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Abstract
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Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

2015

Engineered networks such as power grids, communication networks and logistics operations are becoming in-

creasingly interdependent and comprised of intelligent components that are capable of autonomously processing

and influencing their local environment, as well as interacting with other such components. These emerging ca-

pabilities are poised to enable unprecedented efficiency gains across previously disparate application domains.

Fully harnessing this potential is contingent in part on our ability to effect coordinated local interactions among

such components, ensuring their optimal collective behavior.

In this thesis we formulate several Decentralized Coordination Control Problems (DCCPs) for networked

multiagent systems involving either static or dynamic agents. We propose that Consensus Optimization (CO)

methods constitute a viable foundation for the synthesis of coordination control strategies that address large classes

of DCCPs.

In order to understand both the potential and the limitations of such strategies, we develop a new framework

for the convergence analysis of general CO schemes. In contrast with existing analytic approaches, our frame-

work is based on powerful system-theoretic techniques enabling the study of DCCP scenarios in which the agent

dynamics interact with those of the CO algorithm itself, thereby affecting its performance. Aside from fulfilling

its intended purpose, our analytic viewpoint also leads to the relaxation of several standard assumptions imposed

on numerical CO algorithms, and suggests a methodical approach to deriving conditions under which existing

centralized optimization methods can be decentralized.

In addition, we propose the Reduced Consensus Optimization (RCO) algorithm – a streamlined variant of

CO which is more innately suited to the DCCP context. Agents implementing RCO generally need not be aware

of the network size and topology, and the overall processing and communication overhead associated with agent

coordination may be substantially reduced relative to CO. On the basis of RCO, we propose a methodology for

the design of decentralized content caching strategies in information-centric networks.
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Chapter 1

Introduction

1.1 The Vision

ANTEATER: [Aunt Hillary] is certainly one of the best-educated ant colonies I have ever had the good fortune to know. The two of us

have spent many a long evening in conversation on the widest range of topics.

ACHILLES: I thought anteaters were devourers of ants, not patrons of ant intellectualism!

ANTEATER: Well, the two are not mutually inconsistent. I am on the best of terms with ant colonies. It’s just ANTS that I eat, not

colonies... [And,] I beg your pardon. “Anteater” is not my profession; it is my species. By profession, I am a colony surgeon.

I specialize in correcting nervous disorders of the colony by the technique of surgical removal.

ACHILLES: Oh, I see. But what do you mean by “nervous disorders” of an ant colony?

ANTEATER: Most of my clients suffer from some sort of speech impairment. You know, colonies which have to grope for words in

everyday situations. It can be quite tragic. I attempt to remedy the situation by, uhh – removing – the defective part of the

colony.

ACHILLES: Well, I can vaguely see how it might be possible for a limited and regulated amount of ant consumption to improve the

overall health of a colony – but what is far more perplexing is all this talk about having conversations with ant colonies. That’s

impossible. An ant colony is simply a bunch of individual ants running around at random looking for food and making a nest.

ANTEATER: You could put it that way if you want to insist on seeing the trees but missing the forest, Achilles. In fact, ant colonies,

seen as wholes, are quite well-defined units, with their own qualities, at times including the mastery of language.

ACHILLES: There must be some amazingly smart ants in that colony, I’ll say that.

ANTEATER: I think you are still having some difficulty realizing the difference in levels here. Just as you would never confuse an

individual tree with a forest, so here you must not take an ant for the colony. You see, all the ants in Aunt Hillary are as dumb

as can be. They couldn’t converse to save their little thoraxes!

ACHILLES: Well then, where does the ability to converse come from? It must reside somewhere inside the colony! I don’t understand

how the ants can all be unintelligent, if Aunt Hillary can entertain you for hours with witty banter.

TORTOISE: It seems to me that the situation is not unlike the composition of a human brain out of neurons. Certainly no one would

insist that individual brain cells have to be intelligent beings on their own, in order to explain the fact that a person can have

an intelligent conversation.

(The Ant Fugue, [66]1)

This excerpt from Hofstadter’s delightfully orchestrated Ant Fugue dialogue strikes at the core of our ongo-

ing fascination with the phenomena of “emergence” and “complexity”. Though one would be hard pressed to

find universally accepted, formal definitions of these terms, it is easy to find examples of systems both in na-

ture and engineering that are unambiguously characterized as being complex, and exhibiting emergent properties.

Roughly speaking, a system is considered to be “complex” if it consists of a large number of interacting com-

ponents, and the nature of these interactions plays an important role in the behavior of the whole. Such systems

1This excerpt has been shortened and slightly rearranged in the interest of brevity. Consequently, it cannot possibly reflect all of the

aesthetic qualities and philosophical depth of the original Ant Fugue, which ought to be savoured in its entirety!

1



CHAPTER 1. INTRODUCTION 2

exhibit “emergent” properties if the collective behavior of these interacting components is in some sense dis-

tinctly more sophisticated than the behavior of the individual components themselves [106]. As Hofstadter’s Ant

Fugue so aptly illustrates, it is often difficult to reconcile the holistic view of such systems with the reductionist

understanding of their constituent parts; “more” is indeed different [5].

Though most real ant and termite colonies may not be quite as charming as Aunt Hillary, they are nonetheless

capable of accomplishing some impressive collective feats. It is interesting to contemplate that an ant colony,

when regarded as a cohesive whole, behaves very much like an organism unto itself. From “birth” it grows, and

upon reaching a certain stage of maturity, it reproduces and thereafter maintains a roughly constant size. Colonies

compete for resources with nearby colonies, just like other macro organisms do. Remarkably, the colony appears

to “know” when and how to pool and divide its workforce among competing priorities such as foraging and nest

maintenance, and it does so adaptively in response to changing environmental conditions [58]. When foraging,

the pathway that emerges between the colony and the food source is often the shortest possible, making it seem

as though the colony has directly reached out to the food source.

In addition, many ant and termite species build large, elaborate nesting structures that serve strikingly sophis-

ticated functions. The African Macrotermitinae termites construct “cathedrals” featuring carefully architected

networks of ventilation ducts that aid in thermal regulation and promote the exchange of respiratory gasses [82].

Inside the mound one finds structural support pillars and a network of chambers, arranged according to function;

some chambers are designated as nurseries, and others for the purpose of cultivating fungi that help feed the

colony. It is astonishing that such a sophisticated structure, which can be up to a hundred thousand times larger

than the average termite that participates in its construction [17], emerges out of simplistic actions and local inter-

actions among thousands of individuals, none of whom are individually capable of cognizing the apparent aims

of the collective, or the contribution that their individual actions make to its behavior. The entire construction pro-

cess is accomplished in the absence of centralized control. There are no blueprints, and there is no organizational

hierarchy.

Slime mold is another intriguing, and yet more basic example of how interactions among primitive modules

leads to emergent, “superorganism” behavior [52]. The cellular slime mold Dictyostelium discoideum spends most

of its life as a single-celled, amoebae-like organism, until food becomes scarce. The shortage of food triggers a

process by which individual amoebae spontaneously aggregate into colonies of thousands of individuals, which

then behave in many ways like a single organism.2 So far, biologists have accumulated a substantive understanding

of the mechanisms governing the behaviors and capabilities of individual cells. For example, it is now well

known that individual amoebae interact with one another by periodically broadcasting a chemical abbreviated as

cAMP, and that this primitive form of communication plays a critical role in the aggregation process [18]. The

aggregation process itself involves several stages featuring emergent collective phenomena. For instance, in an

initial stage, individual cells appear to spontaneously differentiate into a small number of “master” cells, which

initiate the cAMP pulses autonomously, and a large number of “slave” cells, which relay those pulses. Curiously,

the designation of “master” or “slave” does not appear to be an intrinsic, a priori property of individual cells, since

it has been observed that in fixed-density populations, the fraction of master cells is inversely proportional to the

size of the population; in other words, the emergence of sepcialization among cells appears to be “decided” by

the amoeba collective [52].

2In the world of slime molds, the popularity of Dictyostelium is overshadowed by that of its relative, Physarum polycephalum, also known

as true slime mold. Physarum has recently garnered fame for being able to solve mazes [111] and design optimal transport systems [151], as

well as being a picky eater [46]. Though it accomplishes all these things in the absence of a centralized coordination center, in the present

work Physarum is relegated to a footnote because it aggregates early on, and thereafter spends most of its life as a single, giant, multinucliate

cell. As an example system, Physarum is therefore less germane to the advancement of our thesis than the humble Dictyostelium.
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Our third example of emergent phenomena comes from the study of animal collectives that engage in herding,

schooling or flocking. An interesting hypothesis is that banding together greatly enhances the ability of individual

animals in such collectives to acquire and process information about their environment [36]. For example, in

bird flocks and fish schools, individuals tend to align the velocity and direction of their motion with that of their

neighbors, which tends to result in collective behavior that appears highly cohesive and well coordinated [158].

By the same mechanisms, an abrupt change in the velocity of an individual that has just perceived a predatory

threat can propagate very quickly throughout the collective and be perceived by a distant conspecific for whom

the threat is not even within sensory range [37].

It is postulated that in addition to extending an individual’s effective sensory range, being part of a collective

provides individuals with access to sophisticated signal processing capabilities [36]. For example, for the purposes

of migration, environmental signals such as temperature or resource gradients must be accurately estimated in the

presence of various sensory uncertainties. Models suggest that individuals within migrating collectives temper

their response to personal measurements of environmental signals with how they perceive their neighbors to be

responding [120]. This process is not unlike that of distributed averaging, which is often used in sensor networks to

diminish the effects of noise [154]. Thus, the action of the collective is effectively to “filter” noisy environmental

signals in a way that improves the accuracy of the collective estimate. Equally interesting is that such animal

collectives appear to “know” how to adapt their collective “filter tuning” based on context. For example, the

processing of information related to predatory threats involves filtering that is tuned to be more sensitive to small

variations in individuals’ movements than the filtering involved in the processing of migration-related information

[37]. Questions into how exactly animal collectives are able to adapt the trade-off between the speed and the

accuracy of signal estimation remain largely unanswered at this time [37].

These three examples of naturally occurring multiagent systems share at least seven quintessential features of

particular interest to the engineering standpoint:

(F1) The system is composed of numerous basic modules or agents, each having a limited capacity to sense,

process and affect its environment.

(F2) Each agent is able to interact in basic ways with a small subset of other agents – typically those in its

physical proximity. The nature of these interactions seems to play an important role in shaping the collective

behavior.

(F3) The ongoing interactions among agents produce a collective behavior which often appears to be in the best

interest of the collective. In other words, the collective, when regarded as a cohesive whole, appears to

behave in a purposive way and act in its own best interest.

(F4) Each individual agent has little or no awareness of the state, size or behavior of the collective at any given

time, and is almost certainly nescient with respect to its apparent aims.

(F5) An agent’s individual actions suggest that its private goals are not necessarily coincident with those of the

collective.

(F6) The functional capabilities of the collective are surprisingly sophisticated relative to those of the individual

agents that comprise it.

(F7) There is no centralized coordination mechanism, no hierarchical organization, and no commonly available

blueprint to guide the actions of individuals in producing the behavior of the collective.
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Many more examples of both natural and artificial multiagent systems exhibiting these features have been

studied by various research communities [118] [63], [168], [146], [142]. The fact that such systems actually exist

– and appear to function rather effectively within their various ecological milieus – poses an irresistible temptation

to reverse-engineer them, to uncover the fundamental mechanisms that give rise to their emergent properties, and

to attempt synthesizing them.

The observation that features F1 to F7 appear to be common to such a wide variety of existing systems fuels

the hope that there may actually be a set of fundamental mechanisms that operate universally to produce their

emergent properties. However, the question of whether such mechanisms exist has not been conclusively resolved

yet, despite many notable and diverse efforts to understand self-organizing behavior [118], [66], [63], [156]3.

Even if such universal mechanisms do not exist – or are not discernible – one still wonders to what extent it might

be possible, even for restricted problem scenarios, to identify those ingredients necessary for emergent behavior

to occur.

Though much may be known about the operation of slime molds, ant colonies and bird flocks, the true goal

is to move beyond the development of models that merely mimic specific instances of such systems; the ultimate

vision is to know exactly how to build and manipulate general classes of networked multiagent systems that

embody features F1 to F7, and to develop unifying theoretical frameworks that would allow us to understand their

full potential, as well as their functional limitations. Of particular interest are features F4, F6 and F7, and the

possibility of engineering systems in which the interactions among basic, nescient elements can be maximally

exploited to create collective functionalities that extend far beyond those of the individual elements themselves.

In developing the unifying theoretical frameworks engendered by this vision, there are many possible perspec-

tives (q.v. [50], for example). One such framework might allow us to specify the system by its set of agents – their

operational capabilities and constraints, their interaction network and its dynamics – and from these specifications

enable us to methodically answer several key questions. For instance, given a collective objective – i.e., some

arbitrary desired collective behavior or configuration – does there exist a set of local interaction rules by means of

which the agents may collectively achieve this objective? If there is at least one such set of interaction rules, how

do we go about constructing them? Can we characterize the set of achievable collective objectives, and how do

we do so? Can we characterize the range of environmental conditions and perturbations under which a given set

of interaction rules will nonetheless achieve a given collective objective?

Such questions are primarily of a structural nature, echoing those concerning the “controllability” and “ob-

servability” of dynamical systems, for example. Owing to the import of algebraic concepts into the theory of

feedback control, such questions now have complete, systematic answers within the realm linear dynamical sys-

tems [77], and to some extent also within the realm of nonlinear dynamical systems [69]. However, analogous

theoretical developments in the broad context of networked multiagent systems are still sparse and disparate, be-

ing mostly focused on specialized system classes or collective objectives. We are still missing a comprehensive

theory that would enable the systematic design and analysis of coordination control methods for general classes

of such systems, and for general classes of collective objectives.

With apologies to the reader (who is no doubt deeply engaged, and with very high hopes at this point), we

confess that no such comprehensive theory is developed in this thesis. However, our work – present and future –

is certainly motivated by the prospect of developing such frameworks, and their potential utility in enabling new

solutions to important societal challenges. Our aim in this thesis is to contribute toward the overall vision just

described.

3Interestingly, this is the very same Alan Turing known for the Turing machine and several monumental contributions to theoretical

computer science.
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1.1.1 What Motivates this Vision?

Apart from being intellectually gratifying, the pursuit of this vision is of tremendous practical value. Its general

relevance is suggested by recent social and technological trends away from centralized, monolithic, vertically

integrated organizational structures, to those that are more lateral and decentralized. In [130], Rifkin collects a

number of compelling examples evidencing this shift, which, not surprisingly, has been advanced by the inception

of the Internet. The proliferation of social media within the last decade and a half has made it easier for collec-

tives of individuals to organize without centralized coordination, and under politically oppressive conditions, to

initiate the Arab spring revolutions, for example. The freely available Wikipedia, which compiled and reviewed

distributively by a multitude of contributors, rivals the accuracy and quality of the best commercially available

encyclopaedias [57] whose creators centralize the compilation and review process among a comparably small

number hired experts. The blogosphere and social media have made it possible for consumers to become pro-

sumers of news and information, and to bypass many products sold by monolithic news corporations. Similarly,

consumers of media are being morphed into prosumers by Peer-to-Peer (P2P) file sharing systems and services

such as YouTube. This process is undermining the traditional, monolithic business practices of large record labels

and film production companies. Companies like Airbnb are making it easy for anyone to be a hotelier, without

having to aggregate a large, centralized capital investment typically needed for a profitable entry into the hospi-

tality industry. Along with the Internet, technologies such as 3D printing are promoting the so called “distributed

manufacturing” movement, characterized by the increasingly many manufacturing activities taking place in ge-

ographically dispersed microfactories, bringing the production of many goods closer to the end consumer [26],

[35].

Rifkin identifies the most important changes along this direction to be taking place in the energy sector,

where it is expected that increasingly many passive consumers will begin to actively participate in the generation

of energy by means of small-scale installations of renewables. Rifkin, among others (q.v. §2.2 in [157], for

example), foresees an “energy Internet”, in which almost everyone is an energy prosumer, and energy flows

are traded and coordinated in a decentralized way reminiscent of P2P file sharing. In parts of North America

and the European Union, some aspects of the so-called “Smart Grid” are already well developed and actively

deployed. For instance, the use of smart meters in the Pacific Northwest Smart Grid Demonstration project

allowed consumers to monitor and schedule their energy consumption in response to real-time fluctuations in

energy prices, resulting in substantial reductions in peak energy demands [1]. On the supply side however, the

large-scale integration of distributed energy sources into the grid remains a technological challenge; it is difficult

to coordinate the generation and flow of energy aggregated from a multitude of intermittent and geographically

distributed sources in such a way that supply is matched to demand, and network stability and power quality are

reliably maintained [137].

Equally as interesting is the notion of an “Internet of Things” (IoT), and the possibilities it represents; it is

anticipated that the evolution of the IoT will eventually lead to the merger of the communication Internet, the

energy Internet, and various logistics and transportation networks into one seamless, easily accessible network

[130], [157]. The IoT, a concept which is being heeded rather seriously by leading industries4, is envisioned as

consisting of countless Internet-enabled sensors and actuators attached to various machines, appliances, build-

ings, vehicles, goods and people. The IoT will thus form enormous, highly interconnected, global networks of

heterogeneous objects which are equipped with various basic sensory, processing and actuation capabilities, and

which can communicate and interact with one another via the Internet.

4See for instance IBM’s “Smart Planet” initiative, CISCO and NASA’s “Planetary Skin”, GE’s “Industrial Internet”, Apple’s “HomeKit”

developer tools, Bosch’s IoT Labs, or Siemens’ “Decentralized Energy Management System”, among others.
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The pervasive presence of sensors collecting unimaginable quantities of streaming data, and of geographically

distributed actuators that can be used to respond to insights mined from this data, together pose the intriguing

possibility of fine-grained, joint control and joint optimization of networked systems spanning previously disjoint

application domains. One may imagine energy coordination decisions being made based on weather forecasts

and real-time traffic patterns, or supply chain management decisions being made based in part on trends mined

from local streams of social media metadata. If managed correctly, these technological trends may truly culminate

in an “Industrial Revolution” with unprecedented potential for improving the efficiency and reliability of a wide

variety of interdependent social, economic and industrial processes. Though somewhat speculative, a captivating

projection is that our overall social and technological trends toward decentralization have the potential to result

in such efficiency gains as may ultimately lead to a near “zero marginal cost society”, structured primarily as a

“collaborative commons” [131].

As utopian as this vision might seem, there are a number of serious ethical, political and technological chal-

lenges to its realization. In our view, there are two predominant technological issues. The first relates to the sheer

quantity of information that would conceivably be gathered by networks of geographically distributed sensors,

and our ability to mine meaningful insights from this “Big Data” in real-time. Considering that the aggregation of

data at a centralized processing station inevitably incurs delays and communication overhead, it seems unlikely

that centralized solutions to this challenge would be feasible for every application that is yet to be dreamt up.

The second issue concerns the effective use of geographically distributed actuation points within this “Internet

of Everything”, and motivates the objectives of this thesis. The nature of the IoT as it is presently envisioned

suggests that many of its yet unborn applications will precipitate numerous engineering problems that can be

abstracted as coordination control problems for networked multiagent systems (NMAS). Some of these problems

will involve networks of cooperative agents whose actions will need to be coordinated in order to achieve some

collective, network-level configuration or performance objective. In analogy to problems associated with aggre-

gating large quantities of data, one faces the problem of disseminating centrally-computed coordination control

signals to each agent in the network. Since the stability and robustness of nearly every feedback control scheme

is adversely affected by communication errors and delays, it is of utmost importance to minimize the distance and

the number of hops that any control-related signal traverses. For these reasons it is also unlikely that centralized,

or even hierarchical coordination control strategies alone would suffice for all future applications (q.v. Remark

1.1.1). In this sense, the realization of an energy Internet or an IoT-enabled “smart planet” depends not only on

the evolution of business models and government policies, but also crucially on the development of engineering

technologies such as decentralized coordination control algorithms for NMAS.

Whether a near-zero marginal cost society materializes or not, we can at least be certain that the accelerated

evolution of information and communication technologies witnessed in the last two decades is bound to effect

fascinating new engineering problems, many of which presently lie beyond our imaginations. Many of these

problems are likely to be related to the regulation and management of complex systems, and as control theorists,

we are uniquely positioned to contribute to their solutions. Unquestionably, exciting new developments lie ahead

for the field of control theory.

Remark 1.1.1 (On Hierarchical vs. Decentralized Designs): Even when a hierarchical control structure is most

appropriate [102], it may often be the case that modules within a given layer of the hierarchy could benefit from

coordinating their actions in a decentralized way. For instance in the regulation of islanded microgrids, the bot-

tom layer may be identified with the primary control scheme responsible for regulating the behavior of individual

loads and microgeneration units [78]. The upper layer of the control hierarchy may be identified with the sec-

ondary control scheme, which is responsible for coordinating power flows within the microgrid and regulating
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the frequencies and voltages at its point of common coupling [61]. As is typically the case in hierarchical control

schemes [76], there is a time-scale separation between the fast primary control and the slow secondary control. For

this example, one may consider decentralizing the implementation of the upper layer secondary control scheme

in this two-layer hierarchy [93], [101]. ♦

1.1.2 Progress Within the Control Community

There are a number of somewhat segregated bodies of literature concerned broadly with the subject of decentral-

ized coordination control for cooperative multiagent systems. From our preceding observations, it is not surprising

that this topic is presently of great interest [2] within the control community.

The most recent and prolific body of literature in this genre focuses on the design of coordination control

strategies for mobile robotics applications [138], [9], [25], [129], [128], [59], [87], [110], [141]. Problems of

interest include formation control, the rendezvous problem, target localization and tracking, source seeking, gra-

dient climbing and optimal area coverage, among others. Many of the contributions in this area are intended to

enable mobile sensor network technologies aimed at end applications such as environmental monitoring, military

reconnaissance, search and rescue, and space exploration. As such, the problem settings considered also often ad-

dress distributed parameter estimation and sensor fusion problems. A focal consideration for many contributions

in this literature is the communication structure that models the information flow among agents, and its effect on

the collective behavior. Consequently, the well-studied consensus dynamics [71], [108], [136] play an important

role in most of these results.

Within the control community, the earliest interest in decentralized coordination control appears in the late

1960s, and we refer to the associated body of literature as “classical decentralized control” [76], [170], [161],

[162], [40], [164], [41], [104]. Early developments in classical decentralized control appear to have been mo-

tivated primarily by aerospace, power system and industrial control applications in which the plant model may

involve hundreds or thousands of dynamically coupled state variables, and multiple control inputs and measured

outputs. Many contributions in this area are concerned with questions of how to reduce a single, very large-scale

dynamical system [6], or decompose it into smaller, weakly coupled subsystems that can be separately controlled

by standard state, or output feedback methods [40], [170]. In contrast with the aforementioned developments in

coordination control for mobile robotic applications, classical decentralized control is less focused on exploiting

communication among separate controllers in order to coordinate their actions5.

Other bodies of control literature related to our subject include networked control, which focuses on how

communication channel properties affect closed-loop performance [12], and distributed model predictive control,

which is an on-line, optimization-based technique successfully employed in applications such as industrial process

control, traffic congestion control, and supply chain management [117], [34].

1.2 Decentralized Coordination Control

Motivated by the ideas in §1.1, we are interested in developing general, yet concrete and practical theories that

address what we will refer to as the decentralized coordination control problem (DCCP). We will refine the

5This contrast can be explained by observing that information and communication technologies experienced accelerated development only

after the late 1980s. Still, the possibility of exploiting communication among individual controllers to improve performance was not entirely

ignored in the early days of classical decentralized control; the famous Witsenhausen counterexample shows that for some systems, certain

decentralized reformulations of optimal control fail to perform as well as an ad-hoc strategy that entails implicit communication between two

controllers, with the system’s coupled dynamics themselves as the communication medium [76], [166].
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definition of this problem in later sections, but in essence, the problem can be stated as follows.

Problem 1.2.1 (General DCCP): For a given set of agents, design a set of rules by which agents individually

operate and interact in order to produce a desired collective behaviour, or accomplish some non-trivial task in a

way that leverages the synergism of the collective.

In other words, we consider cooperative problem scenarios in which individual agents are either devoid of

private interests, or their capacity to act in pure self-interest and game the system for their own advantage is

assumed to be removed by certain technological constraints or governing policies. Examples of problem scenarios

involving agents without private interests include those of engineered systems such as networks operated by a

single internet service provider, or a generation, transmission and distribution network owned by a single utility,

or a sensor network of mobile robots deployed for a common purpose. On the other hand, an example of a

multiagent system in which cooperation might be enforcible by policy or technology is an islanded microgrid in

which there are restrictions imposed on energy-trading practices among participants.

In this thesis, we approach the DCCP from a control theoretic point of view. Consequently, we restrict the

set of all conceivable problem scenarios that fall under Problem 1.2.1, to those characterized by the following

features.6

P1 (Agent Communication): There is a system of N agents, indexed by the set V = {1, . . . ,N}. In analogy to

feature F2 in §1.1, each agent may interact with some subset of other agents. We let EC ⊆ V ×V specify those

agent pairs that can at any time exchange information directly with one another, and let NC(i) denote the set

of agents that agent i may communicate with – i.e., j ∈ NC(i) iff ( j, i) ∈ EC. We refer to GC = (EC,V ) as the

communication graph, and we consider scenarios in which GC is given in the formulation of the DCCP. ♦

P2 (Agent Actions): The set of actions, or decisions available to each agent i ∈ V can be represented by an mi-

dimensional vector of real values, denoted as ui. We refer to u = [uT
1 , . . . ,u

T
N ]

T ∈ U ⊂ R
m = R

m1 ×·· ·×R
mN as

the collective decision, and to U as the collective decision space. ♦

P3 (Agent States): The state of the i’th agent (or its proximal environment) can be specified by finitely many real

numbers collected into xi ∈ R
ni , and modelled as being either static, or evolving according to a given system of

continuous-time, deterministic, ordinary differential equations. We refer to x = [xT
1 , . . . ,x

T
N ]

T ∈ R
n = R

n1 ×·· ·×
R

nN as the collective state, or the collective configuration.

Naturally, we assume that an agent’s actions affect its state. If agent i is modelled as a static entity, then its

state is understood to be synonymous with its decision – i.e., xi ≡ ui, and ni = mi.
7 If agent i is modelled as a

dynamic entity, then we let Σi denote its dynamics, which we assume to be given by

Σi :
{

ẋi = fi(x,ui), ∀i ∈ V , (1.1)

where fi : Rn ×R
mi → R

ni is locally Lipschitz continuous. We often refer to the collective dynamics (1.1) as Σ.

We note that in many practical applications, the state of one agent may influence the evolution of another’s

state. Allowing fi(·,ui) to depend generally on the collective state x reflects this possibility. ♦

P5′ (The Collective Objective): We assume that the desired collective behavior or configuration of the multiagent

system corresponds to a set X∗ ⊂ R
n of collective states. We refer to X∗ as the goal set, and we say that the

collective objective is achieved whenever x ∈ X∗. ♦

6Notation which is not explicitly defined throughout the text may be found in Appendix A. In addition, Chapter 2 provides a brief exposition

of mathematical preliminaries that are relevant to our developments.
7We emphasize this point because in those chapters of this thesis dealing with static agents we denote agent i’s decision by xi.
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P6′ (Agent Nescience): In analogy to feature F4 in §1.1, an agent may not generally have direct knowledge of the

goal set X∗, of other agents’ individual performance measures, their states, their actions, and the environmental

conditions affecting them. Consequently, individual agents are nescient with respect to the collective objective

and the overall progress of the agent collective toward achieving it. ♦
We intend to express properties P5′ and P6′ more precisely in the sequel. Before we can do so, we introduce

the notion of an equilibrium map, and property P4, which depends on it.

1.2.1 Asymptotic Decentralized Coordination Control

In consideration of properties P1-P2, and P5′-P6′, the remainder of this section is dedicated to the further refine-

ment Problem 1.2.1, and a gradual exposition of our intended approach to solving it. Clearly, the setting so far

requires us to design state, or output-feedback laws for the agents’ control (i.e. decision) variables u, in order to

drive the collective state x toward the goal set X∗.

We wish to point out that the formulation thus far is general enough to accommodate at least two distinct

approaches to the said design. One approach is to consider the problem form an asymptotic equilibrium (set)

stabilization point of view – that is, design u such that x approaches some subset of X∗ asymptotically. However,

this approach is only possible when the set X∗ is compatible with the given collective dynamics Σ. We explain

what we mean by this with the following example.

Example 1.2.1 (Compatibility of X∗ with Σ): Consider a system in which V = {1}, x = x1 = [x1,1,x1,2]
T ∈ R

2,

and

Σ̂1 :







ẋ1,1 = x1,2

ẋ1,2 = v1

Suppose that X∗ = [3,4]× [1,2]. Clearly, no possible state feedback could ever change the structure of Σ1 such that

some x∗ ∈ X∗ becomes a stabilizable equilibrium. On the other hand, if X∗ = [3,4]× [−1,2], we may consider a

control law of the form v1 =−x1,1−kx1,2+u1, where k is any positive, real number, and u1 is an auxiliary control

variable. This control law renders any point of the form [u1,0]
T , an asymptotically stable equilibrium for the

closed-loop system. Then, supposing that X∗ is known, letting u1 take any value in the interval [3,4] accomplishes

the objective asymptotically: limt→∞ x(t) ∈ X∗. We will say that X∗ = [3,4]× [−1,2] is compatible with Σ̂1, while

X∗ = [3,4]× [1,2] is not. ♦
More generally, we say that a set X∗ is compatible with a dynamic system Σ if there exists some static or

dynamic state feedback control law that renders some subset of X∗ asymptotically stable for Σ. Clearly then, the

compatibility of X∗ and Σ is necessary in order to approach the DCCP from the equilibrium (set) stabilization

point of view.

In the absence of compatibility, one may alternatively approach the DCCP by recasting it as a reach-control

problem. Specifically, the goal would be to design u such that the collective state enters X∗ in finite time, and

thereafter continually visits, or re-visits certain states within X∗ – perhaps those that require minimal control

effort to move between. The work pursued in [24] could be relevant here, though the assumed agent nescience

(q.v. property P6′) may present an interesting challenge to this approach.

Equilibrium Maps and the Compatibility of X∗ with Σ

In this thesis we assume that the given X∗ is compatible with the given collective dynamics Σ, and we approach

the DCCP from an equilibrium (set) stabilization point of view. In Example 1.2.1, we designed the static state
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feedback control in two stages: the primary, or inner-loop control is given by v1 =−x1,1 −kx1,2 +u1, and its task

is to stabilize any point of the form [u1,0]
T . The secondary, or outer-loop control task is to design u1 so as to

guide the state of Σ̂1 toward X∗.

In this thesis we focus on the design of the secondary control laws, which is an important task in many NMAS

applications, such as power grids (q.v. Remark 1.1.1). Specifically, in problems involving dynamic agents, we

consider scenarios in which the collective dynamics Σ have an asymptotically stable equilibrium map, which is

defined as follows.

Definition 1.2.1 (Equilibrium Map): Consider a system of the form

Σ :
{

ẋ = f (x,u),

where x ∈ R
n and u ∈ R

m. A function l : Rm → R
n is an equilibrium map for Σ if f (x,u) = 0, iff x = l(u), for

some u ∈ R
m. ♦

With this definition, we further refine our problem scenarios by means of the following property.

P4 (Asymptotically Stable Equilibrium Map and Compatibility with X∗): We assume that there exists an

equilibrium map l : Rm → R
n for the collective dynamics Σ in (1.1), such that for every u ∈ U , the point l(u) is

asymptotically stable for Σ. Moreover, l(U )∩X∗ 6= /0. ♦
The closed-loop system

Σ1 :







ẋ1,1 = x1,2

ẋ1,2 =−x1,1 − kx1,2 +u1

from Example 1.2.1 satisfies P4. Its equilibrium map is given by l(u1) = [u1,0]
T , and is clearly such that l(R)∩

X∗ 6= /0. We note that requiring P4 to hold is stronger than requiring X∗ to be compatible with Σ; clearly, both Σ1

and Σ̂1 are compatible with X∗ = [3,4]× [−1,2].

We are now ready to make statements P5′ and P6′ more precise.

1.2.2 Agent Performance, Measurements, and the Collective Objective

For DCCPs characterized by P4, we may assume that an inner-loop control has already been designed. In that case,

the collective decision u represents a reference input which is to be adjusted by individual agents in a coordinated

manner, in order to guide the equilibrium state of the collective dynamics toward the desired configuration X∗.

When X∗ is explicitly known (as was supposed in Example 1.2.1), the solution to the DCCP might be trivial

under P4. However, in many applications of interest, the set X∗ may not be known a priori, and may need to

be discovered online (q.v. P6′). This may happen when the desired collective state configuration depends on

certain external environmental conditions encountered by the agent collective in real-time. As in the naturally

occurring multiagent systems described in §1.1, an added challenge is that each agent may be subjected to a

unique set of local environmental conditions, so that the form of X∗ is something that must emerge from the

ongoing interactions among the agents.8

In order for this to be possible, it is natural to assume that each agent has access to some measure of its

individual performance, which may in general depend on its state, its actions, and the local environmental con-

ditions affecting it. An agent’s performance may also be affected by the states and actions of other agents. The

8It is interesting to note that the same species of termite, when placed in two different environments with distinct climatic conditions, will

produce mounds with distinctly different features. These features are are in fact adapted for better functionality in the climatic conditions

encountered by the termite collective [65].
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collective objective then ought to relate to the maximization of some measure of group performance, which is

naturally assumed to be some function of agents’ individual performance measures. In analogy to feature F5 in

§1.1, an agent’s individual performance is not necessarily maximized when the collective objective is met; the

fact that one agent’s actions may interfere with another’s performance implies that some degree of coordination

and compromise is generally needed in order for the collective objective to be achieved.

One way to express a broad variety of NMAS coordination tasks is to appeal to the formalism of optimization.

In particular, finite-dimensional convex programming offers a rich assortment of tools and techniques, and covers

an impressive diversity of applications [22], [15]. For these reasons, we consider problem settings in which the

collective objective can be encoded as a solution to a convex program. The “recognition that many (if not all)

optimization problems of interest can be cast as convex programs” [127] suggests the generality, and thence the

utility of this approach.

We therefore consider DCCP scenarios with the following features.

P5 (Agent Performance and The Collective Objective): Let di(t) ∈ R
pi denote the collection of exogenous

signals representing all relevant environmental conditions affecting agent i, and let d(t) = [d1(t)
T , . . . ,dN(t)

T ]T ∈
R

p.

For the case in which the agents are dynamic entities, the measure of agent i’s performance is given by the

value of a function Ji : Rn → R, which is parametrized by di(t). We assume that the goal set is given by

X∗(t) = l(U∗(t)), (1.2)

where l : Rm → R
n is the equilibrium map associated with Σ, and

U∗(t) = arg min
u∈U

∑
i∈V

Ji(l(u);di(t)). (1.3)

We refer to

J(l(u);d(t)) = ∑
i∈V

Ji(l(u);di(t)) (1.4)

as the collective cost, and to Ji(l(u);di(t)) as agent i’s individual cost. We assume that the collective cost u 7→
J(l(u);d(t)) is convex for each d(t) ∈ R

p.

For the case in which the agents are static entities, the measure of agent i’s performance is given by the value

of a function Ji : Rm → R, which is parametrized by di(t). In this case the goal set is given by

X∗(t)≡U∗(t) = arg min
u∈U

J(u;d(t)), (1.5)

where

J(u;d(t)) = ∑
i∈V

Ji(u;di(t)). (1.6)

As in the dynamic case, we assume that the collective cost u 7→ J(u;d(t)) is convex in u for every d(t) ∈ R
p. ♦

Remark 1.2.1: In expressing the collective objective according to (1.2), we ensure that X∗ is compatible with the

collective dynamics Σ, and that we may pursue our DCCPs of interest from the point of view of asymptotic (set)

stabilization. Intuitively, (1.2) and (1.3) imply that we are looking for the best collective state configuration that

corresponds to an equilibrium for the dynamics (1.1). Alternatively, we may regard (1.3) as a joint optimization

over x ∈ R
n and u ∈ U , subject to the constraint x = l(u). ♦
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Remark 1.2.2 (Relationship to Game Theory): It is worth noting that the problem settings described so far have

a close resemblance to multiagent problems that can be abstracted as continuous-kernel games [11]. In particular,

a noncooperative, continuous-kernel game is specified by a set V of players, the ith player being characterized by

an action variable ui and a convex cost Ji(u1, . . . ,uN). Each agent’s objective is to minimize its own cost, without

regard for other agents’ costs. The solution concept of interest is that of the Nash equilibrium, which is some

point u∗ in the collective decision space U . The Nash equilibrium u∗ = [u∗1
T , . . . ,u∗N

T ]T is comprised of agents’

individual actions u∗i , each of which constitutes a best response to all other agents’ actions. In other words, u∗ is

such that ∀i ∈ V , u∗i minimizes ui 7→ Ji(u
∗
1, . . . ,u

∗
i−1,ui,u

∗
i+1, . . . ,u

∗
N), so that no individual agent has any incentive

to unilaterally deviate from u∗.

The fact that agent’s individual cost functions are coupled (i.e. the actions of some agents may affect others’

costs) means that in general, the set of Nash equilibria associated with the game (V ,U ,{J1(·), . . . ,JN(·)}) does

not correspond to the set of social optima U∗ in (1.5). Indeed, it is well known that decision processes designed

to locate a Nash equilibrium of a given game may not lead to socially optimal configurations. In particular, for

some games the sum of agent costs can be arbitrarily large at a Nash equilibrium. This phenomenon is often

referred to as the price of anarchy, or the tragedy of the commons [84], and it is an inherent consequence of purely

self-interested decision making. The potential social inefficiency of Nash equilibria is regarded as a downside to

using game-theoretic decision updating processes as a means of achieving coordination in multiagent systems.

However in some applications, game-theoretic decision updating methods are favoured because they require no

communication among agents, and thus incur little or no coordination overhead [47]. ♦
In light of the specification of the goal set X∗ given in P5, property P6′ can be made more precise as follows.

P6 (Agent Nescience): Agent i has no direct knowledge of the quantities J j(·;di(t)), u j, d j(t), x j and Σ j, for any

j 6= i. Therefore, agent i has no direct knowledge of J(·;d(t)), U∗(t), l(·) and X∗. ♦
Remark 1.2.3: Properties P5 and P6 reflect features F5 and F4 in §1.1. We note that the minimizers of agents’

individual cost functions may not generally coincide; a collective decision that is optimal for one agent may

be costly to another (c.f. Remark 1.2.2). Moreover, a collectively optimal decision u∗ ∈ U∗ may not generally

minimize any of the Ji(·, ·;di(t)) individually. ♦
Though agent nescience is an important characteristic of many DCCP scenarios, some assumptions need to

be made on what information is available to each agent.

P7 (Agent Measurements): In either the static or dynamic case, agent i is assumed to have access to measure-

ments of some quantity which is related to its private cost Ji(·;di). Let yi ∈R
ri represent the collection of variables

that can be measured by agent i at any time, and let yi be given by

yi = hi(Ji(x;di(t)), (1.7)

where hi(·) is some operator for which there may be a number of relevant specifications, depending on the appli-

cation under consideration. ♦
Remark 1.2.4 (Examples of Measured Quantities): There are various ways that the operator hi(·) in (1.7) may

be specified, depending on the application being considered, and the knowledge typically available to each agent

in that application. Among others, possible specifications for hi(·) include the following.

• hi(Ji(x;di(t)) = Ji(x;d(t)).

• hi(Ji(x;di(t)) = ∇xJi(x;di(t)).

• hi(Ji(x;di(t)) = ∇uJi(l(u);di(t))
∣

∣

l(u)=x
.
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♦
Together, problem features P1 to P7 allow us to express more precisely a subset of the DCCPs represented by

Problem 1.2.1.

1.2.3 Decentralized Coordination Control Problem Formulations

Narrowing our focus to problem scenarios characterized by P1 to P7, we present three specific DCCP formulations

that we address throughout this thesis. We separate the problem formulations pertaining to scenarios involving dy-

namic agents, from those involving static agents. We also consider formulations involving candidate coordination

control algorithms that operate in either discrete-time or continuous-time.

Dynamic Decentralized Coordination Control Problems

In Problem 1.2.2 below, we formulate a DCCP involving a sampled-data feedback interconnection between the

continuous-time collective dynamics Σ in (1.1), and a discrete-time decision updating process.

Problem 1.2.2 (Discrete-Time Dynamic Decentralized Coordination Control Problem (DT-DDCCP)): Consider

a set of mulitagent DCCP scenarios characterized by features P1 to P7, in which a given networked multiagent

system is modelled according to

Σi :







ẋi = fi(x,ui), ∀i ∈ V

yi = hi(Ji(x;di(t)).
(1.8)

Also consider a candidate coordination control algorithm of the form

Di :



















ξi(tk+1) = φi(ξi(tk),(v j(tk)) j∈NC(i),Yi(t
−
k+1)), ∀i ∈ V ,

ui(t) = ηi(ξi(tk)), t ∈ [tk, tk+1), ∀k ∈ N,

νi(tk) = ψi(ξi(tk),Yi(t
−
k+1)),

(1.9)

in which ξi ∈ R
qi represents the internal state of the ith agent’s decision updating process, vi(t) ∈ R

li are its

communicated variables, (v j(tk)) j∈NC(i) denotes an ordered set of all communicated variables received by agent

i, and

Yi(t
−
k+1) =









yi(tk1
)

...

yi(tksi
)









(1.10)

represents a collection of measurements made by agent i within the time interval [tk, tk+1).

Then, the discrete-time, dynamic decentralized coordination control problem (DT-DDCCP) is to design, if

possible, for all i ∈ V , the relations φi(·), ψi(·) and ηi(·) such that corresponding to X∗, there is a nonempty,

compact set Ξ∗ ⊂ R
q (with q = ∑i∈V qi), and X∗×Ξ∗ is semiglobally, practically, asymptotically stable for the

closed-loop system (1.8)-(1.9). ♦
Figure 1.1 depicts a networked multiagent system and the relevant properties of dynamic DCCPs such as

Problem 1.2.2.

Remark 1.2.5: The variables vi collect all the information that agent i communicates to its neighbors on GC. The

option to design the relation ψi(·) is meant to reflect the desirability of communicating sparingly, the importance

of choosing what is to be communicated, or the possibility that some information may be deemed private. ♦
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Figure 1.1: Dynamic decentralized coordination control problem scenarios. The connections between the decision

updating processes Di represent edges in the communication graph GC, while connections among the dynamic

subsystems Σi signify the presence of general dynamic coupling.

Remark 1.2.6: The notion of semiglobal, practical, asymptotic stability (SPAS) is defined in the upcoming §2.5.

For now, it suffices to note that the SPAS concept is more general than the more familiar concept of global

asymptotic stability (GAS). In the case of Problem 1.2.2 for example, SPAS contrasts with GAS in not requiring

X∗×Ξ∗ to be identical with the set of equilibria associated with (1.8)-(1.9). Roughly speaking, SPAS implies that

for an arbitrarily large set of initial conditions, trajectories of (1.8)-(1.9) can be made to asymptotically approach

an arbitrarily small set containing X∗×Ξ∗. ♦

To solidify the notions thus far introduced, we consider the following basic example.

Example 1.2.2 (DT-DDCCP for Force-Actuated Point Masses): As an extension of Example 1.2.1, consider a

multiagent system in which V = {1,2}, and agent i is modelled according to

Σi :



















ẋi,1 = xi,2

ẋi,2 =−xi,1 − kixi,2 +ui

yi = hi(Ji(x;di(t))).

(1.11)

The collective state here is given by x = [x1,1,x1,2,x2,1,x2,2]
T ∈ R

4, and the collective decision by u = [u1,u2]
T ∈

R
2. System Σi might represent the motion of a force-actuated point of unity mass, free to move along a line.

In that case, xi,1 represents particle i’s position, and xi,2 its velocity. Suppose that the collective objective is to

adjust the distance between the particles in some optimal way in response to certain environmental conditions

characterized by four numbers, say di(t) = [ai(t),bi(t)]
T ∈ R

2, i ∈ V . Specifically, suppose that the collective

cost is given by J(x;d) = J1(x;d1)+ J2(x;d2), where

Ji(x;d) = 1
2
ai(x1,1 − x2,1 −bi)

2, (1.12)

and we have dropped the time-dependence notation.

From Example 1.2.1 and the discussion that followed, we know that the equilibrium map pertaining to Σi is
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given by li(ui) = [ui,0]
T . Therefore, the equilibrium map l : R2 → R

4 for the collective dynamics Σ is given by

l(u) =













u1

0

u2

0













. (1.13)

Based on (1.3) then,

U∗ = arg min
u∈R2

J(l(u);d)

= arg min
u∈R2

(

1
2
a1(u1 −u2 −b1)

2 + 1
2
a2(u1 −u2 −b2)

2
)

= {u ∈ R
2 |u1 −u2 =

a1b1+a2b2
a1+a2

}. (1.14)

The corresponding goal set X∗ is given by (1.2) as

X∗ = l(U∗) = {x ∈ R
4 | x1,1 − x2,1 =

a1b1+a2b2
a1+a2

, x1,2 = x2,2 = 0}. (1.15)

In words, the DT-DDCCP in this example is to design the decision updating processes Di such that the distance

between the particles is adjusted until it reaches a weighted average of the numbers b1 and b2, and the particles’

velocities are zeroed. ♦

Static Decentralized Coordination Control Problems

In practice, one also often encounters static coordination control problems. In such problems, individual agents

have access to measurements related to their individual performance, but these measurements are not affected by

any dynamic quantities. One possible formulation of a static DCCP is given in the following statement, and may

be regarded as a special case of Problem 1.2.2.

Problem 1.2.3 (Discrete-Time, Static Decentralized Coordination Control Problem (DT-SDCCP)): Consider a

set of mulitagent DCCP scenarios characterized by features P1 to P7, in which a given networked multiagent

system is modelled according to

Σi :







xi ≡ ui, ∀i ∈ V

yi = hi(Ji(x;di(t)).
(1.16)

Also consider a candidate coordination control algorithm Di of the form (1.9), in which ξi, vi(t), (v j(tk)) j∈NC(i)

and Yi(t
−
k+1) are as described in Problem 1.2.2.

Then, the discrete-time, static decentralized coordination control problem (DT-SDCCP) is to design, if pos-

sible, for all i ∈ V , the relations φi(·), ψi(·) and ηi(·) such that for some nonempty, compact set Ξ∗ ⊂ R
q (with

q = ∑i∈V qi), Ξ∗ is semiglobally, practically, asymptotically stable for the dynamics (1.9), and Ξ∗ relates to X∗ in

(1.5) as follows: for each ξ ∗ = [ξ ∗
1

T , . . . ,ξ ∗
N

T ]T ∈ Ξ∗,

u∗ ≡ x∗ =









η1(ξ
∗
1 )

...

ηN(ξ
∗
N)









∈ X∗. (1.17)
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♦

Example 1.2.3: Consider a static version of the DCCP described in Example 1.2.2. This problem involves two

abstract agents, each endowed with a private cost function of the form (1.12) (with xi ≡ ui). Agent i is capable

of manipulating only its own decision variable ui, and has knowledge of its private cost function by means of its

measured variable yi = hi(Ji(u;di(t))). Agent i has no direct knowledge of the other agent’s private cost, or its

decision at any time. The agents’ collective objective is to coordinate their decisions until the difference between

them coincides with a weighted average of the numbers b1 and b2 (i.e., u ∈U∗, where U∗ is as in (1.14)). The DT-

SDCCP in this case is to design a set of decision updating processes Di that (practically) achieve this objective.

♦

In some applications it may be more natural to consider decision updating processes that evolve in continuous-

time. In that case, one may formulate the static coordination control problem as follows.

Problem 1.2.4 (Continous-Time, Static Decentralized Coordination Control Problem (CT-SDCCP)): Consider

a set of mulitagent DCCP scenarios characterized by features P1 to P7, in which a given networked multiagent

system is modelled according to (1.16). Also consider a candidate coordination control algorithm of the form

Di :



















ξ̇i = φi(ξi,(v j) j∈NC(i),yi), ∀i ∈ V ,

ui = ηi(ξi),

νi = ψi(ξi,yi).

(1.18)

Then, the continuous-time, static decentralized coordination control problem (CT-SDCCP) is to design, if

possible, for all i ∈ V , the relations φi(·), ψi(·) and ηi(·) such that for some nonempty, compact set Ξ∗ ⊂R
q (with

q = ∑i∈V qi), Ξ∗ is semiglobally, practically, asymptotically stable for the dynamics (1.18), and Ξ∗ relates to X∗

in (1.5) as follows: for each ξ ∗ = [ξ ∗
1

T , . . . ,ξ ∗
N

T ]T ∈ Ξ∗,

u∗ ≡ x∗ =









η1(ξ
∗
1 )

...

ηN(ξ
∗
N)









∈ X∗. (1.19)

♦

In a similar way it is straightforward to formulate a continuous-time version of the dynamic coordination

control problem specified in Problem 1.2.2.

Remark 1.2.7 (On notation.): Taking xi to be identical to the decision ui in Problems 1.2.3 and 1.2.4 is a no-

tational convenience that allows us to maintain consistency with notation typically found in the literature. In

those chapters that address static coordination control problems we omit reference to Σ or u, and we express the

discrete-time decision updating processes Di as

Di :































yi(t) = hi(x(t);di(t))), ∀i ∈ V ,

ξi(tk+1) = φi(ξi(tk),(v j(tk)) j∈NC(i),Yi(tk)),

xi(t) = ηi(ξi(tk)), t ∈ [tk, tk+1), ∀k ∈ N,

νi(tk) = ψi(ξi(tk),Yi(tk)),

(1.20)

where all variables are as previously defined. More compactly still, we omit reference to the time index, and
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express (1.20) as

Di :































yi = hi(x;di)), ∀i ∈ V ,

ξ+
i = φi(ξi,(v j) j∈NC(i),Yi),

xi = ηi(ξi),

νi = ψi(ξi,Yi).

(1.21)

The notation for continuous-time decision updating processes involved in static coordination control problems is

similarly adapted. ♦
One approach to the synthesis problem for decentralized coordination control could be based on existing

methods for decentralized optimization.

1.3 Decentralized Optimization

Let us consider a static optimization problem of the form

min
u∈Rm

N

∑
i=1

Ji(u), (1.22)

where u = [uT
1 , . . . ,u

T
N ]

T , and ui ∈R
mi for each i.There are a number of methods available to solve problems of this

form in a decentralized way, aimed at dividing the workload among a number of networked processors. Recent

interest in the development of such optimization methods is driven primarily by emerging technologies such as

cloud computing and distributed sensor networks, and the corresponding necessity to distributively process very

large datasets [103], [21], [127], [153], [145].

Though we are interested in coordination control more so than parallel processing, we submit that such meth-

ods have several attributes that are desirable in the context of DCCPs. Since such methods play an important role

in our approach to decentralized coordination control design, we proceed to review two prominent classes thereof

– decomposition-based methods, and consensus-based methods.

Decomposition-Based Methods

The idea of decomposing an optimization problem into a number of smaller subproblems is more than fifty years

old [39]. Two outstanding techniques for doing so are primal decomposition, which leverages the fact that one

can optimize first over a subset of the optimization variables, and then optimize the outcome over the remaining

variables, and dual decomposition, which leverages strong duality and relies on Lagrangian relaxation methods.

In addition to the usual “trickery” (i.e., introduction of auxiliary variables, changes of coordinates, transformation

of objective and constraint functions, etc. [22]), these two techniques can be combined in a number of different

ways to yield all sorts of different problem decompositions and associated distributed optimization algorithms

[121]. Quite often, especially if primal decomposition is used, one ends up with a hierarchical problem structure

involving a master problem, which is typically solved on a slower time-scale, and a number of smaller auxiliary,

or slave problems, which are solved on a faster time-scale.9

Decomposition-based methods are famous for having been successfully applied to the so-called network utility

maximization (NUM) problems [31], [99], [64], [48], starting with the seminal work of Kelly [79]. A canonical

9It is interesting to note that decomposition methods in the context of optimization appear to have heavily inspired some of the prominent

work on hierarchical control theory [102].
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example of a NUM problem is congestion control in TCP/IP networks by means of dual decomposition, though

the techniques applied are relevant to a much broader class of resource allocation problems. A characteristic

feature of such problems is that the costs Ji(·) are separable – that is, Ji(·) is a function only of the variable ui.

However, there is typically a coupling constraint that prevents the problem from being directly solved in parallel

by N separate processors. For this reason, numerical solutions are often applied to the dual problem, which can

be separated. The congestion control problem in its most basic form is discussed in detail in §4.5 of this thesis.

In solving problems such as (1.22), in which the costs Ji(·) are coupled, one may proceed to decompose the

problem by introducing auxiliary variables ξi ∈ R
m, which are partitioned exactly like u – i.e.,

ξi = [ξ T
i,1, . . . ,ξ

T
i,N ]

T , (1.23)

where ξi, j ∈ R
m j . Then, letting ξ = [ξ T

1 , . . . ,ξ T
N ]T , problem (1.22) can be equivalently written as

min
ξ∈RNm

N

∑
i=1

Ji(ξi) (1.24)

s.t. ξ1 = · · ·= ξN . (1.25)

Components ui of the vector u that appear in any function J j(·), j 6= i are called complicating variables, and

(1.25) are referred to as consistency constraints [21]. By re-writing problem (1.22) as (1.24)-(1.25), we have

effectively decoupled the costs Ji(·) since we may regard ξi as agent i’s private copy of u. We then relax the

consistency constraints by incorporating them into the Lagrangian function L (ξ ,µ), where µ is the dual variable

associated with (1.25).

One way to implement a distributed solution to (1.24)-(1.25) is to decompose the Lagrangian into additive

components Li(ξi,µ) and run N parallel gradient (or subgradient) descent algorithms; agent i minimizes the

function Li(·,µ) for a fixed µ . Once each agent completes this process, it passes its solution ξ ∗
i (µ) to a central

collector station that uses this information to update the dual variable µ according to a gradient (or subgradient)

ascent on L (ξ ∗(µ),µ).

A more elegant approach is proposed in [163], where a fully decentralized solution is proposed by exploiting

the observation that there is more than one way to express the consistency constraints (1.25). In particular, suppose

that the N agents may exchange information over a graph GC = (V ,EC). Then, (1.25) is satisfied whenever

(L⊗ In)ξ = 0, (1.26)

where L is the graph Laplacian associated with GC. This fact is quite obvious to those who have previously

worked with continuous-time consensus algorithms [136], because it is well known that the so-called “agreement

subspace” coincides with the null space of L when GC is connected. It turns out that a first-order primal-dual

algorithm10

ξ+ = ξ −α∇ξ L (ξ ,µ) (1.27)

µ+ = µ +α∇µL (ξ ,µ) (1.28)

10The stability and convergence properties of such algorithms – whether in continuous-time [8], [119] or discrete-time [115] have been

well established. Originally, Lagrange saddle-point dynamics evolving in continuous-time were studied by means of Lyapunov techniques, as

early as 1958 [8].
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on the Lagrangian

L (ξ ,µ) = ∑
i∈V

Ji(ξi)+µT (L⊗ In)ξ (1.29)

can be rearranged in such a way that for all i ∈ V , agent i updates exactly those primal and dual variables whose

update equations depend exclusively on its own set of updated variables, and those being updated by its one-

hop neighbors on GC. In other words, the updates are fully decentralized and the need for a central collector, or

coordinator that sets “prices”, is bypassed.

In §4.5, we propose an alternative approach to decentralizing the coordinating role of a central collector.

The approach we investigate in §4.5 is based on the application of a consensus-optimization method, which we

describe next.

Consensus Optimization Methods

Consensus optimization (CO) methods originate in the early 1980s, in the doctoral work of Tsitsiklis [154], [155].

Tsitsiklis considers the problem of distributing the unconstrained numerical minimization of an objective function

J : Rm →R among N processors, who are able to exchange information asynchronously over an undirected graph

GC, which is required to be “connected in the long-run”. Though each processor has knowledge of the analytic

structure of J(·), processors collaborate in estimating a minimizer u∗ in order to mitigate the effects of various

stochastic uncertainties afflicting the optimization process. In the deterministic version of the algorithm, agent i

updates its estimate of an optimizer u∗ according to

ξ+
i =

N

∑
j=1

[A]i, jξ j −α∇J(ξi), (1.30)

where α is a diminishing step-size and A ∈ R
N×N is a specially weighted, and possibly time-varying adjacency

matrix associated with GC. In contrast with the basic gradient descent algorithm, each processor implementing

(1.30) takes into account its neighbors’ current estimates of u∗ by combining them with its own estimate prior

to taking a step in a direction minimizing J(·). Indeed, the consensus term ∑
N
j=1[A]i, jξ j represents a convex

combination (i.e., a weighted average) of the ith processor’s estimate with those of its neighbors on GC. Under

appropriate assumptions on the matrix A, the process of repeatedly averaging processors’ individual estimates in

this way acts to bind them together, eventually leading to an agreement on u∗.

Two decades passed before the work of Tsitsiklis would be extended in several important ways that are of

particular relevance to the DCCP [113], [114], [116]. In [113] and [114], Nedić et al generalize the problem

setting in [154] such that each agent has private knowledge of its individual objective function Ji(·), and the

collective objective is comprised as the sum of these component functions, much as in (1.4) and (1.6). In addition,

the agents’ individual costs need not be differentiable, and the optimization problem may involve general convex

constraints [116]. Specifically, the agents aim to cooperatively solve a problem of the form

min
u∈Rm ∑

i∈V

Ji(u)

s.t. u ∈ X

(1.31)

where

X =
⋂

i∈V

Xi, (1.32)
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is nonempty, and ∀i ∈ V , Xi ⊆ R
m is a closed, convex set known only to agent i. In this new setting, agent i

updates its estimate of a minimizer u∗ for (1.31) according to the algorithm

ξ+
i = PXi

[ N

∑
j=1

[A]i, jξ j −αsi(ξi)
]

, (1.33)

where PXi
(·) is the orthogonal projection onto the set Xi, α is a diminishing step-size, and si(ξi) is any subgradient

of Ji(·) at ξi.

The matrix A in (1.33) is required to satisfy conditions very similar to those stipulated for (1.30), and plays

exactly the same role – to bind the agent’s individual estimates of u∗ toward a consensus. Because of this, the

problem being solved by (1.33) is more clearly expressed as

min
ξ∈RNm

∑
i∈V

Ji(ξi)

s.t. ξi ∈ Xi

ξ1 = · · ·= ξN ,

(1.34)

which is equivalent to problem (1.31). In other words, for the unconstrained case in which X = R
m, algorithm

(1.33) and algorithm (1.27)-(1.28) solve exactly the same problem.

Coordination Control vs. Parameter Estimation

A cannonical application problem for consensus optimization methods is decentralized parameter estimation

(DPE) in sensor networks. A parameter-fitting problem can often be expressed as a convex program whose solu-

tion corresponds to the “best” parameter estimate. In the multiagent setting, a large quantity of parameter-fitting

data is divided among N processors, the ith block of data corresponds to Ji(·), and the overall parameter-fitting

problem corresponds to the minimization of ∑i∈V Ji(·).
On first glance it appears that consensus optimization aglorithms like (1.33) are ideally suited to solving static

coordination control problems such as the DT-SDCCP (q.v. Problem 1.2.3). However, there is a subtle distinction

between the class of problems that consensus optimization is intended to solve, and coordination control problems

whose goal sets are given by (1.5). The distinction hinges on the interpretation of the optimization variables in

question and a careful consideration of what is known and unknown to an agent in the two problem settings. This

distinction is made apparent by attempting to recast a canonical consensus-optimization problem such as the DPE,

as a static coordination control problem.

Example 1.3.1 (Recasting the DPE as a DT-SDCCP.): Suppose we are given a parameter estimation problem

that can be expressed as a strictly convex optimization problem, whose unique solution corresponds to the best

parameter estimate:

θ ∗ = arg min
θ∈Rm

∑
i∈V

Ji(θ). (1.35)

Suppose further that Ji(θ) is differentiable at each θ . This DPE can be cast as a static DCCP by identifying

agent i’s decision variable ui with its private estimate of the sought parameter θ ∗ – i.e., ∀i ∈ V , ui ∈ R
m, and the

collective decision u is an element in R
Nm.

In this case (1.5) takes the form

U∗ = {θ ∗}= arg min
u∈U

∑
i∈V

Ji(ui), (1.36)
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where U = {u |u1 = · · ·= uN} (c.f. (1.31) and (1.34), with X ≡ R
m).

Since the analytic structure of Ji(·) is typically known in parameter estimation applications, agent i is able to

evaluate the quantity ∇θ Ji(θ)|θ=ui
, and thus implement an unconstrained version of algorithm (1.33) – i.e.,

u+i = ∑
i∈V

[A]i, ju j −α∇θ Ji(θ)|θ=ui
. (1.37)

The decision updating rule (1.37) corresponds to Di in Problem 1.2.3 (q.v. expression (1.9)), with

Di :































yi = ∇θ Ji(θ)|θ=ξi

ξ+
i = ∑i∈V [A]i, jξ j −αyi

ui = ξi,

νi = ξi.

(1.38)

According to [114] then, under appropriate assumptions on A and α , for each i ∈ V , ui → θ ∗. ♦

Remark 1.3.1: Decentralized parameter estimation is a canonical representative of the class of problems that CO

methods are designed to solve directly, according to the update rule (1.37). In Example 1.3.1, we have shown how

the DPE problem can be cast as a DT-SDCCP, and therefore, that the DPE corresponds to a class of DT-DCCPs

involving goal sets that happen to be specified as minimizers of a sum of separable agent cost functions, and for

which U = {u | u1 = · · · = uN}. From this, we conclude that the consensus-optimization algorithm (1.33) can

be directly applied to solve all DT-SDCCPs involving goal sets that happen to be specified as minimizers of a

sum of separable agent cost functions, and for which U = {u |u1 = · · ·= uN}. However, in consideration of our

formulation of Problem 1.2.3, these features identify a rather narrow (though nonempty11) class of DCCPs. ♦

1.4 Consensus Optimization: A Foundation for the Design of Decentral-

ized Coordination Control

General static DCCPs represented by Problem 1.2.3 can be solved by a slightly modified version of the standard

consensus optimization algorithm (1.33).

Example 1.4.1 (Recasting the DT-SDCCPs in terms of Consensus Optimization.): Consider a class of DT-

SDCCPs represented by Problem 1.2.3, in which the collective cost is given by J(u) = ∑i∈V Ji(u), and in which

each Ji(·) is strictly convex and differentiable at each collective decision u∈R
m. Interpret ξi as agent i’s “opinion”

of what constitutes the optimal collective decision u∗, and ξi, j ∈ R
m j as agent i’s “suggestion” to agent j on how

to behave. If agent i’s measurement yi (q.v. P7) is given by

yi = ∇ûJi(û)
∣

∣

û=ξi
, (1.39)

then the unconstrained version of the consensus optimization algorithm (1.33) can be directly employed to solve

11In Chapter 4 we consider an application of a continuous-time variant of (1.33) to a class of cooperative resource allocation problems

in which agents must reach an agreement on an optimal resource “pricing” parameter. This problem can be regarded as an example of a

CT-SDCCP.
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the said DCCP – i.e., we may take

Di :



















ξ+
i = ∑i∈V [A]i, jν j −αyi

νi = ξi,

ui = ξi,i,

(1.40)

and according to [114], under appropriate assumptions on A and α , for each i ∈ V , ξi → u∗. Clearly then, we also

have that u → u∗. ♦

Remark 1.4.1 (Comparison to Game Theoretic Methods): With property P5, the problem settings characterizing

the two static DCCPs specified in this chapter coincide with the specification of a continuous-kernel game, which

is typically given as the triplet (V ,U ,{J1(u), . . . ,JN(u)}) (q.v. Remark 1.2.2). In contrast with game-theoretic

methods such as fictitious play [134], the method (1.40) converges to the set of socially optimal collective de-

cisions U∗, given by (1.5). Moreover, with the interpretation proposed in Example 1.4.1, the decision updating

process Di in (1.40) does not require agent i to have any knowledge of other agents’ actions. ♦

Remark 1.4.2: In contrast with the setting of the DPE where ∇ûJi(û)
∣

∣

û=ξi
is assumed to be measured (q.v. (1.38)),

in some coordination control applications the quantity ∇ûJi(û)
∣

∣

û=ξi
may not be accessible. For example, consider

the case in which

yi = ∇ûJi(û)
∣

∣

û=u
, (1.41)

where u = [uT
1 , . . . ,u

T
N ]

T = [ξ T
1,1, . . . ,ξ

T
N,N ]

T is the collective decision, and neither the analytic structure of ∇Ji(·),
nor the value of u j, j 6= i are known to agent i – i.e., only the values of ∇ûJi(û)

∣

∣

û=u
are being directly measured,

or estimated from measurements of Ji(u). Such a scenario might arise in CDMA (code division multiple access)

power control problems, for example. In such problems, Ji(u) relates to the signal-to-interference ratio experi-

enced by user i, and ui represents the uplink power applied by user i. [47]. In such a case, one may still employ

the decision update rule (1.40) with yi as in (1.41), and it can be shown that this slightly modified version of the

standard consensus optimization algorithm (1.33) also converges (q.v. Chapter 5 in this thesis). ♦

Example 1.4.2 (CO-based Di for Force-Actuated Point Masses): Continuing with Example 1.2.2, we consider

a CO-based coordination control design for the system of two force-actuated point masses on a line, modelled

according to (1.11). First, suppose that the two agents may communicate with one another, and that the measure-

ments available to agent i are given as

yi = hi(Ji(x;di)

= ai(x1,1 − x2,1 −bi), (1.42)

so that

∇uJi(l(u);d)
∣

∣

l(u)=x
=

[

yi

−yi

]

, (1.43)

where the equilibrium map l(u) is given in (1.13) and Ji(x;d) in (1.12). In that case, consider the following

potential solution to the DT-DDCCP (q.v. Problem 1.2.2) for this example:

Di :



















ξi(tk+1) = ∑i∈V [A]i, jξ j(tk)−α ŝi(yi(t
−
k+1))

ui(t) = ξi,i(tk), t ∈ [tk, tk+1), k ∈ N

νi(tk) = ξi(tk),

(1.44)
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where ξi(tk) ∈ R
2, the weighted adjacency matrix is taken as

A =

[

1/2 1/2

1/2 1/2

]

, (1.45)

and the approximate search direction as

ŝi(yi(t
−
k+1)) =

[

yi(t
−
k+1)

−yi(t
−
k+1)

]

=

[

ai(x1,1(t
−
k+1)− x2,1(t

−
k+1)−bi)

−ai(x1,1(t
−
k+1)− x2,1(t

−
k+1)−bi)

]

. (1.46)

In this decision updating process, ξi may be interpreted as agent i’s “opinion” of what constitutes the optimal

control input u∗ = [u∗1,u
∗
2]

T for both agents. However, agent i only implements the ith component of ξi – i.e.,

ui = ξi,i.

We refer to ŝi(·) as the “approximate” search direction, because it does not coincide with the the search

direction si(·) in the standard CO algorithm (1.33). For this example, the search direction si(·) used in algorithm

(1.33) would be given by

si(ξi(tk)) = ∇uJi(l(u);d)
∣

∣

u=ξi(tk)
=

[

ai(u1 −u2 −bi)

−ai(u1 −u2 −bi)

]

∣

∣

∣

u1=ξi,1(tk), u2=ξi,2(tk)
, (1.47)

and the direct knowledge thereof is not accessible to agent i for two reasons. First, the presence of the dynamics

Σi (along with the assumed stability of l(u) as in P4) implies that

ŝi(yi(t
−
k+1))→

[

ai(u1(tk)−u2(tk)−bi)

−ai(u1(tk)−u2(tk)−bi)

]

(1.48)

only as T = tk+1 − tk tends to infinity. Second, even if the quantity

[

ai(u1(tk)−u2(tk)−bi)

−ai(u1(tk)−u2(tk)−bi)

]

(1.49)

were directly available for measurement, agent i would not be able to evaluate this quantity at u = ξi as required

in (1.47) since u j, j 6= i, is not a variable that agent i can manipulate. In Chapter 5 we show how one may

nevertheless derive conditions guaranteeing the convergence of sampled-data systems such as (1.11)-(1.44). ♦

Example 1.4.3 (A Static DCCP with Unknown Gradients): Continuing with Example 1.2.3, we consider a CO-

based coordination control design for the system of two static agents whose private costs are given by (1.12).

Suppose that the two agents may communicate with one another, and that the measurements available to agent i

are given as

yi = hi(Ji(u;di)

= Ji(u;di). (1.50)

If the agents are to implement a CO-based decision updating process, they must estimate the gradients of their

private costs by means of some sequence of measurements. Consider for example the following potential solution
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to this DT-SDCCP (q.v. Problem 1.2.3):

Di :



















ξi(tk+1) = ∑i∈V [A]i, jξ j(tk)−α ŝi(Yi(t
−
k+1))

ui(t) = ξi,i(tk), t ∈ [tk, tk+1), k ∈ N

νi(tk) = ξi(tk),

(1.51)

where ξi(tk) ∈ R
2, the weighted adjacency matrix is taken as in (1.45),

Yi(t
−
k+1) =







yi(tk)

yi(tk +δt)

yi(tk +2δt)






(1.52)

and the approximate search direction is given by

ŝi(Yi(t
−
k+1)) =

[

1
δu
(yi(tk +δt)− yi(tk)

1
δu
(yi(tk +2δt)− yi(tk)

]

, (1.53)

where tk < tk + δt < tk + 2δt < tk+1, δu and δt are some appropriately selected constants known to both agents,

and

u(tk +δt) =

[

u1(tk)+δu

u2(tk)

]

, and u(tk +2δt) =

[

u1(tk)

u2(tk)+δu

]

. (1.54)

In words, inside every iteration of the CO-like scheme (1.51), the agents coordinate their actions in a prearranged

way in order to perturb their coupled costs and thus obtain a forward-difference approximation of the required

gradients. ♦

Decomposition vs. Consensus-Based Optimization Methods

Because both consensus and decomposition-based algorithms are capable of solving coupled problems of the

form (1.22), both are amenable to the reinterpretation considered in Example 1.4.1. As such, either could form an

acceptable foundation on which to build solutions to the various DCCPs formulated in the prequel.

In contrast with decomposition-based methods that result in algorithms of the form (1.27)-(1.28), algorithm

(1.33) operates exclusively on the primal variables. Consequently, its dynamics are always simpler and of a lower

dimension. On the other hand, combining decomposition techniques such as the ones described in §1.3 with

techniques for augmenting the Lagrangian with appropriate penalty terms [21], [163] may result in algorithms

with improved convergence properties.

Another distinction between decomposition and consensus-based algorithms is that under standard constraint

qualifications, the former have a well-defined set of equilibria that can be characterized by the KKT conditions

[22]. Consequently, the saddle-point dynamics (1.27)-(1.28) (at least in continuous-time) can be analyzed using

Lyapunov techniques proposed nearly sixty years ago [8]. On the other hand, for the case in which the minimizers

of agents’ individual costs Ji(·) do not coincide, it is easy to verify that the set of fixed points associated with

(1.33) would not generally include the point ξ ∗, where ξ ∗ is a solution to the collective problem (1.34). In

fact, even for the case in which Ji(·) is strictly convex and differentiable, an analytic expression for the actual

fixed point of (1.33) may in general be tricky to obtain. This, combined with the (somewhat dated) view that

the “Lyapunov approach is limited by the assumption that the equilibrium is known or that the isolated subsystem

equilibria coincide with that of the interconnected system equilibrium” ([76], § III-C, p. 116) means for this author
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that consensus-based methods are simply begging to be analyzed from the point of view of practical asymptotic

stability, and precisely by means of the Lyapunov approach!

Being unable to resist such a challenge (and also owing to reasons of a completely arbitrary nature), in this

thesis we choose to study consensus optimization schemes – by means of the Lyapunov approach, of course.

1.5 A Summary of Contributions

The main proposition in this thesis is that consensus optimization methods constitute a viable class of deci-

sion updating processes that are able to solve large classes of both static and dynamic DCCPs. Specifically,

we are proposing that one solution (1.9) to the DT-DDCCP defined in Problem 1.2.2 can be given by

Di :



















ξi(tk+1) = φi(ξi(tk),(v j(tk)) j∈NC(i),Yi(t
−
k+1)), ∀i ∈ V ,

ui(t) = ηi(ξi(tk)), t ∈ [tk, tk+1), ∀k ∈ N,

νi(tk) = ψi(ξi(tk),Yi(t
−
k+1)),

(1.55)

where

φi(ξi(tk),(v j(tk)) j∈NC(i),Yi(t
−
k+1)) = ∑

i∈V

[A]i, jν j(tk)−α ŝi(Yi(t
−
k+1)) (1.56)

ηi(ξi(tk)) = ξi,i(tk), (1.57)

ψi(ξi(tk),Yi(t
−
k+1)) = ξi(tk), (1.58)

and ŝ(Yi(t
−
k+1)) represents an estimate of the search direction si(·) in (1.33), which is constructed on the basis of

the measurements Yi made within the interval [tk, tk+1).

All of our separate contributions throughout this thesis are tied together by an effort aimed at assessing and

improving the efficacy of such a solution.

With an ultimate focus on discrete-time, dynamic DCCPs represented by Problem 1.2.2, the majority of our

efforts are aimed at developing new analysis techniques that allow us to study the interaction of numerical consen-

sus optimization methods with continuous-time dynamical systems. These techniques are developed in Chapters

2 and 3, and they are applied to the setting of Problem 1.2.2 in Chapter 5. Chapter 4 demonstrates that the analytic

approach proposed in Chapter 3 also facilitates the study of continuous-time consensus-optimization schemes,

where such studies may be difficult by means of existing techniques. In Chapters 6 and 7, we test the applicability

of our proposed coordination control philosophy to the problem of decentralized content caching in information-

centric networks. In Chapter 7, we formulate this problem as a static, discrete-time DCCP, and we solve it using

the reduced consensus optimization (RCO) algorithm. RCO is a streamlined version of algorithm 1.33 that we

develop in Chapter 6. An extensive simulation study is presented in Chapter 7, in which we attempt to assess the

utility of RCO in a setting involving 440 search variables.

To conclude this chapter, we provide a summary of the contributions made in this thesis. Most chapters contain

a substantive literature review which is specialized to the topic being addressed. The introductory sections to the

individual chapters thereby provide additional perspective on the contributions that we list here.

Chapter 3: An Analytic Framework for Consensus Optimization Methods: The Interconnected Systems

Approach. As an initial step toward addressing the DT-DDCCP (q.v. Problem 1.2.2) by means of consensus
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optimization, we develop a new framework for the analysis of algorithms such as (1.33). In the setting of this

chapter we are only concerned with static optimization problems of the form (1.31).

The essential idea of this chapter is based on [91], wherein it is proposed that consensus optimization schemes

such as (1.33) can be studied from a system theoretic point of view. The novelty in our approach is to treat the evo-

lution of the agents’ mean estimate and the vector of deviations from this mean, as the feedback interconnection

of two nonlinear, dynamical systems. Then, small-gain techniques are employed to derive conditions ensuring the

internal stability (i.e. stability in the sense of Lyapunov) of the interconnection (q.v. Theorems 3.6.1 and 3.6.2).

We emphasize internal stability because it is the most fundamental property of relevance in control appli-

cations, and this emphasis distinguishes our analysis from that in most existing literature on decentralized opti-

mization. One of the analytic tools we contribute in connection to this chapter is a theorem that characterizes

the semiglobal, practical, asymptotic stability of a set of fixed points associated with a nonlinear discrete-time

dynamical system, in terms of certain properties of its associated Lyapunov function (q.v. Theorem 2.5.1). We

refer to this theorem as the SPAS theorem, and we provide its proof in Chapter 2.

Together, the interconnected systems viewpoint of consensus optimization along with the SPAS theorem con-

stitute an analytic framework that allows us to study the dynamic sampled-data interaction of numerical consensus

optimization methods with continuous-time dynamical systems, as in Problem 1.2.2. However, the application of

this analytic framework has precipitated several observations that may be considered of independent interest to

the area of decentralized optimization itself. These observations include the following.

• In the literature on consensus optimization, the effects of the dynamic coupling between the mean and

deviation variables are usually suppressed by a combination of two persisting assumptions: the boundedness

of agents’ individual constraint sets (or the subgradients used to form their search directions), and the use

of diminishing step sizes. Instead of suppressing the effects of dynamic coupling among subsystems, the

literature on interconnected systems emphasizes techniques that seek to exploit this coupling in order to

avoid conservatism [104]. Indeed, in our case a careful examination of the interconnection structure reveals

that the destabilizing effects of the projection-related terms arising in one subsystem negate related effects

arising in the other (q.v. Lemma 3.6.3). The conclusion to be drawn is that the presence of the projection

operation in (1.33) need not add any conservatism to the final convergence condition.

• The individual constraint sets Xi in (1.32) need not be bounded or identical. Their intersection X also need

not be bounded. This is true regardless of whether si(·) in (1.33) represents a gradient or a subgradient.

• The step-size α may remain fixed throughout the execution of algorithm (1.33), regardless of whether si(·)
represents a gradient or a subgradient, even when the constraint sets Xi are not bounded.

• In the literature on decentralized optimization, it is typically assumed that agents’ individual cost functions

Ji(·) are convex, whether or not they are differentiable. For the case in which each agent’s search direction

si(·) is locally Lipschitz and based on a gradient of the agent’s private cost function, our convergence

conditions indicate that the convexity of all agents’ individual costs is not necessary (q.v. Lemma 3.8.1).

• In contrast with existing Lyapunov-based analyses of related decentralized optimization schemes, the ap-

plication of our SPAS theorem does not require a precise characterization of the algorithm’s actual set of

fixed points, and allows for the study of iterative methods directly in discrete-time.

Aside from preparing us to address the DT-DDCCP, the basic analysis philosophy presented in this chapter

also turns out to be useful in the study of continuous-time variants of (1.33).
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Chapter 4: Continuous-Time Consensus Optimization with Positivity Constraints. The setting of this chap-

ter is most closely related to the formulation of the CT-SDCCP (q.v. Problem 1.2.4), though just as in Chapter 3,

coordination control is not our main focus here. We consider static optimization problems of the form (1.31), in

which X is a positivity constraint, and we are concerned with deriving the convergence properties of a continuous-

time variant of algorithm 1.33. In contrast with many of the analytic techniques one finds in the literature on

discrete-time consensus optimization, the techniques developed in Chapter 3 easily accommodate the continuous-

time setting. In our main theorem (q.v. Theorem 4.4.1) we derive explicit bounds on the algorithm’s convergence

rate and ultimate estimation error, in terms of relevant problem parameters. In the last section of the chapter, we

consider an application of the proposed scheme to a class of cooperative resource allocation problems, which are

a special subclass of CT-SDCCPs represented by Problem 1.2.4.

As in Chapter 3, our analytic approach leads to several potentially interesting observations.

• The direct continuous-time counterpart of the standard consensus optimization algorithm (1.33) has a veloc-

ity vector field which is comprised of a linear graph Laplacian term and a gradient term which is weighted

by a tunable step-size (i.e., optimization gain) parameter. We consider a variation of consensus optimization

in which we introduce a consensus gain as a second tunable parameter. Several interesting observations can

be made concerning the utility of this parameter, which can adjust the strength of the consensus term relative

to that of the optimization term. We show that this tuning parameter can be used to improve the ultimate

accuracy of the algorithm without affecting the convergence rate of the mean of agents’ estimates. More

importantly, this parameter can be used to relax the upper bound imposed on the step-size in order to guar-

antee the stability of the collective optimum (q.v. Theorem 4.4.1). These observations are made possible

by the interconnected-systems viewpoint, and appear to have not been made elsewhere in the literature.

• The analysis is made challenging by the presence of a logical projection operation used to enforce a pos-

itivity constraint on the evolution of the dynamics. Remarkably, as in the discrete-time case, a careful

examination of the interconnection terms in the composite Lyapunov argument leads to an elegant result

concerning the effect of the logical projection operation on the evolution of the continuous-time consensus

optimization dynamics (q.v. Lemma 4.4.3, part (d)).

Chapter 5: Decentralized Extremum-Seeking Control Based on Consensus Optimization. With the devel-

opment of the SPAS theorem given in §2.5 and the analytic techniques described in Chapter 3, we are prepared to

address the discrete-time, dynamic DCCP specified in the statement of Problem 1.2.2. Our main objective in this

chapter is to derive a set of conditions under which the set X∗×Ξ∗ in Problem 1.2.2 is semiglobally, practically,

asymptotically stable (SPAS) for the feedback interconnection of the collective dynamics Σ given by (1.8), and the

collective decision processes D given by (1.55). We consider the case in which Ji(·) is a function of the collective

state x only, and the approximate search direction ŝi(·) is such that

lim
T→∞

ŝi(yi(t
−
k+1)) = ∇uJi(l(u))|u=u(tk), (1.59)

where l(u) is the equilibrium map associated to the collective dynamics Σ (q.v. §1.2.1).

The main motivation for appealing to the stability theory for interconnected systems in studying consensus

optimization in Chapter 3, is that the resulting analytic framework easily accommodates the presence of additional

dynamics. In particular, the collective agent dynamics Σ can be simply regarded as yet another subsystem that

dynamically couples to the mean and deviation subsystem dynamics studied in Chapter 3. In effect, the results of
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Chapter 3 establish the convergence properties of the isolated subsystem dynamics D , while the results of Chapter

5 establish the stability properties of the feedback interconnection of D and Σ.

Our results are summarized as follows.

• In Theorem 5.5.1, we derive a set of small-gain conditions on the parameters α and T , which are tunable in

the scheme involving Σ in (1.8) and D in (1.55).

• In Theorem 5.5.3 we show that these conditions suffice to guarantee that the conditions of the SPAS Theo-

rem 2.5.1 are satisfied.

• Lemmas 5.4.1 to 5.4.5 are preliminary to Theorem 5.5.1, and they embody our interconnected systems

perspective.

Together with the interpretation of the optimization variables discussed in Example 1.4.1, these results demon-

strate that consensus optimization methods constitute a viable solution to Problem 1.2.2, when the collective

objective is given by (1.2).

Under a minor extension, the results presented in this chapter can be viewed as a proposal for a novel de-

centralized extremum-seeking scheme. On the other hand, relative to the literature on distributed optimization,

our contribution here is to generalize the problem setting from that involving optimization of static maps, to that

involving optimization of dynamic maps.

Chapter 6: Reduced Consensus Optimization. In this chapter we turn our attention to general, discrete-time,

static DCCPs represented by Problem 1.2.3, and we consider the consensus optimization-based solution proposed

in Example 1.4.1.

An obvious drawback of the decision updating process (1.40) is that multiagent systems employing it do not

embody the desirable feature F4 described in §1.1. In particular, though agent i need not be aware of the collective

objective or the actions taken by agents other than those in its graphical neighborhood, it must know how many

other agents are participating in the optimization process since it must maintain an estimate of the entire optimal

collective decision u∗. In large networks, it may happen that the actions of some agent j have a negligible effect on

the performance of some other agent i. One may wonder why in such a case agent i ought to have any “opinion”

as to how agent j ought to behave, and why he ought to expend any effort updating the variable ξi, j.

In many engineered mulitagent system applications, it is particularly cumbersome to require each node (i.e.

agnet) to maintain an estimate of the optimal configuration u∗ of the entire agent network; each time the network

undergoes a structural modification such as the addition of a node, each preexisting node must modify its update

rule to include additional variables representing an estimate of the added node’s optimal action. Motivated by these

considerations, in Chapter 6 we develop a streamlined version of algorithm 1.33 that we call reduced consensus

optimization (RCO). Its primary strengths are the following:

• In general, agents implementing RCO need not be aware of the number of other agents participating in the

optimization process.

• In large networks characterized by a sparse interference structure (i.e. a graph that indicates which agents’

actions interfere with which agent’s private costs), the total number of real-valued variables that need to be

updated and exchanged by all agents at each iteration could be drastically smaller for RCO in comparison

to standard consensus optimization (1.33).
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The concept of RCO is particularly relevant to either static or dynamic DCCPs in which the interference

structure may be known, or subject to design. In Chapter 7, we examine an application involving a coordination

control problem in which the agents’ private costs are subject to design.

Chapter 7: Decentralized Content Caching Strategies for Content-Centric Networks. In this chapter we

study the problem of decentralized content caching in content-centric networks, which belongs to the class of

discrete-time, static DCCPs represented by Problem 1.2.3. We propose a general methodology for the design

of decentralized content-caching strategies (CCSs) on the basis of the reduced consensus optimization (RCO)

algorithm proposed in Chapter 6. Our contributions in this chapter can be summarized as follows.

• The content caching problem is typically formulated as an integer program. We propose a formulation of

the decentralized content caching problem as a constrained convex program of the form (1.31) (q.v. §7.3).

• We consider a set of performance criteria related to the efficient use of the network’s transport and caching

resources, and we propose a general, systematic method for the design of agents’ private cost functions in

reflection of these performance criteria (q.v. §7.4.1 and §7.4.2).

• We provide a basic, though extensive pedagogical example demonstrating the application of our proposed

design methodology (q.v. §7.5).

• We evaluate the performance of a specific CCS derived using the proposed methodology, on an 11-node

network (the European optical backbone network, COST 239). We compare the performance of our RCO-

based CCS against the least frequently used (LFU) cache eviction policy, along several network-wide

efficiency-related performance metrics (q.v. §7.6).

By comparison to several content caching strategies proposed in the literature, RCO-based CCSs have the follow-

ing strengths:

• Many CCSs proposed in the literature are designed to optimize the performance of individual caches or

network substructures such as trees or paths from sources to consumers. The RCO-based CCS is designed

to manage the network as a whole.

• Many CCS designs proposed in the literature depend on extensive network models or simulations which are

typically carried out offline. Sometimes these strategies are tuned for a best response to simplified traffic

pattern predictions, which may not reflect actual traffic patterns once the CCS is deployed. The RCO-based

CCS is designed to respond in real-time to network-wide changes in content demand patterns. In particular,

the set of exogenous signals di(t) representing the set of environmental conditions affecting agent i in the

statement of Problem 1.2.3 are in this setting interpreted as time-varying content demand rates measured at

node i.

• Some CCS design approaches guarantee a quantifiably suboptimal caching performance only in the case that

certain symmetry assumptions are satisfied (such as all caches having the same size, and all content demand

rates being equal at each node). Others require nodes to know or estimate the operational parameters (such

as cache size) of other nodes in the network, and the efficacy with which the caching resources are utilized

is known to be affected by the accuracy of such estimates. The RCO-based CCS explicitly accommodates

node heterogeneity with respect to all relevant characteristics, including cache size, transport efficiency

parameters, caching efficiency parameters, and content demand rates.
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• Many CCSs proposed in the literature are purely heuristic. RCO-based CCSs are based on provably-

convergent consensus optimization methods.

The content-caching problem is an excellent example of a static DCCP in which an RCO variant of the solution

(1.40) demonstrates the main proposition of this thesis.



Chapter 2

Background and Preliminaries

2.1 Graphs and some of their Spectral Properties

A graph G is a pair (V ,E ), where V is a set of vertices (or nodes), and E ⊂ V ×V is the set of directed edges

between them. A graph G is undirected if (i, j) ∈ E =⇒ ( j, i) ∈ E , and it is directed otherwise. We refer to a

directed graph as a digraph, while using the term “graph” to refer to an undirected graph. The adjacency matrix

A ∈ R
|V |×|V | associated with G is given by1

[A]i, j =







1, ( j, i) ∈ E

0, otherwise,
(2.1)

where [A]i, j is the element of A in the ith row and jth column (q.v. Appendix A). Thus, G is undirected if A = AT .

A weighted adjacency matrix A ∈ R
|V |×|V | associated with G is given by

[A]i, j =







ai, j, ( j, i) ∈ E

0, otherwise,
(2.2)

where ai, j is some positive, real number. Two vertices on a graph are adjacent if there exists an edge between

them. A graph is complete if every pair of vertices in V is adjacent. The set N (i) ⊂ V is the set of node i’s

one-hop neighbors (or just neighbors) on G , and is equal to the set of all nodes adjacent to node i on the graph G .

A subgraph of a graph G is a graph Go = (Vo,Eo), with Vo ⊂ V , and Eo ⊂ (Vo ×Vo)∩E . The degree of a node i

is equal to the number of its neighbors, and is denoted by di (i.e., di = |N (i)|). The degree matrix of a graph G

is a diagonal matrix D ∈R
|V |×|V |, with [D]i,i = di. The graph Laplacian associated to G is the matrix L = D−A.

Equivalently, L is given by

[L]i, j =



















di, if i = j

−1 if i 6= j and ( j, i) ∈ E

0, otherwise.

(2.3)

From this definition of L, we observe that L1 = 0 – i.e., 0 ∈ σ(L), with eigenvector 1 (q.v. Appendix A for a list

of notation). For undirected graphs, L = LT , and therefore σ(L)⊂ R. From the definition (2.3) we can then also

1Some authors use the opposite convention: [A]i, j = 1 if (i, j) ∈ E , and [A]i, j = 0 otherwise.

31
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conclude that σ(L)⊂R+. One way to see this is to apply the Geršgorin disc theorem (q.v. Theorem 6.1.1 in [67],

for example), which states that for any matrix L ∈ R
n×n, σ(L) ⊂ ∪n

i=1Gi(L), where Gi(L) is a Geršgorin disc,

defined as

Gi(L) = {z ∈ C | |z− [L]i,i| ≤ Ri(L)}, (2.4)

where

Ri(L) = ∑
j∈{1,...,n}\{i}

|[L]i, j|. (2.5)

Clearly then, for the graph Laplacian (2.3), ∪n
i=1Gi(L) corresponds to a union of n intervals, the ith interval

being centred at di and having radius di – i.e., σ(L) ⊂ [0,2maxi di]. We denote the spectrum of L as follows:

σ(L) = {λ1(L), . . . ,λn(L)}, with

0 = λ1(L)≤ λ2(L)≤ ·· · ≤ λn(L). (2.6)

A path from a vertex i to a vertex j in V is a sequence of edges leading from i to j. A path may alternatively

be defined as a sequence of vertices such that the first vertex in the sequence is i, the last vertex in the sequence is

j, and there exists an edge between any two consecutive vertices within the sequence. A graph is connected if for

any pair of its vertices i and j, there exists a path from i to j. A connected component of a graph G is a subgraph

Go = (Vo,Eo) of G = (V ,E ) which is connected and is such that there do not exist a pair of nodes i and j, with

i ∈ V \Vo and j ∈ Vo, having a path between them on G . Clearly, a graph is connected if it is comprised of only

one connected component – i.e., the graph itself.

The multiplicity of the zero eigenvalue of L is equal to the number of connected components of G (q.v. Propo-

sition 2.3 in [107], for example). We therefore conclude that if a graph is connected, the eigenvalue λ1(L) = 0 is

isolated, and therefore λ2(L) > λ1(L). The second smallest eigenvalue λ2(L) plays a special role in continuous-

time consensus algorithms, and is often referred to as the algebraic connectivity of G . In the literature, λ2(L) is

also sometimes called the Fiedler eigenvalue of L, in honour of M. Fiedler, who first studied its properties [49].

2.2 Nonnegative Matrices

For a matrix A ∈ R
N×N , σ(A)⊂ C denotes its spectrum. Its spectral radius is given by

ρ(A) = max
λ∈σ(A)

|λ |. (2.7)

A matrix A ∈ R
N×N is nonnegative if each of its entries is nonnegative, in which case we write A ≥ 0. From its

definition in the prequel, we see that a weighted adjacency matrix is nonnegative. By Theorem 1.1 in Chapter 2

of [13], every nonnegative matrix has an eigenvalue equal to its spectral radius – i.e., A ≥ 0 =⇒ ρ(A) ∈ σ(A). A

matrix A ∈ R
N×N , with N ≥ 2 is reducible if there exists a permutation matrix P such that

PT AP =

[

B C

0 D

]

, (2.8)

where B, C, D and 0 are any dimensionally compatible matrices (q.v. Definition 6.2.1 in [67]). A matrix A∈R
N×N

is irreducible if it is not reducible. A weighted adjacency matrix A ∈ R
N×N associated to a graph G is irreducible

if, and only if G is connected (q.v. Theorem 2.7 in Chapter 2 of [13], for example). According to Perron-Frobenius

theory, if a nonnegative matrix A is irreducible, then ρ(A) is a simple eigenvalue of A, and any other eigenvalue of

the same modulus is also simple (q.v. Theorem 1.4 (b) in Chapter 2 of [13], for example). A nonnegative matrix
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A is primitive if it is irreducible and for all λ ∈ σ(A)\{ρ(A)}, ρ(A) > |λ | (i.e., ρ(A) is the only eigenvalue of

maximum modulus). An irreducible matrix is primitive if its trace is positive (q.v. Corollary 2.28 in Chapter 2

of [13]). Therefore, if A is a weighted adjacency matrix associated with a connected graph G , A is primitive if

G contains at least one positively-weighted self-loop. A matrix A ∈ R
N×N is stochastic if A ≥ 0 and each row

sums to one – i.e., for each i ∈ {1, . . . ,N}, ∑
N
j=1[A]i, j = 1. A matrix A is doubly stochastic if it is stochastic and

its transpose is stochastic. Let V denote the set {1, . . . ,N}. According to Theorem 2.35 in Chapter 2 of [13], for

any nonnegative, irreducible matrix A ∈ R
N×N , it holds that

min
i∈V

∑
j∈V

[A]i, j ≤ ρ(A)≤ max
i∈V

∑
j∈V

[A]i, j. (2.9)

We therefore conclude that for a stochastic, weighted adjacency matrix A ∈R
N×N associated to a connected graph

G with at least one positively-weighted self-loop, ρ(A) = 1 is a simple eigenvalue of A, and every other eigenvalue

of A has a smaller modulus. In other words, the spectrum of such a matrix A can be arranged as

1 = ρ(A) = λ1(A)> |λ2(A)| ≥ · · · ≥ |λN(A)| ≥ 0. (2.10)

2.3 Consensus Algorithms

Consensus algorithms are a fundamental building block of the cooperative multiagent decision-updating processes

studied in this thesis. There is an extensive literature on the subject within control theory, and reference [136]

provides a good overview of its applications and origins. Here we briefly review two basic variants that play a

role in this thesis.

2.3.1 Continuous-Time Consensus Algorithms

Consider a system of N agents in which the state of the ith agent evolves according to

ẋi =−[L]ix, (2.11)

where x = [x1, . . . ,xN ]
T ∈ R

N , and L is the Laplacian matrix of a graph G whose nodes represent the agents, and

whose edges specify those pairs of agents that can exchange state information at any time. Written compactly,

(2.11) becomes

ẋ =−Lx, x(0) = x0 ∈ R
N . (2.12)

We have the following.

Lemma 2.3.1: If G is undirected and connected, the point x̄ = 1
N

11T x0 is asymptotically stable for (2.12).

Proof. Introduce two auxiliary variables: define y = 1
N

1T x and z = Mx, with

M = IN − 1
N

11T . (2.13)

The variable y clearly represents the mean of agent states at any time, and z quantifies the agent states’ deviations
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from that mean – i.e.,

z =









x1 − y

...

xN − y









. (2.14)

From the definition of L in (2.3), we see that L1 = 0, and we therefore find that ẏ = 1
N

1T ẋ = 1
N

1T Lx = 0. In other

words, the mean of agent states remains constant forever, and is given by y(t) = y(0) = 1
N

1T x(0). Since the mean

y(t) of agent states remains fixed throughout the evolution of (2.12), showing that x̄ = 1y(0) is asymptotically

stable for (2.12) amounts to showing that the vector of deviations (2.14) converges to the origin.

To examine the evolution of the deviation variable, first note that ML = L = LM. Therefore,

ż = Mẋ =−MLx =−LMx =−Lz, z(0) = Mx0. (2.15)

The difference between the dynamics (2.15) of the deviation variable and the agent dynamics (2.12), is that z is

constrained to evolve on the orthogonal complement of the subspace spanned by the vector 1. To see this, note

that for any x0 ∈R
N and for any t ∈R+, 1T z(t) = 1T Mx(t) = 0, owing to the definition of M in (2.13). In fact, M

is the matrix realization of the orthogonal projection onto the set span{1}⊥.

The asymptotic stability of z = 0 for (2.15) can be concluded by considering the Lyapunov function VC (z) =
1
2
‖z‖2, whose time-derivative along the trajectories of (2.15) is given by V̇C (z) =−zT Lz. We aim to show that the

term −zT Lz is negative definite on span{1}⊥.

By the spectral mapping theorem, σ(−L) =−σ(L), and therefore σ(L)⊂ [0,2maxi di] implies that σ(−L)⊂
[−2maxi di,0]. Moreover, the smallest eigenvalue of L is λ1(L) = 0, corresponding to the eigenvector 1. Since G

is connected, λ1(L) is isolated, and therefore λ2(−L) =−λ2(L)< 0. Then, by Theorem 3 in [136], we have that

for all z ∈ span{1}⊥ – i.e., the orthogonal complement of the subspace spanned by the eigenvector corresponding

to the largest eigenvalue of (−L) – the following bound holds

V̇C (z) = zT (−L)z ≤−λ2(L)‖z‖2. (2.16)

Standard Lyapunov arguments (q.v. Theorem 4.1 in [80], for example) then allow us to conclude that z = 0 is

asymptotically stable for (2.15). Equivalently, we have that for all i ∈ V , xi → y ≡ 1
N

1T x0, asymptotically. ♦

We refer to system (2.12) as the continuous-time consensus dynamics, because the agents executing it reach a

consensus equilibrium state whenever G is connected. Our “deviation variable” z is sometimes referred to as the

“disagreement vector” [136], and the subspace span{1} is often called the “agreement subspace”.

2.3.2 Discrete-Time Consensus Algorithms

Discrete-time consensus algorithms take a form similar to that of (2.11), except that the graph Laplacian is re-

placed by a specially weighted adjacency matrix. Once again, consider a system of N agents in which the state of

the ith agent evolves according to

xi(t +1) = [A]ix(t), t ∈ N (2.17)

where x = [x1, . . . ,xN ]
T ∈ R

N and A is a weighted adjacency matrix associated to G , whose nodes represent the

agents, and whose edges specify those pairs of agents that can exchange state information at any time. Written

compactly, (2.17) becomes

x+ = Ax, x(0) = x0 ∈ R
N . (2.18)
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We have the following.

Lemma 2.3.2: If A is stochastic and G is connected, undirected, and has at least one positively-weighted self-

loop, then x → x̄ = 1
N

11T x0 at a geometric rate.

Proof. We define the mean and deviation variables exactly as in the proof of Lemma 2.3.1, and we examine

their evolution. Since G is undirected, A = AT , and the stochasticity of A therefore implies that 1T A = 1T .

Consequently, the mean of the agents’ states evolves according to y+ = 1
N

1T x+ = y; in other words, the mean state

remains constant forever, and is given by y(t) = y(0) = 1
N

1T x(0). Since the mean state remains fixed throughout

the evolution of (2.18), showing that x̄ = 1y(0) is asymptotically stable for (2.18) amounts to showing that the

vector of deviations (2.14) converges to the origin.

To examine the evolution of the deviation variable, first note that MA = A− 1
N

11T = AM. Therefore,

z+ = MAx+ = MAx = AMx = Az, z(0) = Mx0. (2.19)

As in the continuous-time case, the deviation variable z = Mx is constrained to evolve on the orthogonal comple-

ment of the subspace spanned by the vector 1, which follows from the definition of M in (2.13).

The geometric convergence of z to the origin can be concluded by considering the evolution of the norm

‖z‖. From (2.19), we have that ‖z+‖2 = zT A2z. By the spectral mapping theorem, λ ∈ σ(A) =⇒ λ 2 ∈ σ(A2).

Therefore, our assumptions and the discussion leading to (2.10) implies that the spectrum of A2 can be arranged

as follows:

1 = λ1(A
2) = λ1(A)

2 > λ2(A
2)≥ ·· · ≥ λN(A

2)≥ 0. (2.20)

In particular, (2.10) implies that λ2(A
2) = max{λ2(A)

2,λN(A)
2}< 1. As in the proof of Lemma 2.3.1, we apply

Theorem 3 from [136] to conclude that for all z ∈ span{1}⊥, zT A2z ≤ λ2(A
2)‖z‖2, and therefore that

‖z+‖2 ≤ λ2(A
2)‖z‖2. (2.21)

The contraction mapping principle (q.v. §2.3.1 in [124], for example), together with the fact that λ2(A
2)< 1 allows

us to conclude that (‖z(t)‖)∞
t=0 → 0 at a geometric rate. Consequently, (z(t))∞

t=0 → 0, and therefore (x(t))∞
t=0 → x̄,

both at a geometric rate. ♦

Remark 2.3.1: If the graph topology is fixed, as is the case in many cluster computing or parallel processing

applications, then the network nodes may implement the following decentralized algorithm (also described in

[114] and [167]) in order to generate a set of link weights that yield the desired spectral properties of A:

Algorithm 2.3.1:

1. ∀i ∈ V , agent i sets pi =
1

|Ni|+1
, where Ni denotes the number of i’s one-hop neighbors on GC.

2. ∀i ∈ V , agent i sends to each agent j ∈ Ni the number pi, and receives the number p j in return.

3. ∀(i, j) ∈ EC, agents i and j select the weight for edge (i, j) as [A]i, j = [A] j,i = min{pi, p j}.

4. ∀i ∈ V , agent i sets [A]i,i = 1−∑ j∈V \{i}[A]i, j.

♦
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2.4 Convex Analysis

There are many excellent references on convex analysis, including [22], [15], [14] and [124]. We list some basic

notions here.

A convex combination of a set of vectors {x1, . . . ,xN} in R
n is a vector x = a1x1 + · · ·+ aNxN , where for

each i ∈ {1, . . . ,N}, the coefficient ai is nonnegative, and ∑
N
i=1 ai = 1. A set C ⊂ R

n is convex if any convex

combination of its elements is also an element in C. If S is a subset of Rn, then its convex hull is a set C formed

by all possible convex combinations of the elements in S; in that case we write C = co(S). The intersection of an

arbitrary collection of convex sets is convex (q.v. Proposition 1.2.1 [14]). A function J : Rn → R is convex if for

any a ∈ [0,1] and for any x1 and x2 in R
n, it holds that

J(ax1 +(1−a)x2)≤ aJ(x1)+(1−a)J(x2). (2.22)

The same function is strictly convex if inequality (2.22) holds strictly whenever x1 6= x2. The same function is

strongly convex with constant β ∈ R++ if

J(ax1 +(1−a)x2)≤ aJ(x1)+(1−a)J(x2)−β
a(1−a)

2
‖x1 − x2‖ (2.23)

(q.v. §1.1 in [124]). For a convex function J : Rn →R, (2.22) generalizes to Jensen’s inequality, which states that

for any set of vectors {x1, . . . ,xN} in R
n and for any set of nonnegative coefficients {a1, . . . ,aN} that sum to one,

J(a1x1 + · · ·+aNxN)≤ a1J(x1)+ · · ·+aNJ(xN). (2.24)

A differentiable function J : Rn → R is convex if, and only if for any x1 and x2 in R
n,

J(x1)≥ J(x2)+∇J(x2)
T (x1 − x2). (2.25)

The same function J(·) is strictly convex if, and only if the inequality (2.25) holds strictly whenever x1 6= x2. The

same function is strongly convex with constant β ∈ R++ if, and only if

J(x1)≥ J(x2)+∇J(x2)
T (x1 − x2)+

β
2
‖x1 − x2‖ (2.26)

(q.v. Lemma 3 in §1.1 of [124]). A convex function is continuous (q.v. Proposition 1.4.6 [14], or Lemma 3 in

§5.1 of [124]).

A point x∗ ∈R
n is a local minimum for J : Rn →R if there exists a neighbourhood of x∗ in which J(x)≥ J(x∗),

for every x in that neighbourhood. The point x∗ is a global minimum if J(x) ≥ J(x∗) for all x ∈ R
n. If x∗ is

a minimum for J(·) and J(·) is differentiable, then the first-order necessary condition for optimality states that

∇J(x∗) = 0. If J(·) is convex and differentiable, then ∇J(x∗) = 0 if, and only if x∗ is a global minimum for J(·).

All sublevel sets of a convex function are closed and convex (q.v. Corollary to Lemma 3 in §5.1 of [124]). If

some sublevel set of a convex function is nonempty and bounded, then there exists a minimum for that function

(q.v. Theorem 3 in §5.2 of [124]). If some sublevel set of a convex function is nonempty and bounded, then all

sublevel sets of that function are bounded (q.v. Lemma 1 in §5.3 of [124]). For a strictly convex function there

exists a unique minimum (q.v. Theorem 3 in §1.3 of [124]).
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A vector sxo ∈ R
n is a subgradient of a convex function J : Rn → R at xo ∈ R

n if for all x ∈ R
n,

J(x)≥ J(xo)+ sT
xo
(x− xo). (2.27)

Clearly, every gradient is a subgradient – i.e., if a convex function J(·) is differentiable at x, then ∂J(x) = {∇J(x)}.

The subdifferential of J(·) at xo is the set of all subgradients of J(·) at xo, and it is denoted by ∂J(xo). The

subdifferential of a convex function is nonempty, convex and compact at every point in the function’s domain (q.v.

Proposition 4.2.1 in [14]). For a nondifferentiable convex function J(·), the condition 0 ∈ ∂J(xo) is necessary and

sufficient for xo to be a minimum of J(·) (q.v. Theorem 1 in §5.2 of [124]).

An orthogonal projection of a point x ∈ R
n onto a closed set C is defined as

PC(x) = arg min
xo∈C

‖x− xo‖. (2.28)

If C is convex, then PC(x) is unique. The projection operator is nonexpansive – i.e., for any x1 and x2 in R
n,

‖PC(x1)−PC(x2)‖ ≤ ‖x1 − x2‖ (2.29)

(q.v. Proposition 2.2.1 in [14]). The following lemma is used in the proof of Lemma 3.6.3. An alternative proof

can be found in Lemma 1 (a), [116].

Lemma 2.4.1: Consider a closed, convex set S ⊂ R
n and let w ∈ R

n be arbitrary. Then, for any w∗ ∈ S,

(w−w∗)T (PS(w)−w)≤−‖w−PS(w)‖2. (2.30)

Proof. We have

‖PS(w)−w‖2 = (PS(w)−w)T (PS(w)+w∗−w∗−w)

= (PS(w)−w)T (PS(w)−w∗)

+(PS(w)−w)T (w∗−w).

Inequality (2.30) follows by rearranging this expression and noting that the inner product (PS(w)−w)T (PS(w)−
w∗) is negative semidefinite, owing to the geometry of convex sets. �

2.5 Semiglobal, Practical, Asymptotic Stability

All results presented in this section are new and have not been published elsewhere.

Let Ξ ⊂ R
n be a closed, convex set, and consider the system

ξ+ = PΞ

(

f (ξ ;α)
)

, ξ ∈ R
n, (2.31)

where f : Rn → R
n is parameterized by α ∈ R.

Definition 2.5.1: For a given α ∈ R++, a compact set S ⊂ Ξ is said to be stable for (2.31) on Ξ if for every

ε ∈ R++ there exists a δ ∈ R++ such that for all t ∈ N, ξ (t) ∈ B̄ε(S)∩Ξ whenever ξ (0) ∈ B̄δ (S)∩Ξ.

Definition 2.5.2: Let σ be a number in R++ ∪{∞}. For a given α ∈ R++, a compact set S ⊂ Ξ is said to be

attractive for (2.31) on B̄σ (S)∩Ξ if for every ε ∈ (0,σ) there exists a T ∈ N such that for all t ≥ T , ξ (t) ∈
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B̄ε(S)∩Ξ, whenever ξ (0) ∈ B̄σ (S)∩Ξ.

Definition 2.5.3: A set Γ0 ⊂ Ξ is semiglobally practically asymptotically stable (SPAS) for (2.31) if for any

positive, real numbers σ and ρ , with ∞ > σ > ρ , there exists a number α∗ ∈R++ such that whenever α ∈ (0,α∗),

B̄ρ(Γ0)∩Ξ is stable and attractive for (2.31) on B̄σ (Γ0)∩Ξ.

We also define the related convergence concept of asymptotic stability, which is stronger than SPAS.

Definition 2.5.4: Let σ be a number in R++∪{∞}. A set Γ0 ⊂Ξ is asymptotically stable for (2.31) on B̄σ (Γ0)∩Ξ

if Γ0 is stable and attractive for (2.31) on B̄σ (Γ0)∩Ξ. ♦

Theorem 2.5.1: Consider the system (2.31), and suppose there exists a compact set Γ0 ⊂ Ξ and a function

V ∈ C0[Rn,R+] which is radially unbounded and positive definite with respect to Γ0 on R
n. Suppose that for

every σ ∈ R++, there exists a number ᾱ ∈ R++ such that whenever α ∈ (0, ᾱ),

V (ξ+)−V (ξ )≤W (ξ ;α), ∀ξ ∈ B̄σ (Γ0)∩Ξ, (2.32)

where the function W ∈C0[Rn,R], parameterized by α , has the following properties:

• P1: There exists bW (α) ∈ R++ such that

W (ξ ;α)≤ bW (α), ∀ξ ∈ B̄σ (Γ0)∩Ξ,

and limα↓0 bW (α) = 0.

• P2: The set

Z(α) = {ξ ∈ Ξ
∣

∣W (ξ ;α)≥ 0} (2.33)

contains Γ0.

• P3: For every δ ∈ (0,σ), there exists an αZ ∈ R++ such that whenever α ∈ (0,min{αZ , ᾱ}), Z(α) ⊆
B̄δ (Γ0).

Then, Γ0 is semiglobally practically asymptotically stable for (2.31), with Lyapunov function V (·).

Proof. The proof is given in §2.5.2 �

Remark 2.5.1: The proof of Theorem 2.5.1 is an adaptation of the proofs of Theorem 5.14.2 and Corollary

5.14.3 in [3] to the preceding definition of semiglobal practical asymptotic stability of compact sets. In particular,

Definition 2.5.3 is stronger than the definition of practical stability employed in [3] since the latter does not entail

any notion of parametrization of the size of X∗’s basin of attraction, or the ultimate upper bound on the sequences’

distance from X∗. In contrast, such parameterizations are customary in definitions of SPAS found in the control

theoretic literature [149]. The proof of our theorem may be of independent interest as it represents an extension of

the results in [149] to systems that evolve in discrete time and on subsets of their state space, and have a compact

set of equilibria. Moreover, the development of the analytic tools introduced in [149] is motivated primarily

by applications involving periodically perturbed systems, whereas our setting involves a more general class of

non-vanishing perturbations. ♦

Prior to presenting the proof of Theorem 2.5.1, we provide two lemmas used therein.



CHAPTER 2. BACKGROUND AND PRELIMINARIES 39

2.5.1 Technical Lemmata

The following are two technical lemmas used in the proof of the SPAS theorem, and referenced on several occa-

sions throughout Chapter 3.

Lemma 2.5.1: Consider a function ψ ∈C0[Rn,R+] which is radially unbounded and positive definite with respect

to a compact set Ψ0 ⊂ R
n on R

n. For any given ρ̂ ∈ R++, there exists a number l ∈ R++ such that the set

Ψl = {ξ ∈ R
n | ψ(ξ )≤ l} is strictly contained inside the set B̄ρ̂(Ψ0).

Proof. Let ¯̄l be the minimum value attained by ψ(·) on the set ∂Bρ̂(Ψ0). The existence of ¯̄l is guaranteed by the

continuity of ψ(·) and the compactness of ∂Bρ̂(Ψ0). For the same reasons, the number

l̄ = min
ξ∈Ψ ¯̄l

\Bρ̂ (Ψ0)
ψ(ξ )

is also guaranteed to exist2.

Since ψ(·) is positive definite with respect to Ψ0 on R
n, l̄ is positive and there exists a number l ∈ (0, l̄). It

can be seen that for any such l, Ψl is strictly contained inside B̄ρ̂(Ψ0), for, assuming that there exists a point

ξo ∈ Ψ ¯̄l
\Bρ̂(Ψ0) leads to the absurd conclusion that both ψ(ξo)≤ l and ψ(ξo)≥ l̄ hold. �

It is by means of this lemma that we remove the strong convexity assumption used in [91].

Lemma 2.5.2: Consider a function φ ∈C0[Rn,R+] which is positive definite with respect to a compact set X∗ ⊂
R

n. Given any three positive, real numbers Kφ , σ and δ̂ , with ∞ > σ > δ̂ , there exists a number αφ ∈ R++ such

that whenever α ∈ (0,αφ ),

φ(y)≥ αKφ‖y−PX∗(y)‖2, ∀y ∈ B̄σ (X
∗)\B

δ̂
(X∗). (2.34)

Proof. By Lemma 2.5.1 (with ρ̂ = δ̂ ), there exists a number c ∈ R++ such that the set

Φc = {y ∈ R
n
∣

∣ φ(y)≤ c} (2.35)

is strictly contained inside B̄
δ̂
(X∗). We note that whenever y ∈ B̄σ (X

∗)\Φc, ‖y−PX∗(y)‖ ≤ σ . Therefore,

αKφ‖y−PX∗(y)‖2 ≤ αKφ σ2, ∀y ∈ B̄σ (X
∗)\Φc, (2.36)

for any positive, real α and Kφ . On the same set, φ(·) is strictly larger than c. Taking

α ∈ (0,αφ ), αφ =
c

Kφ σ2
, (2.37)

implies that

φ(y)> c ≥ αKφ σ2, (2.38)

whenever y ∈ B̄σ (X
∗)\Φc. Together with (2.36), (2.38) implies (2.34), since B̄

δ̂
(X∗)⊃ Φc. �

2The reason for performing the second minimization of ψ(·) is the following. The radial unboundedness and positive definiteness of ψ(·)
does not preclude the possibility that some of its sublevel sets are not connected (since ψ(·) need not be monotonically increasing in all

directions away from Ψ0), and it can therefore not be claimed that Ψl ⊂ B̄ρ̂ (Ψ0) for some l ∈ (0, ¯̄l). If all sublevel sets of ψ(·) are connected,

then ¯̄l = l̄.
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2.5.2 Proof of Theorem 2.5.1

As in Definition 2.5.3, let σ and ρ be arbitrary positive real numbers with ∞ > σ > ρ . Our first task is to show

that under the theorem’s assumptions, B̄ρ(Γ0)∩Ξ is stable for (2.31) for a sufficiently small gain α .

We begin by constructing several sets. For any r ∈ R++, we let Γr denote the set {ξ ∈ R
n
∣

∣V (ξ )≤ r} while

∂Γr denotes its boundary {ξ ∈R
n
∣

∣V (ξ ) = r}. We note that since V (·) is assumed to be radially unbounded with

respect to Γ0, and Γ0 is assumed to be compact, all the sublevel sets Γr are compact. Moreover, for any r ∈ R++,

the intersection Γr ∩Ξ is nonempty since Γ0 is a subset of both Γr and Ξ.

By Lemma 2.5.1, there exists a number l ∈ R++ such that Γl is strictly contained inside B̄ρ(Γ0). Then, we

have that B̄ρ(Γ0)⊃ Γl ⊃ Γl/2. Let

δ = min
ξ∈∂Γl/2

‖ξ −PΓ0
(ξ )‖, (2.39)

so that B̄δ (Γ0) is the largest “ball” contained in Γl/2 and “centered” at Γ0. By assumption, there exists an αZ ∈R++

such that Z(α)⊆ B̄δ (Γ0), whenever α ∈ (0,αZ). To summarize our construction so far, we have

B̄σ (Γ0)⊃ B̄ρ(Γ0)⊃ Γl ⊃ Γl/2 ⊇ B̄δ (Γ0)⊇ Z(α), (2.40)

whenever α ∈ (0,min{ᾱ,αZ}).
Finally, we note that by assumption, there exists a number αW ∈ R++ such that bW (α) ≤ l

2
, whenever α ∈

(0,αW ).

Claim 2.5.1: For any r ∈ [l,∞), the set Γr∩Ξ is positively invariant for (2.31), whenever α ∈ (0,min{ᾱ,αZ ,αW}).

Proof. We will show that if for some t ∈ N, ξ ∈ Γr ∩Ξ, then necessarily ξ+ ∈ Γr ∩Ξ. Suppose that ξ ∈ Γr ∩Ξ.

Then, since

Γr ⊇ Γl ⊃ Γl/2 ⊃ Z(α)

whenever α ∈ (0,min{ᾱ,αZ}) (q.v. (2.40)), we see that either ξ ∈ Z(α), or ξ ∈ (Γr ∩Ξ)\Z(α).

If ξ ∈ Z(α), then ξ ∈Γl/2∩Ξ, and therefore V (ξ )≤ l
2
. Also, since α ≤αW , W (ξ ;α)≤ bW (α)≤ l

2
. Therefore,

V (ξ+)≤V (ξ )+W (ξ ;α)≤ l
2
+ l

2
,

implying that ξ+ ∈ Γl ∩Ξ, and therefore ξ+ ∈ Γr ∩Ξ.

On the other hand if ξ ∈ (Γr∩Ξ)\Z(α), then V (ξ )≤ r, while W (ξ ;α)< 0 (q.v (2.33)). Therefore, V (ξ+)≤ r,

implying that ξ+ ∈ Γr ∩Ξ. The conclusion then follows from the principle of induction. ♦

Let ε ∈ R++ be arbitrary. By Claim 2.5.1, Γl ∩ Ξ is invariant for (2.31). The invariance of Γl ∩ Ξ and

the fact that B̄δ (Γ0) ⊂ Γl ⊂ B̄ρ(Γ0) (q.v. (2.40)) imply that whenever (2.31) is initialized inside B̄δ (Γ0), the

sequence (ξ (t))∞
t=1 remains inside B̄ρ(Γ0) ∩ Ξ (and hence inside B̄ρ+ε(Γ0) ∩ Ξ) forever, provided that α ∈

(0,min{ᾱ,αZ ,αW}). We therefore conclude that B̄ρ(Γ0) is stable for (2.31).

Our second task is to show that under the assumptions of the theorem, B̄ρ(Γ0) is attractive for (2.31) on

B̄σ (Γ0). We begin with the following claim.

Claim 2.5.2: For every σ ∈R++, there exist positive, real numbers σ̂ and α∗ such that ∀t ∈N, ξ (t)∈ B̄σ̂ (Γ0)∩Ξ

whenever ξ (0) ∈ B̄σ (Γ0)∩Ξ and α ∈ (0,α∗).
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Proof. The continuity of V (·) and the compactness of Γ0 imply the existence of the number

l̂ = max
ξ∈B̄σ (Γ0)

V (ξ ). (2.41)

Since Γl̂ is compact, there exists a number σ̂ such that B̄σ̂ (Γ0)⊇ Γl̂ ; for example, one may take

σ̂ = max
ξ∈∂Γ

l̂

‖ξ −PΓ0
(ξ )‖, (2.42)

which is well defined since d(·,Γ0) is continuous (q.v. Remark 3.3.5). By the assumptions of the theorem, there

exists a number α̂ ∈R++ such that (2.32) holds on B̄σ̂ (Γ0)∩Ξ. Then, by Claim 2.5.1, Γl̂ ∩Ξ is positively invariant

for (2.31) whenever α ∈ (0,α∗), where

α∗ = min{α̂, ᾱ,αZ ,αW}, (2.43)

and ᾱ , αZ and αW are as in Claim 2.5.1. Since

B̄σ̂ (X
∗)⊇ Γl̂ ⊇ B̄σ (X

∗), (2.44)

the invariance of Γl̂ ∩Ξ proves the claim. ♦

The attractivity of B̄ρ(Γ0) for (2.31) on B̄σ (Γ0) follows from the following claim.

Claim 2.5.3: Let δ be as in (2.39). Then, for any r ∈ [δ ,σ), the set B̄r(Γ0) is attractive for (2.31) on B̄σ (Γ0).

Proof. Let ε ∈ (0,σ − r] be arbitrary, and let α ∈ (0,α∗), with α∗ as in Claim 2.5.2. The continuity of W (·;α)

implies that there exists a real number γ such that

− γ = max
ξ∈(B̄σ̂ (Γ0)\Br+ε (Γ0))∩Ξ

W (ξ ;α), (2.45)

where σ̂ is as in Claim 2.5.2. Since W (ξ ;α) < 0 for all ξ /∈ Z(α), and B̄r+ε(Γ0) ⊃ B̄δ (Γ0) ⊇ Z(α), we see that

γ > 0.

From (2.32) and (2.45), we observe that whenever ξ (0) ∈ (B̄σ (Γ0)\B̄r+ε(Γ0))∩Ξ, the inequality

V (ξ+)≤V (ξ )− γ (2.46)

holds for all t ∈ N, so long as ξ (t) ∈ (B̄σ̂\B̄r+ε(Γ0)∩Ξ. Solving (2.46), we obtain that

V (ξ (t))≤V (ξ (0))− tγ, (2.47)

which, together with the positive definiteness of V (·), shows that no sequence (ξ (t))∞
t=0, generated by (2.31) and

initialized inside B̄σ (Γ0)∩Ξ can remain in (B̄σ̂ (Γ0)\Br+ε(Γ0))∩Ξ forever. Claim 2.5.2 implies that no such

sequence can leave B̄σ̂ (Γ0)∩Ξ, and we therefore conclude that (ξ (t))∞
t=0 enters B̄r+ε(Γ0)∩Ξ in finitely many

iterations, proving the claim. ♦

The above claim implies that B̄r(Γ0), with r = ρ is attractive for (2.31) on B̄σ (Γ0), and the theorem is proved.

�
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2.5.3 Global Asymptotic Stability

The following characterization of global asymptotic stability may be regarded as a corollary of Theorem 2.5.1.

Theorem 2.5.2 (c.f. Corollary 5.9.9, [3]): Consider the system (2.31), and suppose there exists a function V ∈
C0[Rn,R+] which is radially unbounded and positive definite with respect to Γ0 = {0} ⊂ Ξ on R

n. If there exists

a function W ∈C0[Rn,R] such that

V (ξ+)−V (ξ )≤W (ξ ), ∀ξ ∈ Ξ, (2.48)

and −W (·) ∈ K , then Γ0 is globally asymptotically stable for (2.31) on Ξ, with Lyapunov function V (·). ♦



Chapter 3

An Analytic Framework for Consensus

Optimization Methods: The

Interconnected Systems Approach

3.1 Synopsis

As a preliminary step toward addressing the class of DT-DDCCPs represented by Problem 1.2.2, we propose

an analytic framework for the derivation of convergence conditions for a class of consensus optimization algo-

rithms. This framework is founded on concepts from the theory of large-scale interconnected systems. As such, its

development is intended to accommodate the analysis of multiagent coordination control designs involving the in-

teraction of consensus optimization algorithms with dynamical systems. The convergence concept we emphasize

for such applications is that of semiglobal, practical, asymptotic stability (SPAS). A key tool that we developed for

our analysis is Theorem 2.5.1, which characterizes the SPAS of the set of fixed points associated with a general,

nonlinear, discrete-time system, in terms of a Lyapunov function. We apply this theorem in deriving convergence

conditions for two subclasses of consensus optimization algorithms: those whose search directions are bounded

but possibly multivalued, and those whose search directions are locally-Lipschitz continuous. For the latter case,

our conditions indicate that all agents’ individual cost functions need not be convex. In both cases, we study

generally constrained problems in which agents’ individual constraint sets are assumed to be neither bounded

nor identical. The interconnected systems point of view allows us to show that the projection operation used in

enforcing the constraints need not add any conservatism to the convergence condition. In contrast with existing

Lyapunov-based analyses of related decentralized optimization schemes, the application of our SPAS theorem

does not require a precise characterization of the algorithm’s actual set of fixed points, and allows for the study of

iterative methods directly in discrete-time.

3.2 Introduction

Much of the current research effort in decentralized optimization (DOpt) is motivated primarily by sensor network

and machine learning applications. As such, much of this effort is directed toward quantifying and improving the

convergence rates of various specific DOpt algorithms [165], [29], [72], [127], [116], [44]. Although undoubtedly

43
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important, convergence rate analyses usually rely on techniques that may not be suitable for studying the efficacy

of such algorithms in the context of coordination control, where the internal stability of the coupled system

involving the agents and the DOpt algorithm is the primary concern.

By contrast, the application area that motivates the present work, and thereby prescribes our focus, con-

cerns the design of decentralized coordination control strategies for networked multiagent systems. As detailed

in §1.2.3, the essential problem is to design rules by which agents individually operate and interact in order to

produce a desired collective behaviour, or accomplish some non-trivial task in a way that leverages the syner-

gism of the collective. In multiagent coordination control scenarios for which the coordination objective can be

expressed within the formalism of convex optimization, the solution to the collective optimization problem may

vary with time [27], [89], or according to the environmental conditions faced by the agents. More importantly,

the agents themselves may be non-static entities, and their dynamic behaviour may affect the performance of the

DOpt algorithm. Though undoubtedly important, convergence rate analyses typically rely on techniques that are

not necessarily suitable for studying the interaction of DOpt algorithms with dynamic systems.

For example, the convergence concept typically emphasized in the optimization literature is the attractivity of

fixed points. Although the stability of an algorithm’s fixed points can sometimes be inferred indirectly from the

ensuing convergence rate analysis, stability is almost never explicitly addressed [173], [114], [116], [27], [44].

The stability of fixed points is especially unclear when the convergence rate analysis is carried out exclusively

by means of auxiliary sequences such as Cesàro (i.e. running) averages of the algorithm’s iterates [44], [165];

a sequence of Cesàro means may converge even if the original sequence is not well behaved. Another example

concerns the common use of diminishing step-size rules [173], [116], [72], [27], [16], [44], which, as noted in

[30], may not be appropriate in online applications in which the optimization process is ongoing.

What is needed then, is a set of tools and techniques that are more innately suited to the analysis and design

of DOpt algorithms in the context of coordination control for dynamic multiagent systems.

3.2.1 Objectives, Method and Contributions

Our main objective is to develop a broadly applicable analytic framework for the derivation of convergence con-

ditions for a large class of consensus optimization (CO) algorithms. In contrast with existing analytic techniques,

we want this framework to enable both the stability and convergence rate analysis of general CO methods, and to

accommodate settings in which the agents may themselves be dynamic entities, whose dynamics couple to those

of the CO algorithm and affect its performance.

To achieve this, we base our method on concepts drawn from the literature on interconnected dynamical

systems [161], [104]. As is commonly done in the literature, our analysis begins by examining the evolution of

the mean estimate across agents, and the vector of deviations from that mean [114], [116], [44], [173], [127]. In

contrast to existing approaches, we interpret the evolution of these variables as a feedback interconnection of two

nonlinear, discrete-time, dynamical systems. When the agents executing the CO algorithm are dynamic entities,

their individual dynamics may then be regarded as additional subsystems coupled to this interconnection, and

thereby be addressed within the same framework. This observation is used to derive the results of Chapter 5.

Although dynamic multiagent coordination control problems remain our primary motivation, in this chapter

we restrict our attention to the scenario in which the agents are static entities, and we investigate whether the said

framework allows us to learn anything new about CO algorithms themselves. In doing so, our secondary objective

is to broaden the set of tools available for the design and analysis of specific variants of CO algorithms, and to

promote the utility of certain system-theoretic analysis techniques that are largely absent from the optimization

literature.



CHAPTER 3. AN ANALYTIC FRAMEWORK FOR CONSENSUS OPTIMIZATION 45

We study generally constrained problems in which each agent projects its estimate updates onto its individual,

privately known constraint set. We find that these constraint sets need not be bounded or identical; they are only

assumed to be closed and convex, and to have a non-empty intersection.

In the literature, the effects of the dynamic coupling between the mean and deviation variables are usually

suppressed by a combination of two persisting assumptions: the boundedness of agents’ individual constraint sets

(or the subgradients used to form their search directions), and the use of diminishing step sizes. Instead of sup-

pressing the effects of dynamic coupling among subsystems, the literature on interconnected systems emphasizes

techniques that seek to exploit this coupling in order to avoid conservatism [104]. Indeed, in our case a careful ex-

amination of the interconnection structure reveals that the destabilizing effects of the constraint-related projection

terms arising in one subsystem negate related effects arising in the other (q.v. Lemma 3.6.3).

The destabilizing effects of all remaining interconnection terms can be dominated by means of a “small-gain”

argument in the composite Lyapunov analysis by exploiting the stability properties of the idealized (i.e. isolated)

subsystem dynamics. The final convergence condition is an upper bound on the algorithm step-size, which may

remain fixed throughout the execution of the algorithm.

The convergence concept of interest to us is that of semiglobal, practical, asymptotic stability (SPAS) [149].

One of the analytic tools that we contribute is a theorem characterizing the SPAS of a constrained, nonlinear,

discrete-time dynamical system, in terms of certain properties of a Lyapunov function (q.v. Theorem 2.5.1).

We apply this theorem in deriving convergence conditions for two sub-classes of CO algorithms: those in

which each agent’s search direction is bounded but possibly multi-valued, and those in which it is a locally

Lipschitz function. An important outcome for the case in which each agent’s search direction is locally Lipschitz

and based on a gradient of the agent’s private cost function, is that the convexity of all agents’ individual costs is

not necessary (q.v. Lemma 3.8.1).

Generally speaking, Lyapunov techniques are favoured in the analysis of dynamical systems because they

facilitate studies of robustness to various disturbances and uncertainties. As early as 1958, Lyapunov stability

and LaSalle invariance concepts were used to establish the asymptotic stability of continuous-time saddle point

dynamics arising in certain classes of separable, linearly constrained resource allocation problems [8]. These

techniques have later been adapted to the study of similar dynamics arising in network utility maximization

problems [79], [99], [48] and separable problems with consensus constraints [163], [54]. Lyapunov techniques

also appear in [127], [140] and [16].

In contrast with this literature, the Lyapunov tools we provide here enable the study of iterative algorithms di-

rectly in discrete time, though the same general framework is useful in the study of continuous-time CO schemes

as well (q.v. Chapter 4). Secondly, the concept of SPAS is more general than that of asymptotic stability. Specifi-

cally, the application of our SPAS theorem does not require a precise characterization of an algorithm’s actual set

of fixed points. This feature is relevant to the study of CO algorithms since their fixed points may not generally

coincide with the set of points satisfying the KKT conditions associated with the collective optimization prob-

lem; CO algorithms achieve perfect consensus if, and only if the sets of optima pertaining to agents’ individual

objective functions have a nonempty intersection [140], and their fixed points may otherwise be difficult to char-

acterize. Finally, the constraints considered in this literature are usually specially structured (i.e., often linear), and

are approximately enforced throughout the execution of the algorithm. We instead consider generally constrained

problems in which the constraints are enforced exactly at each iteration by means of a projection operation, and

we provide an elegant way of studying its effects on the evolution of CO algorithms.

The remainder of this chapter is organized as follows. We specify our problem setting and the class of CO

algorithms being considered, and state our main assumptions in §3.3. In §3.4, we provide preliminary analysis
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results. We state our main results in §3.6 and we demonstrate their application to a class of weighted-gradient CO

algorithms in §3.8. Several lemmas whose proofs are omitted from the body of this chapter are provided in §3.9.

The chapter is concluded in §3.10.

3.3 Problem Setting

The problem setting described in this section is in essence the same as that considered in [114] and [116], and we

strive to use some of the same notation.

We consider a system of N agents networked over a graph GC = (V ,EC(t)), where V = {1, . . . ,N} is a set

that indexes the agents, and EC(t)⊆ V ×V specifies the pairs of agents that communicate at time t.

The agents’ objective is to cooperatively locate any solution to the collective optimization problem

min
x∈X

J(x), (3.1)

where J : Rn → R, and X ⊆ R
n is some nonempty, closed, convex set which is not necessarily bounded. We

assume that J(·) is such that the set of its minimizers

X∗ = arg min
x∈X

J(x) (3.2)

is nonempty, convex and compact.

The function J(·) is comprised of N additive components, and X is given as the intersection of N closed,

convex sets – namely,

J(x) =
N

∑
i=1

Ji(x), (3.3)

and

X =
⋂

i∈V

Xi. (3.4)

For all i ∈ V , Ji(·) and Xi are known only to agent i, while the set X and the collective cost J(·) are not known to

any of the agents.

In what follows, we develop an analytic framework for the study of a class of decentralized optimization

algorithms in which the i’th agent iteratively updates its estimate of some x∗ ∈ X∗, according to the rule

xi(t +1) = PXi

[

vi(t)−αsi(vi(t))
]

, ∀t ∈ N,

vi(t) =
N

∑
i=1

[A]i, j(t)x j(t),
(3.5)

where xi ∈ R
n, α ∈ R++ is the “step size”, A(t) ∈ R

N×N is a weighted adjacency matrix associated to GC, and

si(vi(t)) ∈ (Θ◦ Ji)(vi(t)) (3.6)

is agent i’s search direction at iteration t, generated by the operator Θ : C0[Rn,R]⇒C0[Rn,Rn], whose properties

we specify in the upcoming §3.3.2. The gain α and the operator Θ(·) are assumed to be known by all agents.

Remark 3.3.1: In this chapter we are not focused on addressing DCCPs per se. However, in relation to the

discrete-time, static DCCP formulated in Chapter 1, the set X∗ may be regarded as corresponding to the goal



CHAPTER 3. AN ANALYTIC FRAMEWORK FOR CONSENSUS OPTIMIZATION 47

set, and xi as corresponding to agent i’s decision (or action) variable (q.v. Remark 1.2.7 regarding notation). The

agents’ objective is to reach an agreement on some x∗ ∈ X∗; specifically, the agents aim to update their “decisions”

xi such that

lim
t→∞

x1(t) = · · ·= lim
t→∞

xN(t) = x∗ ∈ X∗. (3.7)

We note that in (3.5) it is implicitly assumed that agent i is capable of evaluating the quantity si(·) = (Θ ◦ Ji)(·)
in (3.6) anywhere within R

n, and in particular at vi(t). For these reasons, the problem setting in this chapter may

be regarded as corresponding to a subclass of DT-SDCCPs represented by Problem 1.2.2 (q.v. Example 1.3.1,

Remark 1.3.1, Example 1.4.1 and Remark 1.4.2). ♦

3.3.1 Properties of the Communication Graph GC

We assume that the weighted adjacency matrix A(t) has the following properties.

A3.3.1 (Properties of A(t)): The entry [A]i, j(t) 6= 0 if, and only if ( j, i) ∈ EC(t). For all t ∈ N, A(t) is stochastic

and symmetric, with eigenvalues

1 = λ1(A(t))> λ2(A(t))≥ ·· · ≥ λN(A(t))>−1. (3.8)

Moreover, ∀t ∈ N, λ2(A
2(t)) = max{λ 2

2 (A(t)),λ
2
N(A(t))} ∈ [0,µ], for some µ ∈ [0,1). ♦

According to the discussion in §2.2, the weighted adjacency matrix A(t) in A3.3.1 would have the desired

spectrum (3.8) if GC is connected and has at least one positively-weighted self-loop – i.e., [A]i,i > 0, for some

i ∈ V . Remark 2.3.1 describes how agents may choose the link weights in a decentralized way in order to produce

a weighted adjacency matrix satisfying A3.3.1.

Remark 3.3.2: Consider a matrix A(t)⊗ In, where A(t) satisfies A3.3.1, and let ei denote the unit vector along

the ith coordinate of Rn. By the properties of the Kronecker product, λ ∈ σ(A(t)) implies that λ ∈ σ(A(t)⊗ In),

with multiplicity n. Therefore, the null space of A(t)⊗ In −λ1(A(t))INn, which is sometimes referred to as the

“agreement subspace”, is spanned by {1N ⊗ e1, . . . ,1N ⊗ en}, and for any vector z ∈ R
Nn inside the orthogonal

complement of the agreement subspace, it holds that

‖(A(t)⊗ In)z‖2 ≤ µ‖z‖2 < ‖z‖2. (3.9)

♦
Remark 3.3.3: An important outstanding challenge in the development of decentralized optimization algorithms

is to relax the assumptions typically made on the agents’ interaction model [152]. In particular, several recent

research efforts are focused on the analysis of CO schemes involving directed or asynchronous communication

among agents [112], [16], [53]. Since this is not the focus of the present work, we adopt the stronger assumption

A3.3.1 in order to simplify our presentation. Assumptions similar to A3.3.1 are common in the literature [75],

[153]. ♦

3.3.2 Properties of the Search Directions si(·)

One of the rare monographs in which Lyapunov techniques are explicitly used in the analysis of optimization

methods is [124]. Therein one finds notions of “pseudogradient” and “strongly pseudogradient”, which are prop-

erties ascribed to the search directions employed by a generic class of iterative (centralized) optimization methods
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(q.v. §2.2, [124]). We generalize these notions in the following definition.

Definition 3.3.1: Consider a multi-valued vector field Ψ : Rn ⇒ R
n and a differentiable function V : Rn → R,

which is positive definite with respect to a compact set Γ0 ⊂ R
n. We say that Ψ(·) is strictly pseudogradient with

respect to V (·) on a set Ξ ⊃ Γ0, if there exists a function φ ∈C0[Rn,R+] which is radially unbounded and positive

definite with respect to Γ0 on Ξ, and for each s ∈ Ψ(ξ ) it holds that

∇V (ξ )T s ≥ φ(ξ ), ∀ξ ∈ Ξ. (3.10)

♦

Remark 3.3.4: Although the strict pseudogradient property is weaker than the strong pseudogradient property,

which requires that

∇V (ξ )T s ≥ τV (ξ ), ∀s ∈ Ψ(ξ ), ∀ξ ∈ R
n, (3.11)

and some τ > 0, it is stronger than the pseudogradient property (q.v. §2.2, [124]), which requires that

∇V (ξ )T s ≥ 0, ∀s ∈ Ψ(ξ ), ∀ξ ∈ R
n. (3.12)

♦

We use Definition 3.3.1 to state our main assumption on the set of search directions generated by (Θ◦ J)(·).

A3.3.2 (Strictly Pseudogradient Search Directions): The (possibly multi-valued) vector field (Θ◦ J)(·) is strictly

pseudogradient with respect to the function y 7→ ‖y−PX∗(y)‖2, on the set

X̂ = co
(

∪i∈V Xi

)

. (3.13)

♦

Remark 3.3.5: A well known fact, attributable to Motzkin [109], is that the distance function

d(y,X∗) = min
xo∈X∗ ‖y− xo‖= ‖y−PX∗(y)‖ (3.14)

is differentiable at each x ∈ R
n\X∗, if, and only if X∗ is closed, nonempty and convex. Using the definition

of Fréchet differentiability and the properties of the projection operator, one can show that 2(x−PX∗(x)) is the

gradient of the function d(y,X∗)2. Consequently, A3.3.2 is equivalent to having

2(y−PX∗(y))T s ≥ φ(y), ∀s ∈ Θ(J(y)), ∀y ∈ X̂ , (3.15)

for some function φ(·) having the properties in Definition 3.3.1. ♦

Remark 3.3.6: For the case in which J(·) is convex and Θ(J(y)) = ∂J(y), inequality (3.15) is satisfied, for

example, by taking φ(y) = 2(J(y)− J∗), where J∗ denotes the value of J(·) on X∗. ♦

We also assume that Θ(·) is a linear operator.

A3.3.3 (Linearity of Θ): For any y ∈ R
n, and for each i ∈ V , let si(y) be an arbitrary element of Θ(Ji(y)) and ci

be an arbitrary real number. Then,

∑
i∈V

cisi(y) ∈ Θ

(

∑
i∈V

ciJi(y)
)

, ∀y ∈ R
n. (3.16)
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♦
Remark 3.3.7: By Lemma 10 in §5 [124], A3.3.3 is satisfied for the case in which Θ(J(y)) = ∂J(y), and J(·) is

convex. ♦
In the analyses that follow, it is possible to draw meaningful conclusions from either of the following two

alternative assumptions on the search directions si(·).
A3.3.4 (Locally Lipschitz Search Directions): For any y ∈ R

n, and for each i ∈ V , Θ(Ji(y)) = {si(y)}, and the

functions si(y) are locally Lipschitz – i.e., for any compact Ω ⊂ R
n, there exists an Li ∈ R++ such that for all v

and y in Ω,

‖si(v)− si(y)‖ ≤ Li‖v− y‖. (3.17)

♦
A3.3.4′ (Locally Bounded Search Directions): For any compact Ω ⊂ R

n, there exists a B ∈ R++ such that for all

y ∈ Ω and i ∈ V , each si(y) ∈ Θ(Ji(y)) satisfies

‖si(y)‖ ≤ B. (3.18)

♦
Remark 3.3.8: The case studied in [116] corresponds to Θ(Ji(vi)) = ∂Ji(vi), and the analysis is carried out under

the assumption that the subgradients si(vi) are bounded. This is a reasonable assumption for problems involving

polyhedral Ji(·), which may arise as dual functions in certain integer programming problems (q.v. §8.2, [14]). ♦
For the case in which the search directions si(·) are locally bounded but not necessarily locally Lipschitz

continuous, we find it useful to strengthen assumption A3.3.2 to the following:

A3.3.2′: For each i ∈ V , there exists a locally Lipschitz function φi : Rn → R, such that for any ξ ∈ R
n and any

si(ξ ) ∈ (Θ◦ Ji)(ξ ),

2(ξ − x∗)T si(ξ )≥ φi(ξ ), ∀x∗ ∈ X∗. (3.19)

Moreover, there exists a function φ ∈ C0[Rn,R+] which is radially unbounded and positive definite with respect

to X∗ on X̂ , such that

φ(ξ )≤ ∑i∈V
φi(ξ ), ∀ξ ∈ X̂ , (3.20)

where X̂ is as in (3.13).

Remark 3.3.9: The case in which (Θ◦ Ji)(·) = ∂Ji and Ji(·) is assumed to be convex for each i ∈ V is studied in

[116]. The assumption that Ji(·) is convex can be seen to imply A3.3.2′ by taking φi(ξ ) = 2Ji(ξ )−2Ji(PX∗(ξ )),

and noting that every convex function Ji(·) : Rn → R is locally Lipschitz over its domain of definition [133]. In

that case the sum ∑i∈V φi(·) is equal to φ(·) = 2(J(·)−J∗), which is radially unbounded and positive definite with

respect to X∗ on X̂ . In other words, assumptions A3.3.4′ and A3.3.2′ taken together are no stronger than those

assumptions adopted in [116]. ♦
Remark 3.3.10 (The Rationale behind A3.3.2 and A3.3.2′): Many recent contributions in decentralized opti-

mization present convergence analyses of specific algorithm structures designed to perform well on specific, often

restricted classes of cost functions. For example, in addition to the usual requirement that each Ji(·) be convex,

[29], [145], and [127] derive results that exploit the special form of cost functions arising in certain classes of pa-
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rameter fitting problems, and [72] requires that agents’ individual cost functions are all convex and differentiable,

with gradients that are Lipschitz continuous and bounded.

Instead of directly restricting the class of objective functions under consideration, assumptions such as A3.3.2

and A3.3.4, or A3.3.4′ and A3.3.2′ place the focus on the structure of the algorithm itself. As such, they help align

our viewpoint more closely with those typical to control system design and analysis. Secondly, although the search

directions si(·) relate to the individual and collective cost functions by means of assumptions A3.3.2 (or A3.3.2′)

and A3.3.3, the relationship implied by these assumptions is quite generic. It is hoped that the generality of this

alternative perspective may serve to inform proposals for new designs of specific CO algorithms and associated

objective function classes. ♦

3.4 The Interconnected Systems Point of View

Building on the ideas originally proposed in [91], we present the essence of our proposed analytic framework in

this section (A detailed description is given in §3.4.2). The analysis begins by examining the evolution of the

mean estimate of a collective optimizer x∗ ∈ X∗ among agents, and the vector of deviations of agents’ individual

estimates from this mean (q.v. §3.4.1). The idea proposed in [91] is to interpret the evolution of these two variables

as a feedback interconnection of two coupled dynamical systems. In contrast with the present contribution, the

work in [91] considers a narrow class of CO algorithms and unconstrained optimization problems in which the

collective cost is assumed to be strongly convex.

3.4.1 The Mean and Deviation Subsystems

To begin, we write (3.5) more compactly as

x+ = (A⊗ In)x−αs(v)+η

= (A⊗ In)x−αs((A⊗ In)x)+η , (3.21)

where x = [x1(t)
T , . . . ,xN(t)

T ]T ∈ R
Nn, v = [v1(t)

T , . . . ,vN(t)
T ]T ∈ R

Nn, s(v) = [s1(v1(t))
T , . . . ,sN(vN(t))

T ]T and

η = [ηT
1 , . . . ,η

T
N ]

T , with

ηi = PXi

[

vi(t)−αsi(vi(t))
]

−
[

vi(t)−αsi(vi(t))
]

, (3.22)

and si(vi(t)) and vi(t) as in (3.6) and (3.5).

As in [116], we consider the agents’ mean estimate

y = 1
N
(1T

N ⊗ In)x, (3.23)

which, based on (3.21), evolves according to

y+ = 1
N
(1T

N ⊗ In)(A⊗ In)x− α
N
(1T

N ⊗ In)s(v)+
1
N
(1T

N ⊗ In)η . (3.24)

Since A is assumed to be stochastic and symmetric, it is doubly stochastic – i.e., 1T
NA = 1T

N . The properties of the

Kronecker product therefore imply that (1T
N ⊗ In)(A⊗ In) = (1T

NA⊗ In) = (1T
N ⊗ In), which, together with (3.23),

yields

y+ = y− α
N
(1T

N ⊗ In)s(v)+
1
N
(1T

N ⊗ In)η . (3.25)
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Next, we introduce the deviation variable z = [zT
1 , . . . ,z

T
N ]

T ∈ R
Nn, with zi = xi − y. Equivalently,

z = (M⊗ In)x, (3.26)

where

M = IN − 1
N

1N1T
N . (3.27)

In the literature on consensus algorithms, the deviation variable z is often termed the “disagreement vector” [136],

and it is useful to note that for all x ∈ R
Nn, z belongs to the orthogonal complement of the agreement subspace

(q.v. Remark 3.3.2).

Based on (3.21), the deviation variable evolves according to

z+ = (M⊗ In)(A⊗ In)x−α(M⊗ In)s(v)+(M⊗ In)η . (3.28)

From (3.27) and the double stochasticity of A, we see that MA = AM, so that by the properties of the Kronecker

product, we have (M⊗ In)(A⊗ In)x = (A⊗ In)(M⊗ In)x. Then, from the definition of z in (3.26), we obtain

z+ = (A⊗ In)z−α(M⊗ In)s(v)+(M⊗ In)η . (3.29)

Equations (3.25) and (3.29) can be expressed exclusively in terms of the mean and deviation variables by

noting that

v = (A⊗ In)z+1N ⊗ y. (3.30)

We therefore observe that (3.25) and (3.29) represent two coupled nonlinear difference equations that can be

interpreted as a feedback interconnection of two dynamical systems, as shown in Figure 3.1.

z
+ = (A⊗ In)z − α(M ⊗ In)s(v) + (M ⊗ In)η

y+ = y − α

N
(1T

⊗ In)s(v) +
1

N
(1T

⊗ In)η

Figure 3.1: The dynamic coupling between the mean and deviation subsystems arises from the gradient terms,

and the terms related to the projection operation.

3.4.2 Small-Gain Techniques, Semiglobal, Practical, Asymptotic Stability, and Inter-

connected Systems Techniques

There is a variety of powerful control theoretic tools available for the analysis of feedback interconnected systems

such as those in Figure 3.1. We choose to appeal to those developed for the study of large-scale, or interconnected

nonlinear systems (q.v. [104], [161], for example), though other approaches based on concepts such as passivity

or input-to-state stability may well lead to the derivation of a different set of insights and convergence conditions.

The essential strategy in our approach is to identify the idealized subsystem dynamics associated with the

actual mean and deviation subsystems depicted in Figure 3.1. We refer to these dynamics as “idealized” because

they posses desirable stability properties that can be exploited in deriving convergence conditions for the overall
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interconnection. We then aim to express the actual mean and deviation dynamics as consisting of these idealized

dynamics, additively perturbed by various interconnection terms. The main challenge then is to apply the well-

known “art” of small-gain argumentation in order to derive conditions under which the destabilizing effects of the

interconnecting terms, viewed as perturbations of the idealized dynamics, are guaranteed to be overcome by the

stability properties of the idealized subsystem dynamics.

The convergence concept of interest to us is that of semiglobal, practical, asymptotic stability (SPAS). This

concept is defined in §2.5, where we also prove an important theorem that characterizes the SPAS of fixed points

associated with a general, nonlinear, discrete-time dynamical system, in terms of a Lyapunov function with certain

properties (q.v. Theorem 2.5.1). This theorem allows us to be precise about specifying the conditions under which

the stability properties of the idealized dynamics dominate the destabilizing effects of the interconnection terms.

An important aspect of the “art” of small gain argumentation that is easily and often overlooked, is the possibil-

ity that dynamically interacting subsystems may posses interconnection terms that are not necessarily antagonistic

to the stability of the overall feedback loop1 If one is careful in examining the interconnection structure of a sys-

tem such as that shown in Figure 3.1, one may sometimes find that certain interconnection terms arising in one

subsystem actually help stabilize the other subsystem. When this happens, these “helpful” terms need not be

treated as perturbations in the small-gain argument. As a consequence, such terms ultimately need not add any

conservatism to the final small-gain conditions. Indeed, in our case we find that all projection-related interconnec-

tion terms arising in one subsystem negate the effects of analogous terms arising in the other subsystem. These

observations are made explicit in Lemma 3.6.3.

The combination of small gain techniques and the theory of SPAS, together with interconnected systems

techniques constitutes the essence of our proposed analytic framework.

3.5 The Idealized Subsystem Dynamics and their Stability Properties

Our aim here is to identify the “idealized” dynamics associated to the mean and deviation subsystem dynamics

given by (3.25) and (3.29), and to specify their stability properties.

3.5.1 The Idealized Mean Subsystem Dynamics

We write expression (3.25) as

y+ = y− α
N

so(y)+ p1(y,z)+ p2(y,z), (3.31)

where

p1(y,z) =
α
N
(1T

N ⊗ In)
(

s(1N ⊗ y)− s(v)
)

, (3.32)

p2(y,z) =
1
N
(1T

N ⊗ In)η , (3.33)

and

so(y) = (1T
N ⊗ In)s(1N ⊗ y) = ∑

i∈V

si(y), (3.34)

with si(y) ∈ Θ(Ji(y)).

1For example, the ability to exploit this observation is often promoted as one of the key strengths of a popular constructive nonlinear control

design technique known as backstepping (q.v. “Avoiding Cancellations”, §2.2, [85]). These observations are also emphasized throughout

[104].
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Then, from our definition of the mean estimate y in (3.23), we see that for each t ∈ N, y(t) belongs to X̂ , the

convex hull of
⋃

i∈V Xi – i.e., y(t) = 1
N

x1(t)+ · · ·+ 1
N

xN(t), and xi(t) ∈ Xi, for all i ∈ V and t ∈ N. Consequently,

the update law

y+ = PX̂

[

y− α
N

so(y)+ p1(y,z)+ p2(y,z)
]

(3.35)

generates the same set of iterates as (3.31), provided the two are initialized at the same place.

We observe that by A3.3.3, the definition of so(·) in (3.34) implies that so(y) ∈ Θ(J(y)), and that A3.3.2

therefore applies to so(·). This observation can be used to show that the function VO(y) = N‖y−PX∗(y)‖2 is a

Lyapunov function for the idealized mean dynamics

y+ = PX̂

[

y− α
N

so(y)
]

, (3.36)

under either assumption A3.3.4 (q.v. Lemma 3.9.3) or A3.3.4′ (q.v. Lemma 3.9.5). Specifically, we have the

following lemma, whose proof is postponed until §3.9.

Lemma 3.5.1: Consider the algorithm (3.36), where so(y) ∈ Θ(J(y)). Suppose that A3.3.3 and A3.3.2 hold in

addition to either A3.3.4 or A3.3.4′. Then, by Theorem 2.5.1, X∗ is SPAS for (3.36), with Lyapunov function

VO(y) = N‖y−PX∗(y)‖2.

Proof. For the set of assumptions A3.3.3, A3.3.2 and A3.3.4, see the combined proofs of Lemmas 3.9.1, 3.9.2,

and 3.9.3. For the set of assumptions A3.3.3, A3.3.2 and A3.3.4′, see the combined proofs of Lemmas 3.9.1,

3.9.4, and 3.9.5. ♦

Given that so(·) is assumed to satisfy the relationship (3.15) on X̂ , the idealized mean dynamics (3.36) can be

regarded as a centralized optimization algorithm on J(·).

3.5.2 The Idealized Deviation Subsystem Dynamics

We express (3.29) as

z+ = (A⊗ In)z+ p3(y,z), (3.37)

where

p3(y,z) = (M⊗ In)
(

η −αs(v)
)

. (3.38)

The interconnection term p3(·, ·) perturbs the evolution of the idealized deviation dynamics, which we regard to

be given by

z+ = (A⊗ In)z, z(0) ∈ A
⊥, (3.39)

where

A
⊥ = {1N ⊗ e1, . . . ,1N ⊗ en}⊥, (3.40)

and ei is the unit vector along the ith coordinate in R
n. The constraint on the initial condition in (3.39) follows

from the definition of z in (3.26); the matrix (M ⊗ In) is the realization of an orthogonal projection onto the set

A ⊥. In particular, z(0) = (M⊗ In)x(0) implies that z(0) ∈ A ⊥ for any x(0) ∈ R
n.

The stability properties of (3.39) are summarized in the following lemma.

Lemma 3.5.2: Consider the algorithm (3.39), and suppose that A3.3.1 holds. Then, by Theorem 2.5.2, {0} is

globally asymptotically stable for (3.39) on A ⊥, with Lyapunov function VC = ‖z‖2.

Proof. The proof is given in §3.9.2. ♦
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In the absence of the perturbation p3(·, ·), the deviation subsystem converges to 0, implying that the agents

reach a perfect consensus from any initial condition in A ⊥.

In the sequel, we use the results of Lemmas 3.5.1 and 3.5.2 to show how Theorem 2.5.1 can be applied to

establish the SPAS of X∗×{0} for the feedback interconnected system (3.25)-(3.29) shown in Figure 3.1.

3.6 Composite Lyapunov Analysis

In the prequel, the functions VO(y) = N‖y−PX∗(y)‖2 and VC (z) = ‖z‖2 are shown to be Lyapunov functions for

the idealized mean and deviation subsystems, respectively. In the next two lemmas, we examine how the values of

these functions evolve along the trajectories of the actual dynamics (3.31)–(3.37). In Lemma 3.6.3, we combine

these results to derive a difference inequality bounding the evolution of a composite Lyapunov function V (·, ·),
comprised as the sum of VO(·) and VC (·).

Lemma 3.6.3 constitutes the main result in this section, its proof highlighting the utility of the interconnected

systems point of view. The interesting outcome of this lemma is that the projection-related terms arising in the

upper bound on ∆VO(·) can be shown to negate those arising in the upper bound on ∆VC (·). In other words, the

projection-related perturbations to the idealized mean dynamics help to stabilize the deviation subsystem, and

vice versa. The ultimate implication of this observation, is that the presence of projections in the CO algorithm

(3.5) need not add any conservatism to its convergence conditions.

Before presenting Lemma 3.6.3, we examine the evolution of VO(·) along the sequences generated by (3.25)

(q.v. Lemma 3.6.1), and the evolution of VC (·) along the sequences generated by (3.29) (q.v. Lemma 3.6.2).

Lemma 3.6.1: Consider the function VO(y) = N‖y−PX∗(y)‖2 and the system (3.31). For all y generated by

(3.31),

∆VO(y)≤−2α(y−PX∗(y))T so(y)+ τ1 + τ2 + τ3,

where

τ1 = 2α(y−PX∗(y))T (1T
N ⊗ In)

(

s(1N ⊗ y)− s(v)
)

, (3.41)

τ2 =−2(v−1N ⊗PX∗(y))T (M⊗ In)η +2(v−1N ⊗PX∗(y))T η ,

τ3 = ‖η‖2 +α2‖s(v)‖2 +2αηT (M⊗ In)s(v)−2αηT s(v),

and ∆VO(y) =VO(y
+)−VO(y).

Proof. For brevity, we drop the arguments for p1(·, ·) and p2(·, ·). The definition of the projection operator and

the convexity of X∗ give that

∆VO(y) = N‖y+−PX∗(y+)‖2 −N‖y−PX∗(y)‖2

≤ N‖y+−PX∗(y)‖2 −N‖y−PX∗(y)‖2.



CHAPTER 3. AN ANALYTIC FRAMEWORK FOR CONSENSUS OPTIMIZATION 55

Then, based on (3.31),

∆VO(y)≤ N‖y− α
N

so(y)+ p1 + p2 −PX∗(y)‖2

−N‖y−PX∗(y)‖2

= N‖p1 + p2 − α
N

so(y)‖2 +2N(y−PX∗(y))T (p1 + p2)

−2α(y−PX∗(y))T so(y).

Recalling (3.32), we see that 2N(y−PX∗(y))T p1 = τ1 Next, we show that 2N(y−PX∗(y))T p2 = τ2. We have

N(y−PX∗(y))T p2 = (y−PX∗(y))T (1T
N ⊗ In)η

=
[

1
N
(1T

N ⊗ In)(v−1N ⊗PX∗(y))
]T
(1T

N ⊗ In)η , (3.42)

where the second equality is obtained using the fact that 1
N
(1T

N ⊗ In)(1N ⊗PX∗(y)) = PX∗(y) and the fact that

1
N
(1T

N ⊗ In)v =
1
N
(1T

N ⊗ In)(A⊗ In)x =
1
N
(1T

N ⊗ In)x = y,

which follows from the definition of v in (3.5), the definition of y in (3.23) and the fact that A is column-stochastic.

Rearranging (3.42) and using the definition of M in (3.27), we obtain

N(y−PX∗(y))T p2 = (v−1N ⊗PX∗(y))T
(

1
N

1N1T
N ⊗ In

)

η

= (v−1N ⊗PX∗(y))T
(

(−M+ IN)⊗ In

)

η ,

from which it is seen that 2N(y−PX∗(y))T p2 = τ2.

Finally, we show that N‖p1 + p2 − α
N

so(y)‖2 = τ3. Recalling (3.32) and (3.33), we have

N‖p1 + p2 − α
N

so(y)‖2

= N‖ 1
N
(1T

N ⊗ In)[η −αs(v)]‖2

= N‖ 1
N
(1T

N ⊗ In)η‖2 +α2N‖ 1
N
(1T

N ⊗ In)s(v)‖2

−2 α
N

(

(1T
N ⊗ In)η

)T (
(1T

N ⊗ In)s(v)
)

= N‖ 1
N ∑

i∈V

ηi‖2 +α2N‖ 1
N ∑

i∈V

si(vi)‖2

−2αηT ( 1
N

1N1T
N ⊗ In)s(v). (3.43)

Recognizing that ‖ · ‖ is a convex function, we apply Jensen’s inequality to the first two terms in (3.43) to obtain

N‖p1 + p2 − α
N

so(y)‖2

= ‖η‖2 +α2‖s(v)‖2 −2αηT ( 1
N

1N1T
N ⊗ In)s(v). (3.44)

Using the fact that 1
N

1N1T
N =−M+ IN (q.v. (3.27)), we see that the right-hand side of (3.44) is equal to τ3. �

Lemma 3.6.2: Consider the function VC (z) = ‖z‖2 and the system (3.37), where A satisfies A3.3.1. For all z

generated by (3.37),

∆VC (z)≤−(1−µ)‖z‖2 + τ4 + τ5,
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where

τ4 = 2zT (A⊗ In)η −2αzT (A⊗ In)s(v),

τ5 = ‖η‖2 +α2‖s(v)‖2 −2αηT (M⊗ In)s(v),

and ∆VC (z) =VC (z
+)−VC (z).

Proof. Based on (3.37) and A3.3.1,

∆VC (z) = ‖(A⊗ In)z+ p3‖2 −‖z‖2

= ‖(A⊗ In)z‖2 −‖z‖2 +2zT (A⊗ In)p3 +‖p3‖2

≤−(1−µ)‖z‖2 +2zT (A⊗ In)p3 +‖p3‖2.

Recalling (3.38), we have

2zT (A⊗ In)p3 = 2zT (A⊗ In)(M⊗ In)(η −αs(v)). (3.45)

From the definition of M in (3.27) and the properties of A, we see MA = AM, and therefore (A⊗ In)(M ⊗ In) =

(M ⊗ In)(A⊗ In). Moreover, since M2 = M and zT = xT (M ⊗ In) (q.v. (3.26)), we have that zT (M ⊗ In) = zT .

Using these two facts and considering (3.45) allows us to conclude that 2zT (A⊗ In)p3 = τ4.

Next, we show that ‖p3‖2 ≤ τ5. We have

‖p3‖2 = ‖(M⊗ In)η‖2 +α2‖(M⊗ In)s(v)‖2

−2αηT (M⊗ In)
T (M⊗ In)s(v).

It can be shown that the spectral radius of M is ρ(M) = 1. Since M is symmetric, ρ(M) coincides with ‖M‖, and

the conclusion follows from the compatibility property of induced matrix norms. �

In the following lemma, we examine the evolution of the composite Lyapunov function candidate V (y,z) =

N‖y−PX∗(y)‖2 +‖z‖2 for the feedback interconnection of the mean and deviation subsystems, shown in Figure

3.1. We find that the projection-related perturbations to the evolution of the idealized mean dynamics effectively

negate the destabilizing effects of analogous perturbations to the idealized deviation dynamics, and vice versa.

Lemma 3.6.3: Consider the interconnected system (3.31)-(3.37), and suppose that all of the conditions of Lem-

mas 3.6.1 and 3.6.2 are satisfied. Then, the function V (y,z) = N‖y−PX∗(y)‖2 + ‖z‖2 is such that for all y+ and

z+ generated by (3.31)-(3.37),

∆V (y,z)≤−2α(y−PX∗(y))T so(y)− (1−µ)‖z‖2

+ τ1 +2α2‖s(v)‖2 −2αzT (A⊗ In)s(v), (3.46)

where τ1 is as in (3.41), and ∆V (y,z) =V (y+,z+)−V (y,z).

Proof. From Lemmas 3.6.1 and 3.6.2 we have that

∆V (y,z)≤−2α(y−PX∗(y))T so(y)− (1−µ)‖z‖2 +
5

∑
i=1

τi.
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Therefore, our task is to show that

5

∑
i=2

τi ≤ 2α2‖s(v)‖2 −2αzT (A⊗ In)s(v), (3.47)

where the expressions for τ2, τ3, τ4 and τ5 are given in the statements of Lemmas 3.6.1 and 3.6.2.

First, we observe the cancellation of cross term involving η and s(v) in τ3 and τ5, yielding

τ3 + τ5 = 2‖η‖2 +2α2‖s(v)‖2 −2αs(v)T η .

Adding τ2 we obtain

τ2 + τ3 + τ5 = 2‖η‖2 +2α2‖s(v)‖2 −2αs(v)T η

−2(v−1N ⊗PX∗(y))T (M⊗ In)η

+2(v−1N ⊗PX∗(y))T η

= 2‖η‖2 +2α2‖s(v)‖2

−2(v−1N ⊗PX∗(y))T (M⊗ In)η

+2
(

(v−αs(v))−1N ⊗PX∗(y)
)T

η . (3.48)

Recalling the definitions of η , v and s(v) in (3.21), we write the last term in (3.48) as

2
(

(v−αs(v))−1N ⊗PX∗(y)
)T

η

= 2 ∑
i∈V

(

(vi −αsi(vi))−PX∗(y)
)T

ηi, (3.49)

where ηi is as in (3.22). Since X∗ ⊆ Xi, ∀i ∈ V (q.v. (3.2)), we see that for all y ∈ R
n, PX∗(y) ∈ Xi, for every

i ∈ V . Consequently, we may apply Lemma 2.4.1 to obtain that

2
(

(v−αs(v))−1N ⊗PX∗(y)
)T

η

≤−2 ∑
i∈V

‖ηi‖2 =−2‖η‖2, (3.50)

and therefore

τ2 + τ3 + τ5 ≤ 2α2‖s(v)‖2 −2(v−1N ⊗PX∗(y))T (M⊗ In)η .

Next, we note that the second term above can be written as

2(v−1N ⊗PX∗(y))T (M⊗ In)η

= 2
[

(M⊗ In)v− (M⊗ In)(1N ⊗PX∗(y))
]T

η

= 2((M⊗ In)v)
T η ,
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since M1N = 0. Then, recalling that v = (A⊗ In)x and that MA = AM, we have that

2(v−1N ⊗PX∗(y))T (M⊗ In)η = 2((A⊗ In)(M⊗ In)x)
T η

= 2((A⊗ In)z)
T η ,

and therefore

τ2 + τ3 + τ5 ≤ 2α2‖s(v)‖2 −2zT (A⊗ In)η .

Finally, we observe that by adding τ4, the terms involving the projection errors η cancel, resulting in the desired

inequality (3.47). �

The conclusions of Lemma 3.6.3 are independent of whether the search directions si(·) are locally bounded

or locally Lipschitz continuous. In the following two subsections, we study these two cases separately. We

apply Theorem 2.5.1 to derive conditions on the algorithm gain α which guarantee the SPAS of X∗×{0} for the

feedback interconnected system (3.31)-(3.37) in each case.

Since projection-related terms do not appear in the upper bound on ∆V (·) derived in Lemma 3.6.3, the projec-

tion operation plays no role in the derivation of the final convergence condition.

3.6.1 Locally Lipschitz Search Directions

In the following lemma we refine the form for ∆V (·, ·) derived in Lemma 3.6.3 by assuming the local Lipschitz

continuity of the search directions si(·) and the strict pseudogradient property of so(·).

Lemma 3.6.4: Consider the interconnected system (3.31)-(3.37) and the composite Lyapunov function candidate

V (y,z) = N‖y−PX∗(y)‖2 + ‖z‖2. Suppose that A3.3.2 and A3.3.4 are satisfied in addition to the conditions of

Lemma 3.6.3. Then, given an arbitrarily large compact set Ω ⊂ R
n containing X∗, it holds that for all (yT ,zT )T ∈

(Ω∩ X̂)×A ⊥, with A ⊥ as in (3.40),

∆V (y,z)≤−αφ(y)+α2Ky‖y−PX∗(y)‖2 −Kz‖z‖2 +α2K, (3.51)

where y+ and z+ are generated by (3.31)-(3.37),

Ky =
4L2Nµ

1−µ
+(8L2N)

1+µ

1−µ
, (3.52)

Kz =
1
2
(1−µ)−α2(4L2µ)

1+µ

1−µ
, (3.53)

K = 8
1+µ

1−µ
s∗, (3.54)

L = maxi Li, and

s∗ = max
x∗∈X∗

‖s(1N ⊗ x∗)‖2. (3.55)

Proof. Since xi ∈ Xi for each t ∈ N, from the definition of y in (3.23) we observe that y ∈ X̂ for each t ∈ N, and
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we may therefore apply A3.3.2 to the first term in (3.46) to obtain

∆V (y,z)≤−αφ(y)− (1−µ)‖z‖2

+ τ1 +2α2‖s(v)‖2 −2αzT (A⊗ In)s(v). (3.56)

Recalling the expression for τ1 in (3.41) and applying the Cauchy-Schwarz inequality, we write

τ1 = 2α(1N ⊗ y−1N ⊗PX∗(y))T
(

s(1N ⊗ y)− s(v)
)

≤ 2α
√

N‖y−PX∗(y)‖‖s(1N ⊗ y)− s(v)‖,

and thus obtain that

∆V (y,z)≤−αφ(y)− (1−µ)‖z‖2

+2α2‖s(v)‖2 −2αzT (A⊗ In)s(v)

+2α
√

N‖y−PX∗(y)‖‖s(1N ⊗ y)− s(v)‖. (3.57)

Applying Young’s inequality to the last two terms in (3.57), we obtain

∆V (y,z)≤−αφ(y)− (1−µ)‖z‖2 +2α2‖s(v)‖2

α2

ε1
‖s(v)‖2 + ε1‖(A⊗ In)z‖2

+ α2N
ε2

‖y−PX∗(y)‖2 + ε2‖s(1N ⊗ y)− s(v))‖2

≤−αφ(y)− (1−µ − ε1µ)‖z‖2 +α2
(

2+ 1
ε1

)

‖s(v)‖2

+ α2N
ε2

‖y−PX∗(y)‖2 + ε2‖s(1N ⊗ y)− s(v))‖2,

where ε1 and ε2 are some positive, real numbers whose value we select later.

We bound the last term above by applying assumption A3.3.4 and noting that v− 1N ⊗ y = (A⊗ In)z (q.v.

(3.30)) to obtain

‖s(1N ⊗ y)− s(v))‖2 ≤ L2‖(A⊗ In)z‖2

≤ L2µ‖z‖2,

where L = maxi∈V Li and µ is as in A3.3.1. Consequently,

∆V (y,z)≤−αφ(y)− (1−µ − ε1µ − ε2L2µ)‖z‖2

+α2
(

2+ 1
ε1

)

‖s(v)‖2 + α2N
ε2

‖y−PX∗(y)‖2,
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Next, using the that fact that ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2 for any two real vectors a and b, we write

‖s(v)‖2 = ‖s(v)− s(1N ⊗ y)+ s(1N ⊗ y)‖2

≤ 2‖s(v)− s(1N ⊗ y)‖2

+2‖s(1N ⊗ y)− s(1N ⊗PX∗(y))+ s(1N ⊗PX∗(y))‖2

≤ 2L2µ‖z‖2 +4L2‖1N ⊗ y−1N ⊗PX∗(y)‖2

+4‖s(1N ⊗PX∗(y))‖2

≤ 2L2µ‖z‖2 +4L2N‖y−PX∗(y)‖2 +4s∗

where s∗ is well defined (as in (3.55)) since X∗ is compact and each si(·) is continuous by virtue of A3.3.4. We

therefore have that ∆V (y,z) satisfies (3.51), with

Ky =
N

ε2
+
(

2+
1

ε1

)

(4L2N) (3.58)

Kz =
(

(1−µ)− ε1µ − ε2L2µ −α2
(

2+
1

ε1

)

(2L2)µ
)

(3.59)

K = 4
(

2+
1

ε1

)

s∗. (3.60)

It can then be verified that choosing ε1 =
1−µ
4µ and ε2 =

1−µ
4L2µ

renders expressions (3.58), (3.59) and (3.60) equal

to those in the statement of the lemma. �

Our main result concerning locally Lipschitz search directions is given in the following theorem.

Theorem 3.6.1: Suppose that A3.3.1, A3.3.2, A3.3.3 and A3.3.4 are satisfied. Then, the set X∗×{0} is SPAS

for the interconnected system (3.31)-(3.37).

Proof. We apply Theorem 2.5.1, with Γ0 = X∗×{0} and Ξ = X̂ ×A ⊥. The function V (y,z) = N‖y−PX∗(y)‖2+

‖z‖2 is continuous, radially unbounded and positive definite with respect to the set Γ0 on R
(N+1)n.

Let ξ denote the vector (yT ,zT )T ∈R
(N+1)n. Let σ be an arbitrary, positive, real number, and take Ω= B̄n

σ (X
∗).

Then, under the conditions in Lemma 3.6.4, we have that for all ξ ∈ (B̄n
σ (X

∗)∩ X̂)×A ⊥, with A ⊥ as in (3.40),

∆V (y,z)≤W (y,z;α), (3.61)

where

W (y,z;α) =−αφ(y)+α2Ky‖y−PX∗(y)‖2 −Kz‖z‖2 +α2K, (3.62)

y+ and z+ are generated by (3.31)-(3.37), and Ky, Kz and K are as in (3.52), (3.53) and (3.54).

Since

(B̄n
σ (X

∗)∩ X̂)×A
⊥ = (B̄n

σ (X
∗)∩ X̂)× (RNn ∩A

⊥)

= (B̄n
σ (X

∗)×R
Nn)∩ (X̂ ×A

⊥)

= (B̄n
σ (X

∗)×R
Nn)∩Ξ

⊃ B̄
(N+1)n
σ (Γ0)∩Ξ, (3.63)

we see that (2.32) holds on the required set.
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It remains to show that for the given number σ , there exists a positive, real number ᾱ , such that whenever

α ∈ (0, ᾱ), W (·, ·;α) has properties P1, P2 and P3 specified in the statement of Theorem 2.5.1.

Let δ ∈ (0,σ) be arbitrary as in P3, and let δ̂ =
√

δ/2. Since φ(·) in (3.62) is radially unbounded and positive

definite with respect to X∗ on X̂ , Lemma 2.5.2 implies that for any Kφ ∈R++, there exists an αφ ∈R++ such that

W (y,z;α)≤−α2
(

Kφ −Ky

)

‖y−PX∗(y)‖2 −Kz‖z‖2 +α2K,

for all ξ ∈
(

B̄n
σ (X

∗)\Bn

δ̂
(X∗)

)

×R
Nn, provided α ∈ (0,αφ ). Choosing

Kφ =
K

δ̂ 2
+Ky, (3.64)

implies that

W (y;α)≤−α2 K

δ̂ 2
‖y−PX∗(y)‖2 −Kz‖z‖2 +α2K, (3.65)

for all ξ ∈
(

B̄n
σ (X

∗)\Bn

δ̂
(X∗)

)

×R
Nn, whenever α ∈ (0,αφ ).

From (3.53), we note that Kz > 0 whenever α ∈ (0,αKz), where

αKz =
1−µ

2L
√

2µ(1+µ)
. (3.66)

Consequently, W (y,z;α)< 0 for all ξ ∈
(

B̄n
σ (X

∗)\B̄n

δ̂
(X∗)

)

×R
Nn, provided that α ∈ (0, ᾱ), where

ᾱ = min{αφ ,αKz}. (3.67)

On the other hand, from (3.62) we observe that W (·, ·;α) can be no larger than α2(Kyδ̂ 2+K) on the set B̄
δ̂
(X∗)×

R
Nn. Therefore,

W (y;α)≤ α2(
Kyδ

2
+K),

for all ξ ∈ B̄n
σ (X

∗)×R
Nn ⊃ B̄

(N+1)n
σ (Γ0)∩Ξ, and P1 is satisfied with bW (α) = α2(

Kyδ
2

+K).

Recall that Z(α) denotes the set of all ξ in Ξ for which W (y,z;α) is non-negative. Since φ(·) is positive

definite with respect to X∗, and ‖ ·‖ with respect to {0}, we see from (3.62) that Z(α)⊇ Γ0, and that P2 is thereby

satisfied.

Next, from the observation that W (y,z;α)< 0 on ξ ∈
(

B̄n
σ (X

∗)\B̄n

δ̂
(X∗)

)

×R
Nn, we see that Z(α)⊆ B̄

δ̂
(X∗)×

R
Nn, whenever α ∈ (0, ᾱ). On the other hand, from (3.62) it is evident that

Z(α) =
{

ξ ∈ Ξ : αφ(y)−α2Ky‖y−PX∗(y)‖2

+Kz‖z‖2 ≤ α2K
}

⊆ Sy ×Sz,

where

Sy = {y ∈ X̂ : φ(y)≤ αK +αKy‖y−PX∗(y)‖2}, (3.68)

and

Sz = {z ∈ A
⊥ : ‖z‖2 ≤ α2 K

Kz
}. (3.69)
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Clearly, Sz ⊆ B̄Nn

δ̂
({0}), provided that α ∈ (0,

√

δKz

2K
). Therefore, taking α ∈ (0,αZ), where

αZ = min{ᾱ,

√

δKz

2K
}, (3.70)

implies that Z(α) is a subset of both B̄
δ̂
(X∗)×R

Nn and Sy × B̄Nn

δ̂
({0}). As such, it must also be a subset of the

intersection of these two sets. Consequently,

Z(α)⊆ (B̄
δ̂
(X∗)×R

Nn)∩ (Sy × B̄Nn

δ̂
({0}))

= (B̄
δ̂
(X∗)∩Sy)× (RNn ∩ B̄Nn

δ̂
({0}))

⊆ B̄
δ̂
(X∗)× B̄Nn

δ̂
({0})

⊂ B̄
(N+1)n
δ

(Γ0),

showing that P3 is satisfied with αZ as in (3.70).

Having satisfied all of the conditions of Theorem 2.5.1, with ᾱ as in (3.67), we conclude that under the

conditions of Lemma 3.6.4, the set X∗×{0} is SPAS for the feedback interconnection (3.31)-(3.37). �

Remark 3.6.1: The so-called “small gain” conditions ensuring the SPAS of the feedback interconnection (3.25)–

(3.29) shown in Figure 3.1 are given in (3.70) and (3.67). These conditions effectively ensure that value of the

composite Lyapunov function V (·, ·) decreases at each iteration, until the mean and deviation variables come

sufficiently close to the set X∗×{0}. ♦

We note that in §3.8, the theory of this section is applied by showing how the conditions of Theorem 3.6.1

may be verified for a general class of consensus optimization algorithms which are based on weighted gradient

schemes.

In the sequel, we derive similar results for the case in which the agents’ individual search directions si(·) are

locally bounded, but not necessarily locally Lipschitz.

3.6.2 Locally Bounded Search Directions

It is straightforward to show that the strict pseudogradient assumption A3.3.2 implies that X∗ is SPAS for the

idealized mean dynamics (3.36) when so(·) is either locally bounded (but not locally Lipschitz) or locally Lips-

chitz (q.v. Lemma 3.5.1). However, in the absence of the local Lipschitz continuity of the search directions si(·),
certain terms arising in the upper bound on ∆V (·, ·) hinder the use of A3.3.2 in drawing the same conclusions

about X∗×{0} for the interconnection (3.31)-(3.37). For this reason, we use the stronger assumption A3.3.2′ for

our analysis here.

We return to the results of Lemma 3.6.3. In analogy to Lemma 3.6.4, in the following lemma we refine the

expression for ∆V (·, ·) derived in Lemma 3.6.3 for the case in which the search directions are locally bounded

and satisfy A3.3.2′. We note that the techniques surrounding the application of A3.3.2′ in the proof are similar to

those used in the proof of Proposition 4 in [116].

Lemma 3.6.5: Consider the interconnected system (3.31)-(3.37) and the composite Lyapunov function candidate

V (y,z) = N‖y−PX∗(y)‖2 + ‖z‖2. Suppose that A3.3.2′ and A3.3.4′ are satisfied in addition to the conditions of

Lemma 3.6.3. Then, given an arbitrarily large compact set Ω ⊂ R
n containing X∗, it holds that for all (yT ,zT )T ∈
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Ω∩ X̂ ×A ⊥, with A ⊥ as in (3.40),

∆V (y,z)≤−αφ(y)−Kz‖z‖2 +α2K, (3.71)

where y+ and z+ are generated by (3.31)-(3.37),

Kz =
1
2
(1−µ), (3.72)

K = 2NB2 + µ
1−µ NL2

φ , (3.73)

and Lφ denotes the largest of the Lipschitz constants associated to the functions φi(·) over the set Ω∩ X̂ .

Proof. We begin with expression (3.46) for the upper bound on ∆V (y,z). Recalling the expression for τ1 in (3.41),

we note that

−2α(y−PX∗(y))T so(y)+ τ1 =−2α(y−PX∗(y))T (1T
N ⊗ In)s(v)

=−2α
[

(1N ⊗ In)y− v+ v− (1N ⊗ In)PX∗(y)
]T

s(v)

= 2αzT (A⊗ In)s(v)−2α ∑
i∈V

(vi −PX∗(y))T si(vi),

where the first term is obtained from (3.30). Combining this expression with (3.46) from Lemma 3.6.3 gives

∆V (y,z)≤−2α ∑
i∈V

(vi −PX∗(y))T si(vi)

− (1−µ)‖z‖2 +2α2‖s(v)‖2. (3.74)

Since xi ∈ Xi for each t ∈ N and vi is a convex combination of {x1, . . . ,xN}, we see that vi ∈ X̂ for each t ∈ N, and

we may therefore apply A3.3.2′ to the first term in the above inequality to obtain

−2α ∑
i∈V

(vi −PX∗(y))T si(vi)≤−α ∑
i∈V

φi(vi)

≤−αφ(y)+α ∑
i∈V

(

φi(y)−φi(vi)
)

≤−αφ(y)+αLφ ∑
i∈V

‖y− vi‖

≤ −αφ(y)+αLφ

√
N‖(A⊗ In)z‖, (3.75)

where the third inequality is obtained by invoking the Lipschitz continuity of the functions φi(·), and the last

inequality by means of (3.30) and the equivalence of norms. Using the above inequality, we express (3.74) as

∆V (y,z)≤−αφ(y)− (1−µ)‖z‖2 +2α2‖s(v)‖2

+αLφ

√
N‖(A⊗ In)z‖. (3.76)

Applying Young’s inequality to the last term gives

αLφ

√
N‖(A⊗ In)z‖ ≤ ε1‖(A⊗ In)z‖2 +α2 L2

φ N

2ε1
(3.77)

where ε1 is some positive, real number whose value we select next. Using the above inequality and applying
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A3.3.1 and A3.3.4′ to (3.76), we obtain

∆V (y,z)≤−αφ(y)− (1−µ − ε1µ)‖z‖2

+α2
(

2NB2 +
NL2

φ

2ε1

)

, (3.78)

from which it can be verified that selecting ε1 =
1−µ
2µ yields the desired expression (3.71). �

Our main result concerning CO algorithms employing bounded search directions is given in the following

theorem.

Theorem 3.6.2: Suppose that A3.3.1, A3.3.2′, A3.3.3 and A3.3.4′ are satisfied. Then, the set X∗×{0} is SPAS

for the interconnected system (3.31)-(3.37).

Proof. We apply Theorem 2.5.1, with Γ0 = X∗×{0} and Ξ = X̂ ×A ⊥. The function V (y,z) = N‖y−PX∗(y)‖2+

‖z‖2 is continuous, radially unbounded and positive definite with respect to the set Γ0 on R
(N+1)n.

Let ξ denote the vector (yT ,zT )T ∈R
(N+1)n. Let σ be an arbitrary, positive, real number, and take Ω= B̄n

σ (X
∗).

Then, under the conditions in Lemma 3.6.5, we have that for all ξ ∈ (B̄n
σ (X

∗)∩ X̂)×A ⊥, with A ⊥ as in

(3.40),

∆V (y,z)≤W (y,z;α), (3.79)

where

W (y,z;α) =−αφ(y)−Kz‖z‖2 +α2K, (3.80)

y+ and z+ are generated by (3.31)-(3.37), and Kz and K are as in (3.72) and (3.73).

By arguments identical to those leading to expression (3.63), we see that (2.32) holds on the required set. It

remains to show that for the given number σ , there exists a positive, real number ᾱ , such that whenever α ∈ (0, ᾱ),

W (·, ·;α) has properties P1, P2 and P3 specified in the statement of Theorem 2.5.1.

We note that W (·, ·;α) is bounded from above by bW (α) = α2K, which diminishes with α , as required by P1.

Since φ(·) is radially unbounded and positive definite with respect to X∗, the set

Z(α) = {ξ ∈ Ξ | −αφ(y)−Kz‖z‖2 +α2K ≥ 0}

contains Γ0, thereby satisfying P2. To see that P3 is satisfied, let δ ∈ (0,σ ] be arbitrary, and let δ̂ =
√

δ/2. Note

that

Z(α)⊆ Sy ×Sz, (3.81)

where

Sy = {y ∈ R
n | φ(y)≤ αK}, (3.82)

and

Sz = {z ∈ R
Nn | ‖z‖2 ≤ α2 K

Kz
}. (3.83)

By Lemma 2.5.1 (with ρ̂ = δ̂ ), there exists a number c ∈ R++ such that Φc = {y ∈ R
n
∣

∣ φ(y) ≤ c} is strictly

contained inside the set B̄n

δ̂
(X∗). Therefore, taking α ∈ (0, c

K
) ensures that Sy is contained inside Φc, and hence

inside B̄n

δ̂
(X∗). On the other hand, from (3.83) we see that Sz ⊆ B̄Nn

δ̂
({0}), provided that α ∈ (0,

√

Kzδ/2K).
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Consequently, whenever α ∈ (0,αZ), where

αZ = min{ c
K
,

√

Kzδ
2K

}, (3.84)

we have that

Z(α)⊆ Sy ×Sz

⊆ B̄n

δ̂
(X∗)× B̄Nn

δ̂
({0})

⊆ B̄
(N+1)n
δ

(Γ0),

which shows that P3 is also satisfied.

Having satisfied all of the conditions of Theorem 2.5.1, with ᾱ being any positive, real number, we conclude

that under the conditions of Lemma 3.6.5, the set X∗×{0} is SPAS for the feedback interconnection (3.31)-(3.37).

�

Remark 3.6.2: In the absence of the local Lipschitz continuity of the search directions si(·), it is possible to show

that under the strict pseudogradient assumption A3.3.2, ∆V (y,z) ≤W (y,z), where W (·, ·) is a function satisfying

all properties listed in the statement of Theorem 2.5.1 except the last; namely, the set Z(α) cannot be made to fit

inside an arbitrarily small ball centred at Γ0 = X∗×{0}. Consequently, within this framework A3.3.2 allows us

only to conclude the semiglobal, practical asymptotic stability of Γ0, where “practical stability” is taken in the

sense of Definition 5.14.1 in [3]. ♦

Having derived the conditions under which X∗×{0} is SPAS for (3.25)–(3.29), in the sequel we show how

the properties of the composite Lyapunov function under those conditions can be exploited to derive accuracy and

convergence rate results for the general class of CO algorithms represented by (3.5).

3.7 Convergence Properties of the Agents’ Estimation Errors

We return to the equations governing the evolution of the generalized consensus optimization scheme (3.5) in its

original coordinates. The ultimate upper bound on agents’ collective estimation errors can be derived without ex-

plicitly solving any difference equations, which is a benefit inherent in Lyapunov-based analyses. The observation

leveraged in deriving these bounds is given in the statement of the following claim:

Claim 3.7.1: Let V (y,z) = N‖y−PX∗(y)‖2 +‖z‖2. Then,

‖x−PX∗(x)‖2 ≤ 6V (y,z), (3.85)

where x = [xT
1 , . . . ,x

T
N ]

T = z+1N ⊗ y, and

X∗ =
N

∏
i=1

X∗.

Proof. First, note that

PX∗(x) =









PX∗(x1)
...

PX∗(xN)









,
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which can be shown using the definition of the projection operator, and the fact that optimizing over a set of

variables is equivalent to optimizing first over any subset of those variables, and then optimizing the result over

the remaining variables. Consequently,

‖x−PX∗(x)‖2 = ∑
i∈V

‖xi −PX∗(xi)‖2

= ∑
i∈V

‖xi − y+ y−PX∗(y)+PX∗(y)−PX∗(xi)‖2

≤ ∑
i∈V

(

4‖xi − y‖2 +4‖y−PX∗(y)‖2

+2‖PX∗(y)−PX∗(xi)‖2),

which is obtained by applying Young’s inequality twice. Next, using the fact that the projection operator is non-

expansive (q.v. Proposition 2.2.1, [14]), we obtain

‖x−PX∗(x)‖2 ≤ ∑
i∈V

(

6‖xi − y‖2 +4‖y−PX∗(y)‖2
)

= 6‖z‖2 +4N‖y−PX∗(y)‖2,

from which (3.85) follows. ♦

Since V (·, ·) in the above claim is the Lyapunov function considered in both Theorem 3.6.2 and Theorem

3.6.1, we have that

limsup
t→∞

‖x(t)−PX∗(x(t))‖2 ≤ 6 lim
t→∞

V (y(t),z(t)) (3.86)

under the conditions of either theorem. Moreover, under either set of conditions, the function V (·, ·) is such

that V (y+,z+) < V (y,z), for any (yT ,zT )T /∈ Z(α), with Z(α) as in (2.33). In other words, V (·, ·) decreases

monotonically along any sequence generated by (3.31)-(3.37), so long as the sequence remains outside of Z(α).

Since V (·, ·) is positive definite with respect to X∗, the sequence (V (y(t),z(t)))∞
t=0 is bounded from below by zero,

and there exists a number V̄ ∈ R+ such that

lim
t→∞

V (y(t),z(t)) = V̄ . (3.87)

Intuitively, V̄ should be no larger than the maximum value attained by V (·, ·) on any compact set which is

attractive for (3.31)-(3.37). Since Z(α) can be made to fit inside an arbitrarily small ball centered at X∗×{0}, it is

possible to render V̄ arbitrarily small, thereby rendering the ultimate upper bound on agent’s collective estimates

given in (3.86) also arbitrarily small.

We make these statements precise in the following lemma.

Lemma 3.7.1: Consider the consensus optimization algorithm (3.5), and suppose that the conditions of either

Theorem 3.6.1 or 3.6.2 hold. Then, for every x(0) ∈ R
Nn and every ε ∈ R++, there exists a number α∗ ∈ R++

such that whenever α ∈ (0,α∗),

limsup
t→∞

‖x(t)−PX∗(x(t))‖ ≤ ε, (3.88)

where x(t) and X∗ are as in Claim 3.7.1. Moreover, there exists a T ∈ N (depending on x(0), ε and α) such that

‖x(t)−PX∗(x(t))‖ ≤ 2
√

Nε, (3.89)
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for all t ≥ T .

Proof. Consider the function

V (y,z) = N‖y−PX∗(y)‖2 +‖z‖2, (3.90)

where y and z are as in either Theorem 3.6.1 or 3.6.2. We follow the proof of Lemma 2.5.1. Let

ρ =
√

2
3
ε, (3.91)

and let ¯̄l be the minimum value attained by V (·, ·) over the set ∂ B̄
(N+1)n
ρ (Γ0), where Γ0 = X∗×0. For any r ∈R++,

let Γr denote the r-sublevel set of V (·, ·) – that is,

Γr = {ξ ∈ R
(N+1)n |V (ξ )≤ r}.

From (3.90), we see that ¯̄l = ρ2, and that ¯̄l coincides with l̄, the minimum that V (·, ·) attains on Γ ¯̄l
\Bρ(Γ0).

According to the proof of Lemma 2.5.1, Γl is strictly contained inside B̄ρ(Γ0), for any l ∈ (0, l̄); we choose

l = 1
2
l̄ = 1

2
ρ2, which, with (3.91) gives

l = 1
3
ε2. (3.92)

Let δ = ρ

2
√

N
be the radius of the largest ball centred at Γ0 and contained in Γl/2, so that the maximum value

attained by V (·, ·) on B̄δ (Γ0) is given by

Vδ = max
ξ∈B̄δ (Γ0)

V (ξ ) = l
2
= 1

6
ε2. (3.93)

Next, let

σ =
√

‖y(0)−PX∗(y(0))‖2 +‖z(0)‖2, (3.94)

where y(0) = 1
N
(1T

N ⊗ In)x(0) and z(0) = (M⊗ In)x(0), with M as in (3.27).

The conditions of Theorem 2.5.1 are shown to hold under those of either Theorem 3.6.1 or 3.6.2. With δ

constructed as above, it is shown in the proof of Theorem 2.5.1 that there exists a positive, real number α∗ such that

whenever α ∈ (0,α∗), the set B̄r(Γ0) is attractive for the feedback-interconnected system (3.31)-(3.37) on B̄σ (Γ0)

(q.v. proof of Theorem 2.5.1, §2.5.2), for any r ∈ [δ ,σ), including r = ρ . Consequently, any sequence generated

by (3.31)-(3.37) and initialized on B̄σ (Γ0) eventually becomes arbitrarily close to B̄δ (Γ0). The continuity of

V (·, ·) then implies that the limit V̄ in (3.87) of the sequence (V (y(t),z(t)))∞
t=0 can be no larger than the largest

value that V (·, ·) attains on B̄δ (Γ0). These observations, together with Claim 3.7.1 imply that

limsup
t→∞

‖x(t)−PX∗(x(t))‖2 ≤ 6 lim
t→∞

V (y(t),z(t))

= 6V̄

≤ 6Vδ . (3.95)

Combining (3.95) and (3.93) yields the desired ultimate upper bound (3.88) on the agents’ collective estimation

errors.

In order to prove the second assertion of this lemma, we note that under the assumptions of either Theorem

3.6.1 or 3.6.2, it is shown that ∆V (y,z)≤W (y,z;α), where the form of W (·, ·;α) depends on which set of assump-

tions is adopted. Specifically, under the assumptions of Theorem 3.6.1, W (·, ·;α) may be taken as in (3.62), while
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under the assumptions of Theorem 3.6.2, W (·, ·;α) may be taken as the right-hand side of (3.71). In either case,

the form of W (·, ·;α) indicates that for any r ∈ (δ ,ρ), with δ constructed as above, there exists a positive, real

number γ such that

− γ = max
(yT ,zT )T∈R(N+1)n\Br(Γ0)

W (y,z;α). (3.96)

In the proof of Theorem 2.5.1 (q.v. §2.5.2) it is shown that so long as α ∈ (0,α∗) (with α∗ depending on σ , ρ

and δ , among other quantities), the bound

V (y+,z+)≤V (y,z)− γ (3.97)

holds for all (yT ,zT )T ∈ R
(N+1)n\Br(Γ0). We take r = ρ and solve this difference inequality to obtain

V (y(t),z(t))≤V0 − tγ, (3.98)

where V0 =V (y(0),z(0)) is determined by x(0). The bound (3.98) is valid so long as (yT ,zT )T ∈R
(N+1)n\Bρ(Γ0),

which is the case whenever V (y,z)≥ V̂ρ , where

V̂ρ = max
(yT ,zT )T∈B̄ρ (Γ)

V (y,z). (3.99)

From the expression for V (·, ·) it is evident that V̂ρ = Nρ2 and in terms of ε , V̂ρ = 2Nε2

3
. Then, from (3.98) we

observe that it takes at most

T =

⌈

V0 − 2
3
Nε2

γ

⌉

(3.100)

iterations to reduce the value of V (·, ·) to 2Nε2

3
, when (3.5) is initialized at x(0). Therefore, by Claim 3.7.1, the

collective estimation error ‖x(t)−PX∗(x(t))‖2 is guaranteed to reduce to 6V̂ρ in at most T iterations. Recalling

that V̂ρ = 2Nε2

3
yields the desired estimate (3.89). �

Remark 3.7.1: In addition to the conclusions drawn in Lemma 3.7.1, the proofs of Lemmas 3.6.1, 3.6.2, 3.6.3,

and Theorems 3.6.1 and 2.5.1 are replete with other insights as well. For example, one may ask the converse

question to the one answered by Lemma 3.7.1: for a given (sufficiently small) α , how large will the ultimate

upper bound on the agents’ estimation errors be?

In analogy to Remark 3.9.2, consider the case in which si(·) = ∇Ji(·), and the collective cost J(·) is locally

strongly convex with constant β on the set B̄n
σ (X

∗). Then, taking φ(·) = 2(J(·)− J∗) and considering expression

(3.51), we observe that φ(·) dominates the quadratic term α2Ky‖y − PX∗(y)‖2 for all y ∈ B̄n
σ (X

∗), whenever

α ∈ (0, β
Ky
). Consequently, the size of the set Z(α), and therefore the size of the ultimate upper bound on the

agents’ estimation errors, is dictated exclusively by the size of the constant term α2K in (3.51).

From the expression for K in (3.54), it is interesting to note that K vanishes when s∗ = 0. In that case it can be

shown that whenever α ∈ (0, β
Ky
), X∗×{0} is asymptotically stable for (3.31)-(3.37), meaning that agents reach

a perfect consensus on a collective optimizer. Rewriting expression (3.55) as

s∗ = max
x∗∈X∗ ∑

i∈V

‖∇Ji(x
∗)‖2, (3.101)

we observe that s∗ = 0 if, and only if X∗ ⊆ X∗
i , for all i ∈ V , which is equivalent to requiring the intersection

∩i∈V X∗
i ⊇ X∗ to be nonempty. We thus recover the main observation made in [140], for this case.
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Going further, we observe that a non-zero s∗ in (3.101) can be interpreted as a measure of discord among

the agents’ individual preferences; a quantity that measures the extent to which agents must compromise their

individual interests in order to optimize the collective objective. An insight thus gained from these considerations

is that the agents’ ultimate estimation errors are proportional to the discord in their individual preferences, as one

would expect. ♦

3.8 An Application to Weighted Gradient Methods

In what follows, we show how the results of Section 3.6.1 may be applied by verifying assumptions A3.3.3, A3.3.2

and A3.3.4 for a specific instance of (3.5).

We consider a class of centralized optimization algorithms of the form

y(t +1) = PX

[

y(t)−αoH(t)∇J(y(t))
]

, (3.102)

where for each t ∈N, H(t) ∈R
n×n is symmetric and positive definite, and y(t) ∈R

n. There are several algorithms

that fall within this class – q.v. the discussion in §1.2, [15].

According to Lemma 3.9.3 and Remark 3.9.1, there exists an α∗
o ∈ R++ such that the centralized algorithm

(3.102) solves problem (3.1) whenever αo ∈ (0,α∗
o ), provided that so(y) = H(t)∇J(y) is locally Lipschitz contin-

uous and satisfies A3.3.2.

Supposing we have a network of agents whose weighted adjacency matrix satisfies a consensus assumption

such as A3.3.1, algorithm (3.102) may be decentralized according to (3.5) by taking si ∈ (Θ◦ Ji)(·), with

Θ(Ji(·)) = {H(t)∇Ji(·)}. (3.103)

Clearly, H(t)∇Ji(·) is linear, and A3.3.3 is satisfied. Moreover, if there exists a number M > 0 such that

‖H(t)‖ ≤ M for all t, then A3.3.4 is satisfied under the assumption that the gradient of each Ji(·) is Lipschitz

continuous.

The following lemma makes the foregoing observations precise, providing a set of conditions under which the

consensus-decentralized version of algorithm (3.102) has the convergence properties specified in Theorem 3.6.1

and Lemma 3.7.1.

Lemma 3.8.1: Consider a network of agents whose goal is to solve problem (3.1), and assume that the following

hold:

• The agents communicate over a graph GC = (V ,EC) whose weighted adjacency matrix satisfies A3.3.1.

• The collective cost J(·) is given by (7.8) and the collective constraint X by (3.4).

• For each i ∈ V , agent i has private knowledge of Xi and Ji, and implements (3.5), with si ∈ (Θ◦ Ji)(·) and

(Θ◦ Ji)(·) as in (3.103).

Then, the conditions of Theorem 3.6.1 and Lemma 3.7.1 are satisfied provided that the following hold:

• H1: For each i ∈ V , ∇Ji(·) is locally Lipschitz.

• H2: For each t ∈ N, H(t) is symmetric and there exist positive, real numbers m and M such that m ≤
‖H(t)‖ ≤ M.
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• H3: The collective cost J(·) is convex, and such that

arg min
x∈X

J(x) = arg min
x∈X̂

J(x), (3.104)

where X̂ is as in (3.13).

Proof. Since A3.3.1 is assumed in the statement of the Lemma, it remains to show that A3.3.3, A3.3.2 and A3.3.4

are implied by H1, H2 and H3. From the foregoing discussion, it is clear that A3.3.3 is satisfied and that H1 and

H2 imply A3.3.4. It therefore only remains to show that so(·) = H(t)∇J(·) is strictly pseudogradient with respect

to y 7→ ‖y−PX∗(y)‖2, on the set X̂ given in (3.13).

Since H(t) is symmetric and positive definite, it can be decomposed according to H(t) = U(t)D(t)UT (t),

where U(t) is an orthonormal matrix and D(t) = diag(σ(H(t))). For any vectors v and w in R
n, we let ṽ =U(t)T v

and w̃ =U(t)T w, and observe that

vT H(t)w = vTU(t)D(t)UT (t)w

=
n

∑
i=1

σiṽiw̃i

≥ m
n

∑
i=1

ṽiw̃i (3.105)

= mvTU(t)U(t)T w

= mvT w,

where (3.105) is obtained by applying H2. To apply this observation, we take v = ∇Ji(·) and w = y−PX∗(y), and

notice that for all y ∈ R
n,

so(y)
T (y−PX∗(y)) = ∇J(y)T H(t)T (y−PX∗(y))

≥ m∇J(y)T (y−PX∗(y)).

Since J(·) is assumed to be convex, it holds that for all y ∈ R
n, ∇J(y)T (y−PX∗(y)) ≥ J(y)− J(PX∗(y)). By

(3.104) and the fact that y ∈ X̂ , ∀t ∈ N, the quantity J(y)− J(PX∗(y)) is positive definite with respect to X∗ on

X̂ . Therefore, in light of Remark 3.3.5, A3.3.2 is satisfied with φ(y) = m
2
(J(y)− J∗), which, from the global

convexity of J(·) is seen to be continuous, radially unbounded and positive definite with respect to X∗ on X̂ . �

Remark 3.8.1: In the literature, it is often assumed that agents’ individual cost functions are convex, regardless

of whether their search directions are assumed to be Lipschitz continuous or not [72], [114], [116], [163], [153],

[112], [173], [53]. Though H3 in Lemma 3.8.1 requires the collective cost J(·) to be convex, agents’ individual

costs need not be convex in order for the conditions of Theorem 3.6.1 and Lemma 3.7.1 to hold. ♦
Remark 3.8.2: One caveat to the implementation of (3.5) with Θ(·) as in (3.103), is that in addition to having

common access to the gain α , each agent also requires knowledge of H(t), for each t. In other words, the agents

must generate H(t) by means of the same algorithm, initialized at a commonly known H(0). We conjecture

that the interesting case in which each agent updates its own matrix Hi(t), which is not necessarily identical to

H j(t), i 6= j, can be analyzed by means of the framework proposed here, under the assumption that (Hi(t))
∞
t=0 →

(H(t))∞
t=0, where for each t, H(t) is symmetric and satisfies the bounds m ≤ ‖H(t)‖ ≤ M, for some positive, real

numbers m and M. ♦
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3.9 Proofs of Lemmas 3.5.1 and 3.5.2, and a Remark on Separation The-

ory

It is interesting to observe that a set of conditions guaranteeing the convergence of the decentralized algorithm

(3.5) (with si ∈ (Θ ◦ Ji)(·) and Θ(·) as in (3.103)), may be taken as the disjoint union of those conditions guar-

anteeing the convergence of a consensus process on its own (i.e. A3.3.1), with those conditions guaranteeing the

convergence of the centralized algorithm (3.102) (i.e. A3.3.2, and A3.3.4).

This observation suggests that Theorem 3.6.1 may be regarded as a “separation theorem”, akin to the sepa-

ration theorems one finds in the literature on nonlinear output feedback [148]. Specifically, in the context of CO

algorithms such as (3.5), the idealized mean subsystem dynamics correspond to some centralized optimization al-

gorithm, while the idealized deviation dynamics correspond to the deviation dynamics of some standard consensus

algorithm. The feature of separation theory that is appealing in this context is the possibility of designing specific

CO algorithms consisting of any combination of interchangeable centralized optimization methods and consensus

algorithms. A full ”separation theory” for CO methods would be able to provide performance guarantees for any

particular CO algorithm from the separate stability properties of its constituent centralized optimization method

and consensus algorithm.

In the sections that follow, we show how those assumptions in §3.3 pertaining to the idealized mean and

deviation dynamics can be used to establish their stability properties. Lemma 3.5.1 is proved in a sequence of

lemmas presented in §3.9.1, and Lemma 3.5.2 is proved in §3.9.2. The proofs of these lemmas are included only

for completeness; most of the techniques being applied are showcased in the proofs of Theorems 3.6.1 and 3.6.2,

which pertain to the overall interconnection in Figure 3.1.

3.9.1 Proof of Lemma 3.5.1

In the following lemmata, we show that A3.3.2 and either A3.3.4 or A3.3.4′ are sufficient to guarantee the SPAS

of X∗ for the idealized mean dynamics given by (3.36). The following lemma applies to both cases.

Lemma 3.9.1: Consider the algorithm (3.36), where so(y) ∈ Θ(J(y)), with (Θ ◦ J)(·) satisfying A3.3.2. Then,

for all y ∈ X̂ ,

∆VO(y)≤−αφ(y)+ α2

N
‖so(y)‖2, (3.106)

where ∆VO(y) = VO(y
+)−VO(y), VO(y) = N‖y−PX∗(y)‖2, and φ(·) ∈ C0[Rn,R+] is radially unbounded and

positive definite with respect to X∗ on X̂ .

Proof. We have

∆VO(y) = N‖PX̂ (y
+)−PX∗(y+)‖2 −N‖y−PX∗(y)‖2.

Since X∗ ⊆ X ⊆ X̂ , PX∗(y) = PX̂ (PX∗(y)). Consequently,

∆VO(y) = N‖PX̂ (y
+)−PX̂ (PX∗(y+))‖2 −N‖y−PX∗(y)‖2

≤ N‖y+−PX∗(y+)‖2 −N‖y−PX∗(y)‖2,

which is obtained from the fact that the Euclidean projection is non-expansive (q.v. Proposition 2.2.1, [14]). By

the definition of the projection operation (q.v. (A.2)), PX∗(y+) is the point inside X∗ which is closest to y+,

meaning that the distance between y+ and any other point inside X∗ is at least as large as ‖y+−PX∗(y+)‖. In
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particular, we have that

∆VO(y)≤ N‖y+−PX∗(y+)‖2 −N‖y−PX∗(y)‖2

≤ N‖y+−PX∗(y)‖2 −N‖y−PX∗(y)‖2.

Then, expanding the first term according to (3.36) and cancelling the last term gives

∆VO(y)≤ N‖y− α
N

so(y)−PX∗(y)‖2 −N‖y−PX∗(y)‖2

≤ α2

N
‖so(y)‖2 −2α(y−PX∗(y))T so(y).

Noting from (3.36) that y ∈ X̂ at each t ∈ N allows us to apply A3.3.2 (c.f. (3.15)) to obtain the desired result. �

Remark 3.9.1: From the first part of the proof of Lemma 3.9.1, it is evident that under the same conditions, the

same conclusions can be drawn for the algorithm

y+ = PX

[

y− α
N

so(y)
]

, (3.107)

which may be regarded as the centralized version of (3.5). ♦

The Case with Locally Lipschitz so(y)

In the proof of the following lemma, we use the assumption that so(·) is locally Lipschitz, which is implied by

A3.3.4.

Lemma 3.9.2: Consider the algorithm (3.36). Suppose that in addition to the conditions in Lemma 3.9.1, (Θ ◦
J)(·) = {so(·)}, and so(·) is locally Lipschitz. Then, given an arbitrarily large compact set Ω ⊂R

n containing X∗,

it holds that for all y ∈ Ω∩ X̂ ,

∆VO(y)≤−αφ(y)+2α2 L2

N
‖y−PX∗(y)‖2 +2α2 s∗2

N
,

where

s∗ = max
y∈X∗

‖so(y)‖, (3.108)

and L denotes the Lipschitz constant associated to so(·), over the set Ω∩ X̂ .

Proof. Consider the expression (3.106). We have

‖so(y)‖2 = ‖so(y)− so(PX∗(y))+ so(PX∗(y))‖2

≤ 2‖so(y)− so(PX∗(y))‖2 +2‖so(PX∗(y))‖2 (3.109)

≤ 2L2‖y−PX∗(y)‖2 +2‖so(PX∗(y))‖2, (3.110)

where (3.109) is obtained by applying Young’s inequality, and (3.110) by invoking the Lipschitz continuity of

so(·). We obtain the desired result by noting that the maximum s∗ in (3.108) exists since X∗ is assumed to be

compact and so(y) is continuous. �

By means of Theorem 2.5.1, the result obtained in Lemma 3.9.2 allows us to conclude that the set X∗ is SPAS

for the dynamics (3.36).
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Lemma 3.9.3: Suppose that all the conditions of Lemma 3.9.2 are satisfied. Then, X∗ is SPAS for (3.36).

Proof. We apply Theorem 2.5.1, with Γ0 = X∗ and Ξ = X̂ . The function VO(y) = N‖y−PX∗(y)‖2 is continuous,

radially unbounded and positive definite with respect to the set Γ0 on R
n.

Let σ be an arbitrary, positive, real number, and take Ω = B̄σ (Γ0). Then, under the conditions in Lemma

3.9.2, we have that for all y ∈ Ω∩ X̂ = B̄σ (Γ0)∩Ξ,

∆VO(y)≤W (y;α), (3.111)

where

W (y;α) =−αφ(y)+2α2 L2

N
‖y−PX∗(y)‖2 +α2K, (3.112)

K =
2s∗2

N
, (3.113)

and φ(·) ∈C0[Rn,R+] is radially unbounded and positive definite with respect to X∗ on X̂ .

It remains to show that for the given number σ , there exists a positive, real number ᾱ , such that whenever

α ∈ (0, ᾱ), W (·;α) has properties P1, P2 and P3 specified in the statement of Theorem 2.5.1.

Let δ be an arbitrary, positive real number as in P3. Since φ(·) is radially unbounded and positive definite

with respect to X∗ on X̂ , Lemma 2.5.2 implies that for any Kφ ∈ R++, there exists an αφ ∈ R++ such that

W (y;α)≤−α2
(

Kφ − 2L2

N

)

‖y−PX∗(y)‖2 +α2K,

for all y ∈ B̄σ (X
∗)\Bδ (X

∗), provided α ∈ (0,αφ ). By choosing

Kφ =
K

δ 2
+ 2L2

N
,

we obtain that

W (y;α)≤−α2 K
δ 2 ‖y−PX∗(y)‖2 +α2K, (3.114)

for all y ∈ B̄σ (X
∗)\Bδ (X

∗), whenever α ∈ (0,αφ ).

Clearly, W (y;α) < 0 for all y ∈ B̄σ (X
∗)\B̄δ (X

∗). On the other hand from (3.112), we observe that W (·;α)

can be no larger than α2(2L2δ 2 +K) on the set B̄δ (X
∗). Therefore,

W (y;α)≤ α2( 2L2

N
δ 2 +K),

for all y ∈ B̄σ (X
∗), and P1 is satisfied with bW (α) = α2( 2L2

N
δ 2 +K).

From (3.112), the positive definiteness of φ(·) with respect to X∗ implies that Z(α)⊇ X∗, and P2 is satisfied.

From the observation that W (y;α)< 0 on y ∈ B̄σ (X
∗)\B̄δ (X

∗), we see that Z(α)⊆ B̄δ (X
∗). Since δ is arbitrary,

P3 is satisfied.

Having satisfied all of the conditions of Theorem 2.5.1 (with αZ = ᾱ = αφ ), we conclude that under the

conditions of Lemma 3.9.2, the set X∗ is SPAS for (2.31). �

Remark 3.9.2: For the unconstrained case in which so(y) = ∇J(y), s∗ = 0 by the first-order necessary condition

for optimality. If J(·) is locally strongly convex with constant β , it can be shown that

∆VO ≤−α
N
(β −2αL2)VO .
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Then, by means of Theorem 2.5.2, we may conclude that X∗ is asymptotically stable for (3.36), whenever α ∈
(0, β

2L2 ). ♦

The Case with Locally Bounded so(y)

Lemma 3.9.4: Consider the algorithm (3.36). Suppose that in addition to the conditions in Lemma 3.9.1, (Θ ◦
J)(·) satisfies the local boundedness assumption A3.3.4′. Then, for all y ∈ Ω,

∆VO(y)≤−αφ(y)+α2 B2

N
. (3.115)

Proof. Expression (3.115) follows directly from (3.106) and (3.18). �

By means of Theorem 2.5.1, the result obtained in Lemma 3.9.4 allows us to conclude that the set X∗ is SPAS

for the dynamics (3.36).

Lemma 3.9.5: Suppose that all the conditions of Lemma 3.9.4 are satisfied. Then, X∗ is SPAS for (3.36).

Proof. We apply Theorem 2.5.1, with Γ0 = X∗ and Ξ = X̂ . The function VO(y) = N‖y−PX∗(y)‖2 is continuous,

radially unbounded and positive definite with respect to the set Γ0 on R
n.

Let σ be an arbitrary, positive, real number, and take Ω = B̄σ (Γ0). Then, under the conditions in Lemma

3.9.4, we have that for all y ∈ Ω∩ X̂ = B̄σ (Γ0)∩Ξ,

∆VO(y)≤−αφ(y)+α2 B2

N
. (3.116)

Taking

W (y;α) =−α(φ(y)−α B2

N
), (3.117)

we see that for all y ∈ B̄σ (Γ0), W (y;α) ≤ bW (α), with bW (α) = α2 B2

N
being such that limα↓0 bW (α) = 0. By

virtue of the radial unboundedness and positive definiteness of φ(·) with respect to X∗, the set

Z(α) = {y ∈ R
n | φ(y)≤ α B2

N
}, (3.118)

on which W (·;α) is non-negative, is compact and contains X∗ for any α > 0. Moreover, Z(α) can be made to

fit inside an arbitrarily small ball centered at Γ0 by selecting α sufficiently small. Specifically, let δ ∈ R++ be

arbitrary. By Lemma 2.5.1 (taking ρ̂ = δ ), there exists a number c ∈R++ such that the set Φc = {y ∈R
n
∣

∣ φ(y)≤
c} is strictly contained inside B̄δ (X

∗). From (3.118), it is evident that whenever α ∈ (0,αZ), with

αZ =
Nc

B2
, (3.119)

Z(α) is strictly contained inside Φc, and hence inside B̄δ (X
∗).

Having satisfied all of the conditions of Theorem 2.5.1, with ᾱ = αZ , we conclude that under the conditions

of Lemma 3.9.4, the set X∗ is SPAS for (2.31). �

3.9.2 Proof of Lemma 3.5.2

In what follows, we prove Lemma 3.5.2, by applying Theorem 2.5.2. We begin with the following claim.

Claim 3.9.1: The subspace A ⊥ is invariant for (3.39).
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Proof. Suppose that for some t ∈ N, z ∈ A ⊥. Let v be any vector of the form

v = ∑
i∈V

ci(1N ⊗ ei), ci ∈ R, i ∈ V , (3.120)

meaning v ∈ A . Then, by the properties of the Kronecker product and the column stochasticity of A,

vT z+ = ∑
i∈V

ci(1N ⊗ ei)
T (A⊗ In)z (3.121)

= ∑
i∈V

ci(1
T
NA⊗ eT

i In)z (3.122)

= vT z (3.123)

= 0, (3.124)

which implies that z+ ∈ A ⊥, establishing the claim. ♦

The Lyapunov function candidate VC (z) = ‖z‖2 evolves along the sequences generated by (3.39) according to

VC (z
+)−VC (z) = zT (A⊗ In)

T (A⊗ In)z−‖z‖2. (3.125)

By Claim 3.9.1, z(0) ∈ A ⊥ implies that z(t) ∈ A ⊥, for all t ∈ N. Therefore, by A3.3.1 and its implication

described in Remark 3.3.2, we obtain

∆VC (z)≤−(1−µ)‖z‖2. (3.126)

Since (1−µ)‖ · ‖2 ∈ K and (3.39) is equivalent (by Claim 3.9.1) to the dynamics

z+ = P
A ⊥

(

(A⊗ In)z
)

, z(0) ∈ A
⊥, (3.127)

we conclude from Theorem 2.5.2 that {0} is globally, asymptotically stable for (3.39) on A ⊥.

3.10 Final Remarks

As an initial step toward addressing a class of DT-DDCCPs represented by Problem 1.2.2 we introduced a set

of tools for the derivation of convergence conditions for a class of consensus-decentralized optimization (CO)

algorithms. The novelty in our analytic approach to this class of algorithms is to treat the evolution of the agents’

mean estimate and the vector of deviations from this mean, as the feedback interconnection of two nonlinear,

dynamical systems. Then, small-gain techniques are employed to derive conditions ensuring the internal stability

(i.e. stability in the sense of Lyapunov) of the interconnection (q.v. Theorems 3.6.1 and 3.6.2).

We emphasize internal stability because it is the most fundamental property of relevance in control appli-

cations, and this emphasis distinguishes our analysis from that in most existing literature on decentralized opti-

mization. One of the analytic tools we contribute in connection to this chapter is a theorem that characterizes

the semiglobal, practical, asymptotic stability of a set of fixed points associated with a nonlinear discrete-time

dynamical system, in terms of certain properties of its associated Lyapunov function (q.v. Theorem 2.5.1). We

refer to this theorem as the SPAS theorem, and we provide its proof in Chapter 2.
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The application of this analytic framework to the static optimization setting has precipitated several obser-

vations that may be considered of independent interest to the area of decentralized optimization itself. These

observations include the following.

• In the literature on consensus optimization, the effects of the dynamic coupling between the mean and

deviation variables are usually suppressed by a combination of two persisting assumptions: the boundedness

of agents’ individual constraint sets (or the subgradients used to form their search directions), and the use

of diminishing step sizes. Instead of suppressing the effects of dynamic coupling among subsystems, the

literature on interconnected systems emphasizes techniques that seek to exploit this coupling in order to

avoid conservatism [104]. Indeed, in our case a careful examination of the interconnection structure reveals

that the destabilizing effects of the projection-related terms arising in one subsystem negate related effects

arising in the other (q.v. Lemma 3.6.3). The conclusion to be drawn is that the presence of the projection

operation in (3.5) need not add any conservatism to the final convergence condition.

• The individual constraint sets Xi in (1.32) need not be bounded or identical. Their intersection X also need

not be bounded. This is true regardless of whether si(·) in (3.5) represents a gradient or a subgradient.

• The step-size α may remain fixed throughout the execution of algorithm (3.5), regardless of whether si(·)
represents a gradient or a subgradient, even when the constraint sets Xi are not bounded.

• In the literature on decentralized optimization, it is typically assumed that agents’ individual cost functions

Ji(·) are convex, whether or not they are differentiable. For the case in which each agent’s search direction

si(·) is locally Lipschitz and based on a gradient of the agent’s private cost function, our convergence

conditions indicate that the convexity of all agents’ individual costs is not necessary (q.v. Lemma 3.8.1).

• In contrast with existing Lyapunov-based analyses of related decentralized optimization schemes, the ap-

plication of our SPAS theorem does not require a precise characterization of the algorithm’s actual set of

fixed points, and allows for the study of iterative methods directly in discrete-time.

Aside from preparing us to address the DT-DDCCP, the basic analysis philosophy presented in this chapter

also turns out to be useful for the analysis of continuous-time variants of (3.5), which we study in the next chapter.



Chapter 4

Continuous-Time Consensus Optimization

with Positivity Constraints

4.1 Synopsis

We adapt the analytic techniques introduced in Chapter 3 to derive convergence conditions for a class of continuous-

time consensus optimization dynamics. We show that introducing a tunable consensus gain parameter can relax

the upper bound imposed on the step-size in order to guarantee the stability of the collective optimum. The anal-

ysis is made challenging by the presence of a logical projection operation used to enforce a positivity constraint

on the evolution of the dynamics. This class of systems can be employed in the design of cooperative resource

allocation schemes that require no central coordination. More generally, continuous-time consensus optimization

dynamics have potential applications in the development of certain behavioral models of animal groups. This

chapter is mostly based on work appearing in [94].

4.2 Introduction

There are several motivations for studying the continuous-time counterparts of discrete-time consensus optimiza-

tion algorithms. First, the set of analytic tools and techniques available for the study of continuous-time dynamical

systems in general is far better developed than that for discrete-time systems, especially when nonlinearities are

involved. This is likely the reason that many of the early contributions to the field of decentralized optimiza-

tion (made primarily in the context of decomposition methods) are set in continuous time [8], [79], [48], [99].

With a wider variety of tools, comes the potential for new insights. Second, designing networked, multiagent

engineered systems, for which discrete-time implementations are certainly appropriate, is not the only potential

application of these schemes; in Section 4.6, we explore an application of continuous-time consensus-optimization

(CO) dynamics to the development of certain behavioral models of animal groups. In the context of modelling,

continuous-time dynamics are naturally more appropriate. Finally, a prevalent technique in analyzing a wide va-

riety (discrete-time) stochastic approximation methods involves establishing the stability of their continuous-time

counterparts [19], and this applies also in the decentralized setting [16], [145].

With the exception of [127], [100], [54], [163] and [139], most studies of CO methods focus on discrete-time

algorithms [155], [75], [114], [116], [112], [172], [169], [44], [16], [93], [91]. Analyses of such algorithms often

77
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involve a direct examination of portions of the trajectories they generate, the use of diminishing step-sizes, and the

use of time-averaged sequences (i.e. Cesàro averages). Such techniques may not be viable in studying even the

simplest continuous-time variants of these algorithms; for example, finding an analytic expressions for a solution

to a system of nonlinear ordinary differential equations is notoriously difficult for all but a small number of cases.

On the other hand, the stability analysis of unconstrained, continuous-time CO dynamics is rather simple when

approached within the Lyapunov-based framework considered in Chapter 3. Adopting the key idea in Chapter 3,

we treat the evolution of the mean and deviation of agents’ estimates as two coupled dynamic subsystems, and

derive conditions for the GPAS of their interconnection. As in the discrete-time case, this analytic approach

does not require an examination of the trajectories themselves, provides a fixed step-size convergence condition,

and yields stability properties of the collective optimum that pertain to the system trajectories themselves (i.e.,

not their time averages). Moreover, the approach allows us to derive explicit expressions for a lower bound on

the system’s convergence rate and an upper bound on the agents ultimate estimation error, in terms of relevant

problem parameters.

The direct continuous-time counterpart of the discrete-time algorithm introduced in [114] has a velocity vector

field which is comprised of a linear graph Laplacian term engendering the system’s consensus behavior, driven

by a gradient term which is weighted by a tunable step-size (i.e., optimization gain) parameter. We consider

a variation of these basic CO dynamics, in which we introduce a consensus gain as a second tunable parameter.

Several interesting observations can be made concerning the utility of this parameter, which can adjust the strength

of the consensus term relative to that of the optimization term. We show that this tuning parameter can be used

to improve the ultimate accuracy of the algorithm without affecting the convergence rate of the mean of agents’

estimates. More importantly, this parameter can be used to relax the upper bound imposed on the step-size in order

to guarantee the stability of the collective optimum. These observations are made possible by the interconnected-

systems viewpoint, and appear to have not been made elsewhere in the literature.

The class of systems that we study here is the consensus-weighted variation of the basic CO dynamics, mod-

ified by a logical projection operation used to enforce a positivity constraint on its trajectories. Remarkably, as

in the discrete-time case, a careful examination of the interconnection terms in the composite Lyapunov argu-

ment leads to an elegant result concerning the effect of the logical projection operation on the evolution of the

continuous-time CO dynamics. This class of systems may be useful in the design of cooperative resource alloca-

tion schemes, in which the computation of the optimal resource “pricing parameter”, which is required to remain

non-negative, is distributed among the agents.

Other studies of continuous-time CO-like schemes such as [127], [100], [54], [163] and [139] also employ

Lyapunov analysis techniques. In contrast to the present work, [54] and [163] solve the CO problem by means of

primal-dual saddle point dynamics, and employ Lyapunov arguments that generalize those originating in [8]. The

setting in [54] is more general than ours in that directed graphs are considered. In [127], a stochastic, continuous-

time mirror descent method is executed by a number of agents in the presence of noise. As in [154], each agent

has knowledge of the collective objective function, and the consensus dynamics are exploited primarily to mitigate

the effects of this noise. The choice of the Lyapunov function in [127] relates to the geometry of the constraint

set and plays an important role in the method’s performance for very high-dimensional problems. The setting

in [139] involves a number of agents that are assumed to have a priori knowledge of the geometric properties of

the set of optimizers for their individual, privately known objective functions. In contrast with our setting, these

sets of optimizers are assumed to have a non-empty intersection, and the agents employ consensus dynamics in

order reach an agreement on some point within this intersection. The Lyapunov-like function employed in the

analysis measures the maximum among distances between agents’ estimates and this intersection. In [100], the
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authors propose a set of “zero gradient sum” algorithms as a simple, and novel alternative to standard CO methods

in solving the CO problem. When initialized appropriately, the agents’ trajectoreis evolve (and eventually reach

consensus) on an invariant manifold characterized by the sum of individual cost function gradients being equal

to zero. The algorithms are specified by means of a “Lyapunov-redesign”-like technique, in which a Lyapunov

function candidate is selected, and the agent dynamics are designed in order to render its time derivative negative

definite.

This chapter is organized as follows. In Section 4.3 we describe our problem setting and state our assumptions.

We give our analysis in Section 4.4, and provide an application example with simulations in Section 4.5.

4.3 Problem Setting

We consider a network of N agents that communicate over a graph G = (V ,E ), where V = {1, . . . ,N} is a set

that indexes the agents, and E ⊆ V ×V specifies the pairs of agents that communicate. For now we assume that

this communication graph remains fixed in time. We associate a matrix A ∈ R
N×N to G in the following way:

[A]i, j =



















−|{k : (k, i) ∈ E }|, i = j,

1, i 6= j and ( j, i) ∈ E

0, otherwise

, (4.1)

Thus, the matrix A is the negative of the graph Laplacian, and we make the following standard assumption on the

communication structure from which it is induced [136]:

A4.3.1: The graph G is connected and undirected. ♦
By construction, the null space of A coincides with the so-called “agreement subspace” span{1} – that is,

A1 = 0. Since G is undirected, A is symmetric and therefore we also have that 1T A = 0T , and that all of A’s

eigenvalues are real. Most importantly, A4.3.1 implies that the largest eigenvalue of A is unique and equal to zero;

consequently, for all z ∈ span{1}⊥, zT Az ≤−λ2‖z‖2, where λ2 > 0 is the Fiedler eigenvalue of −A.

The agents’ collective task is to cooperatively locate a point y∗ ∈ R+ that minimizes the collective cost func-

tion J : R → R, which is comprised of N additive components – namely J(y) = J1(y)+ . . .+ JN(y), with Ji(·)
representing the ith agent’s individual objective. We make the following assumptions on this cost structure:

A4.3.2: (a) The collective cost J is convex on R+, and there exists a unique y∗ ∈ R+ satisfying

J(y∗)< J(y), ∀y ∈ R+ \{y∗} (4.2)

(b) There exists a number r̄ ∈ R+∪{∞} such that for all r ∈ (0, r̄), there is a real number κJ(r)> 0, for which

the following holds:

J(y∗)− J(y)≤−κJ(r)|y− y∗|2, (4.3)

for all y ∈ B̄r(y
∗)∩R+.

(c) For each i ∈ V , ∇Ji(·) is globally Lipschitz continuous with constant Li. ♦
Remark 4.3.1: If y∗ > 0 and J(·) is strongly convex with constant β , then A4.3.2 (b) is satisfied with r̄ = ∞ and

κJ(r) =
β
2

, independently of r1. On the other hand, if J(y) = |y− y∗| with y∗ ≥ 0, then for any desired r > 0,

1This observation follows from the inequality J(y) ≥ J(y∗)+∇J(y∗)(y− y∗)+ β
2
|y− y∗|2, which holds for all y,y∗ ∈ R for a function
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κJ(r) =
1
r
. Intuitively, A4.3.2 (b) requires the function y 7→ J(y)− J(y∗) to be locally bounded from below by

some (arbitrarily shallow) parabola, centered at y∗. Therefore, A4.3.2 (b) requires J(·) to be locally strongly

convex, relaxing the global strong convexity assumption made in [91]. ♦

Each agent is assumed to have access only to the gradient of its individual cost function and its neighbors’

estimates of y∗, thereby implementing the following protocol:

ẋi =
[

c[A]ix−α∇Ji(xi)
]+

xi

, xi(0)≥ 0, ∀i ∈ V (4.4)

where xi ∈R is the ith agent’s estimate of y∗, x = [x1, . . . ,xN ]
T , c ∈R++ and α ∈R++ are tuning parameters, and

the logical projection operator [q]+p is defined by

[q]+p =







0, if p ≤ 0 and q ≤ 0

q, otherwise,
(4.5)

for all q, p ∈ R. We say that the projection is inactive if [q]+p = q, and that it is active otherwise.

Aside from evolving in continuous-time, algorithm (4.4) differs from that presented in [114] in featuring

the additional tuning parameter c, which can be used to emphasize the strength of the consensus term c[A]ix in

relation to that of the optimization term −α∇Ji(xi). An interesting outcome of our forthcoming analysis is that

c provides a means of adjusting the ultimate collective precision of the agents’ estimates of y∗, without affecting

the convergence rate of their mean estimate. This observation is further discussed in the following two sections.

In the sequel, our objective is to demonstrate that for each i ∈ V , xi(t) converges exponentially to y∗, to within

an error whose magnitude can be made arbitrarily small through the tuning parameters c and α .

4.4 Analysis

In Chapter 3, we introduced a Lyapunov-based method for analyzing a discrete-time consensus optimization

scheme. This analysis method is novel in treating the evolution of the mean and deviation variables associ-

ated with the agents’ estimates as the interconnection of two dynamic subsystems whose isolated dynamics have

favourable stability properties. The stability properties of these isolated subsystems are then exploited to derive

conditions for the stability of their interconnection. In this chapter we build on that framework, demonstrating

that it accommodates continuous-time dynamics and logical projection operations of the sort in (4.4).

We begin by rewriting (4.4) in a more convenient form. Defining the terms

φi(x) =
[

c[A]ix−α∇Ji(xi)
]+

xi

−
(

c[A]ix−α∇Ji(xi)
)

, (4.6)

for all i ∈ V , and

d(x) = [∇J1(x1), . . . ,∇JN(xN)]
T (4.7)

allows us to write (4.4) as

ẋ = cAx−αd(x)+φ(x), (4.8)

J : R→ R that is strongly convex with constant β .
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where φ(x) = [φ1(x), . . . ,φN(x)]
T . Next, we introduce the variable

y = 1
N

1T x, (4.9)

representing the mean of the agents’ estimates, and

zi = xi − y, ∀i ∈ V (4.10)

representing the ith agent’s deviation from the mean. The deviation vector z = [z1, . . . ,zN ]
T can equivalently be

written as

z = Mx, where M = I − 1
N

11T . (4.11)

Our aim now is to show that under the dynamics (4.8), the mean y converges to the minimizer y∗, while the

deviations zi converge to a neighbourhood of zero. To that end, we derive the dynamic equations governing the

motion y and z. Since 1T A = 0T , we have

ẏ =−α
N

1T d(z+1y)+ 1
N

φ(z+1y). (4.12)

By our definition of d(x) in (4.7), 1T d(1y) = ∇J(y) and we may write (4.12) as

ẏ =−α
N

∇J(y)+ p1(z,y)+
1
N

1T φ(z+1y), (4.13)

=
[

− α
N

∇J(y)+ p1(z,y)+
1
N

1T φ(z+1y)
]+

y
(4.14)

where

p1(z,y) =
α
N

1T
(

d(1y)−d(z+1y)
)

. (4.15)

It is useful to note that (4.13) is identical to (4.14), since y(t) = 1
N ∑

N
i=1 xi(t) is non-negative for all time due to the

positive projections in (4.4). The non-negativity of y ensures that the projection applied in (4.14) is never active.

Next, we examine the motion of z. Noting that MA = A since 1T A = 0T and that Ax = Az since z = x+ 1y,

from (4.11) and (4.8) we obtain

ż = cMAx−αMd(x)+Mφ(x)

= cAz−αMd(z+1y)+Mφ(z+1y). (4.16)

For later convenience we express (4.16) as

ż = cAz−αMd(1y∗)+ p2(z,y)+ p3(z,y)+Mφ(z+1y), (4.17)

where

p2(z,y) =−αM
(

d(z+1y)−d(1y)
)

(4.18)

and

p3(z,y) =−αM
(

d(1y)−d(1y∗)
)

. (4.19)

For this subsystem, it is useful to note that for all t ∈R+, z(t)∈ span{1}⊥. To see this, we note that 1T z= 1T Mx =

0T , based on the definition of M in (4.11).

Equations (4.14) and (4.17) describe a feedback interconnection of two dynamic subsystems, whose intercon-
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nection structure is captured by the terms pi(z,y), i = 1,2,3, and the terms arising from the projection operation.

Our analysis is based on treating these interconnection terms as perturbations to the isolated subsystem dynamics,

which are given by the equations

η̇ =
[

− α
N

∇J(η)
]+

η
, η(0)≥ 0 (4.20)

ζ̇ = cAζ −αMd(1y∗), ζ (0) ∈ span{1}⊥, (4.21)

by setting to zero all interconnection terms in (4.14) and (4.17). In the following two Lemmas, we study the

stability properties of y∗ for (4.20), and 0 for (4.21).

Lemma 4.4.1: Suppose that A4.3.2 (a) holds. Then, Vy(η) = 1
2
(η − y∗)2 is a Lyapunov function for (4.20), and

its derivative along any trajectory of (4.20) satisfies

V̇y(η)≤ α
N

(

J(y∗)− J(η)
)

. (4.22)

If in addition A4.3.2 (b) holds, then

V̇y(η)≤−2κJ(r)
α
N

Vy(η), (4.23)

whenever η(0) ∈ B̄r(y
∗)∩R+.

Proof. First we introduce the term

φo(η) =
[

− α
N

∇J(η)
]+

η
+ α

N
∇J(η)

and re-write (4.20) as

η̇ =−α
N

∇J(η)+φo(η).

Then

V̇y(η) =−α
N
(η − y∗)∇J(η)+(η − y∗)φo(η)

Next, we note that φo(η) ≥ 0, for all η ∈ R. Consequently, when η ≤ y∗, the term (η − y∗)φo(η) ≤ 0. On the

other hand when η > y∗ ≥ 0, φo(η) = 0, since the projection is inactive when η > 0. Thus we see that for all

η ∈ R,

V̇y(η)≤−α
N
(η − y∗)∇J(η). (4.24)

By A4.3.2 (a), J is convex, implying that the following inequality holds for all a,b ∈ R:

J(a)≥ J(b)+∇J(b) · (a−b). (4.25)

Relation (4.22) then follows by taking a = y∗, b = η , and rearranging (4.25).

If assumption A4.3.2 (b) additionally holds and (4.20) is initialized inside B̄r(y
∗)∩R+, then (4.22) becomes

V̇y(η)≤−κJ(r)
α
N
|η − y∗|2

≤−2κJ(r)
α
N

Vy(η), (4.26)
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which was to be shown. �

Remark 4.4.1: By (4.2), relation (4.22) implies that y∗ is globally asymptotically stable for (4.20) whenever J

satisfies A4.3.2 (a), and exponentially stable if A4.3.2 (b) also holds [80]. If r̄ = ∞ and liminfr→r̄ κJ(r) > 0,

then under A4.3.2 (a) and (b), y∗ is globally exponentially stable for (4.20); such is the case if, for example, J is

strongly convex (c.f. Remark 4.3.1). ♦
Lemma 4.4.2: Suppose that A4.3.1 holds. Then, Vz(ζ ) =

1
2N

ζ T ζ is a Lyapunov function for (4.21), and its

derivative along any trajectory of (4.21) satisfies

V̇z(ζ )≤− 3cλ2
2

Vz(ζ )+K (4.27)

where

K = α2

cλ2N
‖d(1y∗)‖2, (4.28)

and λ2 is the Fiedler eigenvalue of −A.

Proof. The time-derivative of Vz is

V̇z(ζ ) = ∇Vz(ζ )
T ζ̇

= c
N

ζ T Aζ −αζ T Md(1y∗). (4.29)

We would like to bound the first term in the above expression as ζ T Aζ ≤−λ2‖ζ‖2. However, this inequality only

holds if span{1}⊥ is invariant for (4.21). To see that this is indeed the case, we note that the velocity of the state

ζ projected onto span{1} is zero — i.e.,

1T ζ̇ = c1T Aζ −α1T Md(1y∗) = 0T +0T . (4.30)

In other words, (4.21) generates no motion along span{1}, and initializing these dynamics on span{1}⊥ implies

that ζ (t) remains there forever. Next, noting that ‖M‖ ≤ 1 we obtain

V̇z(ζ )≤− cλ2
N
‖ζ‖2 +α‖ζ‖ · ‖d(1y∗)‖

=− 3
4

cλ2
N
‖ζ‖2 − cλ2

4N

(

‖ζ‖− 2α
cλ2

‖d(1y∗)‖
)2

+K

≤− 3cλ2
2

Vz(ζ )+K,

as desired. �

Remark 4.4.2: From relation (4.27), we can show that there exists a number δ (K) > 0, such that for any

ζ (0) ∈ span{1}⊥, ζ (t) approaches the set B̄δ (K)(0) exponentially fast and enters it in finite time. Moreover,

δ (K) decreases as K does. ♦
In the following Lemma we quantify the destabilizing effect that the interconnection terms have on the coupled

system (4.13)–(4.17). Most interesting is the analysis of the positive projection terms (Lemma 4.4.3 (d)).

Lemma 4.4.3: Suppose that A4.3.2 (c) holds, and consider the functions Vy(y) =
1
2
(y− y∗)2 and Vz(z) =

1
2N

zT z,

where y ∈ R and z ∈ R
N . Then, the following relations hold:

(a) ∇Vy(y) · p1(z,y)≤ αL√
N
|y− y∗| · ‖z‖
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(b) ∇Vz(z)
T p2(z,y)≤ αL

N
‖z‖2

(c) ∇Vz(z)
T p3(z,y)≤ αL√

N
|y− y∗| · ‖z‖

(d) ∇Vy(y) ·
(

1
N

1T φ(z+1y)
)

+∇Vz(z)
T
(

Mφ(z+1y)
)

≤ 0

Where L = maxi Li, pi(z,y), i = 1,2,3 are as in (4.15), (4.18) and (4.19), while φ(z+1y) = [φ1(z+1y), . . . ,φN(z+

1y)]T , with φi(z+1y) as in (4.6).

Proof. (a) From (4.15) and (4.7) we have:

∇Vy(y) · p1(z,y) =
α
N
(y− y∗)

N

∑
i=1

(

∇Ji(y)−∇Ji(zi + y)
)

≤ α
N
|y− y∗|

N

∑
i=1

Li|zi|,

by A4.3.2 (c). The required result follows by noting that ∑
N
i=1 |zi|= ‖z‖1 ≤

√
N‖z‖.

(b) From (4.18), (4.7) and the fact that zT M = zT (since z(t) ∈ span{1}⊥, ∀t ∈ R+), we obtain

∇Vz(z)
T p2(z,y) =−α

N

N

∑
i=1

zi

(

∇Ji(zi + y)−∇Ji(y)
)

≤ αL
N

N

∑
i=1

|zi|2,

which is the desired result.

(c) The proof of this statement is similar to that of parts (a) and (b).

(d) For convenience, we denote by P the left-hand side of the desired inequality. Using the fact that zT M = zT ,

we write:

P = 1
N
(y− y∗)1T φ(z+1y)+ 1

N
zT φ(z+1y). (4.31)

Next, we let A denote the set of active constraints in algorithm (4.4) – that is,

A = {i ∈ V : xi = 0, and c[A]ix−α∇Ji(0)≤ 0}.

Clearly, ∀i /∈ A , φi(x) = 0. Therefore, (4.31) can be written as

P = 1
N

(

∑
i∈A

[

(y− y∗)φi(z+1y)+ ziφi(z+1y)
]

)

. (4.32)

Recalling that zi = xi − y, and that ∀i ∈ A , xi = 0, we obtain

P = 1
N

(

∑
i∈A

[

yφi(z+1y)− yφi(z+1y)
]

− y∗ ∑
i∈A

φi(z+1y)
)

≤ 0,

since both y∗ and ∑i∈A φi(z+1y) are non-negative. �

With the above Lemmata, we are ready to state our main result.
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Theorem 4.4.1: Consider the algorithm (4.4). Suppose that A4.3.1 and A4.3.2 hold, that 1
N

1T x(0)∈ B̄r(y
∗)∩R+,

and that
α
c
∈
(

0,min
{

λ2κJ(r)
4L2N

, λ2
2L

})

. (4.33)

Then, for all t ≥ 0

‖x(t)−1y∗‖2 ≤ 4Ne−γt
(

V (z(0),y(0))− K
γ

)

+ 4NK
γ , (4.34)

where

V (z(0),y(0)) = 1
N
‖z(0)‖2 +

1

2
|y(0)− y∗|2, (4.35)

γ = min{2Ky,2NKz}, (4.36)

Ky = α
(

κJ(r)
N

− α
c

4L2

λ2

)

, (4.37)

Kz = c
(

λ2
2N

− α
c

L
N

)

, (4.38)

and K is as in (4.28).

Proof. Consider the composite Lyapunov function candidate V (z,y) = Vy(y)+Vz(z), where Vy(y) =
1
2
(y− y∗)2

and Vz(z) =
1

2N
zT z, with y ∈ R and z ∈ R

N . First, we note that

‖x−1y∗‖2 = ‖x−1y+1y−1y∗‖2

≤ 2‖z‖2 +2N|y− y∗|2

≤ 4NVz(z)+4NVy(y)

= 4NV (z,y). (4.39)

It now remains for us to establish the behaviour of t 7→V (z(t),y(t)).

The derivative of V (z,y) along the trajectories of (4.13)-(4.17) is

V̇ (z,y) = ∇Vy(y)ẏ+∇Vz(z)
T ż

= ∇Vy(y)
(

− α
N

∇J(y)
)

+∇Vz(z)
T
(

cAz−αMd(1y∗)
)

+∇Vy(y) ·
(

1
N

1T φ(z+1y)
)

+∇Vz(z)
T
(

Mφ(z+1y)
)

+∇Vy(y) · p1(z,y)+∇Vz(z)
T
(

p2(z,y)+ p3(z,y)
)

.

Combining the outcomes of Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.3, we obtain

V̇ (z,y)≤−κJ(r)
α
N
|y− y∗|2 −

(

3
4

cλ2
N

− αL
N

)

‖z‖2 +K

+ 2αL√
N
|y− y∗|‖z‖

≤ −Ky|y− y∗|2 −Kz‖z‖2 +K,

where Ky, Kz and K are as in (4.37), (4.38) and (4.28), respectively.

From (4.37) and (4.38) we see that both Ky > 0 and Kz > 0 whenever (4.33) holds. Moreover, whenever (4.33)

is true, we also have that

V̇ (z,y)≤−γV (z,y)+K, (4.40)
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with γ as in (4.36). Solving the differential inequality (4.40) yields

V (z(t),y(t))≤ e−γt
(

V (z(0),y(0))− K
γ

)

+ K
γ . (4.41)

Then, relation (4.39) leads to the required conclusion. �

Remark 4.4.3: The ultimate upper bound on the agents’ collective error in estimating y∗ is

lim
t→∞

‖x(t)−1y∗‖2 ≤ 4NK
γ

=
α2‖d(1y∗)‖2

8cλ2 ·min
{

α
(

κJ(r)
N

− α
c

4L2

λ2

)

,c
(

λ2
2
− α

c
L
)} (4.42)

=
(α

c
)2‖d(1y∗)‖2

8λ2 ·min
{

α
c

(

κJ(r)
N

− α
c

4L2

λ2

)

,
(

λ2
2
− α

c
L
)} . (4.43)

We note that this error can be made arbitrarily small by choosing α
c

to be sufficiently small. From (4.33) it

is evident that the parameter c can aid in relaxing the upper bound on α imposed in our previous studies (c.f.

Theorem 3.1, [91]). Moreover, here we are able to derive an exponential convergence result, whereas in previous

work only asymptotic convergence is demonstrated. ♦

4.5 An Application to Cooperative Resource Allocation Problems

A potentially interesting application of algorithm (4.4) is in the design of fully decentralized resource allocation

algorithms. For example, consider a set of N agents that need to “fairly”, and completely allocate a limited

resource amongst themselves, without necessarily having access to measurements of aggregate quantities such as

the net usage of the resource. The notion of fairness is related to allocating the resource in a way that takes into

account each agent’s individual need for it, which, even in a cooperative setting, may not be practically broadcast

to all other agents. For the sake of concreteness, suppose that the ith agent’s incentive to acquire a portion of the

resource is encoded in the utility function

Ui(xi) = a1 ln(xi +1), (4.44)

where xi ∈ R+ is the quantity of the resource allocated to the ith agent, and ai reflects its individual need for the

resource. In addition to these individual objectives, the agents’ collective objective is to

max
x

N

∑
i=1

Ui(xi) (4.45)

s.t. xi ≥ 0, ∀i = 1, . . . ,N

1T x ≤C,

where x = [x1, . . . ,xN ]
T and C is the total amount of the resource available to the agents.

A prototypical instantiation of this problem is congestion control in internet-style networks [79], where the

resource vied for is the bandwidth of a bottleneck link with a capacity C. There are primal [79], dual [99] and

primal-dual algorithms [48] available to solve problem (4.45). However in that setting the users are assumed to be

competitive, and the capacity constraint is typically enforced by having a central coordinator – i.e. the link – set
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a price on the resource based on its total usage. This price is communicated to each agent, which then optimizes

an augmented utility function including a pricing term.

We wish to consider an alternative setting that eliminates the need for a central coordinator. In its simplest

incarnation, a fully decentralized solution to the problem (4.45) is an application of the algorithm (4.4) to solving

the problem dual to (4.45).

To form the dual problem, we first consider the Lagrangian

L(x,λ ) =
N

∑
i=1

Ui(xi)−λ
(

1T x−C
)

=
N

∑
i=1

(

Ui(xi)−λxi

)

+λC, (4.46)

with λ ∈ R. The associated dual function is defined as

D(λ ) = max
x∈RN

+

L(x,λ ). (4.47)

For the set of utilities given in (4.44), we find

x∗i (λ ) = arg max
x∈RN

+

L(x,λ ) = max
{

0, ai−λ
λ

}

, (4.48)

and

D(λ ) =
N

∑
i=1

(

ai ln
(

ai

λ

)

−ai +λ
)

+λC. (4.49)

We separate the dual function D(λ ) by writing D(λ ) = ∑
N
i=1 Di(λ ), where we let

D1(λ ) = a1 ln
(

a1
λ

)

−a1 +(1+C)λ , (4.50)

and

Di(λ ) = ai ln
(

ai

λ

)

−ai +λ , i = 2, . . . ,N. (4.51)

The dual problem then is to

min
λ

N

∑
i=1

Di(λ ) (4.52)

s.t. λ ≥ 0.

This problem can be solved in a decentralized manner by having each of the N agents maintain an individual

estimate of the optimal resource “pricing” parameter (i.e. Lagrange multiplier) λ ∗, and exchange this estimate

with neighboring agents using algorithm (4.4). In particular, each agent employs the dynamic resource usage law

λ̇i =
[

c[A]iλ̄ −α∇Di(λi)
]+

λi

, λi(0) ∈ R+, (4.53)

xi = max
{

0, ai−λi

λi

}

, (4.54)
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where λ̄ = [λ1, . . . ,λN ]
T , and (4.54) maximizes the Lagrangian as in (4.48). In contrast with the well-known

distributed dual approach presented in [99], algorithm (4.53)–(4.54) is fully decentralized; individual agents do

not need to have access to a common resource pricing parameter λ . To implement (4.53)–(4.54), each agent

needs to know the common parameters α and c, which it can obtain upon joining the network. If the structures

and parameters of agents’ typical utilities are known to belong to some class and there is a maximum number of

agents allowed to join the network, it is possible for a system designer to stipulate the required α and c a priori.

No agent in the network needs to be aware of how many others are joined (or when they join or leave), and only

the first agent to join needs to know the total available quantity C of the resource.

For illustration, we suppose that there are N = 3 agents, communicating over a line graph such as the one in

Figure 4.1.

2 31

Figure 4.1: The agents’ communication structure.

The corresponding A matrix to be used in (4.53) is

A =







−1 1 0

1 −2 1

0 1 −1






. (4.55)

Taking the agents’ utility weights to be a1 = 0.9, a2 = 1.3 and a3 = 2.1, and the total amount of the resource to be

C = 5 units, we obtain the optimal resource price λ ∗ ≈ 0.54. The individual dual functions Di(λ ) for this case are

plotted in Figure 4.2, along with their sum D(λ ) and the value λ ∗. We remark that from the plot of D(λ ) in Figure

4.2, it is evident that Assumption A4.3.2 (b) is satisfied for any r̄ ∈ R, with a κJ(r) that decreases in r ∈ (0, r̄).
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Figure 4.2: The individual dual functions and their sum, D(λ ), with a minimum at λ ≈ 0.54.

In Figure 4.3, we show the outcomes of three simulations of the estimation process (4.53); in all three cases,

the initial conditions are taken to be (λ1(0),λ2(0),λ3(0)) = (0.15,1,3), while the variations in the algorithm

parameters c and α are indicated in the figure.
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Figure 4.3: The dynamics of λi, i = 1,2,3, for three choices of algorithm parameters c and α . The final values of

the λi, their mean y and their deviation ‖z‖ are indicated on the graphs.

From the comparison of the first two plots in Figure 4.3 it is evident that increasing the parameter α increases

the convergence rate of the mean of agents’ estimates, while a comparison of the middle and bottom plots shows

that increasing the value of c increases the convergence rate of the deviation error ‖z‖ and reduces its ultimate

magnitude, while having little effect on the convergence rate of the mean estimate. The effect of increasing α

without increasing c is to increase the ultimate magnitude of the deviation error even though the mean of the

agents’ estimates converges faster.

Remark 4.5.1: We note that the dual costs Di(λ ) in (6.1) and (4.51) do not satisfy A4.3.2 (c) at λ = 0. However,

for all i ∈ V the assumption is satisfied on [ε,∞), for any arbitrarily small ε , with Li depending on ε . All of

the results derived here can be generalized to the case in which the gradients of the cost functions satisfy only

a local Lipschitz condition – i.e., over some interval Ω containing y∗. The existence of an upper bound on α
c

guaranteeing exponential stability would remain unchanged. However, the upper bound itself would depend on Ω

and the algorithm would need to be initialized inside ΩN . ♦

4.6 A Potential Application to Behavioral Modelling of Animal Groups

There are some interesting potential applications of continuous-time consensus optimization dynamics to the

modelling of collective behavior of animal groups. In fact, the interest within the control community in pure

consensus dynamics over general connected graphs seems to have been initiated by the work of Vicek [158],

who proposed a consensus-like model for the emergence of directional coherence in the movements of randomly

oriented particles in a plane, and discussed applications of the model to the study of animal group behavior.

In [120], a more elaborate model is considered in order to study the emergence of leadership in migratory ani-

mal populations. For individual agents (i.e. animals in the group), the model captures a central tradoff between the

investment cost involved in measuring environmental signals that indicate the true desired direction of migration,

and the relative ease with which this direction can be estimated by observing the motions of one’s neighbors.

The model involves N agents, each of whom may take social cues from neighboring agents on a fixed, but
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directed interaction graph. The migration portion of the model considered is given by the Itō stochastic differential

equation

dxi =−k2
i (xi −µ)dt − (1− ki)

2[L]ixdt +KdWi, (4.56)

where µ ∈ R is the true desired migration direction, xi is agent i’s the direction of motion, ki ∈ [0,1] indicates

how much agent i is invested in measuring µ , L is the graph Laplacian of the interaction graph, dWi is the Wiener

increment, and K is related to the intensity of noise that affects agent i’s measurements of both µ and its estimate

from social cues. (q.v. §2 in [120]). Model (4.56) indicates that when ki = 0, agent i does not measure µ and

relies exclusively on social cues, while ki = 1 indicates that agent i is a “leader” – i.e. he invests in measuring the

environmental signal µ . Clearly, migration cannot happen if all agents are followers, and the authors are interested

in the effect that L and [k1, . . . ,kN ]
T have on the group’s ability to migrate.

In Theorem 1 of [120], the deterministic version of (4.56) is studied in order to determine the conditions on the

graph Laplacian L and the investment gains ki under which migration is possible. In other words, the conditions

guaranteeing the stability of the point x = [x1, . . . ,xN ]
T = [µ, . . . ,µ]T =: x∗ for the dynamics

ẋi =−k2
i (xi −µ)− (1− ki)

2[L]ix (4.57)

are being sought. The derivation of these conditions relies heavily on the linearity of the term −k2
i (xi −µ).

With Ji(x) =− 1
2
k2

i (xi −µ)2, A =−L and ci := (1− ki)
2, we note that (4.57) can be written as

ẋi = ci[A]ix−∇Ji(x), (4.58)

which closely resembles the form for the unconstrained version of the CO dynamics (4.4) studied in this chapter.

The model (4.58) differs from (4.4) in that A pertains to a directed graph and the gains ci weight each row of A

differently; consequently, our analytical framework does not directly apply to the study of (4.58). However, the

resemblance of (4.58) to (4.4) suggests that adaptations accommodating these differences are likely possible. If

that is the case, then the techniques presented in this chapter may become instrumental to deriving conditions

under which group behaviors more complex than migration are possible, and they may help enable the study of

more general behavioral models for which ∇Ji(·) are not necessarily linear.

4.7 Final Remarks

In this chapter we analyzed a continuous-time, consensus-based multi-agent optimization scheme by means of

Lyapunov techniques. Our analysis accommodates collective optimization problems with positivity constraints.

We derived explicit convergence rate and ultimate error bounds, and conditions guaranteeing the practical expo-

nential stability of the collective optimum. Moreover, we showed that introducing an additional tuning parameter,

which can be used to emphasize the strength of the consensus component relative to that of the optimization

component, can improve the performance of the algorithm and relax the conditions guaranteeing its stability.

Whereas such schemes typically find applications in sensor fusion problems, we observe that another particularly

appropriate application of the scheme is in solving dual optimization problems in a fully decentralized manner.



Chapter 5

Decentralized Extremum-Seeking Control

Based on Consensus Optimization

5.1 Synopsis

In this chapter, we show how the analytic framework developed in Chapter 3 enables the study of systems involv-

ing the dynamic interaction between discrete-time CO algorithms, and continuous-time dynamical systems. We

address the class of discrete-time, dynamic DCCPs represented by Problem 1.2.2, and we propose that a solution

may be based on a variant of a consensus optimization (CO) scheme. By means of Lyapunov and small-gain

techniques we derive convergence conditions for the sampled-data feedback interconnection of a numerical CO-

based decision updating process and the agent dynamics, which are assumed to evolve in continuous time. Under

a minor extension, the results presented here can be viewed as a proposal for a novel multivariable extremum-

seeking scheme. Alternatively, our consideration of continuous-time dynamics in the problem can be viewed as

a generalization of the problem settings considered in existing literature on CO, which is typically focused on

optimization of static maps.

The idea of combining consensus optimization methods with extremum seeking techniques originates in [93].

However, the problem setting therein is somewhat different from that addressed here; the results presented in this

chapter constitute unpublished research.

5.2 Introduction

We consider the discrete-time, dynamic decentralized coordination control problem (DT-DDCCP) described in

§1.2.3, and we propose a CO-based solution of the form

Di :































ξi(tk+1) =
N

∑
j=1

[A]i, jν j −α ŝi(Yi(t
−
k+1)),

νi(tk) = ξi(tk)

ui(t) = ∑
j∈V

[A]i, jξ j,i(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N

(5.1)
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where Yi(·) is a set of measurements of the plant output yi made within the iteration interval [tk, tk+1), and

ŝi(Yi(t
−
k+1)) is an approximation of the search direction si(·) in the standard CO algorithm (1.33). To the best

of our knowledge, a solution of the form (5.1) to the DT-DDCCP described in Problem 1.2.2 has not been previ-

ously proposed in the literature.

We study the case in which the interval T = tk+1−tk between iterations is constant and the approximate search

direction is given by

ŝi(Yi(t
−
k+1)) = yi(t

−
k+1), (5.2)

where yi relates to an agent i’s private cost function as follows:

lim
T→∞

yi(t
−
k+1) = ∇uJi(l(u)), (5.3)

where l(·) is the equilibrium map associated with the collective dynamics (1.8). Studying this case is a preliminary

step toward analysing the more practical situation in which only cost measurements are available – i.e., yi(t) =

Ji(x(t)) – and the gradient ∇uJi(l(u)) must be estimated from a sequence of such measurements within each

iteration of (5.1) (q.v. Example 1.4.3, in which a simple forward-difference approximation scheme is proposed.).

Our objective is to show how one may derive conditions on the iteration period T and the step-size α in (5.1) so

as to guarantee the stable behavior of the sampled-data interconnection between Di and the agent dynamics Σi in

Problem 1.2.2. Such conditions are of interest because they reveal important relationships and trade-offs between

relevant problem parameters, and performance criteria such as stability and convergence rate. For example, intu-

ition suggests that under condition P4 in §1.2.1, increasing the iteration period T results in better approximations

ŝi(·) to the idealized search direction si(·) in (1.33), so that each iteration of (5.1) is more effective. However, in-

creasing T also means that the overall optimization process requires more time. For specific problems, the derived

conditions may suggest how best to select the tunable parameters T and α .

The study of DT-DDCCPs with solutions such as (5.1) is motivated by several practical engineering applica-

tions. One potential application relates to the optimal coordination of channel powers in meshed optical networks.

In this application, individual optical channels may be abstracted as agents that seek to maximize their individual

optical signal-to-noise ratios (OSNR). An increase in one channel’s power on a single link improves its individual

OSNR, but tends to degrade the OSNRs of all other channels sharing the link; in other words, channels’ private

performance measures are coupled, and achieving a collectively optimal channel power configuration may require

coordination. The continuous-time dynamics in this application arise from the physical properties of the optical

links in the network [147]. These links are comprised of several spans of optical fiber and amplifiers which exhibit

fast, stable dynamics. Existing coordination control schemes typically focus on point-to-point network topologies,

appeal to game theoretic methods (q.v. Remarks 1.2.2 and 1.4.1) and ignore the effects of amplifier dynamics,

[122].

Another potential application for our framework relates to the secondary control of islanded microgrids [101]

(q.v. Remark 1.1.1). While the primary control scheme is responsible for regulating the behavior of individual

loads and microgeneration units [78], the role of secondary control is to coordinate power flows within the mi-

crogrid and to regulate the frequencies and voltages at its point of common coupling [61]. The primary control of

microgrids may be identified with the “inner loop” control discussed in §1.2.1; in terms of our problem setting,

its goal is to stabilize the equilibrium map l(u) (q.v. P4). The secondary control may then be identified with the

decision updating process Di. Our proposed coordination method seems especially suitable for this application

for two additional reasons. First, in previous research, the coordination objective has in fact been expressed as

a sum of convex potential functions [101]. Second, even within the more general context of active power and
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frequency regulation in a large-scale power grid, the notion of primary control is associated with local, fast time-

scale feedback control, while secondary control is associated with a slower time-scale feedback control over a

wider geographical region. This time-scale separation between the (assumed) inner-loop control and the decision

updating processes Di is also inherent in our proposed scheme.

Though we are interested in decentralized coordination control for dynamic multiagent systems, for the case

in which yi(t) = Ji(x(t)), the proposed scheme may more aptly be regarded as a decentralized, multivariable

extremum-seeking scheme. Consequently, relevant literature includes [86], [7], [171], [125], [43], [55], [56],

[144], [45] and [150]. References [86], [7], [171], [125] and [150] focus on centralized extremum-seeking control

(ESC) schemes, involving a single plant and a single ESC controller. References [55], [56], [45] and [144] involve

multiagent extremum seeking, but they rely on game-theoretic methods and consider only restricted classes of

agent dynamics. With the exception of [150] and [125], all references consider continuous-time ESC schemes

which are notoriously difficult to tune.

Relative to this body of literature, our contributions in [93], [90] (see also [92]) and this chapter can therefore

be regarded as a proposal for a novel decentralized, cooperative multiagent ESC scheme that operates in discrete-

time and locates the socially optimal minimizer of the sum of agents’ individual cost functions. On the other hand,

relative to the literature on distributed optimization, which is reviewed in Chapter 3, our contribution here is to

generalize the problem setting from that involving optimization of static maps, to that involving optimization of

dynamic maps.

5.3 Problem Setting

As in Problem 1.2.2, we consider a set of N agents that may communicate over a connected communication graph

GC = (V ,EC), where V = {1, . . . ,N} is the set that indexes the agents, and EC ⊂ V ×V indicates those agent

pairs that can exchange information with one another at any time.

5.3.1 Agent Dynamics

The state xi ∈ R
ni of the i’th agent (or its proximal environment) evolves according to the dynamics

Σi :







ẋi = fi(x,ui),

yi = hi(x) ∀i ∈ V ,
(5.4)

where x = [xT
1 , . . . ,x

T
N ]

T ∈ R
n denotes the collective state, fi : Rn ×R

mi → R
ni and hi : Rn → R

ri are smooth

functions, yi ∈R
ri represents the collection of measurements that agent i can take at any time, and ui ∈R

mi are its

decision, or action variables.

As in §1.2.3, we let u = [uT
1 , . . . ,u

T
N ]

T ∈ R
m denote the collective decision, and Σ the collective dynamics –

i.e.,

Σ :







ẋ = f (x,u)

y = h(x),
(5.5)

where

f (x,u) =









f1(x,u1)
...

fN(x,uN)









, (5.6)
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and

h(x) =









h1(x)
...

hN(x)









. (5.7)

We formalize property P4 in §1.2.3 by the following two assumptions.

A5.3.1 (Existence of a C0 Equilibrium Map): There exists an equilibrium map l ∈C0[Rm,Rn] associated to Σ, so

that f (x,u) = 0 if, and only if x = l(u). ♦

An example of an equilibrium map for two double-integrator systems is given in Example 1.2.2.

Next, we introduce the transient error variable z ∈ R
n, which we define as

z(t) = x(t)− l(u(t)), ∀t ∈ R+, ∀u ∈ R
m. (5.8)

Whenever u(t) is constant, the dynamics of the transient error are given by

Σ′ :







ż = f (z+ l(u),u),

y = h(z+ l(u))
(5.9)

where f (·, ·) and h(·) are as in (5.6) and (5.7). We make the following assumption concerning the transient error

dynamics.

A5.3.2 (Asymptotic Stability of Σ′): For any fixed u ∈ R
m, the point z = 0 is globally asymptotically stable for

Σ′. ♦

Assumption A5.3.1 implies that for any fixed u ∈ R
m, limt→∞ x(t) = l(u).

Example 5.3.1 (Asymptotic Stability of Σ′): As in Example 1.2.2, consider a two-agent system in which the state

of the ith agent evolves according to

Σi :



















ẋi,1 = xi,2

ẋi,2 =−xi,1 − kixi,2 +ui

yi = hi(x),

(5.10)

where ∀i ∈ V = {1,2}, ki ∈ R++. In this case the transient error dynamics are given by

Σ′ :



























































ż1,1

ż1,2

ż2,1

ż2,2

















=

















0 1 0 0

−1 −k1 0 0

0 0 0 1

0 0 −1 −k2

















y = h(z+ l(u))

(5.11)

for which A5.3.2 is clearly satisfied. ♦
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5.3.2 The Coordination Objective

In accordance with P5 in §1.2.2, we consider problem scenarios in which the agents’ collective task is to achieve

some desirable collective state configuration x∗ ∈ X∗ ⊂ R
n. We assume that this goal set X∗ is specified as the

solution to some unconstrained optimization problem over the set of Σ’s equilibrium states l(Rm) – i.e.,

X∗ = l(U∗), (5.12)

where

U∗ = arg min
u∈Rm

∑
i∈V

Ji(l(u)), (5.13)

l(·) is the equilibrium map associated with Σ, and Ji : Rn → R is a function whose values may be regarded as a

measure of agent i’s individual performance. We refer to

J(x) = ∑
i∈V

Ji(x) (5.14)

as the collective cost, and we make the following assumption.

A5.3.3 (Convexity of the Collective Cost and Compactness of U∗): The composition J(l(u)) is convex in u, and

its set of minimizers U∗ is nonempty and compact. ♦

We assume that the measured variables yi relate to the agents’ individual performance measures as follows.

A5.3.4 (Gradient-Related Measurements): For all i ∈ V , the composition Ji(l(u)) is differentiable at each u ∈R
m,

and the functions hi(·) in (5.4) are such that

hi(l(u)) = ∇uJi(l(u)). (5.15)

♦

The assumed continuity of hi(·) implies that

lim
t→∞

h(x(t)) = h
(

lim
t→∞

x(t)
)

. (5.16)

Therefore, A5.3.1, A5.3.2 and A5.3.4 imply that for any fixed u ∈ R
m,

lim
t→∞

yi(t) = lim
t→∞

hi(x(t)) = ∇uJi(l(u)). (5.17)

5.3.3 The Decentralized Coordination Control Algorithm

Each agent i ∈ V updates its decision ui according to a CO-like rule given by

Di :































ξi(tk+1) =
N

∑
j=1

[A]i, jν j −α ŝi(yi(t
−
k+1)),

νi(tk) = ξi(tk)

ui(t) = ∑
j∈V

[A]i, jξ j,i(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N

(5.18)
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where ∀k ∈N, tk+1 − tk = T > 0, ξi = [ξ T
i,1, . . . ,ξ

T
i,N ]

T ∈R
m, ξi, j ∈R

m j , A ∈R
N×N is a weighted adjacency matrix

associated to GC, and ŝi(·) denotes a single measurement of yi taken just prior to the beginning of each iteration –

i.e.,

ŝi(yi(t
−
k+1)) = yi(t

−
k+1). (5.19)

From (5.17) and the fact that ui(t) is held constant within every iteration interval [tk, tk+1), we observe that A5.3.1,

A5.3.2 and A5.3.4 imply that

lim
T→∞

ŝi(yi(t
−
k+1)) = ∇uJi(l(u))|u=u(tk). (5.20)

We define si : Rm → R
m as the steady-state value of ŝi(·), for any fixed u ∈ R

m. Under A5.3.1, A5.3.2 and

A5.3.4, we have that

si(u) = hi(l(u))

= ∇uJi(l(u)).
(5.21)

We assume that the matrix A in (5.18) satisfies condition A3.3.1, and we denote the second smallest eigenvalue

of its square as

κ = λ2(A
2). (5.22)

Written compactly, (5.18) reads as

D :

{

ξ (tk+1) = (A⊗ Im)ξ (tk)−α ŝ(h(x(t−k+1)))

u(t) = E(A⊗ Im)ξ (tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,
(5.23)

where ξ = [ξ T
1 , . . . ,ξ T

N ]T ∈ R
Nm, ŝ(h(x(t−k+1))) = [ŝ1(y1(t

−
k+1))

T , . . . , ŝN(yN(t
−
k+1))

T ]T and

E =
[

E1 · · · EN

]

∈ R
m×Nm, (5.24)

with Ei ∈ R
m×m being given by

Ei = blkdiag(0m1
, · · · ,0mi−1

, Imi
,0mi+1

, · · · ,0mN
), ∀i ∈ V . (5.25)

Remark 5.3.1 (Contrasting Standard CO to D): In terms of the function si(·) and the composed (steady-state)

costs Ji(l(u)), the standard (unconstrained) CO algorithm (1.33) is implemented as

ξ+
i = [A]i, jξ j −αsi(ξi), (5.26)

where si(·) is as in (5.21). This update rule is shown in [114] to solve the static problem

min
u∈Rm ∑

i∈V

Ji(l(u)) (5.27)

whenever si(ξi) ∈ ∂Ji(l(ξi)). Alternatively, (1.33) may also be implemented as

ξ+
i = [A]i, jξ j −αsi([A]i, jξ j), (5.28)

where si([A]i, jξ j) ∈ ∂Ji(l([A]i, jξ j)). The latter implementation appears in [116] and in Chapter 3 of this thesis,
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where we focus on static optimization problems.

In contrast to problem settings that standard CO is intended to address, in the decentralized coordination

control context, agents may not have the freedom to evaluate the gradient of their private cost functions anywhere

within the search space. Specifically, the quantities si([A]i, jξ j) ∈ ∂Ji(l([A]i, jξ j)) or si(ξi) ∈ ∂Ji(l(ξi)) may not be

accessible to agent i.

Reinforcing our observations in Example 1.4.2, we note that Di differs from the standard CO algorithm in two

ways. First, the implemented search direction ŝi(yi(t
−
k+1)) is an approximation of si(u) in (5.21), and the quality

of this approximation is degraded by the presence of the transient error z(t). Namely, from (5.19) and (5.8),

ŝi(yi(t
−
k+1)) = hi(l(u)+ z).

Second, even in the absence of the transient error dynamics (i.e. the case in which ŝi(y(t
−
k+1)) = si(uk)), agent

i may not have the freedom to evaluate the function si(·) at any arbitrary point within the search space because

within the DCCP context (as in the game-theoretic context – q.v. Remarks 1.2.2 and 1.4.1), it is assumed that an

agent cannot directly manipulate other agents’ decision variables. In particular, agent i may not be able to evaluate

si(·) at ξi (as in (5.26)) or at [A]i, jξ j (as in (5.28)). ♦
Since hi(·) is presumed to be smooth and l(·) continuous, the composition hi(l(u)) is also continuous, and

therefore si(·) is locally Lipschitz continuous and satisfies A3.3.4. In particular, for every compact Ω̂µ ⊂R
m, and

for every i ∈ V , there exists a number Li ∈ R+ such that for all µ,ν ∈ Ω̂µ ,

‖si(µ)− si(ν)‖ ≤ Li‖µ −ν‖. (5.29)

Let

so(u) = ∑
i∈V

si(u). (5.30)

By the linearity of the gradient operator, so(u) = ∇uJ(l(u)). Consequently, the convexity of u 7→ J(l(u)) (q.v.

A5.3.3) and Remark 3.3.6 imply that so(·) satisfies the strict pseudogradient assumption A3.3.2, with φ(µ) =

2(J(·;d(t))− J∗), for example. As in Remark 3.3.5, we note that A3.3.2 is equivalent to having the inequality

2so(µ)
T (µ −PU∗(µ))≥ φ(µ) (5.31)

hold for all µ in some given Ωµ .

In the next section we establish that under assumptions A5.3.1 to A5.3.4 and A3.3.1, the decision updating

processes Di in (5.18) indeed solve Problem 1.2.2.

5.4 Analysis

Let

Ξ∗ = ∏
i∈V

U∗,

where U∗ is given in (5.13). Our objective in this section is to derive conditions under which the set {0}×Ξ∗ ⊂
R

n ×R
Nm is SPAS for the sampled-data feedback interconnection of the transient error dynamics Σ′ in (5.9), and

the collective decision updating process D in (5.23). Since the change of coordinates in (5.8) is smooth, showing

that {0}×Ξ∗ is SPAS for Σ′−D is equivalent to showing that l(U∗)×Ξ∗ =X∗×Ξ∗ is SPAS for Σ−D . Therefore,
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to demonstrate that {0}×Ξ∗ is SPAS for Σ′−D , is to establish that Di in (5.18) solves Problem 1.2.2.

The key tool in establishing the SPAS of {0}×Ξ∗ for Σ′−D is Theorem 2.5.1, and we apply it as follows.

We derive a set of small-gain conditions in Theorem 5.5.1, and we show in Theorem 5.5.3 that these conditions

suffice to guarantee that the conditions of the SPAS Theorem 2.5.1 are satisfied.

We arrive at the derivation of the small-gain conditions in Theorem 5.5.1 in several stages by means of Lemmas

5.4.1 to 5.4.5. Lemma 5.4.1 quantifies the effect that the dynamic coupling between Σ′ and D has on the evolution

of Σ′, the transient error dynamics. Next, as in Chapter 3, we break down the analysis of the decision updating

processes Di in (5.18) into three stages. Lemma 5.4.2 examines the evolution of the agents’ mean estimate,

Lemma 5.4.3 examines the evolution of the vector of deviations from the mean, and Lemma 5.4.4 combines the

results of these two lemmas. In analogy to Lemma 3.6.3, in Lemma 5.4.4 it is observed that certain interconnection

terms arising as perturbations to the “idealized” mean subsystem dynamics actually help negate the destabilizing

effects of certain interconnection terms arising as perturbations to the “idealized” deviation subsystem dynamics.

Finally, Lemma 5.4.5 combines the analyses of Lemmas 5.4.1 to 5.4.4, in preparation for the proof of Theorem

5.5.1.

Remark 5.4.1: Throughout this chapter we construct several sets to which we repeatedly make reference. For

convenience, we collect their definitions here.

• Let Ωξ ⊂ R
Nm be an arbitrarily large compact set containing ∏i∈V U∗.

• Define Ωu = {u ∈ R
m | u = E(A⊗ Im)ξ , ξ ∈ Ωξ}, with E as in (5.24).

• Let Ωx ⊂ R
n be an arbitrarily large compact set containing l(Ωu), with l(·) as in A5.3.1.

• Define Ω̂x = {x ∈ R
n | x = Φ(t,xo), xo ∈ Ωx, t ∈ [0,T ]}, where Φ ∈C1[R+×R

n,Rn] is the state transition

function associated to Σ, and T = tk+1 − tk.

• Define Ω̂u = Ωu ∪ {u+ ∈ R
m | u+ = E(A2 ⊗ Im)ξ − αE(A ⊗ Im)h(x), ξ ∈ Ωξ , x ∈ Ω̂x}, where h(x) =

[h1(x)
T , . . . ,hN(x)

T ]T .

• Define Ωµ = {µ ∈ R
m | µ = 1

N
(1T

N ⊗ Im)ξ , ξ ∈ Ωξ}.

• Define Ω̂µ = Ω̂u ∪{µ ∈ R
m | µ = 1

N
(1T

N ⊗ Im)ξ , ξ ∈ Ωξ}

• Define Ωζ = {ζ ∈ R
Nm | ζ = Mξ , ξ ∈ Ωξ}, where M = IN − 1

N
1N1T

N .

• Define Ωz = {z ∈ R
n | z = x− l(u), x ∈ Ω̂x, u ∈ Ωu}.

♦

5.4.1 The Closed-Loop Evolution of the Transient Error

We begin by considering how the evolution of the transient variable z, defined in (5.8), is affected by the presence

of the Di. Within each iteration, Di produces a constant control input u(tk). Consequently, the dynamics of z

are given by (5.9), over every interval [tk, tk+1), k ∈ N. We are interested in the magnitude of z(t−k+1), and the

evolution of the sequence (z(t−k+1))
∞
k=1, since this quantity degrades the approximation ŝi(yi(t

−
k+1)) of the search

direction si(u(tk)) at each iteration of Di (q.v. Remark 5.3.1)
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We adopt the following notational convention.

z := z(t−k+1)

z+ := z(t−k+2)
(5.32)

and

q := q(tk)

q+ := q(tk+1),
(5.33)

where q stands for any other quantity, including ξi, u, and ŝi(·).

Lemma 5.4.1: Consider the system Σ−D and suppose that conditions A5.3.1 and A5.3.2 hold. Pick any sets

Ωξ and Ωx as in Remark 5.4.1, and suppose that for some iteration k ∈ N, u(tk) ∈ Ωu and x(tk) ∈ Ωx. Then, there

exists a function γ(·) ∈ K∞, a function σ(·) ∈ L and a number Lγ ∈ R+ such that

‖z+‖2 ≤ σ(T )
[

2Lγ‖z‖2 + γ(2‖l(u)− l(u+)‖2)
]

. (5.34)

Proof. A well known fact that follows from converse Lyapunov theory (q.v. Theorem 4.17 in [80], for example),

the characterization of definite functions in terms of comparison functions (q.v. Lemma 4.3 in [80], or the discus-

sion in §24.B in [62] for example) and the properties of comparison functions (q.v. Lemma 4.2 in [80] or §24.A

in [62]), is that A5.3.2 implies the existence of a function β (·, ·) ∈ KL , such that for a fixed u ∈ R
m and any

t > t0, the trajectories of Σ′ can be bounded as

‖z(t)‖ ≤ β (‖z(t0)‖, t − t0). (5.35)

Let g1 : s 7→ s
1/2 and g2 : s 7→ s2. Clearly, both g1 and g2 are K∞-class functions, and therefore s 7→ g2(β (g1(s), t))∈

K (q.v. Lemma 4.2, [80]). Moreover, since the composition of an increasing and a decreasing function is a

decreasing function, the composition t 7→ g2(β (g1(s), t)) is decreasing. Consequently, the function β̃ : (s, t) 7→
g2(β (g1(s), t)) is a KL -class function. Observing that β̃ (s2, t)≡ β 2(s, t), we write

‖z(t)‖2 ≤ β̃ (‖z(t0)‖2, t − t0).

Lemma 8 in [143] states that for any KL -class function β̃ (·, ·), there exist γ ∈ K∞ and σ̃ ∈ K∞ such that for

all [s, t]T ∈ R
2
+,

β̃ (s, t)≤ γ(s)σ̃(e−t).

We define σ : t 7→ σ̃(e−t). It is easy to see that since t 7→ e−t ∈ L and σ̃ ∈ K∞, the composition σ is an L -class

function (q.v. property (a) in §24.A in [62]). We therefore have that

‖z(t)‖2 ≤ σ(t − t0)γ(‖z(t0)‖2). (5.36)

Let us now consider the kth iteration of the decision updating processes D , and suppose that u(tk) ∈ Ωu and
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x(tk) ∈ Ωx. From (5.36), we have that

‖z(t−k+2)‖2 ≤ σ(t−k+2 − tk+1)γ(‖z(tk+1)‖2)

= σ(T )γ(‖x(tk+1)− l(u(tk+1))‖2) (5.37)

= σ(T )γ(‖x(t−k+1)− l(u(t−k+1))+ l(u(t−k+1))− l(u(tk+1))‖2) (5.38)

≤ σ(T )γ(2‖z(t−k+1)‖2 +2‖l(u(tk))− l(u(tk+1))‖2), (5.39)

where (5.37) follows from the definition of the transient error in (5.8), (5.38) follows from the fact that all trajec-

tories of a system such as Σ are continuous, and (5.39) follows from Young’s inequality and the monotonicity of

γ(·).

From the construction of Ω̂x in Remark 5.4.1, x(tk) ∈ Ωx =⇒ x(t−k+1) ∈ Ω̂x, while u(t−k+1) = u(tk) ∈ Ωu.

Therefore in (5.39),

‖z(t−k+1)‖ ≤ rz = max
x∈Ω̂x, u∈Ωu

‖x− l(u)‖.

Let

rl = max
u∈Ω̂u

‖l(u)‖.

The numbers rz and rl are well defined because Ωu, Ω̂u and Ω̂x are compact and l(·) is continuous1.

Since γ is continuous, it is Lipschitz continuous on [0,2r2
z + 4r2

l ] with some constant Lγ . Using the notation

defined in (5.32) and (5.33), we thus obtain

‖z+‖2 ≤ σ(T )γ(2‖z‖2 +2‖l(u)− l(u+)‖2)

= σ(T )γ(2‖z‖2 +2‖l(u)− l(u+)‖2)−σ(T )γ(2‖l(u)− l(u+)‖2)

+σ(T )γ(2‖l(u)− l(u+)‖2)

≤ σ(T )2Lγ‖z‖2 +σ(T )γ(2‖l(u)− l(u+)‖2),

which was to be shown. �

5.4.2 The Closed-Loop Evolution of D

Lemma 5.4.1 shows that when u = u+ for all k ∈ N, one may select T such that the sequence (‖z(t−k+1)‖)∞
k=1

converges monotonically to ‖z‖= 0. As expected, the presence of the decision updating processes Di perturbs the

evolution of the dynamics Σ′. Analogously, we now quantify the effect that the dynamics Σ′ have on the otherwise

unperturbed evolution of consensus optimization schemes of the form (5.18).

Using our notational convention in (5.32) and (5.33), we express ŝi(yi(t
−
k+1)) in terms of si(u) in (5.21) as

1The compactness of Ω̂u follows from the compactness of Ωx, Ωu, and the continuity of h(·). The compactness of Ω̂x follows from the

asymptotic stability of l(u) (for any u) for Σ and arguments analogous to those used in the proof of Claim 2.5.2 (q.v. the proof of Theorem

2.5.1). Namely, it can be shown that when a point l(u) is globally asymptotically stable for Σ, the positive semiorbits of points inside any

compact set form another compact set containing l(u).
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follows.

ŝi(yi(t
−
k+1)) = yi(t

−
k+1)

= hi(x(t
−
k+1))

= hi(z(t
−
k+1)+ l(u(t−k+1)))

= hi(z+ l(u))

= hi(l(u))− phi

= si(u)− phi,

where

phi = hi(l(u))−hi(z+ l(u)), (5.40)

and si(·) is as in (5.21). Then, using (5.21), equation (5.23) can be written as

D :

{

ξ+ = (A⊗ Im)ξ −αs(1N ⊗u)+α ph

u = E(A⊗ Im)ξ , ∀t ∈ [tk, tk+1), ∀k ∈ N,
(5.41)

where

s(1N ⊗u) =









s1(u)
...

sN(u)









, (5.42)

ph = [ph
T
1 , . . . , ph

T
N ]

T , (5.43)

and E is as in (5.24).

The Mean and Deviation Dynamics

We denote the agents’ mean estimate of some u∗ ∈U∗ by µ , and we define it as

µ , 1
N
(1T

N ⊗ Im)ξ . (5.44)

Following the arguments in §3.4.1, we observe that based on (5.41), this mean estimate evolves according to

µ+ = 1
N
(1T

N ⊗ Im)(A⊗ Im)ξ − α
N
(1T

N ⊗ Im)s(1N ⊗u)+ α
N
(1T

N ⊗ Im)ph

= µ − α
N
(1T

N ⊗ Im)s(1N ⊗u)+ α
N
(1T

N ⊗ Im)ph

= µ − α
N
(1T

N ⊗ Im)s(1N ⊗µ)+ α
N
(1T

N ⊗ Im)ps +
α
N
(1T

N ⊗ Im)ph

= µ − α
N

so(µ)+
α
N
(1T

N ⊗ Im)ps +
α
N
(1T

N ⊗ Im)ph (5.45)

where so(·) is as in (5.30), and

ps = s(1N ⊗µ)− s(1N ⊗u) =









s1(µ)− s1(u)
...

sN(µ)− sN(u)









. (5.46)
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We denote the vector of deviations from this mean by ζ = [ζ T
1 , . . . ,ζ T

N ]T ∈ R
Nm, and we define it as

ζ = (M⊗ Im)ξ , (5.47)

where M is as in (3.27). Equivalently, for each i ∈ V , ζi = ξi − µ . Based on (5.41), the deviation variable ζ

evolves according to

ζ+ = (M⊗ Im)(A⊗ Im)ξ −α(M⊗ Im)s(1N ⊗u)+α(M⊗ Im)ph

= (A⊗ Im)ζ −α(M⊗ Im)s(1N ⊗u)+α(M⊗ Im)ph. (5.48)

Following the developments of Lemmas 3.6.1 and 3.6.2, in the next two lemmas we examine the evolution of

the function VO = N‖µ −PU∗(µ)‖2 along the sequences of (5.45), and the evolution of the function VC = ‖ζ‖2

along the sequences of (5.48).

Lemma 5.4.2 (Preliminary Mean Subsystem Analysis): Consider the function VO(µ) = N‖µ −PU∗(µ)‖2 and

the system (5.45), and suppose that A5.3.3 holds. Then, for all µ generated by (5.45),

∆VO(µ)≤−αφ(µ)+ τ1 + τ2,

where

τ1 = 2α
√

N‖µ −PU∗(µ)‖ · ‖h(l(µ))−h(z+ l(u))‖ (5.49)

τ2 =
α2

N
‖(1T

N ⊗ Im)h(z+ l(u))‖2, (5.50)

Proof. Following the proof of Lemma 3.6.1, we see that

∆VO(µ)≤ N‖µ − α
N

so(µ)+
α
N
(1T

N ⊗ Im)ps +
α
N
(1T

N ⊗ Im)ph −PU∗(µ)‖2

−N‖µ −PU∗(µ)‖2,

≤ N‖α
N
(1T

N ⊗ Im)(ps + ph)− α
N

so(µ)‖2

+2α(µ −PU∗(µ))T
(

(1T
N ⊗ Im)(ps + ph)− so(µ)

)

=−2α(µ −PU∗(µ))T so(µ)+2α(µ −PU∗(µ))T (1T
N ⊗ Im)(ps + ph)

+ α2

N
‖(1T

N ⊗ Im)(ps + ph − s(1N ⊗µ))‖2. (5.51)

We may apply (5.31) to the first term in (5.51) to obtain

−2α(µ −PU∗(µ))T so(µ)≤−αφ(µ), (5.52)

where φ(·) is a function having the properties specified in Definition 3.3.1. Using (5.52) and bounding the second

term, we write

∆VO(µ)≤−αφ(µ)+2α
√

N‖µ −PU∗(µ)‖ · ‖ps + ph‖

+ α2

N
‖(1T

N ⊗ Im)(ps + ph − s(1N ⊗µ))‖2. (5.53)
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We note that

ps + ph = s(1N ⊗µ)− s(1N ⊗u)+ s(1N ⊗u)−h(z+ l(u))

= s(1N ⊗µ)−h(z+ l(u)) (5.54)

= h(l(µ))−h(z+ l(u)). (5.55)

We use (5.54) and (5.55) to write (5.53) as

∆VO(µ)≤−αφ(µ)+2α
√

N‖µ −PU∗(µ)‖ · ‖h(l(µ))−h(z+ l(u))‖

+ α2

N
‖(1T

N ⊗ Im)h(z+ l(u))‖2,

≤−αφ(µ)+ τ1 + τ2, (5.56)

which was to be shown. �

Lemma 5.4.3 (Preliminary Deviation Subsystem Analysis): Consider the function VC (ζ ) = ‖ζ‖2 and the system

(5.48), where A satisfies A3.3.1. Then, for all ζ generated by (5.48),

∆VC (ζ )≤−(1−κ)‖ζ‖2 + τ3 + τ4

where

τ3 = α2‖(M⊗ Im)h(z+ l(u))‖2 (5.57)

τ4 =−2αh(z+ l(u))T (A⊗ Im)ζ (5.58)

Proof. Following the proof of Lemma 3.6.2, we see that

∆VC (ζ ) = ‖(A⊗ Im)ξ −αs(1N ⊗u)+α ph‖2 −‖ζ‖2

= ‖(A⊗ Im)ξ −αh(z+ l(u))‖2 −‖ζ‖2

≤−(1−κ)‖ζ‖2 +α2‖(M⊗ Im)h(z+ l(u))‖2 −2αh(z+ l(u))T (A⊗ Im)ζ

≤−(1−κ)‖ζ‖2 + τ3 + τ4 (5.59)

where we have applied A3.3.1 to obtain the first term in (5.59). �

5.4.3 Composite Lyapunov Analysis

In the following two lemmas, we propose a composite Lyapunov function candidate V (µ,ζ ,z) and derive an

expression for an upper bound for ∆V (µ,ζ ,z). In the next Lemma, which is analogous to Lemma 3.6.3, we

simplify the expression that provides an upper bound on ∆VO +∆VC .

Lemma 5.4.4 (Preliminary Composite Analysis for D): Consider the system (5.45)-(5.48), and suppose that all

of the conditions of Lemmas 5.4.2 and 5.4.3 are satisfied. Then, the function VD (µ,ζ ) = VO(µ) +VC (ζ ) =

N‖µ −PU∗(µ)‖2 +‖ζ‖2 is such that for all µ+ and ζ+ generated by (5.45)-(5.48),

∆VD (µ,ζ )≤−αφ(µ)− (1−κ)‖ζ‖2 + τ1 + τ4

+α2‖h(z+ l(u))‖2,
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where τ1 and τ4 are as in Lemma 5.4.2 and Lemma 5.4.3, respectively.

Proof.

Claim 5.4.1: For any quantity q ∈ R
Nm, it holds that

1
N
‖(1T

N ⊗ Im)q‖2 +‖(M⊗ Im)q‖2 = ‖q‖2.

Proof.

1
N
‖(1T

N ⊗ Im)q‖2 +‖(M⊗ In)q‖2 = 1
N

qT (1T
N ⊗ Im)

T (1T
N ⊗ Im)q+qT (M⊗ Im)q

= qT
(

1
N

1N1T
N ⊗ Im +(M⊗ Im)

)

q

= qT
(

( 1
N

1N1T
N +M)⊗ Im

)

q

= qT
(

IN ⊗ Im

)

q

= ‖q‖2

♦

Applying this claim to the sum τ2 + τ3 yields the desired result. �

In the next lemma we refine the conclusions of Lemmas 5.4.4 and 5.4.1.

Lemma 5.4.5: Consider the system Σ′−D and suppose that the conditions of Lemmas 5.4.4 and 5.4.1 hold. Let

Ωξ and Ωx be arbitrarily chosen sets as described in Remark 5.4.1, and let the sets Ω̂x, Ω̂u and Ω̂µ be defined from

Ωξ and Ωx, as described in Remark 5.4.1. Then, whenever u(tk) ∈ Ωu and x(tk) ∈ Ωx for some iteration k ∈ N, it

holds for the composite Lyapunov function candidate

V (µ,ζ ,z) = N‖µ −PU∗(µ)‖2 +‖ζ‖2 +‖z‖2, (5.60)

that

∆V (µ,ζ ,z)≤−αφ(µ)+α2Kµ‖µ −PU∗(µ)‖2 −Kζ‖ζ‖2 −Kz‖z‖2 +K, (5.61)

where

Kµ = N
σ(T ) +8LhL2

l (1+4σ(T )Lγ L2
l +

1
σ(T ) ) (5.62)

Kζ = 1−κ −σ(T )κ
(

1+2L2
h +16Lγ L2

l (1+αLhL2
l )
)

−4α2κ( 1
σ(T ) +1)L2

hL2
l (5.63)

Kz = 1−2σ(T )
(

Lγ +L2
h +4α2Lγ L2

l L2
h

)

−2α2( 1
σ(T ) +1)L2

h (5.64)

K = 8α2( 1
σ(T ) +1)s∗+σ(T )γ(32α2L2

l s∗), (5.65)

σ(·) and Lγ are as in Lemma 5.4.1,

s∗ = max
µ∈U∗

‖h(l(µ))‖2, (5.66)

Lh is the Lipschitz constant associated to h(·) on Ω̂x, Ll is the Lipschitz constant associated to l(·) on Ω̂u, and κ

is as in (5.22).
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Proof. Combining the conclusions of Lemmas 5.4.4 and 5.4.1, we see that

∆V (µ,ζ ,z)≤−αφ(µ)− (1−κ)‖ζ‖2 − (1−2Lγ σ(T ))‖z‖2

+ τ1 + τ4 +α2‖h(z+ l(u))‖2

+σ(T )γ(2‖l(u)− l(u+)‖2). (5.67)

The following three claims are useful in bounding the terms in (5.67).

Claim 5.4.2: For all u ∈ R
m,

‖u+−u‖2 ≤ 8κ‖ζ‖2 +2α2‖h(z+ l(u))‖2.

Proof. Using (5.41), we write

‖u+−u‖2 = ‖E(A⊗ Im)ξ
+−E(A⊗ Im)ξ‖2

= ‖E(A⊗ Im)(ξ
+−ξ )‖2

≤ ‖(A⊗ Im)(ξ
+−ξ )‖2

≤ κ‖ξ+−ξ‖2

= κ‖(A⊗ Im)ξ −αh(z+ l(u))−ξ‖2

= κ‖((A− IN)⊗ Im)ξ −αh(z+ l(u))‖2

= κ‖((A− IN)⊗ Im)ζ −αh(z+ l(u))‖2,

where the last equality is obtained by noting that ξ = ζ +1N ⊗µ , and that ((A− IN)⊗ Im)(1N ⊗µ) = 0. Letting

Q = (A− IN)
2 and applying Young’s inequality to the above expression, we obtain

‖u+−u‖2 ≤ κ2ζ T (Q2 ⊗ Im)ζ +2α2‖h(z+ l(u))‖2.

The spectral mapping theorem implies that for any λ ∈ σ(A), λ 2 − 2λ + 1 ∈ σ(Q2). By A3.3.1, λ ∈ (−1,1],

for any λ ∈ σ(A). Therefore, λo ∈ [0,4], for any λo ∈ σ(Q2). With this observation we may bound the above

expression as

‖u+−u‖2 ≤ κ8λ1(A)‖ζ‖2 +2α2‖h(z+ l(u))‖2

= 8κ‖ζ‖2 +2α2‖h(z+ l(u))‖2,

and the claim is proved. ♦

Claim 5.4.3: For all u and µ in R
m,

‖u−µ‖2 ≤ κ‖ζ‖2

Proof. We recall from (5.23) that u = E(A⊗ Im)ξ , where E is as in (5.24). From the definition of the deviation
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variable in (5.47), we see that ξ = ζ +1N ⊗µ , and therefore

u = E(A⊗ Im)ξ

= E(A⊗ Im)ζ +E(A⊗ Im)(1N ⊗µ)

= E(A⊗ Im)ζ +µ,

owing to the properties of the Kronecker product, the row-stochasticity of A, and the fact that E(1N ⊗ µ) = µ .

Therefore,

‖u−µ‖2 ≤ ‖E(A⊗ Im)ζ‖2

≤ ‖(A⊗ Im)ζ‖2

≤ κ‖ζ‖2,

and the claim is proved. ♦

Claim 5.4.4: For all u ∈ Ωu and z ∈ Ωz

‖h(z+ l(u))‖2 ≤ 2L2
h‖z‖2 +4L2

hL2
l κ‖ζ‖2 +8L2

hL2
l ‖µ −PU∗(µ)‖2 +8s∗.

Proof. The continuity of l(·) implies its local Lipschitz continuity, and we let Ll denote its Lipschitz constant on

the set Ω̂µ , defined in Remark 5.4.1. Moreover, the continuity of h(·) implies its Lipschitz continuity, and we let

Lh denote its Lipschitz constant on the set Ω̂x, defined in Remark 5.4.1. We may then write

‖h(z+ l(u))‖2 = ‖h(z+ l(u))−h(l(u))+h(l(u))‖2

≤ 2‖h(z+ l(u))−h(l(u))‖2 +2‖h(l(u))−h(l(µ))+h(l(µ))‖2

≤ 2L2
h‖z‖2 +4‖h(l(u))−h(l(µ))‖2 +4‖h(l(µ))−h(l(PU∗(µ)))+h(l(PU∗(µ)))‖2

≤ 2L2
h‖z‖2 +4L2

hL2
l ‖u−µ‖2 +8‖h(l(µ))−h(l(PU∗(µ)))‖2 +8‖h(l(PU∗(µ)))‖2

≤ 2L2
h‖z‖2 +4L2

hL2
l ‖u−µ‖2 +8L2

hL2
l ‖µ −PU∗(µ)‖2 +8‖h(l(PU∗(µ)))‖2.

Then, by Claim 5.4.3 and the definition of s∗ in (5.66), we obtain

‖h(z+ l(u))‖2 ≤ 2L2
h‖z‖2 +4L2

hL2
l κ‖ζ‖2 +8L2

hL2
l ‖µ −PU∗(µ)‖2 +8s∗,

which was to be shown. ♦

Claim 5.4.5: For all µ ∈ Ωµ and z ∈ Ωz,

‖h(l(µ))−h(z+ l(u))‖2 ≤ 2L2
hκ‖ζ‖2 +2L2

h‖z‖2.

Proof.

‖h(l(µ))−h(z+ l(u))‖2 ≤ L2
h‖l(µ)− l(u)− z‖2

≤ 2L2
h‖l(µ)− l(u)‖2 +2L2

h‖z‖2.
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By Claim 5.4.3, we obtain

‖h(l(µ))−h(z+ l(u))‖2 ≤ 2L2
hκ‖ζ‖2 +2L2

h‖z‖2,

which was to be shown. ♦

We now return to expression (5.67). Recalling the expressions for τ1 and τ4 from Lemmas 5.4.2 and 5.4.3, we

write

∆V (µ,ζ ,z)≤−αφ(µ)− (1−κ)‖ζ‖2 − (1−2Lγ σ(T ))‖z‖2

+2α
√

N‖µ −PU∗(µ)‖ · ‖h(l(µ))−h(z+ l(u))‖
−2αh(z+ l(u))T (A⊗ Im)ζ +α2‖h(z+ l(u))‖2

+σ(T )γ(2‖l(u)− l(u+)‖2). (5.68)

We apply Young’s inequality to the fourth and fifth terms above to obtain

∆V (µ,ζ ,z)≤−αφ(µ)− (1−κ)‖ζ‖2 − (1−2Lγ σ(T ))‖z‖2

+α2 N
ε1
‖µ −PU∗(µ)‖2 + ε1‖h(l(µ))−h(z+ l(u))‖2

α2 1
ε2
‖h(z+ l(u))‖2 + ε2κ‖ζ‖2 +α2‖h(z+ l(u))‖2

+σ(T )γ(2‖l(u)− l(u+)‖2). (5.69)

which holds for any positive, real ε1 and ε2. Choosing ε1 = ε2 = σ(T ) and combining like terms, we obtain

∆V (µ,ζ ,z)≤−αφ(µ)− (1−κ)‖ζ‖2 − (1−2Lγ σ(T ))‖z‖2

+α2 N
σ(T )‖µ −PU∗(µ)‖2 +σ(T )‖h(l(µ))−h(z+ l(u))‖2

α2( 1
σ(T ) +1)‖h(z+ l(u))‖2 +σ(T )κ‖ζ‖2

+σ(T )γ(2‖l(u)− l(u+)‖2). (5.70)

Next we examine the last term in the above expression. From the definition of Ω̂u, it follows that both u and

u+ belong to Ω̂u whenever u ∈ Ωu. Therefore we may write

γ(2‖l(u)− l(u+)‖2)≤ γ(2L2
l ‖u−u+‖2)

≤ γ(16L2
l κ‖ζ‖2 +4L2

l α2‖h(z+ l(u))‖2), (5.71)

where the second inequality is obtained by applying Claim 5.4.2. Adding and subtracting γ(4L2
l α2‖h(z+ l(u))‖2)

to the right-hand side, we obtain

γ(2‖l(u)− l(u+)‖2)≤ γ(16L2
l κ‖ζ‖2 +4L2

l α2‖h(z+ l(u))‖2)± γ(4L2
l α2‖h(z+ l(u))‖2)

≤ 16Lγ L2
l κ‖ζ‖2 + γ(4L2

l α2‖h(z+ l(u))‖2), (5.72)
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where Lγ is as in the proof of Lemma 5.4.1. Next, recalling Claim 5.4.4, we write

γ(2‖l(u)− l(u+)‖2)≤ 16Lγ L2
l κ‖ζ‖2

+ γ(c1‖z‖2 + c2‖ζ‖2 + c3‖µ −PU∗(µ)‖2 +32L2
l α2s∗)

± γ(c2‖ζ‖2 + c3‖µ −PU∗(µ)‖2 +32L2
l α2s∗)

± γ(c3‖µ −PU∗(µ)‖2 +32L2
l α2s∗)

± γ(32L2
l α2s∗), (5.73)

where

c1 = 8L2
l α2L2

h

c2 = 16α2L2
hL4

l κ (5.74)

c3 = 32α2L2
hL4

l .

Expression (5.73) becomes

γ(2‖l(u)− l(u+)‖2)≤ 16Lγ L2
l κ‖ζ‖2 +Lγ c1‖z‖2 +Lγ c2‖ζ‖2 +Lγ c3‖µ −PU∗(µ)‖2 + γ(32L2

l α2s∗)

= 32α2Lγ L2
hL4

l ‖µ −PU∗(µ)‖2 +16Lγ L2
l κ(1+α2L2

hL2
l )‖ζ‖2

+8α2Lγ L2
l L2

h‖z‖2 + γ(32L2
l α2s∗) (5.75)

Finally, combining expressions (5.75) and (5.70), applying Claims 5.4.5 and 5.4.4 to the relevant terms in

(5.70) and then combining like terms, we obtain the sought expression (5.61). �

5.5 Semiglobal, Practical, Asymptotic Stability for Σ−D

Using the conclusions of Lemma 5.4.5, we derive small-gain conditions on the tunable parameters α and T

appearing in the Σ−D interconnection, ensuring that V (µ,ζ ,z) is a valid Lyapunov function for the system

Σ−D . We then show how the conditions of Theorem 2.5.1 can be verified for V (µ,ζ ,z).

5.5.1 Small Gain Conditions

Theorem 5.5.1: Consider the function Ŵ : (µ,ζ ,z) 7→ −∆V (µ,ζ ,z)+K, given by

Ŵ (µ,ζ ,z;α,T ) = αφ(µ)−α2Kµ‖µ −PU∗(µ)‖2 +Kζ‖ζ‖2 +Kz‖z‖2,

where Kµ , Kζ , Kz and K are as in (5.62), (5.63), (5.64) and (5.65) respectively. For any r̂ ∈R++ and δ̂ ∈R++, the

function Ŵ (·, ·, ·;α,T ) is positive definite on B̄r̂(U
∗)×R

Nm ×R
n, with respect to B̄

δ̂
(U∗)×{0}×{0}, provided

that all of the following conditions hold:

σ(T )
(

1+2L2
h +16Lγ L2

l (1+αLhL2
l )
)

<
1−κ

κ
(5.76)

σ(T )Lγ

(

1+Lγ +4α2L2
hL2

l

)

+α2( 1
σ(T ) +1)L2

h <
1

2
(5.77)
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and

α
(

N
σ(T ) +8LhL2

l (1+4σ(T )Lγ L2
l +

1
σ(T ) )

)

‖µ −PU∗(µ)‖2 < φ(µ), ∀µ ∈ B̄r̂(U
∗)\B

δ̂
(U∗). (5.78)

Moreover, for any given set of problem parameters {N,κ,Lγ ,Ll ,Lh}, there exist positive, real numbers ᾱ and T̄

such that (5.76), (5.77) and (5.78), are satisfied whenever α ∈ (0, ᾱ) and T ∈ (T̄ ,∞).

Proof. Conditions (5.76), (5.77) and (5.78) follow directly by imposing the positive definiteness of the terms

Kζ‖ζ‖2, Kz‖z‖2 and αφ(µ)−α2Kµ‖µ −PU∗(µ)‖2 in Ŵ (·, ·, ·;α,T ), respectively.

The following is one way to construct ᾱ and T̄ . From the properties of L -class functions such as σ(·), it is

evident that for any c ∈ R++, there exists a Tc such that σ(Tc)< c.

Let αζ = 1, and take Tζ to be such that

σ(Tζ )
(

1+2L2
h +16Lγ L2

l (1+αζ LhL2
l )
)

<
1−κ

κ
.

Then, condition (5.76) is satisfied whenever α ∈ (0,αζ ) and T ∈ (Tζ ,∞).

Next, take Tz to be such that

σ(Tz)Lγ

(

1+Lγ +4α2
ζ L2

hL2
l

)

<
1

4

where αζ = 1, as above. Then take αz to be such that

α2
z

(

max{ 1
σ(Tζ )

, 1
σ(Tz)

}+1
)

L2
h <

1

4

Then, conditions (5.76) and (5.77) are satisfied whenever α ∈ (0,min{αζ ,αz}) and T ∈ (max{Tζ ,Tz},∞).

To satisfy condition (5.78), we apply Lemma 2.5.2, which states that for any positive, real numbers Kφ , r̂ and

δ̂ , there exists a number αφ ∈ R++ such that

αKφ‖µ −PU∗(µ)‖2 ≤ φ(µ) ∀µ ∈ B̄r̂(U
∗)\B

δ̂
(U∗), (5.79)

whenever α ∈ (0,αφ ). The proof of Lemma 2.5.2 indicates that one such αφ can be taken as

αφ =
c

Kφ r̂2
, (5.80)

where c ∈ R++ is such that the c-sublevel set of φ(·) is the largest sublevel set of φ(·) to be strictly contained

inside B̄
δ̂
(U∗) (by Lemma 2.5.1, such a c always exists). Let

T̄ = max{Tζ ,Tz}. (5.81)

Then, taking any

Kφ > N
σ(T̄ )

+8LhL2
l (1+4σ(T̄ )Lγ L2

l +
1

σ(T̄ )
) (5.82)

means that condition 5.78 is satisfied whenever α ∈ (0,αφ ).

In conclusion, the small-gain conditions (5.76), (5.77) and (5.78) are all satisfied whenever α ∈ (0, ᾱ), where

ᾱ = min{αζ ,αz,αφ}, (5.83)
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and T ∈ (T̄ ,∞), where T̄ is as in (5.81). �

The following is a restatement of Theorem 2.5.1 using notation that is more suitable to the contents of this

chapter. The associated definitions and the proof of the theorem are straightforwardly adapted.

Theorem 5.5.2: Consider the system

q+ = f (q;α,T ), q ∈ R
ν , (5.84)

where f : Rν → R
ν is parametrized by α ∈ R++ and T ∈ R++. Suppose there exists a compact set Γ0 ⊂ R

ν and

a function V ∈C0[Rν ,R+] which is radially unbounded and positive definite with respect to Γ0 on R
ν . Suppose

further that for every r ∈ R++, there exists a number ᾱ ∈ R++ and a number T̄ ∈ R++ such that whenever

α ∈ (0, ᾱ) and T ∈ (T̄ ,∞),

V (q+)−V (q)≤W (q;α,T ), ∀q ∈ B̄r(Γ0), (5.85)

where the function W ∈C0[Rν ,R], parameterized by α and T , has the following properties:

• P1: There exists bW (α,T ) ∈ R++ such that

W (q;α,T )≤ bW (α,T ), ∀q ∈ B̄r(Γ0),

and limα↓0 bW (α,T ) = 0.

• P2: The set

Z(α,T ) = {q ∈ R
ν
∣

∣W (q;α,T )≥ 0} (5.86)

contains Γ0.

• P3: For every δ ∈ (0,r), there exists an αZ ∈R++ and a TZ ∈R++ such that whenever α ∈ (0,min{αZ , ᾱ})
and T ∈ (max{T̄ ,TZ},∞), Z(α,T )⊆ B̄δ (Γ0).

Then, Γ0 is semiglobally practically asymptotically stable for (5.84). ♦

In the following theorem, we use the results in Theorem 5.5.1 to verify the conditions of Theorem 5.5.2,

thereby showing that the set Γ0 =U∗×{0}×{0} is SPAS for the system (5.45)-(5.48)-(5.34).

Theorem 5.5.3: Suppose that conditions A5.3.1, A5.3.2, A5.3.3, A5.3.4 and A3.3.1 are satisfied. Then, the set

Γ0 =U∗×{0}×{0} ⊂ R
m ×R

Nm ×R
n is SPAS for the system (5.45)-(5.48)-(5.34).

Proof. We apply Theorem 5.5.2, with q = (µT ,ζ T ,zT )T . The function V (q) in (5.60) is continuous, radially

unbounded and positive definite with respect to the set Γ0 =U∗×{0}×{0} on R
m ×R

Nm ×R
n.

Let r ∈ R++ be an arbitrary positive number, and select the sets Ωξ and Ωx in Remark 5.4.1 such that Ωµ ⊃
B̄m

r (U
∗), Ωζ ⊃ B̄Nm

r ({0}) and Ωz ⊃ B̄n
r ({0}). Then, it holds that Ωµ ×Ωζ ×Ωz ⊃ B̄r(Γ0), and by Lemma 5.4.5,

the inequality (5.85) holds on B̄r(Γ0) with

W (µ,ζ ,z;α,T ) =−αφ(µ)+α2Kµ‖µ −PU∗(µ)‖2 −Kζ‖ζ‖2 −Kz‖z‖2 +K, (5.87)

where Kµ , Kζ , Kz and K in (5.62), (5.63), (5.64) and (5.65) correspond to this choice of Ωξ and Ωx.
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Let δ ∈ (0,r) be arbitrary as in P3. In the proof of Theorem 5.5.1, take δ̂ = δ√
3

and r̂ = r. To satisfy condition

(5.78), take T = T̄ , where T̄ is as in (5.81), and select Kφ in (3.64) according to

Kφ =
K

δ̂ 2
+Kµ ,

where the coefficients K and Kµ given in (5.65) and(5.62) are evaluated at α = min{αζ ,αz} and T = T̄ . Let ᾱ

correspond to this choice, according to (5.80) and (5.83).

Then, according to Theorem 5.5.1

W (q;α,T )≤−α(Kφ −Kµ)‖µ −PU∗(µ)‖2 −Kζ‖ζ‖2 −Kz‖z‖2 +K

≤−α2 K

δ̂ 2
‖µ −PU∗(µ)‖2 −Kζ‖ζ‖2 −Kz‖z‖2 +K, (5.88)

for all q ∈
(

B̄m
r (U

∗)\Bm

δ̂
(U∗)

)

×R
Nm×R

n, with Kζ > 0 and Kz > 0, provided α ∈ (0, ᾱ) and T ∈ (T̄ ,∞). In other

words, W (q;α,T )−K < 0 on
(

B̄m
r (U

∗)\Bm

δ̂
(U∗)

)

×R
Nm ×R

n.

From (5.88) and (5.87) together, we observe that on the set B̄m
r (U

∗)
)

×R
Nm ×R

n, which contains the set

B̄r(Γ0), W (q;α,T ) must be bounded by

W (q;α,T )≤ bW (α,T ),

where

bW (α,T ) = α2Kµ δ̂ 2 +K.

Recalling the expression for K given in (5.65) (and the properties of the K -class function γ(·)), we see that

limα↓0 bW (α,T ) = 0, and that P1 is therefore satisfied.

Next, recall that Z(α,T ) denotes the set of all q in R
m+Nm+n for which W (q;α,T ) is non-negative. In partic-

ular,

Z(α,T ) = {q ∈ R
m+Nm+n | αφ(µ)−α2Kµ‖µ −PU∗(µ)‖2 +Kζ‖ζ‖2 +Kz‖z‖2 ≤ K},

from which it is clear that any point in Γ0 = U∗ ×{0}× {0} also belongs to Z(α,T ). Property P2 is thereby

satisfied.

Note that since δ̂ = δ√
3
, B̄δ (Γ0) ⊃ B̄m

δ̂
(U∗)× B̄Nm

δ̂
({0})× B̄n

δ̂
({0}). To show that P3 is satisfied, we aim to

show that for some αZ ∈ R++ and TZ ∈ R++,

B̄δ (Γ0)⊃ B̄m

δ̂
(U∗)× B̄Nm

δ̂
({0})× B̄n

δ̂
({0})

⊃ Sµ ×Sζ ×Sz

⊃ Z(α,T ),

for some sets Sµ , Sζ and Sz, whenever α ∈ (0,min{ᾱ,αZ}) and T ∈ (max{T̄ ,TZ},∞).

Consider the sets

Sµ = {µ ∈ R
m | αφ(µ)−α2Kµ‖µ −PU∗(µ)‖2 ≤ K} (5.89)

Sζ = {ζ ∈ R
Nm | Kζ‖ζ‖2 ≤ K} (5.90)

Sz = {z ∈ R
n | Kz‖z‖2 ≤ K}. (5.91)
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Clearly, for all q = [µT ,ζ T ,zT ]T ∈ Z(α,T ), q also belongs to Sµ ×Sζ ×Sz, and therefore Sµ ×Sζ ×Sz ⊃ Z(α,T ).

Meanwhile, for

B̄m

δ̂
(U∗)× B̄Nm

δ̂
({0})× B̄n

δ̂
({0})⊃ Sµ ×Sζ ×Sz

to hold, it suffices that

B̄m

δ̂
(U∗)⊃ Sµ , (5.92)

B̄Nm

δ̂
({0})⊃ Sζ , and (5.93)

B̄n

δ̂
({0})⊃ Sz. (5.94)

From the definition of B̄Nm

δ̂
({0}), Sζ , K and Kζ , it follows that for α ∈ (0, ᾱ) and T ∈ (T̄ ,∞), (5.93) holds

whenever

8α2s∗+σ(T )γ(16α2Lls
∗)≤ δ 2

3

[

(1−κ)−2L2Nκ
(

σ(T̄ )+2ᾱ2(1+2Lγ Ll)
)

]

. (5.95)

Let α̃ζ and T̃ζ be any positive real numbers such that (5.95) holds whenever α ∈ (0, α̃ζ ) and T ∈ (T̃ζ ,∞).

Similarly, from the definition of B̄n

δ̂
({0}), Sz, K and Kz, it follows that for α ∈ (0, ᾱ) and T ∈ (T̄ ,∞), (5.94)

holds whenever

8α2s∗+σ(T )γ(16α2Lls
∗)≤ δ 2

3

[

(1−2Lγ σ(T̄ ))−2NL2
h

(

σ(T̄ )+ ᾱ2 +2ᾱ2σ(T̄ )Lγ Ll

)

]

. (5.96)

Let α̃z and T̃z be any positive real numbers such that (5.96) holds whenever α ∈ (0, α̃z) and T ∈ (T̃z,∞).

To examine (5.92), recall that ᾱ and T̄ were selected such that for all q ∈
(

B̄m
r (U

∗)\Bm

δ̂
(U∗)

)

×R
Nm ×R

n,

αφ(µ)≥ α2
(K

δ̂
+Kµ

)

‖µ −PU∗(µ)‖2 (5.97)

whenever α(∈ (0, ᾱ) and T ∈ (T̄ ,∞). For each point µo ∈ Sµ , µo is either inside B̄m
r (U

∗)\Bm

δ̂
(U∗), or µo is inside

B̄m

δ̂
(U∗). If µo is inside B̄m

δ̂
(U∗), then it does not contradict the desired relationship (5.92). On the other hand,

if µo is inside B̄m
r (U

∗)\Bm

δ̂
(U∗), then from its membership in Sµ (q.v. (5.89)) and the fact that it satisfies (5.97)

implies that

α2
(K

δ̂
+Kµ

)

‖µo −PU∗(µo)‖2 −α2Kµ‖µo −PU∗(µo)‖2 ≤ K, (5.98)

which means that µo satisfies

α2‖µo −PU∗(µo)‖2 ≤ δ̂ 2.

Clearly then, µo belongs to B̄m

δ̂
(U∗) whenever α ∈ (0,min{ᾱ, α̃µ}), where α̃µ = 1.

In summary, the containment relationships (5.92), (5.93) and (5.94) hold whenever α ∈ (0,min{ᾱ,αZ}) and

T ∈ (max{T̄ ,TZ},∞), where

αZ = min{α̃µ , α̃ζ , α̃z}, and (5.99)

TZ = max{T̃ζ ,Tz}, (5.100)

thus demonstrating that P3 in Theorem 5.5.3 is also satisfied. �
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5.6 Final Remarks

We refined the ideas introduced in [93], and proposed an application of numerical consensus optimization algo-

rithms to the synthesis problem of decentralized coordination control for dynamic multiagent systems. Using the

analytic framework developed in Chapter 3, we derived a set of conditions, involving relevant problem param-

eters, under which coordination control schemes involving the dynamic interaction of discrete-time consensus

optimization algorithms and continuous-time dynamical systems are guaranteed to render stable behavior. To

extend this work, we will consider problem settings in which the output yi = h(x) = J(z+ l(u)), and devise a

strategy to estimate si(u) from several measurements of yi within a single iteration of D . The first candidate for

such a strategy is the finite difference method, as explored in [90].



Chapter 6

Reduced Consensus Optimization

6.1 Synopsis

In this brief chapter, we develop the method of reduced consensus optimization (RCO), which generalizes the

discrete-time consensus optimization algorithm (1.33) by allowing agents to update only a subset of the optimiza-

tion variables at each iteration. Based on this method, we propose a decentralized coordination control strategy

for general networked multiagent systems involving static agents. The agents’ individual goals are assumed to

be given in terms of privately known objective functions, and the optimal network configuration is encoded as

the optimizer of the sum of these functions. In implementing a coordination control strategy based on reduced

consensus optimization, agents need not be aware of the overall network size or topology. Moreover, depend-

ing on the interference structure, the number of real-valued variables updated and exchanged among agents at

each iteration may be substantially reduced relative to that of coordination control strategies based on consensus

optimization.

This chapter is based primarily on [88]. The idea for the RCO algorithm arose from the author’s work on the

adaptive content-caching problem [88] and from her encounter with the notion of “partial overlaps” found in [154].

It appears that a related idea may have also been described in [163], albeit in the context of decomposition-based

methods.

6.2 Introduction

Consider static DCCP given by Problem 1.2.3, and the CO-based solution (1.40) proposed in Example 1.4.1.

Some favourable features of this solution include the fact that in order to implement (1.40), an agent does not

require knowledge of other agents’ actions, except those in its graphical neighborhood, and the fact that agent i

need not be aware of other agents’ private objectives or the collective objective. However, each agent needs to

know how many other agents are on the network, since it must maintain an estimate of each component of the

collective minimizer x∗. This is a cumbersome requirement; each time the network undergoes a structural mod-

ification such as the addition of a node, each preexisting node must modify its update rule to include additional

real variables representing an estimate of the added node’s optimal action. Moreover, in NMAS applications in-

volving large networks in which the actions of graphically distant agents have a negligible influence on an agent’s

individual performance, having each agent maintain an estimate of the entire optimal network configuration x∗

seems unnecessary, and excessive. To make this point clear, we provide the following simple example.

114
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Example 6.2.1: Consider a DT-SDCCP involving three agents whose costs are of the form indicated in Figure

6.1. Suppose that agent i’s decision variable is given by xi ∈R, and that as in Example 1.4.1, agent i has access to

the analytic structure of the gradient of his private cost, so that at any time he may evaluate this gradient anywhere

within R
3, regardless of the valuation of the other agents’ current actions. If the agents are to coordinate their

1 2 3

J1(x1, x2, x3)
J2(x2) J3(x3)

Figure 6.1: An example of a simple network of agents and its associated interference digraph. A dashed edge

starting from node i and terminating at node j indicates that the actions of agent i interfere with the cost of agent

j. The solid edges correspond to the communication graph GC.

actions in order to achieve the collective objective (q.v. P5 in §1.2.2) according to the CO-based decision updating

process proposed in Example 1.4.1, they each update and exchange amongst themselves three variables at each

iteration. For this example, one possible implementation of (1.40) is given by

D1 :























































y1 = ∇xJ1(x)|x=ξ1

ξ+
1,1 =

2
3
ξ1,1 +

1
3
ξ2,1 −αy1,1

ξ+
1,2 =

2
3
ξ1,2 +

1
3
ξ2,2 −αy1,2

ξ+
1,3 =

2
3
ξ1,3 +

1
3
ξ2,3 −αy1,3

ν1 = ξ1 = [ξ1,1,ξ1,2,ξ1,3]
T

x1 = ξ1,1

(6.1)

D2 :























































y2 = ∇xJ2(x)|x=ξ2

ξ+
2,1 =

1
3
ξ1,1 +

1
3
ξ2,1 +

1
3
ξ3,1 −αy2,1

ξ+
2,2 =

1
3
ξ1,2 +

1
3
ξ2,2 +

1
3
ξ3,2 −αy2,2

ξ+
2,3 =

1
3
ξ1,3 +

1
3
ξ2,3 +

1
3
ξ3,3 −αy2,3

ν2 = ξ2 = [ξ2,1,ξ2,2,ξ2,3]
T

x2 = ξ2,2

(6.2)

D3 :























































y3 = ∇xJ1(x)|x=ξ3

ξ+
3,1 =

1
3
ξ2,1 +

2
3
ξ3,1 −αy3,1

ξ+
3,2 =

1
3
ξ2,2 +

2
3
ξ3,2 −αy3,2

ξ+
3,3 =

1
3
ξ2,3 +

2
3
ξ3,3 −αy3,3

ν3 = ξ3 = [ξ3,1,ξ3,2,ξ3,3]
T

x3 = ξ3,3.

(6.3)

Figure 6.1 indicates that the actions of agent 1 have no effect on the cost of either agent 2 or agent 3, and yet both

agents 2 and 3 update variables that may be interpreted as their “suggestions” to agent 1 on how to behave. Based
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on the cost structure indicated in Figure 6.1, we notice that y2,1 = y3,1 = 0.

As an alternative solution to this DT-SDCCP, consider the following set of decision update rules.

D1 :























































y1 = ∇xJ1(x)|x=ξ1

ξ+
1,1 = ξ1,1 −αy1,1

ξ+
1,2 =

1
2
ξ1,2 +

1
2
ξ2,2 −αy1,2

ξ+
1,3 =

2
3
ξ1,3 +

1
3
ξ2,3 −αy1,3

ν1 = [ξ1,2,ξ1,3]
T

x1 = ξ1,1

(6.4)

D2 :











































y2 = ∇xJ2(x)|x=ξ2

ξ+
2,2 =

1
2
ξ1,2 +

1
2
ξ2,2 −αy2,2

ξ+
2,3 =

1
3
ξ1,3 +

1
3
ξ2,3 +

1
3
ξ3,3

ν2 = [ξ2,2,ξ2,3]
T

x2 = ξ2,2

(6.5)

D3 :































y3 = ∇xJ1(x)|x=ξ3

ξ+
3,3 =

1
3
ξ2,3 +

2
3
ξ3,3 −αy3,3

ν3 = ξ3,3

x3 = ξ3,3.

(6.6)

The collective decision updating process in this case involves 6 real-valued variable updates, and a total of 6 real-

valued variable exchanges among the agents. By comparison, the collective decision updating process in (6.1) to

(6.3) involves 9 real-valued variable updates, and a total of 12 real-valued variable exchanges among the agents.

Figure 6.2 shows the outcome of forty iterations of the decision update rule (6.4)–(6.6), when the cost functions

are given by

J1(x) = 6(x1 + x3 −15)2 +4(x2 −4)2 +(x3 −10)2

J2(x) = 5(x2 +2)2

J3(x) = (x3 +8)2,

the step size α = 0.01, and the initial conditions are taken as ξ1(0) = (2,−3,17), (ξ2,2(0),ξ2,3(0)) = (−12,15)

and ξ3,3(0) = 0. For these costs, the optimal network configuration is x∗ = [6,0.67,9]T . ♦

Motivated by these considerations, we now develop the reduced consensus optimization (RCO) algorithm, in

which agent i does not necessarily need to maintain an estimate of x∗j , if agent j’s actions have no effect on Ji(·).

6.3 Problem Setting

In this chapter we deal exclusively with static problems. In accordance with Remark 1.2.7, we therefore omit

reference to either Σ or u, and instead denote agent i’s decision variable by xi ∈ R
ni . The collective decision is

denoted by x ∈ R
n.
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Figure 6.2: The reduced consensus optimization algorithm (6.4)–(6.6) converges to the collective optimum in

forty iterations.

We consider DT-SDCCPs involving a set of N static agents, whose task is to cooperatively solve the problem

min
x∈Rn

J1(x)+ · · ·+ JN(x), (6.7)

when agent i has knowledge only of the function Ji(·). The agents may exchange information over the commu-

nication graph GC = (EC,V ), where V is the set that indexes the agents, and EC ⊂ V ×V specifies those agent

pairs that can exchange information.

For notational simplicity, we assume that GC is connected and undirected, and that the collective cost

J(x) = ∑
i∈V

Ji(x) (6.8)

is strictly convex and bounded from below, ensuring the existence of a unique, finite minimizer x∗.

6.4 Reduced Consensus Optimization Algorithm

We first describe the algorithm, and then discuss the intuition behind it. Let GI = (V ,EI) be the network’s

interference digraph, whose edge set is defined as

EI = {( j, i) ∈ V ×V | ∇x j
Ji(x) 6≡ 0}. (6.9)

In other words, ( j, i) is an edge in the interference digraph if the jth component of the optimization variable x

appears in the ith objective. If x j represents the action taken by agent j, then ( j, i) is an edge in the interference

digraph if the actions of agent j influence the cost experienced by agent i. It should be noted that we do not

assume any particular relationship between the communication structure GC, and the interference structure GI .

Next, for each j ∈ V , we define I( j) as the set of all agents i ∈ V whose costs are affected by the actions of
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agent j – i.e.,

I( j) = {i ∈ V | ( j, i) ∈ EI}∪{ j}. (6.10)

For each j ∈ V , we then form the graph Gj = (V j,E j), which we define to be any smallest connected subgraph

of GC containing all the nodes in I( j). Specifically, suppose that G denotes the set of all connected subgraphs

(q.v. §2.1) of G containing the vertices in I( j). Then G j is any element in G with the property that for any other

element G ′
j = (V ′

j ,E
′
j ), we have that |V j| ≤ |V ′

j |. Constructing Gj is always possible since GC is assumed to be

connected. However, the choice of Gj may not be unique, since the shortest path connecting any i,k ∈ I( j) may

not be unique. We note that in general, E j ⊆ EC and that I( j) ⊆ V j ⊆ V (i.e., V j does not necessarily coincide

with I( j), as shown in Example 6.4.1). We let

N j(i) = {k ∈ V j\{i} | (k, i) ∈ E j}

denote the set of agent i’s neighbors on G j. Finally with the set

S(i) = { j ∈ V | i ∈ V j}, (6.11)

we identify those subgraphs Gj to which agent i belongs.

Then, the (unconstrained) RCO algorithm is implemented by each agent i ∈ V as follows:

ξi, j(t +1) =







∑
N
k=1 a

(i)
j,kξk, j(t)−α∇xj

Ji(ξi(t)), j ∈ S(i)

0 j ∈ V \S(i)

xi(t) = ξi(t), (6.12)

where ξi represents agent i’s estimate of the optimal collective decision x∗, ξi, j his “opinion” of agent j’s optimal

action,

a
(i)
j,k =



















min
{

1
|N j(i)|+1

, 1
|N j(k)|+1

}

, if k ∈ N j(i)

1−∑
N
m=1 a

(i)
j,m, if k = i and i ∈ V j,

0 otherwise,

(6.13)

and α is a sufficiently small, fixed step-size.

The main difference between (6.12) and the standard (unconstrained) CO algorithm (1.33) in the DCCP con-

text, is that agent i need not maintain estimates of all other agents’ optimal actions. Indeed, when the interference

structure is sparse, the set S(i) in (6.12) could have a much smaller cardinality than V . In RCO, agent i updates

an estimate of precisely those components of x∗ associated to all agents j ∈ S(i). Conversely, the set of agents that

estimate j’s optimal action x∗j is given by V j.

Remark 6.4.1: In order to implement algorithm 6.12, agent i generally need not be aware of the size N of the

network, its overall topology GC, or its overall interference digraph GI . However, he must have knowledge of the

set S(i). For the case in which V j = I( j), ∀ j ∈ V , this is tantamount to knowing which other agents in the network

are affecting his private cost. In cooperative DCCP scenarios such as those that we consider in this thesis, it may

be possible to design some form of “discovery” protocol that the agents execute initially in order to discern the

sets S(i). Moreover, in applications in which the costs themselves are subject to design, agents may simply be

equipped a priori with this requisite knowledge. In Chapter 7, we explore one such application. ♦

Remark 6.4.2: Though we focus on DT-SDCCPs in this chapter, the formulation of the RCO algorithm is equally
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applicable in the context of dynamic DCCPs. ♦
In the following section, we work through an example in order to show how the various sets introduced in this

section can be identified.

6.4.1 Some Intuition

The intuition behind RCO is that each subgraph Gj has a separate consensus matrix A j ∈ R
|V j |×|V j | associated to

it, and there are N concurrent, dynamically coupled consensus optimization processes taking place. Subgraph G j

connects all those agents whose individual costs are affected by the actions of agent j. The weights a
(i)
j,k pertaining

to the jth subgraph are assigned according to a well-known algorithm (q.v. [167], §III-B in [114], or Algorithm

2.3.1 in §3.3), which ensures that A j satisfies certain technical conditions that suffice for asymptotic consensus in

(6.12). These technical conditions are discussed in greater detail in §3.3.

The following example demonstrates how the various sets and subgraphs defined in the previous section can

be identified, and how the link weights a
(i)
j,k may be assigned.

Example 6.4.1: Consider a network of four nodes shown in Figure 6.3. Each node corresponds to an agent whose

private cost is indicated next to the node. Figure 6.3 (b) indicates the interference digraph induced by these costs.

Figure 6.3: A network with GC and agents’ individual costs shown in (a), and the associated interference structure

shown in (b). The subgraphs G2 = G4 = GC, whereas G1 and G3 are shown in (c) and (d), respectively. Each

subgraph Gj is constructed by including all the nodes and edges along a shortest path from node j to each node

i, whose cost is affected by the actions of node j. In this case S(1) = S(2) = {1,2,4} and S(3) = {2,3,4}, as

expected, since nodes 1, 2 and 4 interfere with the costs of nodes 1 and 2 and nodes 2, 3 and 4 affect J3. However,

S(2) = {1,2,3,4} even though ∇x3
J2(x) ≡ 0; the inclusion of node 3 in S(2) is necessary since node 2 must

indirectly act as a “conduit” for information passing between nodes 3 and 4, who do interfere with one another.

The interference digraph shown in Figure 6.3 (b) corresponds to the following interference sets defined in



CHAPTER 6. REDUCED CONSENSUS OPTIMIZATION 120

(6.10):

I(1) = {1,2}, I(2) = {1,2,3,4}
I(3) = {3,4}, I(4) = {1,2,3,4}.

The smallest subgraphs G1 and G3 containing the sets I(1) and I(3) respectively, are shown in Figure 6.3 (c) and

(d), while G2 = G4 = GC. Recalling that the set S(i) defined in (6.11) identifies those subgraphs to which node i

belongs, we observe that

S(1) = {1,2,4}, S(2) = {1,2,3,4}
S(3) = {2,3,4}, S(4) = {2,3,4}.

In this example, V j = I( j) for all j except j = 2. Since S(i) identifies those components of x∗ that agent i estimates

through the RCO update rule (6.12), we note that node 2 must maintain an estimate of x∗3 – not because node 3

affects its cost, but because node 2 must act as an information conduit between nodes 3 and 4, who interfere with

one another.

The values of the weights a
(i)
j,k for the example shown in Figure 6.3 (a) may be chosen as shown in Figure 6.4.

These weights are obtained using expression (6.13), or equivalently, by applying Algorithm 2.3.1 from Chapter 3

Figure 6.4: Assigning the weights a
(i)
j,k to each subgraph G j, according to (6.13). (a) Edge (and self-loop) weights

for the subgraphs G j, j ∈ {2,4}. (b) Subgraph G1. (c) Subgraph G3.

to each subgraph G j. ♦

6.5 Convergence and Stability

In Chapter 3 we provide a convergence and stability analysis of consensus-optimization methods in more general

settings involving constrained convex (i.e. not strictly convex) problems and generalized search directions. The

analytic techniques presented there can be adapted to the RCO case, and we omit such an analysis here. The

outcome of such an analysis would be the derivation of an upper bound on the step-size α in terms of relevant

problem parameters, and the conclusion that whenever α satisfies this bound, the point

x̂∗ =









1|V1|⊗ x∗1
...

1|VN |⊗ x∗N









(6.14)



CHAPTER 6. REDUCED CONSENSUS OPTIMIZATION 121

is semiglobally, practically, asymptotically stable for (6.12) (q.v. Definition 2.5.3), where x∗ = [x∗1
T , . . . ,x∗N

T ]T

solves problem (6.7).

6.6 Final Remarks

In the design of decentralized coordination strategies for general NMAS in which the interference digraph GI is

not complete, the RCO algorithm (6.12) allows us to realize two important benefits when compared to consensus

optimization (1.33). First, agent i need not be aware of any agent j ∈ V \S(i). In other words, whenever S(i) 6= V ,

agent i is nescient with respect to the number of agents on the network N, and the network’s overall interconnection

structure GC. As a consequence, agent i’s update rule does not change when nodes are added or taken out of the

network, so long as the set S(i) is unaffected by the change. Second, for NMAS with sparse interference structures

(for example those with |S(i)| ≪ N, for most i ∈ V ), RCO requires drastically fewer real-number updates and

exchanges among the agents at each iteration. RCO thereby reduces the communication and processing overhead

associated with coordinating the agents. In the following chapter (q.v. §7.5.2), we quantify this reduction for an

RCO-based content-caching strategy designed for the four-node example network shown in Figure 6.3.



Chapter 7

Decentralized Content Caching Strategies

for Content-Centric Networks

7.1 Synopsis

In this chapter we consider the problem of energy-efficient Internet content delivery over networks in which

individual nodes are equipped with content caching capabilities. We cast this problem as an instance of the class

of DT-SDCCPs represented by Problem 1.2.3. We present a flexible, yet systematic methodology for the design

of cooperative, decentralized caching strategies that can adapt to real-time changes in regional content popularity.

The methodology is based on the reduced consensus optimization method described in Chapter 6. The outcome

of the design is a set of dynamic update rules that stipulate how much and which portions of each content piece

an individual network node ought to cache. In implementing these update rules, the nodes achieve a collectively

optimal caching configuration through nearest-neighbor interactions and measurements of local content request

rates only. The desired caching behavior is encoded in the design of individual nodes’ costs, and can incorporate

a variety of network performance criteria. We focus on the goal of minimizing the energy consumption of the

network as a whole, designing a network cost whose minimum achieves a trade off between transport and caching

energy costs in response to changes in content demand. We assess the performance of the proposed scheme along

several metrics, against the prevalently deployed “least frequently used” cache eviction policy.

7.2 Introduction

A significant portion of today’s internet traffic involves the delivery of content such as video to a multitude of

geographically distributed users who are typically indifferent to where that content is stored or accessed from.

According to CISCO’s 2012 VNI report [68], video streaming and downloads presently account for over 86% of

all internet traffic, and services such as IPTV and Video-on-Demand (VoD) constitute the fastest growing internet

service class. Current trends toward ubiquitous mobile computing suggest that Internet traffic will continue to be

dominated by the distributed on-demand consumption of video content.

The problem of content dissemination to a distributed set of users is ideally addressed by some form of

multicasting, whereby each piece of data is delivered through a single transmission from the source, and copies

are created only at branch points in the distribution tree. Multicast technologies such as IP and application layer

122
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multicast are well-suited for the delivery of real-time multimedia services such as IPTV and live video streaming,

in which requests for the same data are served simultaneously. However, the efficiency of multicasting cannot

be directly exploited for the delivery of on-demand services such as VoD and time-shifted TV, in which content

requests arrive asynchronously. When the same piece of data is accessed at different times from multiple locations,

caching the data temporarily at intermediate nodes can enable multicast delivery, significantly reducing load at

origin severs, access latency and network congestion [105]. It is therefore widely accepted that caching is essential

to enabling on-demand content access. [105], [23], [135], [83], [70], [20].

Several caching-based content distribution technologies are already extensively deployed, including privately

owned content delivery networks (CDNs) such as Akamai and Limelight, Peer-to-Peer (P2P) systems such as

BitTorrent, and web caching solutions such as Squid and NetCache. In all cases, the central idea is that replicating

content and caching it throughout the network facilitates the realization of important performance benefits such

as reduced network congestion and server loading, reduced access latencies, and improved tolerance to transport

disruptions. However, these technologies are typically incompatible with one another, and they are overlay solu-

tions implemented atop a host-centric Internet which was never intended for the mass distribution of content. As

such, they often result in the suboptimal utilization of network resources [160], [38].

The Internet’s fundamental incompatibility with today’s content consumption trends has therefore prompted

research into a new networking paradigm known as information-centric networking (ICN) [4], [70], in which

content is directly accessed by name, rather than the address of its host. In an information-centric network,

content can be delivered from any network location that caches a valid copy of that content, data packets can be

transparently cached as they travel toward their consumers, and content can be assembled at its destination from

data packets that may arrive from multiple locations. Compared to existing overlay solutions, ICN architectures

are therefore more naturally poised to leverage in-network caching [70], [126].

The use of in-network caching has also been investigated as a possible means of reducing a network’s energy

consumption [95], [60], [33], [98]. Although information and communication technologies (ICTs) are currently

estimated to account for only 2% of the world’s total carbon footprint, this proportion is expected to grow as

ICT energy efficiency improvements plateau due to fundamental theoretical and physical limitations [81]. The

aggressive growth in the number of users and the variety of demanded services motivate research into new ways

of reducing the energy consumption of ICTs.

Regardless of the adopted technology (i.e., P2P, CDNs, or ICN), the extent to which the benefits of in-network

caching can be realized depends crucially on the efficacy of the implemented content caching strategy (CCS). A

CCS is a set of policies or algorithms that prescribe how much of what content each participating network node

ought to cache. These may include various file placement and eviction policies, as well as protocols that ensure

the consistency of content replicas [123].

An “effective” CCS is one that is decentralized, adaptive to real-time changes in regional content demand pat-

terns, and allows individual nodes to be nescient with regard to the operation of the collective. In a decentralized

CCS, network nodes collectively achieve a desirable caching configuration by individually making independent

caching decisions based on local network measurements and interactions with their nearest neighbors. The dif-

ficulties associated with implementing centralized coordination schemes in large networks obviate the need for

decentralization; the acquisition of network measurements by a central node and the subsequent dissemination

of coordination signals to each node consume transport resources, while communication delays accumulated in

transmitting these signals over several hops can adversely affect the stability and robustness of any coordination

scheme. Nodes are nescient if they require no a priori knowledge in order to execute the CCS. The extent to

which this property applies determines how flexible and modular the network design can be. Decentralized con-
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tent caching strategies with nescient nodes allow the network to undergo structural changes such as node additions

and deletions, without requiring all nodes to be reprogrammed every time such changes occur.

7.2.1 Contributions and Related Literature

Although there is an appreciable effort within the research community to develop various networking architectures

and implementation-level mechanisms that enable in-network caching, there has been little attention devoted to the

development of content caching strategies with the network-level view of optimizing the use of network resources

on the whole.

Existing work addressing the design of CCSs includes [23], [74], [28], [83], [73], [20], [42], [32], [126], [98]

and [96], among others.

Many papers restrict their attention to the performance of individual caches [23], [74], or network substruc-

tures such as trees or paths from sources to consumers [28], [126], [83], [73], [20]. Although the focus on tree

substructures is appropriate for en-route web-caching schemes developed for IP networking, it may lead to CCS

designs that fail to leverage all of the operational features offered by ICN architectures such as content-centric

networking (CCN) [70]. For example, the packetization of content in CCN allows for content to be partially

requested and stored; as mentioned in [70], a destination node in a meshed content-centric network need not be

restricted to assembling requested content from data packets cached by nodes that lie solely along a path toward

the origin server. With appropriate interest broadcasting techniques in place, transport inefficiencies such as those

described in [42] can thus be avoided.

Most approaches to the design of CCSs are based on variations of file placement policies (such as fixed

probability caching), in combination with standard file eviction policies (such as least recently used or least

frequently used), which are concepts borrowed from the literature on web caching [123]. Although simple to

implement, such designs are heavily based on heuristics and the optimality of the collective behavior of caches

in a general topology network is difficult to guarantee [96], [32], [126]. Sometimes these policies are tuned to

optimize performance based on network models or simulations that make use of simplified traffic predictions,

which may not reflect actual traffic patterns once the CCS is deployed [96], [20].

Some CCS design approaches guarantee a quantifiably suboptimal performance only in the case that certain

symmetry assumptions are satisfied (such as all caches having the same size, and all content demand rates being

equal at each node) [20]. Others require nodes to know or estimate the operational parameters (such as cache

size) of other nodes in the network, and the efficacy with which the caching resources are utilized is known to be

affected by the accuracy of such estimates [126].

In this chapter we propose a broadly applicable methodology for the design of decentralized, adaptive CCSs

that systematically improve the efficiency with which a network’s caching and transport resources are utilized. Al-

though the CCSs developed here can be adapted to content delivery technologies such as CDNs and web caching,

they are designed to leverage the operational features of networks with content-aware forwarding capabilities,

such as those found in CCN.

Elaborating on our work in [89], we base our CCS designs on a provably convergent, decentralized optimiza-

tion algorithm called reduced consensus optimization (RCO), which was initially proposed in [88]. An exposition

of RCO can also be found in Chapter 6 of this thesis. In RCO, a number of nodes on a connected graph coop-

erate in minimizing the overall network cost, which encodes a set of network-wide performance objectives. This

network cost is comprised as the sum of nodes’ individual, privately known cost functions. There is no special

structure imposed on the network topology, and the nodes are nescient with respect to the structure and size of the

overall network. In particular, while most existing CCS designs consider special network structures such as trees,
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CCSs based on RCO allow sources, destinations and intermediary routers to be interconnected in general mesh

topologies (q.v. Figure 7.1).

We focus on the problem of reducing the energy consumed by the network’s transport and storage resources.

Adopting the so-called “energy-proportional computing” model [10], we characterize the optimal network caching

configuration as a minimizer of the network cost function. Each node’s individual cost function depends on local

content demand rates (measured in real time), and embodies the basic tradeoff induced by the energy-proportional

computing model: caching more content locally may reduce long-distance data transport costs at the expense

of increased caching costs, and vice versa. In this way, the optimal network caching configuration depends on

the intensity and regional distribution of demand for content at any given time. In implementing the proposed

CCS, individual nodes dynamically adjust how much, and which portions of each (popular) content piece each

stores, in response to their individual costs and the caching decisions made by neighboring nodes. Through

nearest-neighbor interactions, the nodes collectively balance the goal of minimizing excessive copying of content

throughout the network, with the goal of minimizing redundant transport of data over long distances. Although

we focus on energy efficiency, the proposed design methods can explicitly incorporate other network performance

objectives as well.

We assume that individual nodes are heterogeneous with respect to their caching capacities and energy effi-

ciency parameters; to execute the CCS, a node does not need to know or estimate these characteristics as they

pertain to other nodes in the network.

This chapter is organized as follows. After specifying the adaptive content caching problem in §7.3, we

consider the goal of minimizing the energy consumed by a network’s transport and caching resources in §7.4. We

propose a systematic method for the design of nodes’ individual objectives based on the notions of segmentation

and clustering, which we introduce in §7.4.1. A detailed design example demonstrates the application of the

proposed design methodology in §7.5. The design method is also applied to the eleven-node European optical

backbone network, COST239, and the performance of the resulting content-caching strategy is compared along

several metrics against that of the well-known “least frequently used” (LFU) cache eviction policy in §7.6.

7.3 A Description of the Adaptive Content Caching Problem

We consider an abstract network of N nodes that may exchange information over a given connected, undirected

graph GC = (V ,EC), where V = {1, . . . ,N} is the set indexing the nodes and EC ⊂ V ×V is the set of links

between them.

We assume that there is a set of content repository nodes (or sources) that generate and store permanent copies

of a large number of files that may need to be accessed throughout the network, as shown in Figure 7.1. This

set of source nodes may include some of the nodes within GC, or it may be entirely external to GC. However, all

nodes within GC are able to access any file stored at any source node.

We let F = {1, . . . ,F} denote the set of F most popular content pieces that are to be cached throughout the

network. Each content piece may represent a single file, or an aggregate of related files with similar popularities.

At each instant, the ith node in the network experiences a demand for content piece k ∈ F that can be calculated

as a windowed average request rate – i.e., supposing that (tni
k
)∞

ni
k
=1

⊂ R+ denotes the sequence of time instants at

which requests for content piece k arrive at node i, the demand for k at node i can be calculated as

di,k(t) =
1

W

∫ t

t−W

∞

∑
ni

k
=1

δ (t − tni
k
)dt, (7.1)
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Figure 7.1: Each node in the network can access files from the source repositories. In general, the source nodes,

the destination nodes and the intermediary routers can be interconnected over a general mesh topology. The ith

node measures a demand di,k for content piece k.

where δ (·) is the Dirac delta function, and W is the window size in units of time. Intuitively, for a given traffic

pattern observed at node i, selecting larger values for W yields a set of signals di,k(t) exhibiting less volatility.

The signal di,k, which can be measured by node i, represents an aggregated request rate that originates either

from a pool of users directly connected to node i, or from other nodes within the network (q.v. Figure 7.1).

We assume that each content piece is divided into Pk packets of q data units in size and that each node i ∈ V

is equipped with a cache of size Biq units of data. Moreover, these packets can be individually requested from the

source repository or other nodes. This mechanism allows each node to store selected portions of various content

pieces, if desired.

Given a communication graph GC = (V ,EC), the content catalog F , content sizes Pk, ∀k ∈F , cache sizes Bi,

∀i ∈ V , and the set of demand rates di,k(t), the adaptive content-caching problem is to decide which portions of

which content pieces each node ought to cache at time t. One straightforward way to encode such a decision is to

assume that nodes store only contiguous blocks of a content piece. In that case, the decision can be characterized

in terms of only two numbers: σi,k ∈ { 1
Pk
, . . . , Pk−1

Pk
,1}, indicating the location at which node i starts to store its

contiguous block of k ∈ F , and φi,k ∈ { 1
Pk
, . . . , Pk−1

Pk
,1}, the fraction of the whole content piece that this block

represents. Since ∀k ∈ F , Pk is likely a large integer, we may approximate σi,k and φi,k by allowing them to take

values in the real unit interval, as shown in Figure 7.2.

Figure 7.2: Router i stores a contiguous block of content piece k, starting at σi,k, and having a size of φi,kPkq units

of data.

Collecting these variables, we let

xi = [σi,1,φi,1, . . . ,σi,F ,φi,F ]
T ∈ R

2F , ∀i ∈ V (7.2)

denote the vector of node i’s caching decisions, and we refer to x = [xT
1 , . . . ,x

T
N ]

T ∈ R
2NF as the network caching

configuration. In relation to our formulation of the DT-SDCCP in Chapter 1, the variable xi corresponds to agent

i’s decision variable, while x corresponds to the collective decision.

With this framework, the adaptive content caching problem can be rephrased as follows: what constitutes
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the best network caching configuration? What is deemed “best” depends on the set of network performance

objectives, which may include factors such as minimization of network congestion and improvement of load

balancing, reduction of access latency, enforcement of various QoS measures for different classes of content,

robustness to transport disruptions and node failures, elimination of redundant traffic flows, minimization of

energy costs, and others. Such performance objectives can often be expressed within the formalism of convex

optimization. We therefore assume that there exists a network caching configuration x∗ that best meets a given

set of network performance criteria, and that x∗ can be expressed as a solution to an optimization problem of the

form

x∗ = arg min
x∈R2NF

J(x) (7.3)

s.t. σi,k ≥ 0, ∀i ∈ V , ∀k ∈ F (7.4)

φi,k ≥ 0, ∀i ∈ V , ∀k ∈ F (7.5)

σi,k +φi,k ≤ 1, ∀i ∈ V , ∀k ∈ F (7.6)

F

∑
k=1

φi,kPk ≤ Bi, ∀i ∈ V , (7.7)

where (7.7) represents node i’s cache capacity constraint, and inequalities (7.4)-(7.6) are required by the manner

in which the decision variables are defined (q.v. Figure 7.2). Further, we assume that the function J : R2NF → R

can be written as

J(x) = J1(x)+ · · ·+ JN(x), (7.8)

with Ji(x) representing node i’s individual performance loss. Then, letting

X0 :=
{

xi ∈ R
2F

∣

∣

∣
σi,k ≥ 0, φi,k ≥ 0, σi,k +φi,k ≤ 1, ∀k ∈ F

}

, (7.9)

and

Xi := X0 ∩
{

xi ∈ R
2F

∣

∣

∣ ∑
k∈F

φi,kPk ≤ Bi

}

, (7.10)

we observe that equations (7.3) to (7.7) have the form (1.31), and that we may therefore employ the CO algorithm

(1.33) in order to locate x∗ in a decentralized manner. We also note that this formulation of the decentralized

content caching problem belongs to the class of DT-SDCCPs represented by Problem 1.2.3, with u ≡ x and the

exogenous environmental conditions d(t) (described in P5 of §1.2.2) corresponding to the demand rates di(t)

measured locally by each node in the network.

In this chapter, we choose to focus on a set of network performance objectives that are described in the sequel.

7.4 Energy-Efficient Content Delivery

Building on the work in [95], [60], [33] and [98], in the sequel we consider the minimization of the network’s

energy consumption as the primary performance objective. As in [95], [33], [60] and [98], we adopt the energy-

proportional computing model [10], in which it is assumed that the energy consumption of network transport and

routing equipment is proportional to its utilization. In [95], [33], [60] and [98], the transport resources considered

include transmission, routing and switching equipment.
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In adopting this model, we approximate the amount of energy consumed by a node as being proportional to

the amount of data it caches, in addition to the amount of data it transports from other nodes toward the consumer.

Depending on whether a node is a core, edge or access router, its energy efficiency profile is expected to be

different; we account for this heterogeneity by allowing the costs to depend on Eca,i, the amount of power (in

Watts) that node i consumes by caching q bits of data, and Etr,i, the amount of energy (in Joules) that node i

consumes by transporting q bits of data.

Though the energy-proportional computing model is not without criticism (since devices tend to consume

some amount of energy even when idling), studies such as those in [159] and [33] suggest that its adoption

suffices for our purposes.

In the context of content distribution, the energy-proportional model induces a basic performance trade-off:

while transport energy is reduced by caching as much content as possible close to consumer demand, caching

more content consumes more caching energy. To capture this trade-off, we propose that individual agents’ caching

behavior should be governed by the following set of operational principles:

Operational Principles

1. The fraction φi,k(t) of content piece k that node i caches should be positively correlated with di,k(t) – i.e.,

node i should cache more of the content that is in high demand, and less of the content that is not in demand.

2. To avoid excessive copying of content within the network, node i should avoid caching the same portions

of the same content that nearby nodes cache.

3. When di,k(t) is high, some nodes in i’s graphical vicinity should coordinate among themselves to maximize

their collective caching coverage of content piece k, so as to make those portions not cached by i available

for short-distance transport to i.

These operational principles are to be encoded into the update rules governing individual agents’ caching decisions

by means of appropriately designed individual cost functions Ji(·). There are many degrees of freedom associated

with designing a cost and interference structure in order to enforce these principles. We introduce the notions of

segmentation and clustering and propose their use in guiding the design process.

7.4.1 Segmentation and Clustering

Let each content piece be divided into M segments, where M ≤ N is a design parameter. Then, to each node i ∈ V

assign a number si ∈ {1, . . . ,M}, meaning that node i caches a portion of each content piece corresponding to the

sith segment. Next, to each node i, assign a cluster of M−1 nodes Ci ⊂ V \{i} such that for all distinct k and j in

Ci ∪{i}, sk 6= s j. In other words, each node in each cluster is assigned to a different segment of content.

Let Hi, j be the number of hops separating nodes i and j along a shortest path between them over GC, and

let Hi = max j∈Ci
Hi, j. We identify the number of segments M and the assignment of clusters Ci, ∀i ∈ V as

important degrees of freedom in the design process. Although in this chapter we do not address the question of

how to optimally assign segments and clusters to each node, we suggest that for a given network topology GC,

these should be chosen so as to minimize Hi, for each i. However, we note that for a fixed M, the problem of

minimizing Hi via segmentation and cluster assignments for a given network topology can be framed as a graph

coloring problem.
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7.4.2 Designing the Costs Ji(·)

With M and Ci specified, we consider the following general structure for the cost functions:

Ji(x) = ∑
k∈F

[

Eca,iφi,kPk +Etr,idi,k(t)(1−φi,k)Pk (7.11)

+di,k(t)ci

(

(
M

∑
j=1

φπi( j),k)−1
)2

+bi,1σ2
πi(1),k

+
M−1

∑
j=1

bi, j+1(σπi( j),k +φπi( j),k −σπi( j+1),k)
2

]

,

where πi : {1, . . . ,M} → Ci ∪{i} is the permutation defined as πi : sk 7→ k ∈ V , and bi, j, j ∈ {1, . . . ,M} and ci

are positive real tuning parameters. Node i is to minimize its individual cost Ji(·) by attempting to influence the

behavior of all other nodes that affect it. The rationale for the proposed cost design can be explained as follows.

The first term in (7.11) penalizes node i for expending caching energy in proportion to the amount of data cached,

while the second term is a penalty for having to transport that content which is not being cached. The second

term encourages node i to cache larger portions of that content which is in high demand, in accordance with

the first operational principle. On the other hand, when di,k = 0, the only term pertaining to content k in Ji(x)

is the caching penalty term, prompting node i to cache less of the content that is not in demand. The first two

terms thereby capture the basic performance trade-off induced by the energy-proportional computing model. The

remaining terms promote cooperation among nodes, as per the second and third operational principles.

The fourth and fifth terms in (7.11) are intended to encourage nodes to maintain caching boundaries between

their respective content segments. We therefore refer to these as the segmentation boundary terms. Ideally, the

contiguous block of content piece k that node πi( j+1) ∈Ci ∪{i} caches should begin precisely where the block

cached by node πi( j) ends – for all segments j ∈ {1, . . . ,M − 1}. When this is the case, the fifth term in (7.11)

is identically zero. The fourth term encourages those nodes to whom the first segments are assigned to cache

all content pieces starting with the first packet. Together, these terms have two functions. First, they penalize

excessive copying of content within a cluster. Second, they penalize caching “gaps”, thereby promoting the

caching coverage of content within a cluster in a systematic way.

The maximization of content coverage is promoted further by the third term in (7.11), to which we refer as the

coverage term. This term allows node i to encourage other nodes within the cluster Ci to maximize the collective

caching coverage of each content piece k, in proportion to its demand. The fact that this term is proportional

to di,k(t) reflects the importance that node i attributes to this task; when content k is in high demand, it is very

important to node i that nearby nodes cooperate in caching k in its entirety, if possible. This term is identically

zero when each content piece is cached in entirety within the cluster Ci, thereby enforcing the third operational

principle.

We note that this cost structure does not preclude either the extreme possibility that a given content piece

k is not cached at all within the network, or that each node in the network caches a complete copy of content k

(provided that Pk ≤ Bi, ∀i∈V ). If demands di,k(t) fall to zero for all i, then we expect that eventually (σi,k,φi,k)→
(0,0) as well, due to the first and fifth terms in (7.11). On the other hand, when demand for content k is sufficiently

high for all nodes in the graphical vicinity of node i, we expect that node i would cache some portions of the same

content cached by his neighbors. Such would be the case if the Etr,i is so large that the second term in (7.11)

dominates the effect of the others within the constraint sets Xi. Another type of possible qualitative behavior

is that in a given cluster, the majority of a content piece is cached by a single node, regardless of its segment
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assignment. The qualitative characteristics of collective network behavior resulting from the proposed costs is

explored further in Section 7.5.2.

To close this section, we wish to illustrate the concepts introduced so far by means of an example. Consider

the network shown in Figure 7.3. Supposing that each content piece is segmented into M = 4 parts, one way

to assign the segments for the given graph is as indicated next to the nodes. This segmentation allows us to

define the cluster sets C1, . . . ,C6 in such a way that Hi ≤ 2, for all i. This cluster assignment is not unique; if we

specify M = 4 and Hi ≤ 2 ∀i ∈ V for this graph, then an alternative cluster assignment to the one shown involves

C1 = {2,5,6} instead of {2,4,5}.

Figure 7.3: Segmentation and clustering example for a six-node network. As shown, C1 = {2,4,5} and therefore

∇x j
J1(x)≡ 0 for all j /∈C1 ∪{1}, for J1(x) defined as in (7.11).

.

The best cluster assignment for node 2 is C2 = {1,3,4}, with which H2 = 1. The meaning of this maximal

hop distance is that when d2,k(t) is high, under ideal circumstances node 2 should be able to assemble most of

content piece k from within a 1-hop radius. In this case, the ideal circumstance for node 2 is characterized by a

low value for its individual cost. Intuitively, this situation can also be interpreted as meaning that node 2 is not

required to compromise with its neighbors at the corresponding network configuration and for the current set of

network demands.

We remark that node i need not assemble any content piece k ∈F exclusively from the nodes in the cluster Ci.

For example, if node 3 happens to not be caching the portions of content piece k required by node 2, then 2 may

receive these portions from node 5, or ultimately from a source node storing the original copy of this content piece

(q.v. Figure 7.1). This model is consistent with the forwarding engine describing the operation of CCN [70], in

which nodes acquire individual packets comprising the content from the nearest nodes that happen to cache these

packets.

The significance of the set Ci (and hence the choice of cost functions (7.11)) is that it identifies a subset of

nodes on GC whose behavior node i attempts to influence in order to minimize its own cost. To relate the cluster

sets to previously defined sets, we note that Ci ∪{i} contains those nodes whose caching decisions affect node i’s

cost (c.f. the definition of the set I( j) in (6.10)), and that j ∈Ci iff i ∈ I( j). Moreover, Ci ⊆ S(i), with S(i) defined

as in (6.11).
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7.5 A Design Example

We intend to develop decentralized content caching strategies on the basis of the RCO algorithm developed in

Chapter 6. Continuing with Example 6.4.1, we now show in detail how this may be done. For the sake of

concreteness, let us consider the example network shown in Figure 6.3 (a) of Chapter 6, and a content catalogue

F = {1,2} containing only two content pieces. Node i’s caching decision at time t is then given by

xi(t) = [σi,1(t),φi,1(t),σi,2(t),φi,2(t)]
T , i ∈ {1,2,3,4}. (7.12)

We are given the cache sizes Bi, transport efficiencies Etr,i and caching efficiencies Eca,i for each node

i ∈ {1,2,3,4}, as well as the sizes P1 and P2 of the content pieces in F . With nodes’ individual costs assigned

according to (7.11), the goal is to develop an update rule for each node, depending on locally available informa-

tion only, such that the nodes’ collective caching decisions eventually converge to the optimal network caching

configuration x∗ given by (7.3)–(7.7).

Recalling the method of RCO described in Chapter 6, we begin by specifying the sets S(i) in (6.11) and the

weights a
(i)
j,k (6.13) that are needed for implementing (6.12). We choose M = 3 and assign the segments and

clusters as indicated in Figure 7.4. With these segment and cluster assignments, the costs (7.11) ascribed to each

C1 = {2, 4}
s1 = 1

C2 = {1, 4}
s2 = 2

C3 = {2, 4}
s3 = 1

C4 = {2, 3}
s4 = 3

Figure 7.4: Segmentation assignment for the graph GC in the design example.

node in GC induce the interference structure shown in Figure 6.3 (b) – namely,

I(1) = {1,2}, I(2) = {1,2,3,4}
I(3) = {3,4}, I(4) = {1,2,3,4}.

The smallest subgraphs G1 and G3 containing the sets I(1) and I(3) respectively, are shown in Figure 6.3 (c) and

(d), while G2 = G4 = GC. Recalling that the set S(i) identifies those subgraphs to which node i belongs, we observe

that

S(1) = {1,2,4}, S(2) = {1,2,3,4}
S(3) = {2,3,4}, S(4) = {2,3,4}.

In this example, S(i) =Ci ∪{i} for all i except i = 2. Recalling that the set S(i) identifies those components of x∗

that agent i estimates through the RCO update rule (6.12), we note that node 2 must maintain an estimate of x∗3 –

not because node 3 affects its cost, but because node 2 must act as an information conduit between nodes 3 and 4,

who interfere with one another.
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We let

ξi, j = [σ
(i)
j,1(t),φ

(i)
j,1(t),σ

(i)
j,2(t),φ

(i)
j,2(t)]

T ∈ R
4 (7.13)

represent node i’s estimate at time t of x∗j ∈R
4, node j’s optimal caching decision. Since the NMAS coordination

problem (7.3)–(7.7) involves constraints, we apply the following update rule for the variable ξi, j:

ξi, j(t +1) =











PX0

[

∑
N
k=1 a

(i)
j,kξi, j(t)−α∇x j

Ji(x)|x=ξi

]

, j 6= i

PXi

[

∑
N
k=1 a

(i)
j,kξi, j(t)−α∇x j

Ji(x)|x=ξi

]

, j = i

∀ j ∈ S(i), (7.14)

xi(t) = ξi,i(t), (7.15)

where the weights a
(i)
j,k are as shown in Figure 6.4 in Chapter 6, and the sets X0 and Xi are as in (7.9) and (7.10).

With this update rule, the implemented caching decisions (7.12) are guaranteed to remain in the feasible region

defined by the constraints (7.4) to (7.7). Moreover, node i does not need to know other nodes’ cache sizes, since

it only enforces its own cache capacity constraint.

7.5.1 Implementing the Projection Operation

There are several numerical methods available for the computation of the projection operations in (7.14). Since

the sets X0 and Xi, ∀i ∈ V defined in (7.9) and (7.10) are polytopes in R
4, each defined as the intersection of

finitely many halfspaces, the projection operation may be implemented using the algorithm described in [97], for

example. That algorithm is implemented as follows. Let X be a polytope in R
m, described as the intersection of h

halfspaces – i.e.,

X = {x ∈ R
m |Hx � b}, (7.16)

where H ∈ R
h×m, b ∈ R

h and “�” denotes a component-wise inequality.

We denote by (X) j the jth halfspace

(X) j = {x ∈ R
m | [H] jx ≤ b j}, j ∈ {1, . . . ,h}, (7.17)

so that X =
⋂m

j=1(X) j. Then, given some point z ∈ R
m, its projection onto X can be iteratively computed as

follows:

Algorithm 7.5.1 (Algorithm 1, [97]):

1. Let p1(0), . . . , ph(0) be arbitrary points in R
m.

2. Let x(0) = z−∑
h
j=1 p j(0).

3. Let q j(0) = x(0)+λ p j(0).

4. For k ∈ N, let

(a) p j(k) =
1
λ

[

q j(k−1)−P(X) j
(q j(k−1))

]

,

∀ j ∈ {1, . . . ,h}.

(b) x(k) = z−∑
h
j=1 p j(k).

(c) q j(k) = x(k)+λ p j(k).
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where λ > 0 is a tuning parameter. According to Theorem 1 in [97],

lim
k→∞

x(k) = PX (z), (7.18)

whenever λ is chosen to be larger than h/2.

In step 4a of this algorithm, we are required to compute the projection of each point q j(k−1), j ∈ {1, . . . ,h}
onto the halfspace (X) j; fortunately, P(X) j

(·) can easily be derived in closed form (q.v. §8.1.1 in [22], for exam-

ple). The expression for the projection of some point q ∈ R
m onto the halfspace (X) j is given by

P(X) j
(q) =







q+
(b j−[H] jq)

‖[H] j‖2 [H]Tj , if [H] jq > 0,

q, otherwise
, (7.19)

where [H] j and b j are as in (7.17).

In our case the polytope X0 is described as

X0 = {x ∈ R
4 |H0x � b0}, (7.20)

where

H0 =























−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

0 0 1 1























, (7.21)

and

b0 = [0,0,0,0,1,1]T . (7.22)

Similarly, the polytopes Xi, i ∈ {1,2,3,4} can be described as

Xi = {x ∈ R
4 |Hx � bi}, (7.23)

where

H =

[

H0

[H]7

]

, [H]7 = [0,P1,0,P2], (7.24)

and

bi =

[

b0

Bi

]

. (7.25)

7.5.2 Simulation Results

In this section, we explore the qualitative network behavior under the decentralized coordination scheme derived

using reduced consensus optimization. We simulate algorithm (7.14) with the costs Ji(x) defined as in (7.11), for

the network shown in Figure 7.4, and its segments and clusters assigned as indicated in Figure 7.4. We chose the

following parameters to obtain the simulation results shown in this section:

Problem Parameters:

• Router cache sizes: B1 = B2 = B3 = B4 = 1000 (i.e. router i has a cache size of Biq data units, where q is



CHAPTER 7. DECENTRALIZED CONTENT CACHING STRATEGIES FOR CONTENT-CENTRIC NETWORKS 134

the number of data units comprising one data packet)

• Content catalog: F = {1,2}, with P1 = 1500 and P2 = 1500

• Transport efficiencies: Etr,1 = Etr,2 = Etr,3 = Etr,4 = 1.5 Joules per q units of data

• Caching efficiencies: Eca,1 = Eca,2 = Eca,3 = Eca,4 = 50 Watts per q units of data

Cost Function Parameters:

• Segmentation boundary terms: bi, j = 200, for all i ∈ {1,2,3,4} and j ∈ {1,2,3}

• Coverage terms: c1 = c2 = c3 = c4 = 50

Simulation Parameters:

• Step size: α = 4.8×10−6

• Initial conditions: ξi, j(0) = [0,0,0,0]T , for all i ∈ {1,2,3,4} and j ∈ S(i)

To implement Algorithm 7.5.1, we took λ = 5 and generated h random vectors in p j(0)∈ [0,1]4, j ∈{1, . . . ,h},

where h = 6 for X0 defined in (7.20) and h = 7 for the sets X1 to X4 defined in (7.23).

To investigate the adaptive capability of the proposed decentralized caching strategy, we changed the content

demand rates di,k(t) at time t = 75, as indicated in Figure 7.5. Initially all the demands are identical for both

Figure 7.5: (a) Content demand rates for all t ∈ {1, . . . ,74}. (b) Content demand rates for all t ∈ {75, . . . ,150}.

content pieces and all nodes. At t = 75, node 1 experiences an increase in demand for content piece 1 and a

decrease in demand for content piece 2, while node 4 experiences the exact opposite change in demand, and

demands remain the same for other nodes.

The results are shown in Figures 7.6 and 7.7. Figure 7.6 shows the network caching configuration at t = 75

and t = 150, while Figure 7.7 shows the time evolution of the network configuration, and the evolution of nodes’

estimates of others’ optimal actions.

Since the transport and caching efficiencies and the cache sizes are identical for all nodes, and since the

two content pieces are sized to fit within any three caches, we expect that after an initial transient period nodes

1, 2 and 4 should settle to a caching configuration in which they store approximately equal portions of each

content piece, corresponding to their assigned segments (q.v. Figure 7.4). If the demands indicated in Figure

7.5 (a) are sufficiently large, we also expect that these three portions together should cover most of each content

piece. Moreover, the caching pattern among these nodes should be identical for both content pieces. The same
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expectations apply to the nodes 2, 3 and 4, also due to the symmetry of the demand rates and the problem

parameters. Figure 7.6 shows that the caching configuration at t = 75 – i.e., the iteration at which the demands

change – is consistent with the desired operational principles, and conforms to our expectations.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

C
o

n
te

n
t 

1

Content Caching Configuration

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

C
o

n
te

n
t 

2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

C
o

n
te

n
t 

1

Content Caching Configuration

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

C
o

n
te

n
t 

2

Content Caching Configuration at t = 75 Content Caching Configuration at t = 150

Figure 7.6: The content caching configurations at t = 75 and t = 150. The top and bottom plots indicate the

starting location σ
(i)
i (t) and the fraction φ

(i)
i (t) of the contiguous block of content that each node i ∈ {1,2,3,4}

caches, for content pieces 1 and 2, respectively. The nodes are labelled along the vertical axis.

When demands change at t = 75, we expect that node 1 should eventually cache less of content 2 and more

of content 1, while node 4 should cache more of content 2 and less of content 1, in accordance with the first

operational principle. The content caching configuration at t = 150 in Figure 7.6 shows that this is indeed the

case.

We also note that the caching pattern for node 3 changes from that at t = 74, even though the demand that node

3 experiences remains the same throughout the simulation. This happens because 3 ∈ C4; although node 3 does

not sense the change in content demand at node 4, its caching decisions are influenced by the “suggestions” that

node 4 makes. In cooperating with node 4 (via node 2), node 3 changes its caching behavior so as to help cover

those portions of content 1 that node 4 is no longer caching. This behavior is consistent with the third operational

principle.

Figure 7.6 shows the set of actions implemented by the network nodes at two instants in time, while Figure

7.7 shows the complete time evolution of each variable updated in (7.14), including nodes’ “suggestions” to one

another. From Figure 7.7, we make two observations. First, since nodes’ individual costs differ, the nodes are

not initially in agreement as to what constitutes the optimal caching configuration. Eventually however, their

estimates reach a consensus. This happens because the first term in the update law (7.14) is essentially a weighted

average of node i’s “opinion” and the “opinions” of his neighbors on G j, on what constitutes j’s optimal action,

for each j ∈ S(i). The effect of repeated averaging can thus be intuited as a process by which nodes compromise

with one another over individual objectives.

The second observation is that the constraints (7.4) to (7.7) are at no time violated throughout the evolution of

the algorithm (7.14) (see Figure 7.8).

Remark 7.5.1 (The Merits of RCO): In implementing the RCO-based update rule (7.14), the nodes collec-

tively update a total of 2F ∑i∈V |S(i)| real values, and they exchange with their nearest neighbors a total of

2F ∑i∈V ∑ j∈S(i) |N j(i)| real values at each iteration. By contrast, in implementing an update rule based on al-



CHAPTER 7. DECENTRALIZED CONTENT CACHING STRATEGIES FOR CONTENT-CENTRIC NETWORKS 136

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

m
p

o
n

e
n

t 
1

Start and End Point Agreements       
      for Content Piece 1            

0 50 100 150
0

0.2

0.4

0.6

0.8

1

C
o

m
p

o
n

e
n

t 
2

 

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

m
p

o
n

e
n

t 
3

0 50 100 150
0

0.2

0.4

0.6

0.8

1

C
o

m
p

o
n

e
n

t 
4

t

 

 

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
o

m
p

o
n

e
n

t 
1

Start and End Point Agreements
            for Content Piece 2            

 

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

m
p

o
n

e
n

t 
2

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
o

m
p

o
n

e
n

t 
3

 

 

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

m
p

o
n

e
n

t 
4

t

Router 1

Router 2

Router 3

Router 4

Figure 7.7: Time evolution of the content caching configuration. The plots in the first column pertain to content

piece 1, while those in the second column pertain to content piece 2. The plots in row i (i ∈ {1,2,3,4}) correspond

to agents’ estimates of x∗i . Each plot shows the emergence of consensus concerning where an agent’s cached block

ought to start (bottom set of lines), and where it ought to end (top set of lines).
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Figure 7.8: The cache capacity constraints are satisfied at each iteration.

gorithm (1.33), the nodes would need to update 2N2F real values and exchange 2NF ∑i∈V |NC(i)| real values at



CHAPTER 7. DECENTRALIZED CONTENT CACHING STRATEGIES FOR CONTENT-CENTRIC NETWORKS 137

each iteration, where NC(i) denotes the set of node i’s one-hop neighbors on the communication graph GC. In

this example, the nodes collectively update a total of 52 real values, and exchange a total of 72 real values at

each iteration. In implementing (1.33), they would update a total of 64 real values, and exchange a total of 96

real values at each iteration. In a large network with a sparse interference structure, implementing RCO instead

of algorithm (1.33) can result in drastic reductions in communication and processing overhead associated with

coordination among the nodes.

Another important benefit achieved by RCO is agents’ nescience with regard to the operation of the collective.

For example, with the costs defined as in (7.11), nodes 1 and 3 in this example need not be aware of each others’

existence. In contrast, in implementing (1.33), each agent must know how many other agents are on the network

because each agent maintains an estimate of the entire optimal network configuration. ♦

Remark 7.5.2 (The Scalability of RCO): From (6.12), we observe that the number of real-valued variables up-

dated by node i grows linearly in F and |S(i)|, where the set S(i) identifies those subgraphs that node i belongs to.

The cardinality of S(i) depends on the way the clusters C j are assigned to nodes j in the graphical vicinity of node

i. Consequently, the maximum number of variables updated by any node within the network is independent of

the network size N, and can be minimized by a judicious choice of cluster assignments. On the other hand, since

nodes communicate only with their nearest neighbors, the communication overhead associated with coordination

among nodes grows with node degree, rather than the size of the network.

The convergence rates of various consensus optimization schemes are studied in [114] and [116], for example.

Convergence rates of these methods are known to be affected by the properties of the costs Ji(·), as well as the size

of the Fiedler eigenvalue λ2(A) associated with the consensus matrix A (q.v. A3.3.1 and the remarks thereafter, in

Chapter 3), whose value is affected by the network connectivity and the choice of link weights [167]. ♦

7.6 Performance Evaluation on the COST239

We evaluate the performance of an RCO-based content caching strategy (CCS) on a more realistic example. We

compare its performance against that of the LFU cache policy, simulated on the eleven-node European optical

backbone network COST239, which is shown in Figure 7.9. This network is also studied in [132], and the

physical distances between the nodes (each of which represents a major European city) used here to compute

various metrics of performance are taken from [132]. We have chosen to not make use of the two physically

longest links in COST239 in our design. Our simulations are based on the parameters listed in §7.6.1. The

demand rate signals di,k(t) used in the simulations are intended to reflect a Zipf-like content request distribution;

we describe our implementation of these signals in §7.6.3. Our implementation of the LFU caching policy is

described in §7.6.4, and the performance metrics used to compare LFU against the proposed RCO-based CCS are

described in §7.6.5. Finally, several simulation results are presented in §7.6.6.

7.6.1 Parameters

We chose the following set of parameters to obtain the simulation results presented in §7.6.6. Our choice of prob-

lem parameters and initial conditions is arbitrary. The cost function parameters were tuned in order to produce a

visibly responsive algorithm behavior for the chosen set of problem parameters. The step-size is the last parameter

tuned in order to obtain stable algorithm behavior.
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Figure 7.9: The European optical backbone network, COST239. Each content piece is assumed to be segmented

into M = 4 parts. The segment and cluster assignments used to design the RCO-based CCSs are indicated next to

each node. The dashed lines indicate links that are not used to coordinate the nodes.

Problem Parameters

We select the following problem parameters:

• Router cache sizes: Bi = 100 packets, for all i ∈ V

• Content catalog: F = {1, . . . ,20}, with Pk = 50 packets, for all k ∈ F .

• Transport efficiencies: Etr,i = 15 Joules per q units of data, for all i ∈ V (each data packet is assumed to be

q units of data in size)

• Caching efficiencies: Eca,i = 2 Joules per q units of data, for all i ∈ V .

We note that with F = 20 content pieces, the search space associated with the optimization problem (7.3) to

(7.7) has a dimension of 2NF = 440 real-valued variables.

Cost Function Parameters

To develop the RCO-based CCS for this example, we apply the design methodology proposed in §7.4. Specif-

ically, we segment each content piece into M = 4 parts, and we assign the segments and clusters as shown in

Figure 7.9. The tunable parameters bi, j and ci, j are selected as follows:

• Segmentation boundary terms: bi, j = 1300, for all i ∈ V and j ∈ {1,2,3,4}.

• Coverage terms: ci = 500, for all i ∈ V .

Simulation Parameters

The RCO step-size and agent i’s initial estimate of x∗j are selected as follows:

• Step size: α = 5×10−6
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• Initial conditions: ξi, j(0) = [0, . . . ,0]T ∈ R
40, for all i ∈ V and j ∈ S(i).

7.6.2 The RCO-Based CCS for COST239

With all relevant parameters selected as in §7.6.1, the RCO-based CCS takes the form (7.14), where the cost

function Ji(·) is given by (7.11), the sets X0 and Xi are given by (7.9) and (7.10) respectively, the link weights

a
(i)
j,k are assigned according to (6.13), and the caching decision implemented by node i at iteration t is given by

(7.15), with xi carrying the meaning in (7.2). The projection operations in (7.14) are implemented according to

Algorithm 7.5.1.

We observe that the convergence of the said algorithm does not appear to be sensitive to the choice of initial

conditions. Moreover, simulation experience suggests that finding a “sufficiently small” step size is generally not

challenging. We tuned the step-size α once all other parameters were selected. A suitable α was found after only

three simulation trials, even though the problem parameters and the cost function parameters were selected in a

mostly arbitrary manner.

7.6.3 Zipf-like Demand Rate Signals

From the analysis of several Web proxy traces, it is found in [23] that requests arriving at a Web cache tend to be

distributed according to Zipf’s law, which states that the relative probability of a request for the rth most popular

Web page is proportional to 1
r
. In particular, given a catalogue of F pages, with page k being the rkth most popular

page, [23] posits

PF(k) =

(

∑
F
k=1

1
kρ

)−1

r
ρ
k

(7.26)

– with typical values of the exponent ρ ranging from 0.6 to 0.8 – as a model for the probability that the next

request that arrives at a given cache is a request for page k. For exponents in this range, the Zipf-distribution

implies that a vast majority of all requests are made only for only a small number of the most popular Web pages.

Though [23] proposes this Zipf-like model in the context of Web caching, the model is also relevant to caching in

the context of CDNs and CCNs [60].

To reflect the features of this model, we generate the demand rate signals according to

di,k(t) = m(t) ·
(

∑k∈F
1

k0.75

)−1

rk(t)0.75
, (7.27)

where rk(t) is the popularity rank of content piece k at time t and m(t) is the magnitude.

To see how the RCO-based CCS recovers from a disturbance, we let rk(t) = k and m(t) = 150 for the first

1000 iterations. For the next 1000 iterations, the popularities of the files are randomly re-assigned, but are taken

to be the same across all nodes, while m(t) is increased to 195.

7.6.4 LFU Caching

We compare the performance of the RCO-based CCS against that of the least-frequently-used (LFU) cache policy,

which is known to outperform most local caching policies under the assumption that arriving requests are i.i.d.

[23]. It is noted in [23] that LFU performs particularly well when the demands are Zipf-distributed.

Under LFU, nodes evict the least frequently accessed content in order to make room for new content. We

approximate this behavior by a placement policy in which each node caches as much of the most popular content
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as possible at each t. Since we have chosen Bi = 2Pk, for all i ∈ V and k ∈F , node i implements LFU by caching

contents k1 and k2, whose demand rate signals di,k1
(t) and di,k2

(t) are largest in magnitude at each time t. We

allow each node implementing LFU to instantaneously acquire any content piece in response to di,k(t).

7.6.5 Performance Metrics

We compare the performance of the LFU caching policy described in §7.6.4 against that of the RCO-based CCS

described in §7.6.2, along several efficiency-related, network-wide performance metrics. In formulating these

metrics, we make the assumption that each node is able to request and acquire individual packets comprising each

content piece from the nearest node that caches them. We describe the adopted metrics in the sequel.

Network Transport Cost (NTC)

The Network Transport Cost (NTC) is intended to reflect the total actual energy cost associated with delivering

uncached content. This metric sums the cost of transporting each uncached packet, in proportion to the rate at

which requests arrive for the content piece to which the packet belongs. Specifically, we assume that if a content

piece k is requested Nr times at node i, then each packet of k not cached by node i needs to be transported Nr times

to node i, from the nearest node in the network that caches the required packet. The cost of transporting each

packet is assumed to consist of two components: one that accounts of the energy required for intermediate nodes

to route the packet, and another that accounts for the energy expended per unit distance that the packet travels

along any network link. We define the NTC as follows:

NTC(t) = · ∑
i∈V

∑
k∈F

∑
p∈Ci,k(t)

di,k(t) · (Etr,HHi,k,p(t)

+Etr,DDi,k,p(t)), (7.28)

where Ci,k(t) is the set of all packets comprising content piece k that node i does not cache at time t, Etr,H is

amount of energy that a node requires in order to route one packet, Hi,k,p(t) is the number of hops that packet p

of file k must traverse in order to reach node i from the closest node that caches p at time t, Etr,D is the amount

of energy required to transport one packet over a distance of one kilometer, and Di,k,p(t) distance that packet p of

file k must travel in order to reach node i from the closest node that caches p at time t. The link distances used in

this metric are taken from [132]. If node i requires a packet p of content k which is not cached anywhere within

the network at time t, then the maximum distance and hop-wise penalties of Di,k,p(t) = 2000km and Hi,k,p(t) = 10

are incurred.

Average Hops Travelled by Un-cached Packets (AHT)

This metric measures the average number of hops that an uncached packet at node i needs to travel in order to

arrive at i from the nearest node that caches it. This average is itself then averaged over all nodes in the network.

We define the Average Hops Travelled (AHT) as follows:

AHT (t) =
1

N
∑
i∈V

∑k∈F di,k(t) ·
(

∑p∈Ci,k(t)
Hi,k,p

)

T PRSi(t)
, (7.29)
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where T PRSi(t) is the total number of packet requests sent out by node i at time t – i.e.,

T PRSi(t) = ∑
i∈F

di,k(t) · |Ci,k(t)|. (7.30)

Network Caching Cost (NCC)

The Network Caching Cost (NCC) reflects the total amount of energy consumed by all the caches in the network.

We assume that caching energy is proportional to the amount of content cached [10], and we therefore formulate

the NCC metric as

NCC(t) = ∑
i∈V

∑
k∈F

E
ca,T
i · |C0

i,k(t)|, (7.31)

where E
ca,T
i is the amount of energy required by node i to cache one packet for T seconds, T is the duration of one

algorithm iteration, and |Ci,k(t)| is the number of packets comprising content piece k that node i caches at time t.

Node-Averaged Cache Hit Ratios (ACHRs)

The cache hit ratio (CHR) is a standard metric in the literature on caching. In essence, this metric indicates

the fraction of requests received that a cache is successfully able to serve. We adapt this notion to the present

setting by considering cache hit ratios within an h-hop radius of a given node. To reflect the network-wide CHR

performance, we average these h-hop radius CHRs across all nodes in the network.

We define the h-hop CHR at node i at time t (denoted as CHRh
i (t)) as follows. Let Ch

i,k(t) be the set of all

packets pertaining to content piece k ∈F , cached within an h-hop radius of node i at iteration t. That is, p∈Ch
i,k(t)

implies that at least one node that is at most h hops away from node i is caching packet p. Also, let T PRRi(t)

denote the total number of packet requests received by node i between iteration t −1 and t – i.e.,

T PRRi(t) = ∑
k∈F

di,k(t)Pk. (7.32)

Then, the h-hop CHR at node i is given by

CHRh
i (t) =

∑k∈F di,k(t)|Ch
i,k(t)|

T PRRi(t)
, h = 0,1,2, . . . , (7.33)

where h = 0 corresponds to the usual notion of CHR at node i, and h = ∞ corresponds to a network-wide CHR.

Next, we define the Node-Averaged h-hop CHR (ACHR) as

ACHRh(t) =
1

N
∑
i∈V

CHRh
i (t), (7.34)

and the network-wide, node-averaged CHR as

ACHR∞(t) =
1

N
∑
i∈V

∑k∈F di,k(t)|C∞
i,k(t)|

T PRRi(t)
. (7.35)

We assess the performance of the proposed RCO-based CCS described in §7.6.2 against that of the LFU

caching policy described in §7.6.4 along the four CHR metrics ACHR0(t), ACHR1(t), ACHR2(t) and ACHR∞(t).
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7.6.6 Simulation Results

The RCO-based CCS and the LFU caching algorithms were run for 2000 iterations. The performance of the

RCO-based CCS is compared to that of LFU along the seven metrics defined in §7.6.5, and the results are plotted

in Figures 7.10 and 7.11.

For simplicity, we assume that all nodes have identical transport efficiency profiles, and we set the related

energy efficiency parameters as E
ca,T
1 = · · ·= E

ca,T
N = Etr,D = Etr,H = 1.
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Figure 7.10: Performance of the RCO-based CCS (solid lines) compared to that of LFU (dashed lines) along the

three metrics calculated using expressions (7.28), (7.29) and (7.31).

Since the RCO-based CCS is initialized with no content cached at any node, its NTC in Figure 7.10 is much

higher at first. However, in coordinating their caching decisions, nodes eventually achieve a lower network trans-

port cost as indicated by the NTC and AHT plots. The NCC plot indicates that for the valuation of problem

parameters in §7.6.1, the RCO-based CCS maintains a full cache at each node for most of the time; this may not

happen when the cost function parameters are set such that the Etr,i are lower relative to the Eca,i.

Even though in both halves of the simulation the LFU caching policy results in each node caching exactly

two of the most popular content pieces, the increase in network transport cost observed in the second half of the

simulation occurs because the magnitude m(t) of the demand rate signals is increased (q.v. §7.6.3).

From Figure 7.11 we notice that LFU outperforms the RCO-based CCS for the ACHR0(t) metric, through-
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Figure 7.11: Performance of the RCO-based CCS (blue) compared to that of LFU (red) along the four Node-

averaged CHR metrics ACHR0(t), ACHR1(t), ACHR2(t) and ACHR∞(t) given by (7.34) and (7.35).

out the entire simulation. This is explained by the fact that LFU caching is especially effective when content

demand exhibits a Zipf-like distribution [23]. In our implementation of LFU, each node caches exactly two of

the locally most popular content pieces in the catalogue, thus ensuring its maximal individual CHR. By contrast,

the RCO-based CCS entails what may be interpreted as the nodes’ tendency to compromise maximizing their

individual performance for the sake of improving network-wide performance. Indeed, the averaged CHR metrics

ACHR1(t), ACHR2(t) and ACHR∞(t) indicate that the network-wide CHR of the RCO-based CCS eventually

becomes superior to our implementation of LFU.

It is also interesting to note that the h-hop radius CHRs for this example are not significantly improved for

h > 1. This is a reflection of our particular choice of cluster and segment assignments indicated in Figure 7.9.

In particular, the clusters are all comprised of 1-hop neighbors in this case. However in general, clusters may be

assigned to include more than a subset of a node’s 1-hop neighbors. The price potentially paid is that the number

of variables that each node needs to update and exchange with its neighbors at each iteration may increase. The

choice of clustering and segmentation as described in §7.4.1 represent an important degree of freedom in the

design of RCO-based CCSs, and its effect on the efficacy of the resulting CCSs warrants further investigation.

The metrics plotted in Figures 7.10 and 7.11 suggest that RCO-based CCSs may potentially realize significant

performance gains relative to caching policies that do not involve coordination among the cache-enabled nodes.

Moreover, RCO-based CCSs can exhibit good adaptivity to changes in time-varying problem parameters such as

content demand rates.
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7.7 Final Remarks

In this chapter we developed a flexible methodology for the design of decentralized, adaptive content caching

strategies. In response to real-time changes in content demand, a network node implementing the proposed strat-

egy coordinates with its nearest neighbors and updates its caching decisions based on locally available information

only. Collectively, the nodes achieve a network caching configuration that best meets a desired set of network-level

performance criteria.

We focused on the problem of energy-efficient content delivery over networks with capabilities such as those

of CCN. We provided a detailed design example illustrating the application of our methodology, which involves

designing node costs in order to balance the trade-off between energy expended in caching content and that of

transporting uncached content.

Our work opens many avenues for future investigation. First, the impact of segment and cluster assignments

on network-wide performance metrics has not been investigated. There is a potentially interesting connection

between the number of segments (i.e. the number of nodes in a cluster) and the hop-wise distance between

content replicas. Previous work which attempts to quantify optimal hop-wise distances between content replicas

(q.v. [60], for example) may help inform best practices in making segment and cluster assignments. Second, better

designs for the cost functions are certainly possible. For example, one might consider designing these functions in

a way that avoids redundant caching among disjoint clusters. Also, though caching and transport are the primary

energy-consuming functions within a network they may not the only ones; one may consider encoding a more

elaborate set of operational principles, which take into account the energy consumed by other network elements.

Fourth, although we focused on energy efficiency, other performance objectives can just as easily be incorporated.

Fifth, it would be interesting to investigate the algorithms’s ability to cope with topological network changes.

Specifically, in the present work, cluster and segment assignments are envisioned as initially being assigned

offline. Once a network is up and running the proposed CCS, newly added nodes can be assigned segments in

a way that maximizes the segment diversity in their graphical neighbourhood, and cluster mates in a way that

minimizes the node’s hop-wise cluster radius.



Chapter 8

Concluding Remarks

The accelerated advance of information and communication technologies is giving rise to disruptive technological

trends characterized by the ubiquitous presence of geographically distributed sensors and actuators. Large-scale

systems such as power grids, communication networks and logistics operations are increasingly integrating in-

telligent components that are capable of autonomously processing and influencing their local environment, as

well as interacting with other such components. It is widely believed that the proliferation of these capabilities

will lead to greater interdependence among systems spanning previously disparate application domains, thereby

enabling the realization of unprecedented efficiency gains in their joint operation. Harnessing the full potential

of these technological trends is contingent in part on our ability design individual component behaviors in such

a way that the ongoing interactions among multitudes of these components lead to their predictable, reliable and

optimal collective behavior.

In this thesis we have considered the general synthesis problem of decentralized coordination control for mul-

tiagent systems in which the agents are either static, or dynamic entities. We have formulated several classes of

decentralized coordination control problems (DCCPs), and we have proposed a number of variants of a decentral-

ized optimization method known as consensus optimization (CO) as a foundation for solving them. The individual

contributions of this thesis are unified by an overall effort to assess the utility and efficacy of this approach, and

to enable its rigorous analysis.

Our contributions can be summarized as follows. We proposed a novel framework for the convergence analysis

of a class of CO algorithms (q.v. Chapter 3). The perspective taken leads to the relaxation of several standard

assumptions on CO algorithms. This framework easily accommodates the study of continuous-time variants

of CO (q.v. Chapter 4), but more importantly, it facilitates the study of DCCP scenarios in which the agents

executing the CO algorithm are themselves dynamic entities, whose dynamics interact with those of the CO

algorithm and thereby affect its performance (q.v. Chapter 5). We have also proposed a streamlined version of

the standard form of CO, which we have called reduced consensus optimization (RCO) (q.v. Chapter 6). This

variant is especially suitable in the context of decentralized coordination control, and under certain conditions

may involve significantly less coordination overhead relative to CO. We considered the application problem of

designing decentralized content caching strategies for information centric networks, which we have cast as a static

DCCP, and addressed by means of RCO (q.v. Chapter 7).

Several new directions are made possible by the work in this thesis. An immediate direction in which the

results of Chapter 3 ought to be extended would aim at relaxing the assumptions on the agents’ communication

graph (q.v. Remark 3.3.3). Even as early as in the work of Tsitsiklis [154] it was known that the convergence of

145
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discrete-time consensus algorithms does not require the communication graph to be connected at each iteration

(c.f. our discussion in §2.2 and §2.3.1). In fact, the communication graph need only be “connected in the long

run”, which means, quite remarkably, that it need not be connected at any iteration of the algorithm. Moreover, the

estimate exchanges among agents need not be synchronous. Apart from relaxing the connectivity and synchrony

assumptions implicitly made in Chapter 3, it would be equally important to relax the requirement that agents

exchange information in a bidirectional manner. Within the last decade there has been a significant effort to

accommodate agent communication over directed graphs, and much has been learned. It is left to future work to

investigate how some of these results can be incorporated into the proposed analytic framework.

In the literature on distributed optimization, one finds a great deal of emphasis on developing methods with fast

convergence rates. In particular, attaining convergence rates on the order of those achievable by second-order (i.e.

Newton’s) methods in the distributed context is currently of great interest. In showing how to apply our analytic

techniques to consensus-decentralized weighted gradient methods, we made a conjecture that the same techniques

may well accommodate the case in which the gradient matrix weights Hi(t) differ for each agent i, and are such

that (Hi(t))
∞
t=0 → (H(t))∞

t=0, where for each t, H(t) is symmetric and satisfies the bounds m ≤ ‖H(t)‖ ≤ M, for

some positive, real numbers m and M (q.v. Remark 3.8.2). In such CO schemes agents would update not only

their primal optimization variables, but also maintain an estimate of some approximation of the inverse Hessian

associated with the collective cost function. Our techniques would then effectively lead to a set of convergence

conditions for a class of decentralized quasi-Newton methods.

The work presented in Chapter 5 can be extended in at least three obvious ways. Of immediate interest are

the conditions that would guarantee the practically asymptotically stable behavior of a decision updating process

involving search directions ŝi(·) formed not from the transient-corrupted measurements of the gradients of agents’

cost functions, but rather from the measurements of their state-dependent cost functions themselves (q.v. Example

1.4.3). A second potential extension is to consider decision updating rules that enforce actuator constraints. A

third potential extension is to incorporate the ideas in Chapter 6, in order to develop RCO-based decentralized

extremum-seeking schemes.

The work presented in Chapter 7 has left us with at least one unanswered theoretical question. How does

one characterize the class of exogenous environmental conditions di(t) (which, in this case represent the demand

rate signals measured by node i in the network) to which an RCO-based coordination control strategy is able to

effectively respond? Intuitively, it is clear that for “sufficiently slowly varying” signals di(t) that affect the agents’

cost functions, an optimization algorithm like RCO should be able to “keep up”. However, it is not clear what

“sufficiently slowly varying” actually means. One potential way to address this question is to attempt to quantify

temporal changes in the cost functions by somehow incorporating time-derivative data (if it is available) into the

decision updating process Di – either directly, or by means of setting appropriate conditions on the algorithm’s

tunable parameters. On the other hand, it seems that this question is not unlike those that led to the discovery of the

so-called internal model principle for linear systems [51]. In particular, another potentially interesting approach

to addressing this question is to consider d(t) that are generated by some hypothetical dynamical exosystem

whose dynamics can be modelled. Then, one might consider designs of decision updating processes that directly

incorporate or account for the model of this exosystem.

Throughout our doctoral research adventures, we have, from the start, been primarily motivated by the

prospect of engineering simplistic individual behaviors and interaction rules that lead to purposive, sophisticated

collective behavior in the absence of centralized coordination mechanisms. Especially intriguing is the possibil-

ity of designing such rules in a way that maximally leverages the synergism of the collective, endowing it with

functionalities that extend far beyond those of the modules from which it is comprised.
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In studying consensus optimization in the context of DCCPs, we have developed the general impression that

decentralized optimization methods represent an excellent starting point for the design of coordination control

strategies, because they are both general and practical. They are general because a wide variety of coordination

objectives can be easily expressed in the language of convex programming. They are practical because from

practitioner’s point of view, this language is easy to understand, and it is generally easy to implement.

Nature is a master designer of emergence phenomena in complex systems. The variety and the apparent effi-

cacy of naturally evolved multiagent collectives seem to taunt the engineer with the obvious challenge. Although

we are convinced that CO is a viable foundation for achieving modestly sophisticated collective behaviors through

the design of local interaction rules, it is not clear to what extent this design approach is able to maximize the

“distance” between the functional capabilities of the individual, and those of the collective.

Another way of framing this question is to consider CO as a generic model for the seemingly purposive,

coordinated behavior of many naturally occurring multiagent collectives. Are animal collectives, such as bird

flocks for example, really only optimizing some specific collective objective function? How many varieties of

complex behaviors can be expressed within the language of optimization? Is it always just a matter of finding

the right function, or are there tangible limits to the predictive powers of behavioral models based on CO? Is

the general structure of the consensus optimization dynamics rich enough to produce behavior exhibiting phase

transitions and other critical phenomena, and if so, how many different flavors of these phenomena are possible

for CO?

Our understanding of these important topics is very far from complete, and this thesis is already far too long.

It is therefore with some reluctance, that this author leaves off all further philosophical speculations to Tortoise.



Appendix A

Notation and Basic Definitions

The following notation and definitions are used throughout this thesis:

• The Euclidean vector norm is denoted by ‖ · ‖, while ‖ · ‖1 denotes the vector 1-norm.

• The entry in the ith row and jth column of a matrix A is denoted [A]i, j.

• If A ∈ R
n×n, then σ(A) is its set of eigenvalues.

• A matrix A ∈ R
N×N is stochastic if each of its entries is non-negative, and ∀i ∈ {1, . . . ,N}, ∑

N
j=1[A]i, j = 1.

A matrix A is doubly stochastic if both A and AT are stochastic.

• An n-dimensional vector whose entries are all equal to 1 is denoted by 1n. Similarly, 0n denotes an n-

dimensional vector whose entries are all equal to zero.

• An n by n identity matrix is denoted by In.

• The Kronecker product of matrices A and B is denoted by A⊗B.

• The set of non-negative real numbers is denoted by R+, while the set of positive real numbers is denoted

by R++.

• For a point xo ∈ R
n, and r ∈ R++, B̄n

r (xo) = {x ∈ R
n : ‖x− xo‖ ≤ r} and Bn

r (xo) = {x ∈ R
n : ‖x− xo‖< r}.

For a compact set S ⊂ R
n, B̄n

r (S) = {x ∈ R
n
∣

∣ ‖x−PS(x)‖ ≤ r}, while Bn
r (S) = {x ∈ R

n
∣

∣ ‖x−PS(x)‖< r}.

In both preceding cases, the dimension “n” will be dropped when there is no ambiguity.

• For S ⊂ R
n, co(S) is its convex hull.

• For some set S, |S| denotes its cardinality.

• The set of continuous functions from R
n into R

m is denoted by C0[Rn,Rm].

• We say that a function V ∈ C[Rn,R+] is positive definite with respect to a closed set S on a set Ω ⊃ S if,

V (S) = {0}, and V (x)> 0 for all x ∈ Ω\S.

• A function V : x 7→V (x) on R
n is radially unbounded with respect to a closed set S ⊂ R

n, if for any B ∈ R,

there exists an r ∈ R++ such that V (x)> B, for all x ∈ R
n\B̄r(S).
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• A function γ :∈ C0[R+,R+] is a class-K function if it is strictly monotonically increasing, and γ(0) = 0.

If γ(·) ∈ K is radially unbounded, then it also belongs to the K∞ class of functions (q.v. Definition 4.2,

[80]).

• A function σ ∈C0[R+,R+] is a class-L function if it is strictly monotonically decreasing, and limt→∞ σ(t)=

0 (q.v. Definition 2.6, [62]).

• A function β ∈C0[R+×R+,R+] is a class-KL function if ∀t ∈R+, s 7→ β (s, t)∈K , while ∀s ∈R+, t 7→
β (s, t) is monotonically decreasing (but not necessarily strictly monotonically decreasing; q.v. Definition

24.2, [62]).

• A sequence is a function in (Rn)N, denoted by (xk)
∞
k=1 or (xk)k∈N.

• For some set S = {k1, . . . ,k|S|} ⊂ N with ki < k j whenever i < j, (xk)k∈S denotes the ordered |S|-tuple of

numbers (xk1
, . . . ,xk|S|).

• If (tk)
∞
k=1 is an increasing sequence and q : R+ → R

n, then q(tk) is often denoted as q, while q(tk+1) is

dented as q+. Moreover, ∆q := q+−q.

• For some quantity q : R+ → R
n, q(t−k ) = limt↑tk

q(t).

• The gradient of a differentiable function J : Rn → R is denoted by ∇J(·).

• The subdifferential of a convex function J : Rn → R at a point x ∈ R
n is defined as the set of all vectors

g ∈ R
n satisfying the inequality

J(z)≥ J(x)+gT (z− x), ∀z ∈ R
n, (A.1)

and it is denoted by ∂J(x) (q.v. §4.2, [14]).

• If S ⊂ R
n is closed and xo ∈ R

n, then

PS(xo) = arg min
x∈S

‖xo − x‖ (A.2)

is the Euclidean projection of xo onto S.
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[111] T. Nakagaki, H. Yamada, and Á. Tóhl. Maze-solving by an amoeboid organism. Nature, 407:470, 2000.
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[113] A. Nedić and A. Ozdaglar. On the rate of convergence of distributed subgradient methods for multi-agent

optimization. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, pages

4711–4717, 2007.
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sensor networks. In 49th IEEE Conference on Decision and Control, GA, USA, 2010.
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[161] D.D. Šiljak. Large-scale dynamic systems. Elsevier North-Holland, 1978.
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