i) minimizing the 1-norm of the difference with the desired
state xf , and ii) maximizing the scalar product of the velocity vector with the vector (pf − p0), indicating
the direction from the initial position p0 to the destination pf . Since the latter remains constant over the
planning horizon, the scalar product is linear. Its effect is twofold: the vehicle will redirect itself to aim
straight for the goal while flying as fast as possible. As such, this cost function mimics a minimum time
solution. Finally, q and r are weights that can be tuned appropriately.

V. Results

We now present some example scenarios to which we applied the proposed trajectory planning algorithm.
The parameters of the aircraft used in our simulations were the following: vmax = 160 m/s, vmin = 130 m/s,
τ = 5 s, k = 5, afwd,max = 15 m/s2 and alat,max = 13.96 m/s2. The latter corresponds to a maximum turn
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(a) Safe trajectories of 2 aircraft.
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(b) Safe trajectories of 4 aircraft.

Figure 2. Simulation results for decentralized conflict resolution of 2 and 4 aircraft for 30 time steps of 5 s
each.

rate of 5 deg/s. We simulated all trajectories for 30 iterations of the algorithm with a planning horizon of
T = 5 time steps of ∆t = 5 s each. The number of loiter sample points was set to NL = 8, the number of
linear inequalities to approximate circular constraints to N = 16. For the avoidance constraints, we used a
required safety distance of dsafe = 1.5 km for each aircraft, resulting in square waypoint obstacles of size
2ds = 4.6 km. The simulation results were obtained on a Pentium 4 with 2.2 GHz clock speed, using the
CPLEX 9.0 MILP solver20 with an AMPL21 and Matlab interface.

In the first scenario (see Figure 2a), two aircraft are flying in opposite directions and are bound to
encounter each other at the origin. Aircraft 1 starts in position (−12 km, 0 km) flying West at 150 m/s, and
is headed for a waypoint at (12 km, 0 km). Aircraft 2 does the opposite and starts at (12 km, 0 km), flying
East at 150 m/s. When they encounter each other in the middle, they safely resolve the conflict by both
turning right. Figure 3 shows the computation times of both aircraft at each iteration: with a maximum of
0.77 s, they are clearly within the timing constraints of the algorithm (tf − ts < ∆t/2 = 2.5 s).

The second scenario (see Figure 2b) involves 4 aircraft. Aircraft 3 and 4 are now flying South and North
at 150 m/s, starting in (0 km, 12 km) and (0 km,−12 km) respectively. Again, the conflict in the middle
is safely resolved within the timing constraints of the algorithm (see Figure 4). Theoretically, each aircraft
now has at most ∆t/4 = 1.25 s available, but using a CPLEX computation time limit of 1.0 s, an acceptable
solution was always found within 1.1 s. Finally, Figure 5 displays the (non-intersecting) loiter boxes of the
4 aircraft for the first 9 time steps (corresponding to 45 s).

VI. Conclusion and Future Work

We presented a framework based on Mixed Integer Linear Programming for provably safe, decentralized
trajectory planning of multiple (autonomous) aircraft. A receding horizon planning strategy was adopted
for each aircraft individually, that accounts for the trajectories of the neighboring aircraft. Safety at all
time steps was guaranteed by constraining the intermediate plans of all aircraft to terminate in loiter circles
that do not intersect. Conflicts between multiple aircraft were resolved in a decentralized fashion while
maintaining an a priori safe backup plan for each aircraft. The detailed MILP formulation was given and
simulation scenarios with timing results were presented.

Future work includes extending the framework to account for robustness against uncertainties in the
trajectory tracking performance of the aircraft, including static no-fly zones in the simulations, considering
heterogeneous sets of UAVs with highly agile vehicles such as miniature helicopters, and testing the algorithm
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Figure 3. Computation times at each iteration for the 2 aircraft scenario of Figure 2a.
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Figure 4. Computation times at each iteration for the 4 aircraft scenario of Figure 2b.

on MIT’s multiple UAV test-bed. In addition, a performance comparison with centralized methods will be
made.
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