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The problem of controlling the attitude of spacecraft within a formation is investigated. A class of decentralized

coordinated attitude control laws using behavior-based control is developed. The decentralized coordinated attitude

control laws that comprise the class differ by the coordination architecture used by the spacecraft formation. The

choice of behavior weights defines the coordination architecture. A corollary of Barbalat’s Lemma is used to prove

that the class of control laws globally asymptotically stabilizes the spacecraft formation. Convergence of the system is

shown to be a consequence of the closed-loop equations of motion. Numeric simulation is used to reinforce the

analytic results, and to briefly investigate the effect of coordination architecture on performance.

Introduction

A spacecraft formation is a distributed system. A distributed
system is a system consisting of multiple subsystems. The

attitude control systems of individual spacecraft act as local control
agents. The control decisions of the local control agents must be
coordinated to ensure the stability and convergence of the global
system.

Coordinated controllers are generally categorized into centralized
and decentralized types. The distinction is based onwhere the control
decisions are made. Centralized control is a type of coordinated
control where a single control agent determines the control actions
for the distributed system. In decentralized control, control decisions
are relegated to the local control agents. The local control agents use
local observations and any information communicated from the other
control agents to determine control actions. Hybrid controllers using
a combination of centralized and decentralized coordination are also
possible.

The two primary benefits of decentralized control over centralized
control are fault-tolerance and simpler control laws. Failure of a
single local control agent in a decentralized controlled system does
not necessarily lead to the destabilization of the entire system [1]. The
failure is confined to the region of the failed local control agent
resulting in a graceful degradation of system performance. Decen-
tralized control results in relatively simple control laws, because the
design of the global controller can be decomposed into smaller
control agents. The local control agents are designed so that they
perform their local control tasks, and coordinate with one another to
control the global system [1]. The coordination is implemented by
means of communication between the local control agents. Cen-
tralized controllers require greater information and information
processing than what is required by the local control agents of the
equivalent decentralized controller [2]. The primary drawback of
decentralized controllers is that they are difficult to analyze
analytically.

A useful tool for the coordinated attitude control problem is
behavior-based control. Behavior-based control is implemented

when a control system has multiple, and sometimes competing, ob-
jectives or behaviors. The behaviors could include goal-attainment,
collision-avoidance, obstacle-avoidance, and formation-keeping.
The overall control action is determined by a weighted sum of the
control actions for each of the behaviors [3].

For the coordinated attitude control problem, behavior-based
control is used to arrive at a compromise between the control actions
required for the formation-keeping and station-keeping behaviors
[4]. Station-keeping is the behavior that tries to drive the spacecraft to
its absolute desired attitude. Formation-keeping is the behavior that
tries to align the spacecraft with the other spacecraft in the formation.
The behavior-based attitude control of a spacecraft that is within a
formation drives the spacecraft to an attitude that is a compromise
between its absolute desired attitude and the attitudes of the other
spacecraft in the formation.

Both centralized and decentralized coordination approaches to the
coordinated attitude control problem have been analyzed. The
centralized coordination approaches have been examined in detail
[5–13]; however, there are still gaps in the decentralized coordinated
attitude control literature [4,14–17]. The most notable gap is the lack
of a decentralized coordinated attitude controller that guarantees
global convergence of the spacecraft formation. The research pre-
sented here extends the previous work in decentralized coordinated
attitude control. A class of decentralized coordinated attitude control
laws that guarantees global convergence of the spacecraft formation
is developed and analyzed.

Literature Review

The coordinated spacecraft control area has been studied primarily
by three schools. The first school investigates leader–follower type
coordination strategies. The papers of the second school concentrate
on behavior-based and virtual structure coordination strategies. The
third school uses a fundamentally different approach than the first
two schools, where the control law and the coordination layer are
decoupled.

An early coordinated attitude control paper from the first school is
byWang and Hadaegh [5]. In their paper a nearest-neighbor attitude
controller is developed and proven to globally asymptotically
stabilize the attitude of the spacecraft formation. The nearest-
neighbor controller uses a leader–follower coordination architecture
with multiple leaders. The nearest-neighbor attitude controller uses a
“chain” coordination architecture, where each spacecraft follows one
other spacecraft in the formation, except the leader who tracks the
absolute desired attitude trajectory of the formation. In a subsequent
paper, Wang et al. [6] use the same type of formulation to develop
one-leader based coordinated control laws for position and attitude
control within a spacecraft formation.

The second school of researchers uses an approach that is similar
to the first school; however, they investigate more exotic methods of
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coordinated control. Lawton et al. [14] develop a decentralized con-
troller for the coordinated attitude control problem that they term the
coupled dynamics controller. The coupled dynamics controller uses
a ring communication topology, where each spacecraft knows the
state of two other spacecraft in the formation. The desired state and
the state of the two other spacecraft are used to determine the ap-
propriate control torque. A convergence proof is provided; however,
the proof does not ensure global convergence of the formation
attitude. It requires that the spacecraft begin with no angular rate and
that the initial formation error is below a certain limit. In another
paper, Lawton and Beard [17] develop a passivity-based controller
for the coordinated attitude control problem. The passivity-based
controller uses only attitude information to determine control
actions, thus alleviating the need for angular rate measurements. The
authors analytically determine the domain of attraction for the
passivity-based controller and the coupled dynamics controller. The
coupled dynamics and passivity-based controllers use behavior-
based control. A more general architecture for spacecraft formation
attitude control is introduced by the same authors in a later paper
[4]. The architecture is designed to subsume the leader–follower,
behavior-based, and virtual-structure coordination strategies. Ren
and Beard [13] investigate a centralized implementation of virtual
structure coordination strategy using the general architecture. The
primary contribution of the paper is the addition of formation
feedback to the spacecraft formation. The authors prove the virtual
structure control law guarantees the stability and convergence of the
system.

The approach to the design of coordinated controllers by the third
school is different from the approaches used by the first two schools.
The third school decouples the individual attitude controllers from
the coordinated controller. The goal of the third school is slightly
different. The first two schools strive to guarantee convergence of the
formation, whereas the third school looks to stabilize the formation to
a final state that minimizes the relative and absolute errors of the
spacecraft in the presence of tracking errors. A coordinated controller
based on decentralized feedback is introduced by Kang et al. [11]. A
reference projection is used to determine the appropriate control
action for the spacecraft. Each spacecraft in the formation uses its
current desired state and state information communicated by the
other spacecraft to determine a quasi-desired state using the reference
projection. The quasi-desired state is then used by the spacecraft’s
attitude controller to determine the appropriate control action.
Different types of coordination are possible using the appropriate
reference projection. In a later paper, Kang and Yeh [9] first discuss
applying the idea of reference projections to tracking control. Kang
and Sparks [12] investigate the idea further and present simulation
results.

The literature on coordinated attitude control uses some inter-
esting and novel methods to attack the coordinated control problem,
such as behavior-based control and reference projections. However,
the literature suffers from two deficiencies. The first is the poor
definition of kinematic error variables used in the development of the
coordinated controllers, and the second is the lack of global stability
and convergence proofs for the decentralized coordinated con-
trollers. The kinematic attitude error quantities used by the authors of
the first and third school are differences between quaternions or
angular velocity vectors, in different reference frames. These error
measures are not globally physically significant quantities. Despite
the use of poorly defined error measures, valid analytic proofs are
provided by all three schools. Authors from the first and second
schools offer global stability and convergence proofs for centralized
leader–follower type coordinated controllers. Local analytic stability
and convergence proofs are offered by authors from the second
school for their decentralized coupled dynamics controller. The third
school also offers a local stability proof for its reference projection
based coordinated attitude controllers. However, analytic proofs of
global convergence for decentralized coordinated controllers do not
appear in the literature.

The deficiencies of the literature noted here are addressed and
resolved by this work. Globally significant kinematic error variables
are defined and used in the development of a class of decentralized

attitude control laws that guarantee global asymptotic stability of the
attitude of spacecraft within a formation.

Spacecraft Attitude Dynamics

A brief review of spacecraft attitude dynamics is provided
primarily to introduce notation. The quaternion, �q, is defined as

�q�
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�
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�
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�

�
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�
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�
q
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(1)

where e is the Euler axis,� is the Euler angle, q is the vector part of
the quaternion, and q4 is the scalar part of the quaternion.‡ The
“canonical” quaternion, �p, is defined

�p� sgn�q4� �q�
p

p4

� �

(2)

where p is the vector part of the canonical quaternion,p4 is the scalar
part of the canonical quaternion, and the function sgn�x� is defined

sgn �x� �

�

1 if x � 0

�1 if x < 0
(3)

Use of the canonical quaternion is required to resolve the ambiguity
in the quaternion representation that allows �q and� �q to represent the
same rotation. The inverse canonical quaternion is defined

�p �1 � �pT p4

� �

T (4)

which represents the equal and opposite rotation represented by �p.
Subscripts are used to clarify the rotation represented by the

quaternion and canonical quaternion. For example, �pjk represents the
rotation from reference frame k, F k, to reference frame j, F j. The
subscripts used in this work are defined in Table 1.F i is an inertially
fixed reference frame.F b is a body-fixed reference frame centered at
the spacecraft’smass center.F 0 defines the desired orientation of the
spacecraft formation.x F 1 through F n are the body-fixed reference
frames of spacecraft 1 through n.

The quaternion that represents the successive rotations of �pbc and
�pab is

�q ac � �pab � �pbc (5)

�q ac �

p4;ab p3;ab �p2;ab p1;ab

�p3;ab p4;ab p1;ab p2;ab
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(6)

The first time derivative of the quaternion is defined as

_�q jk �
1

2
�!jk � �qjk (7)

where �!jk is defined

�! jk � !T

jk 0
� �

T (8)

Table 1 Reference frame notation

Subscript Description

i Inertial reference frame
b Body-fixed reference frame
j; k� 0 Desired spacecraft formation reference frame
j; k� 1; 2; � � � ; n Body-fixed reference frame of spacecraft 1; 2; � � � ; n

‡The notation xn represents the nth component of the vector x.
x
F 0 does not define the desired orientation of the individual spacecraft if a

constant, nonzero attitude offset is desired.
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and !jk is the angular velocity ofF j with respect toF k expressed in
F j.

The individual spacecraft in the formation are modeled as rigid
bodies. The equations of motion for a rigid body are

I b _!bi � gb � !�
biIb!bi (9)

where Ib is the moment of inertia matrix of the spacecraft expressed
in F b and gb is the external torque expressed in F b.

Attitude State Error

There are two measures of the attitude statek error of a spacecraft
within a formation. The error measures are the station-keeping and
formation-keeping attitude state errors. Station-keeping error is the
attitude state error of an individual spacecraft with respect to its
absolute desired attitude state. The station-keeping attitude error for
the jth spacecraft, �pj0, is defined

�p j0 � sgn�q4;j0� �pji � �p�1
0i (10)

where �p0i is the desired attitude of the spacecraft formation. The
station-keeping angular velocity error, !j0, is defined

!j0 � !ji �Rj0!0i (11)

where !0i is the angular velocity of F 0 with respect to F i expressed
in F 0 and Rj0 is the transformation matrix from F 0 to F j.

Formation-keeping error is the attitude state error of an individual
spacecraft with respect to the other spacecraft in the formation. The
desired relative attitudes of the spacecraft in the formation are
assumed to be constant. The equations developed in this section deal
with the error between two spacecraft in the formation. The attitude
error between the jth and kth spacecraft, �pjk, is

�p jk � sgn�q4;jk� �pj0 � �p�1
k0 (12)

where

�q jk � �pj0 � �p�1
k0 (13)

The relative angular velocity vector of the jth spacecraft with respect
to the kth spacecraft, !jk, is defined as

!jk � !j0 �Rjk!k0 (14)

The equations relating the relative attitude states of the jth and kth
spacecraft are

!kj ��Rkj!jk (15)

p kj ��pjk ��Rkjpjk (16)

Coordinated Attitude Control

The two desired behaviors of the attitude control system for a
spacecraft within a formation are station-keeping and formation-
keeping. The control action for the station-keeping behavior for the
jth spacecraft, gs

j, is defined

g s
j � !�

jiIj!ji 	 IjR
j0 _!0i � �

p
j0pj0 � �dj0!j0 (17)

where �
p
j0 and �

d
j0 are the proportional and derivative station-keeping

behavior weights. Equation (17) is an attitude trajectory tracking
control law for a single spacecraft, and is similar to the control laws
developed in Hall et al. [18]. If the desired attitude of the formation is
constant, then the station-keeping control action can be simplified by
not including the first two terms.

The control action for the formation-keeping behavior for the jth

spacecraft, gf
j , is defined

g
f
j ��

X
n

k�1

�
p
jkpjk �

X
n

k�1

�djk!jk (18)

where �
p
jk is the proportional formation-keeping behavior weight, �djk

is the derivative formation-keeping behavior weight, and n is the
number of spacecraft in the formation. The control action for the
formation-keeping behavior drives the relative attitude state error,
pjk and !jk, between connected spacecraft to zero. The proportional
behavior weighting factor, �pjk, determines the importance of the

relative alignment of the jth and the kth spacecraft in the formation.
The derivative behavior weight, �djk, determines the importance of

the jth and the kth spacecraft in the formation maintaining the same
angular rate. Equation (18) is a generalization and refinement of the
formation-keeping control action used by the velocity feedback
controller presented in Lawton and Beard [17] and the “coupled-
dynamics controller” presented in Lawton et al. [14].

The decentralized attitude control law is determined by summing
the control actions for the station-keeping and formation-keeping
behaviors. The resulting control law for the jth spacecraft, gj, is

g j � gs
j 	 g

f
j � !�

jiIj!ji 	 IjR
j0 _!0i �

X
n

k�0

�
p
jkpjk �

X
n

k�0

�djk!jk

(19)

The use of the canonical quaternion in Eq. (19) results in a
discontinuous control law.{ The behavior weights are restricted so
that

�
p
jk � �

p
kj �djk � �dkj

�
p
jk � 0 �djk � 0

�
p
j0 > 0 �dj0 > 0

for j; k� 1; 2; � � � ; n (20)

�
p
j0 > 2

X
n

k�1

�
p
jk for j� 1; 2; � � � ; n (21)

Equation (20) lists the restrictions on the station-keeping and
formation-keeping behavior weights to guarantee global asymptotic
stability of the system. Equation (21) is a sufficient condition to
guarantee convergence of the spacecraft formation’s attitude.

Several assumptions are made to simplify the development and
analysis of the class of decentralized attitude control laws. The
desired relative attitudes of the spacecraft in the formation are
constant. The desired attitude trajectory, �p0 and !0, of the spacecraft
formation is bounded. The spacecraft are rigid bodies that use
external torque actuation for attitude control.∗∗ Each spacecraft (j)
has perfect knowledge of its own attitude state and the attitude states
of the other spacecraft (k) in the formation for which there is a
nonzero formation-keeping behavior weight (�

p
jk ≠ 0 or �djk ≠ 0).

Global Asymptotic Stability Proof

The class of decentralized attitude control laws is proven to
globally asymptotically stabilize the attitude of the spacecraft within
the formation using a corollary of Barbalat’s Lemma. The corollary
states,

Corollary 1 [20] If a scalar functionV�x; t� satisfies the following
conditions:

1) V�x; t� is lower bounded

2) _V�x; t� is negative semidefinite

3) _V�x; t� is uniformly continuous in time

kThe term “attitude state” refers to both the attitude and angular velocity of
a rigid body.

{Because the control law is discontinuous, the theorem presented in Bhat
and Bernstein [19] is not applicable.

∗∗Although external torque actuation is used in developing the coordinated
control laws, extending the results for internal torque actuation is a
straightforward matter. The internal torque actuation extension is not
included because there are no important nor significant differences in that
development.
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Then _V�x; t� ! 0 as t ! 1.
For this analysis, the scalar function V is defined

V �
X
n

j�1

Vj (22)

where Vj is

Vj �
1

2
!T

j0Ij!j0 	 �
p
j0Sj0 	

1

2

X
n

k�1

�
p
jkSjk (23)

The function Sjk is defined

Sjk �

�

qTjkqjk 	 �
p
jk�1� q4;jk�

2 if q4;jk � 0

qTjkqjk 	 �
p
jk�1	 q4;jk�

2 if q4;jk < 0
(24)

The functionV is positive definite (and therefore lower bounded) and
radially unbounded. The derivative of V is

_V �
X
n

j�1

_Vj (25)

The derivative of Vj is

_V j � !T

j0Ij _!j0 	 �
p
j0
_Sjk 	

1

2

X
n

k�1

�
p
jk
_Sjk (26)

where the first time derivative of Sjk is

_S jk �

�

!T

jkqjk if q4;jk � 0

�!T

jkqjk if q4;jk < 0
� !T

jkpjk (27)

Applying this to Eq. (26) results in

_V j � !T

j0Ij _!j0 	 �j0!
T

j0pj0 	
1

2

X
n

k�1

�
p
jk!

T

jkpjk (28)

� !T

j0�Ij _!j0 	 �
p
j0pj0� 	

1

2

X
n

k�1

�
p
jk!

T

jkpjk (29)

The closed-loop attitude dynamics of the jth spacecraft, Eqs. (9) and
(19), are used with Eq. (29) to arrive at

_V j ��!T

j0

X
n

k�0

�djk!jk � !T

j0

X
n

k�1

�
p
jkpjk 	

1

2

X
n

k�1

�
p
jk!

T

jkpjk (30)

The first time derivative of V is

_V ��
X
n

j�1

�dj0!
T

j0!j0 	
X
n

j�1

�

�!T

j0

X
n

k�1

�djk!jk � !T

j0

X
n

k�1

�
p
jkpjk

	
1

2

X
n

k�1

�
p
jk!

T

jkpjk

�

(31)

Summing the terms involving the relative attitude variables of the lth
and mth spacecraft results in

X

j�l;m

�

�!T

j0

X

k�l;m

�djk!jk � !T

j0

X

k�l;m

�
p
jkpjk 	

1

2

X

k�l;m

�
p
jk!

T

jkpjk

�

���dlm!
T

l0!lm � �dml!
T

m0!ml � �
p
lm!

T

l0plm � �
p
ml!

T

m0pml

	
1

2
�
p
lm!

T

lmplm 	
1

2
�
p
ml!

T

mlpml (32)

Recognizing that the relative attitude variables are related simplifies
the terms to

X

j�l;m

�

�!T

j0

X

k�l;m

�djk!jk � !T

j0

X

k�l;m

�
p
jkpjk 	

1

2

X

k�l;m

�
p
jk!

T

jkpjk

�

���dlm�!l0 �Rlm!m0�
T!lm � �

p
lm�!l0 �Rlm!m0�

Tplm

	 �
p
lm!

T

lmplm (33)

The definition of the relative angular velocity vector, Eq. (14), is used
to further simplify to

X

j�l;m

�

�!T

j0

X

k�l;m

�djk!jk � !T

j0

X

k�l;m

�
p
jkpjk 	

1

2

X

k�l;m

�
p
jk!

T

jkpjk

�

���dlm!
T

lm!lm (34)

which is a negative definite quantity. If this process is performed for

each possible spacecraft pairing, _V simplifies to

_V ��
X
n

j�0

X
n

k�j	1

�djk!
T

jk!jk (35)

which is negative semidefinite.
The derivative of the scalar function is proven to be uniformly

continuous in time by showing that the second time derivative ofV is
bounded. The second time derivative of V is

�V ��2
X
n

j�0

X
n

k�j	1

�djk!
T

jk _!jk (36)

Equation (35) requires V�t� 
 V�0�, which implies qjk, pjk, and !jk

are bounded. Therefore, �V is bounded if _!jk is bounded. The first
time derivative of !jk is

_! jk � _!ji �Rjk _!ki (37)

and the first time derivative of !ji is

_! ji �Rj0 _!0i �
X
n

k�0

�
p
jkpjk �

X
n

k�0

�djk!jk (38)

The desired attitude state of the spacecraft formation is bounded, �V is

bounded, and _V is uniformly continuous in time. The requirements of
the corollary are satisfied, and

lim
t!1

!jk � 0 for j� 1; 2; � � � ; n and k� 0; 1; � � � ; n (39)

Using Eq. (38) and the definition of !j0, the first time derivative of
!j0 is

_! j0 ��
X
n

k�0

�
p
jkpjk �

X
n

k�0

�djk!jk (40)

Applying Eq. (39) to Eq. (40) results in a system of n equations of the
form,

X
n

k�0

�
p
jkpjk � 0 (41)

The definition of �pjk is used to rewrite Eq. (41) as

0 � �
p
j0pj0 	

X
n

k�1

�
p
jksgn�q4;jk����p

�
k0 	 p4;k01�pj0 � q4;j0qk0�

(42)
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� �
p
j0qj0 	

�

�

�

X
n

k�1

sgn�q4;jk��
p
jkqk0

�

�

	
X
n

k�1

sgn�q4;jk��
p
jkp4;k01

�

pj0 � p4;j0

X
n

k�1

sgn�q4;jk��
p
jkpk0

(43)

which can be written as

� p�
j0

X
n

k�1

sgn�q4;jk��
p
jkpk0 �

�

�
p
j0 	

X
n

k�1

sgn�q4;jk��
p
jkp4;k0

�

pj0

� p4;j0

X
n

k�1

sgn�q4;jk��
p
jkpk0 (44)

The right-hand side of Eq. (44) is a linear combination of the vectors
pj0 and

P

n
k�1 sgn�q4;jk��

p
jkpk0 and the left-hand side of the equation

is the cross product of the same two vectors. The equality is only
satisfied if

p �
j0

X
n

k�1

sgn�q4;jk��
p
jkpk0 � 0 (45)

Therefore, Eq. (44) simplifies to

�

�
p
j0 	

X
n

k�1

sgn�q4;jk��
p
jkp4;k0

�

pj0 � p4;j0

X
n

k�1

sgn�q4;jk��
p
jkpk0 � 0

(46)

The set of n equations that result represented in matrix form is

MP � 0 (47)

The 3n � 1 column matrix P is defined

P � pT10 pT20 � � � pTn0
� �

T (48)

The 3n � 3n matrix M is defined

M �

m111 m121 � � � m1n1

m211
. .
.

� � � ..
.

..

.
� � � . .

.
mn�1jn1

mn11 � � � mnjn�11 mnn1

2

6

6

6

6

4

3

7

7

7

7

5

(49)

where mjk is defined

mjk �

�

�sgn�q4;jk�p4;j0�
p
jk if j ≠ k

�
p
j0 	

P

n
k�1 sgn�q4;jk��

p
jkp4;k0 if j� k

(50)

The equation is satisfied if P is in the null space ofM; however, the
formation has converged only if

P � 0 (51)

Therefore, M fully spanning the vector space is a necessary and
sufficient condition to guarantee convergence. The M matrix is
strictly diagonally dominant if

k mjj k >
X
n

k�1;k≠j

k mjk k (52)

The left-hand side of the inequality is

k mjj k �

�

�

�

�

�
p
j0 	

X
n

k�1

sgn�q4;jk��
p
jkp4;k0

�

�

�

�

� �
p
j0 	

X
n

k�1

sgn�q4;jk��
p
jkp4;k0 (53)

� �
p
j0 	

X
n

k�1

sgn�q4;jk��
p
jkp4;k0 (54)

and the right-hand side of the inequality is

X
n

k�1;k≠j

k mjk k �
X
n

k�1;k≠j

k �sgn�q4;jk�p4;j0�
p
jk k �

X
n

k�1

p4;j0�
p
jk

(55)

Plugging these quantities into Eq. (52) results in

�
p
j0 	

X
n

k�1

sgn�q4;jk��
p
jkp4;k0 >

X
n

k�1

p4;j0�
p
jk (56)

Solving for �
p
j0

�
p
j0 >

X
n

k�1

p4;j0�
p
jk �

X
n

k�1

sgn�q4;jk��
p
jkp4;k0 (57)

>
X
n

k�1

�p4;j0 � sgn�q4;jk�p4;k0��
p
jk (58)

The quantity [p4;j0 � sgn�q4;jk�p4;k0] satisfies the following
inequality,

� 1 
 �p4;j0 � sgn�q4;jk�p4;k0� 
 2 (59)

therefore,

X
n

k�1

�p4;j0 � sgn�q4;jk�p4;k0��
p
jk 
 2

X
n

k�1

�
p
jk (60)

Thus, if

�
p
j0 > 2

X
n

k�1

�
p
jk (61)

the matrix M is strictly diagonally dominant, and fully spans the
vector space [21]. Therefore, the only valid stable equilibrium
condition of the spacecraft formation is Eq. (51). The class of
decentralized attitude control laws thereby guarantees that the
spacecraft within the formation will converge to the desired attitude
trajectory.

Coordination Architectures

Equation (19) represents a class of decentralized control laws that
differ by the coordination architecture used by the spacecraft
formation. The choice of the formation-keeping behavior weights,
�
p
jk and �

d
jk, determine the coordination architecture used. A nonzero

�
p
jk and/or �

d
jk is referred to as a connection between spacecraft. The

magnitude of �
p
jk and/or �djk is referred to as the strength of the

connection. Variants of coordination architectures can be created by
altering the number of connections between spacecraft and the
strength of the connections.

Four different coordination architectures for a six-spacecraft
formation are presented in Fig. 1. The circles represent the individual
spacecraft. Connections between the spacecraft are denoted by
bidirectional arrows. The coordination architectures in Fig. 1 differ in
the number of connections per spacecraft, c, used. Diagram B shows
a coordination architecture with two connections per spacecraft. This
type of coordination architecture is used by the velocity feedback
controller presented in Lawton and Beard [17] and the “coupled-
dynamics controller” presented in Lawton et al. [14]. The authors
term the two-connection architecture the “ring” coordination
architecture.

One interesting coordination architecture groups spacecraft in a
formation into clusters of strongly connected spacecraft. The clusters
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are then lightly connected through connections between spacecraft in
different clusters. Figure 2 shows a nine-spacecraft coordination
architecture that makes use of clusters. The nine spacecraft are
grouped into three clusters of three spacecraft each. The strong con-
nections within the clusters are represented by the solid bidirectional
arrows. The weak connections between spacecraft in different
clusters are denoted by the dotted bidirectional arrows.

Simulation Results

The performance and stability characteristics of the class of
decentralized attitude control laws are investigated through numeric
simulation. The analysis presented in the preceding section is
reinforced using simulations of a four-spacecraft formation with no
disturbance torques. A brief performance analysis of different
coordination architectures is performed using simulations including
constant disturbance torques.

The spacecraft are modeled as rigid bodies whose inertia matrices
are defined

I j �

45:2156 �1:1520 �2:7811

�1:1520 47:9560 1:3586

�2:7811 1:3586 50:6733

2

4

3

5kg �m2

for j� 1; 2; 3; 4

(62)

The station-keeping behavior weights used in all of the simulations
are

�
p
j0 � 50

�dj0 � 70
for j� 1; 2; 3; 4 (63)

The simulations require the definition of the desired attitude
trajectory, F 0, and the desired constant attitude offset from F 0. The
spacecraft formation is commanded to perform a 90 deg slew
maneuver about the

1 0 0
� �

T

axis expressed in F 0. The slew is completed in 90 s. The spacecraft
are commanded to be aligned with F 0 with no attitude offset.

The performance of the spacecraft formation is measured using a
station-keeping and a formation-keeping attitude error metric. The
station-keeping attitude error metric is defined

�� �p10; �p20; � � � ; �pn0� �

																														

X
n

j�1

k�� �pj0�k
2

v

u

u

t (64)

where the function �� �p� calculates the Euler angle of the canonical
quaternion. The formation-keeping attitude error metric is defined

�� �p10; �p20; � � � ; �pn0� �

																																									

X
n�1

j�1

X
n

k�j	1

k�� �pjk�k
2

v

u

u

t (65)

A metric to measure the overall control effort exerted by the
spacecraft in the formation is defined

��g1; g2; � � � ;gn� �

																				

X
n

j�1

kgjk
2

v

u

u

t (66)

Numeric Validation of the Analytic Analysis

The first simulation presented is used to validate the stability and
convergence analysis presented in the preceding section. A four-
spacecraft formation is simulated with no disturbance torques. The
formation-keeping behavior weights used in the simulation are
defined

�
p
jk � 8

�djk � 15
for j; k� 1; 2; 3; 4 and j ≠ k (67)

which satisfy Eqs. (20) and (21), and therefore guarantee global
asymptotic stability and convergence of the spacecraft formation’s
attitude.

Figure 3 contains three plots showing the results of the simulation.
The station-keeping attitude errormetric throughout the simulation is
shown in the top plot. The middle plot shows the formation-keeping
attitude error metric. The control effort metric is shown in the bottom
plot.

The simulation results validate the stability and convergence
analysis in the preceding section. The plots in Fig. 3 show that the
spacecraft formation converges to the reference attitude trajectory.
The station-keeping and formation-keeping attitude errormetrics fall
to the integration tolerance in approximately 40 s. At approximately
90 s, the value of the control effort metric falls to approximately zero,
which represents the completion of the slew maneuver.

Fig. 2 A decentralized coordination architecture that groups space-

craft into clusters.

Fig. 1 Four decentralized coordination architectures using a different

number of connections per spacecraft.
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A Brief Performance Analysis of Different Coordination Architectures

Investigating the performance of different coordination archi-
tectures requires that some simulation parameters be held constant so
that meaningful comparisons can be made. The spacecraft in the
formation are initialized to the same attitude states in all of the
simulations. A constant disturbance torque is included in the
simulations to analyze the relative performance of the coordination
architectures. The magnitude of the torque, 0:01 N �m, was chosen
to create steady-state angular errors that are large enough to allow for
performance comparisons. The axes defining the directions of the
torqueswere generated randomly, so that each spacecraft would have
a different tracking error. The analysis is simplified by maintaining a
constant ratio for the proportional and derivative formation-keeping
behavior weights for each connection in the coordination
architectures. The derivative behavior weight is defined

�d
jk �

15

8
�
p
jk for j; k� 1; 2; 3; 4 and j ≠ k (68)

Behavior Weight Variation

Five simulations of a four-spacecraft formation are performed.
Each simulation uses a three-connection per spacecraft coordination
architecture. All of the connections are equally weighted. The simu-
lations differ by the magnitude of the formation-keeping behavior
weights used.

The formation-keeping behavior weights used in each simulation
are summarized in Table 2. These values satisfy Eqs. (20) and (21),
and therefore guarantee global asymptotic stability and convergence
of the attitude of spacecraft within the formation. The steady-state
values of the attitude error metrics found in the simulations are
summarized in Table 2. The steady-state values of both the station-
keeping and formation-keeping attitude error metrics decrease with
increasing connection strength. Figure 4 contains plots of the control
effort metric during each of the simulations. Only one curve is visible
because the control effort metric values throughout the five
simulations are nearly identical, except for some slight differences at
the beginning of the maneuver. The steady-state value of the control
effort metric for all of the simulations is approximately 0:02 N �m.

Variation of the Number of Connections Per Spacecraft

The effect of varying the number of connections per spacecraft in a
coordination architecture is investigated using four simulations of a
four-spacecraft formation. Four simulations are performed using
coordination architectures with 0, 1, 2, and 3 connections per
spacecraft. The connections between spacecraft used in each of the
simulations are summarized in Table 3. The formation-keeping
behavior weights for each connection are held constant over the

formation and are defined

�
p
jk � 8 (69)

�djk � 15 (70)

The steady-state values of the attitude error metrics for each
simulation are summarized in Table 4. The table shows the decrease
in the steady-state values of the attitude error metrics with an
increasing number of connections per spacecraft. Figure 5 contains
plots of the control effort metric during each of the simulations. As in
the preceding set of simulations, only one curve is visible because the
control effortmetric values throughout thefive simulations are nearly
identical, except for some slight differences at the beginning of the
maneuver. The steady-state value of the control effortmetric for all of
the simulations is approximately 0:02 N �m.

Discussion of Simulation Results

The results of the simulations demonstrate that an improvement in
the steady-state values of the attitude error metrics can be achieved

Table 2 The formation-keeping behavior weights and steady-state

attitude error metric values for the five simulations

Proportional
behavior
weight (�

p
jk)

Derivative
behavior
weight (�djk)

Station-keeping
error metric

(�), deg

Formation-keeping
error metric
(�), deg

0.00 0.00 8:00 � 10�4 1:18 � 10�3

2.00 3.75 7:42 � 10�4 1:02 � 10�3

4.00 7.50 7:01 � 10�4 8:96 � 10�4

6.00 11.25 6:71 � 10�4 7:99 � 10�4

8.00 15.00 6:48 � 10�4 7:21 � 10�4

Table 3 The connections between spacecraft used in the four

simulations

Number of connections
per spacecraft (c)

Connections between the
jth and kth spacecraft (j,k)

0 none
1 (1,4), (2,3)
2 (1,3), (1,4), (2,3), (2,4)
3 (1,2), (1,3), (1,4), (2,3), (2,4) ,(3,4)

Table 4 The steady-state attitude error metric values for the four

simulations

Number of
connections

per spacecraft (c)

Station-keeping
error metric

(�), deg

Formation-keeping
error metric
(�), deg

0 8:00 � 10�4 1:18 � 10�3

1 7:37 � 10�4 1:01 � 10�3

2 6:78 � 10�4 8:23 � 10�4

3 6:48 � 10�4 7:21 � 10�4

Fig. 3 The simulation results of a four-spacecraft formation with no

unmodeled effects.

Fig. 4 Control effort metric using different magnitudes for the

formation-keeping behavior weights.
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by increasing either the strength of the connections or the number of
connections per spacecraft of the coordination architecture.

The decrease in the steady-state value of the formation-keeping
attitude error metric shown in the simulations is intuitive. Increasing
the number of connections per spacecraft leads to a better estimate
of the “average” attitude of the formation. The improved estimate
allows for more accurate control. Increasing the strength of the con-
nections elevates the importance of the formation-keeping behavior,
resulting in greater control effort being expended to satisfy the
formation-keeping behavior.

The improvement in the steady-state value of the station-keeping
attitude error metric is not as intuitive, and an examination of the
calculation of the station-keeping attitude error metric at steady state
is required. For small angular errors, like those realized in the steady-
state condition, the function � can be approximated as

�� �p�  2 k p k (71)

The resulting approximation of the station-keeping attitude error
metric is

� 2

																						

X
n

j�1

kpj0k
2

v

u

u

t (72)

The approximate � is the root-sum-square (RSS) of the distances of
the points defined by the pj0 from the origin. Applying the small
angle approximation to the formation-keeping attitude error metric
results in

�� 2

																																														

X
n�1

j�1

X
n

k�j	1

kpj0 � pk0k
2

v

u

u

t (73)

The approximate � is the RSS of the distances of the points defined
by the pj0 from one another, and is a measure of the spread of those
points.

The constant disturbance torques used in the simulations were
generated so that they are equal in magnitude and have a random
direction. For the “c� 0” and the “�

p
jk � �djk � 0” simulation,†† the

steady-state pj0 can be calculated using

p j0 ��
1

�j0
gdj

(74)

Because the magnitude of the constant disturbance torque and the
proportional station-keeping behavior weight are constant over the
formation, the points defined by the steady-statepj0 lie on the surface
of a sphere with a radius k gdj

k =�j0 that is centered at the origin.

The randomly-generated directions of the constant disturbance
torques results in a random distribution of the pj0 points over the
surface of that sphere.

The simulations performed using coordination architectures with
c > 0 and �

p
jk; �

d
jk > 0 resulted in lower steady-state values of �.

Equation (73) requires a decrease in the spread of the pj0 points for a

decrease in the value of �. If the pj0 points are evenly, or nearly
evenly, distributed on the surface of the sphere, as is the case in the
simulations that have been presented, a decrease in the spread results
in the points moving toward the origin. Equation (72) requires a
decrease in the value of � for a decrease in the distances of the pj0

points from the origin. Therefore, the decrease in the steady-state
value of � is expected for simulations using coordination archi-
tectures with a greater number of connections or stronger connec-
tions between spacecraft.

The results of the simulations also show that the decrease in the
steady-state value of the attitude error metrics is achieved without
increasing the steady-state value of the control effort metric. The
spacecraft in the simulations reach a steady-state once the control
torques applied by the spacecraft, gj, reach a constant value that is
equal in magnitude and opposite in direction to the constant
disturbance torque, gdj

, applied to the spacecraft.

g j ��gdj
8 j (75)

Therefore, the steady-state value of the control effort metric is
dependent solely on the magnitude of the constant disturbance
torques used in the simulations. The expected steady-state value of
the control effort metric for the simulations is

� �

																						

X
n

j�1

kgdj
k2

v

u

u

t �
																																																																

0:012 	 0:012 	 0:012 	 0:012
p

N �m

� 0:02 N �m (76)

which is equal to the value found in the simulations.

Summary and Conclusions

The primary contribution of this work is the development and
analysis of a class of decentralized coordinated attitude tracking
control laws that guarantee global asymptotic stability and con-
vergence of the attitude of spacecraft within a formation. Emphasis is
placed on the use of physically significant relative attitude variables
and providing a global asymptotic stability and convergence proof
for the class of decentralized attitude control laws. A corollary of
Barbalat’s Lemma is used to prove that the class of decentralized
attitude control laws guarantees the global asymptotic stability of the
attitude of spacecraft within a formation, and convergence is shown
to be a consequence of the closed-loop equations of motion. The
results of a numeric simulation of a four-spacecraft formation
performing a slew maneuver reinforced the analytic results.

The class of decentralized attitude control laws consists of control
laws that use different coordination architectures. Coordination
architectures can vary by the number and strength of the connections
between spacecraft. The performance effects of varying the number
and strength of the connections are briefly investigated using
numeric simulations of a spacecraft formation with constant dis-
turbance torques. The simulation results show that increasing either
the number or strength of the connections decrease the steady-state
values of both the station-keeping and formation-keeping attitude
error metrics. Simulation results and analytic analysis show that the
steady-state value of the control effort metric is independent of
coordination architecture.
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