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Decentralized Detection by a Large Number of Sensors*
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Abstract.  We consider the decentralized detection problem. 1n which N indepen-
dent, identical sensors transnut a finrte-valued function of their observations to a
fusion center which then decides which one of M hypotheses 1s true. For the case
where the number of sensors tends to infinity, we show that it is asymptotically
optimal to divide the sensors into M(M — 1)/2 groups, with all sensors in each
group using the same decision ruie in deciding what to transmut. We also show
how the optimal number of sensors 1n each group may be determuned by solving
2 mathematical programming problem. For the special casc of two hypotheses and
binary messages the solution sumplifies considerably: it is optimal (asymptotically,
as N -+ oo) to have all sensors perform an identical likelthood ratio test, and the
opumal threshold is very easy to determune numencally.

Key words. Decentralized detection, Multiple hypothesis tesung, Asymptotic
error bounds.

1. Introduction and Problem Definition

The (static) decentralized detection problem is defined as follows. There are M
hypotheses H,, ..., Hy, with known prior probabilities P(H;) > 0, and there are N
sensors. Let Y be a set endowed with a o-field %, of measurable sets. Let y,, i =
1,.... N, the observation of the ith sensor, be a random variable taking values in
Y. We assume that the y;’s are conditionally independent and identically distri-
buted, given either hypothesis, with a known conditional distribution P(y|H}), j =
l,..., M. Let D be a positive integer. Each sensor i evaluates a D-valued message
u; € {1, ..., D} as a function of its own observation; that is, u; = y,(y;). where the
function y;: Y+ {1,..., D} is the decision rule of sensor i and is assumed to be a

. measurable function. The messages u, ..., uy are all transmitted to a fusion center
which declares one of the hypotheses to be true, based on a decision rule y,:
{1,..., D}"—{1,..., M}. That is, the final decision u, of the fusion center is given
by uy = yo{uy, ..., uy). The objective is to choose the decision rules yq, 7, --.. yx Of
the sensors and the fusion center so as to minimize the probability of error in the
decision of the fusion center. (An alternative formulation of the problem, of the
Neyman-Pearson type, will be considered in the last section).
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This problem and its variants have been the subject of a fair amount of recent
research [TS], [E], [TA], [LS], especially for the case of binary hypotheses (M = 2).
and binary messages (D = 2). For this special case, it is known that any optimal sét
of decision rules has the following structure. Each one of the sensors evaluates its
message u; using a likelihood ratio test with an appropriate threshold. Then, the
fusion center makes its decision by performing a final likelihood ratio test. (Here,
the messages received by the fusion center play the role of its observations.) Without
something like the conditional independence assumption we have introduced, this
result fails to hold and the problem is intractable (NP-hard), even for the case of
two sensors { TA]. Assuming conditional independence, the optimal value of the
threshold of each sensor may be obtained by finding all solutions of a set of coupled
algebraic equations (which are the person-to-person optimality conditions for this
problem) and by selecting the solution which results to least cost. Unfortunately
(and contrary to intuition), even if the observations of each sensor are identicaily
distributed (given either hypothesis) it is not true that all sensors should use the
same threshold (see the Appendix for an example). This renders the computation of
the optimal thresholds intractable when the number of sensors is large. To justify
this last claim, consider what is involved in just evaiuating the probability of error
corresponding to a fixed set of decision rules when each sensor uses a different
threshold. In order to evaiuate the error probability, we have to perform a summa-
tion over all possibie values of (u,, ..., uy), which means that there are 2" terms to
be summed. (This is in contrast to the case of equal thresholds in which the u;'s are
identically distributed and therefore the binomial formula may be used to obtain
a sum with only N + | summands). Of course, to determine an optimal set of
decision rules this effort may have to be repeated a number of times. This suggests
that the computational effort grows exponentially with the number N of sensors.

The above discussion motivates the main results of this paper which show that,
for the case M = 2, D = 2. it is asymptotically optimal to have each sensor use the
same threshoid, also providing a simple method for computing the optimal thresh-
old. For the general case of M > 2 hypotheses, it is no longer true. even in the
limit as N — oo, that each sensor should use the same decision ruie. Nevertheless,
we show that, as N — oo, at most M(M — 1)/2 different decision rules need to be
used by the sensors. The determination of an asymptotically optimal set of decision
rules is still a hard computational problem, except for the case where the observation
set Y is finite with small cardinality.

Notation. Throughout, P, will stand for the (conditional) measure P(-(H;) on

(Y. #;), under hypothesis H,. Furthermore, E;[-] will stand for expectation with
respect to the measure P,.

2. The Bayesian Problem

We start by noticing that, having fixed the decision rules y,, ..., yy of the sensors,
the optimal decision for the fusion center is determined by using the maximum a
posteriori probability (MAP) rule. (The messages to the fusion center are thought
of as the measurements available to it.) Thus, 7, is straightforward to determine in
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terms of y,, .... yy. For this reason, we shall be concerned only with optimization
with respect to (y,,..., 7w+ Any such set of decision ruies will be denoted, for
convenience, by y¥.

We introduce some more notation. Let I be a set of decision rules from which
the decision rules of all sensors are to be selected. In general, we take I' to be the
set of all (measurable) functions from Y into the set {1, ..., D}. However, we may,
for some reason, wish to restrict to a smaller class of decision rules, possibly having
some simplifying structure. We return to this issue in Section 3. Let I'V be the
Cartesian product of I with itself, N times. For any 7V e 'V, let Jy(7V) be the
probability of an erroneous final decision by the fusion center (always assuming
that the fusion center uses the MAP rule). We are concerned with the minimization
of Jy(y¥), over all y¥ e '™, when N is very large.

[t is easy to show that, as the number of sensors grows 1o infinity, the probability
of error goes to zero, for any reasonable set of decision rules, in fact exponentially
fast. Consequently, we need a more refined way of comparing different sets of
decision rules. as N — co. To this effect, for any given value of N and any choice y¥
of decision rules for the N-sensor problem, we consider the exponent of the error
probability defined by

log Jy(y™)

rN(‘/N) = N

Let Ry = inf v v ry(y") be the optimal exponent. Let [} be the set of all y¥ e T'¥
with the property that the set {y,,..., 7»} has at most M{M — 1)/2 different ele-
ments. Let @y = inf, ,usrgrn()’ ) be the optimal exponent, when we restrict to sets of
decision rules in I} The following result shows that, asymptotically, optimality is
not lost, if we restrict to [

Theorem L. Subject to Assumption | below. limy_ . (Qy — Ry) =0

The rest of this section is dcvoted to the proof of Theorem 1. We first need to
introduce some auxiliary tools.

Let us fix some y € . The mapping from the true hypothesis H; to the decision
of a sensor employing the decision rule y may be thought of as a noisy communica-
tion channel which is compietely described by the probabilities

pid) = P{y(y) =

The ability of such a channel to discriminate between hypotheses H; and H; (i # j)

may be quantified by a function u;(7, s), s € [0, 1], defined by the following formula
[SGBY}:

D
Hy(, §) = log [Z (Pl p,’(dn*] )

We use the convention 0° = 0; thus, the summation in (1) is to be performed only
over those d's for which p/(d)p}(d) # 0. Assuming that u,(y, s) is not infinite, it is
easy to see that u,(y, s)is infinitely differentiable. as a function of s, and its derivatives
are continuous on [0, 1], provided that we define the derivative at an endpoint as
the limit when we approach the endpoint from the interior.

\p
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Notice that, for any fixed y, the function y(y, s) is equal to log £[e** ], where X
is the log-likelihood ratio of the distributions associated with p}(-) and p}{*}, and
where the expectation is with respect to p7(-). As is well known, minimizing the
characteristic function of a random variabie X yields tight bounds on the probabi-
lity of large deviations of X from its mean. Since in this case/X is the log-likelihood
ratio, this method leads to tight bounds on the probability of error. One particular
such result that we will use is taken from [SGB1:

Lemma L. Let there be two hypotheses H' and H". Let x,, ..., Xy be measurements
taking values in a finite set {1, ..., D} which are conditionally independent given the

" true hypothesis, and assume that the conditional distribution of x;, when H is true, is
given by pi{d) = P(x; = d|H). Let

-
i, s) = log LZ‘ (P?;-(d))"’(Pir-(d))‘]

and u(s) = Y X, uli, s). Assume that u(i, s), '(i, 5), u"(i, s) exist and are finite, where
primes on u stand for differentiation with respect to s. Let s* minimize u(s), over
s € [0, 1]. Then,

(a) There exists a decision rule for deciding between H' and H", on the basis of the
measurements X, ..., Xy, for which

P(decide H'|H" is true) + P(decide H"|H' is true) < 2 exp{u(s*)}.

(b} For any rule for deciding between H' and H", on the basis of the measurements
X1y ...y Xy, We have

P(decide H'|H" is true) + P(decide H"|H' is true)
> +exp{u(s*) — [21"(s*)]?}.

Proof. Part (a) of the lemma is the corollary on p. 84 of [SGB]. For part (b), it is
shown in [SGB] (equation (3.42), p. 87) that
P(decide H'|H" is true) + P(decide H"{H' is true)
> $exp{u(s) — sp'(s) — s[2u"(5)]*2}
+ exp{u(s) + (1 — s)p'(s) — (1 — ) [2u"(s)]**} forall se(0,1).

Ifs* € (0, 1), we have u'(s*) = 0 and the desired result follows immediately. If s* = 0,
we may take the limit in the above inequality, as s | 0. Since u" is continuous, and
therefore bounded, we have lim, o su"(s) = 0, which yields

P(decide H'|H" is true) + P(decide H"|H' is true) > § exp{ u(0)}

> exp{p(0) — [21"(0)]*}.

The last inequality follows because g is convex, and therefore y”(s) = 0. The argu-
ment for the case s* = 1 is identical. L |

The bounds of parts (a) and (b) of the lemma could be far apart if p” is left
uncontrolled. For this reason we introduce the following assumption:
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Assumption 1. Fori#j,andforallyeCandse {0, 1}

(@) 1y, sH < =c.

(b) There exists a finite constant A such that {u;(3, s} < 4

The substance of Assumption 1 is explored in Section 5: it is shown there that
it corresponds to some minor restrictions on the distribution of the observations
which are satisfied in typical situations of practical interest.

As a preview of the remainder of the proof, we use Lemma [, for each pair of
distinct hypotheses, to argue that the decision rules y,, ..., 7y of the sensors should
be chosen so as to minimize

max min Z Uij(Gis S)
i jyi#g) sef0.1] k=

We reformulate this as a linear programming problem and use linear programming
theory to show that a small number of different y,'s sufﬁces
Let & be the set of all finite subsets of I". For any F e #. let
A(F)=min max min Y x,uy(, sh
x, [G.ji®j}se{0.1]veF

where the minimization with respect to x, is subject to the constraints

x, 20 forall yeF, (2a)
Y x, =L (2b)
vyeF
Let
A* = inf A(F).
Fe¥F

Let us fix N and some collection y¥ € I'" of decision rules. Let @ = min, P(H;). We
then have, using part (b} of Lemma 1,
Y= S P(decide H,|H;)P(H,)

{ci i # 4

o N 1/2
2 3 max exptiz MY S5 — < 2 Mol Pes ST > ],
P

T 2 (it

where s¥ minimizes Y i tii(ye, syovers € [0, 1]. Let F be the set of different decision
rules {(elements of I') which are present in the collection y¥ of decision rules. For each
7 € F, let x, be the proportion of the sensors using decision rule y; that is, x, is equal
to the number of k's such that y, = ¥, divided by N. By construction, the coefficients
x, satisfy the constraints (2a), (2b). Using Assumption 1(b) to bound p(y,, s§), the
definition of s¥, and the definition of A(F}, we have

J(y™) Eexp< max min [N S x,u(7, s)]—(ZNA)”l)
{ vef

D #j) se(0.1]

x

> %ew\m—(wmw > X gNAT-aNAn,

I\.)
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This shows that Ry > A* — (24/N)Y? + (1/N) log{e/2). Taking the limit as N — co,
we obtain -
lim inf Ry > A% 3)

N—wm

Lemma 2. A* = infp. 3, A(F), where &, is the collection of all subsets of T of
cardinality no larger than M(M — 1)/2.

Proof. Given some F € #, let s%, xJ be such that the constraints (2a), (2b) are
satisfied and
A(F) = max Y x¥ul7. sh).
Hijya#jt veF

(Such s§, x¥ ;xist because the quantity max; j.ixjt 2. se ;x,;-;,-,-_(y, sy is f:o.mir.xuous
in 5, x, and is defined over a compact set; therefore, the minimum arising in the
definition of A(F) is attained.) In particular, if the s's are fixed, then the xJ’s are
determined by mipifni_zing MaX (e jyui ) Y e r Xpttg(y, SE) s'ubjer.:t to the constrai_nts
(2a), (2b). This minimization is equivalent to the following linear programming
problem:

min 4
subject to
Az Y xuyly.sh)  forallij, i#],
yeF

x,20 forall yeF,

Y ox, =1

veF
Let T be the cardinality of the set F. The above-defined linear program has T + 1
variables and T + | + M(M — 1)/2 constraints. From linear programming theory
[PS], we know that there exists an optimal soiution at which the number of
-constraints for which equality holds is no smaller than the number of variables.
Therefore, with this optimal solution, at most M(M — 1)/2 of the constraints hold
with a strict inequality, which implies that at most M(M — 1)/2 of the x,’s are
nonzero. Therefore. for any F e &, there exists some F’ € % such that A(F') < A(F).
This completes the proof of Lemma 2. u

Let us fix some N and some ¢ > 0. Let F be a subset of I of cardinality no larger
than M(M — 1)/2 (that is, F € #,), such that A(F) < A* + ¢, which exists, because
-of Lemma 2. Let x}, and s}, be such that

max Y x¥u . sE) =AF)<A* + ¢
{Ghri#j} veF
We now define a collection ¥ of decision rules to be used by the N sensors: for each
y € F, weletexactly | Nx¥ | of them use the decision rule y; if there are any remaining

sensors, which is the case if Nx¥ is not an integer for some y, we let these sensors

use an arbitrary decision rule from the set F. Let N, be the number of these remain-
ing sensors.
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We now estimate the probability of error under this particular 7 ~. The probability
of error is bounded above by the probability of error for the case where the fusion
center chooses to ignore the messages transmitted by the last A, sensors and this
is what we will assume. We now have

Jyy®) < Y P(decide H;|H; is true) P(H,)

Rt

< M? max [P(decide H;|H;is true) + P(decide H;|H, is true)]. (4)
Wicj):i# )

The expression inside the brackets on the right-hand side of (4) refers to the
probabilities of error for a context in which H;and H; are the only hypotheses. Since
the fusion center uses the MAP rule. it is using a decision rule which wouid be
optimal even if it had to discriminate only between the two hypotheses H; and H,
(always assuming that the last Ny messages are ignored). Thus, for each pair of
hypotheses, the upper bound on the probability of error furnished by Lemma (a)
is applicable. This yields

{6 i # j}

Jy(@") < 2M?  max exp[z LNx® Jag(y, s?;)]. (%)
refF
We now use the inequality Nx¥ — [ NxF ] < [ to obtain

L INxF py(n s < 3 NxJug(s3) + 3 gy, s < Y NxFugly, sf) + K,
7€F yeF vef veF
where K is a constant independent of N. We substitute the above inequality in the
right-hand side of (5), then take logarithms and divide by N to obtain

V¥ o] ’
log Jy(y™) <2 log M + log K K

< + max x*uay, sEHY<A*+ e+ —,
N N N {an:i= il -,Z:F ST ¥ N

On <

where K’ is another constant independent of N. We take the limit as N — oc and
use the fact that ¢ was arbitrary to conclude that lim supy ., Q5 < A*. We combine

this inequality with (3) and the obvious inequality Ry < Qy to compilete the proof
of Theorem 1. u

3. Special Cases and Computational Considerations

Let us start by stressing that the proof of Theorem 1 is constructive and suggests a
procedure for determining an asymptotically optimal set of decision rules. Namely,
we have to solve the optimization problem defining A*. The vaiue of A* is the
optimal exponent and the associated optimatl values of the x.’s are the proportiohs
of the sensors who should use each decision rule y.

Theorem 1 is most useful in the case of binary hypotheses (M = 2) and binary
messages (D = 2). For that case it is known {TS] that, without loss of optimality,
we may assume that each sensor decides what to transmit by performing a likelihood
ratio test, with an appropriate threshold. We thus iet I" be the set of all such decision
rules. Furthermore, in this case we have M(M — 1)/2 = | and Theorem ! implies
that it is asymptotically optimal to let every sensor use the same threshold. In order
to compute A* we only need to optimize over all subsets of I' of cardinality 1.

o f
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Therefore, the optimal threshold may be computed by solving the optimization
problem -

min min g, ,(y, sk (6}

vel sef0.1]
Notice that each y € I” can be described by a single real number. the value of the
threshold being employed. We are therefore dealing with a nonlinear optimization
problem in two dimensions. In typical problems, the probabilities p/(d) are given
by sumple analytical expressions, as a function of the threshold corresponding to y.
Therefore, simple analytical expressions are also available for u,,(y, s) as well. Its
known that 4 ,{y, s) is a convex function of s, for every y [SGB], which makes the
optimization with respect to s easier. Unfortunately, we are not aware of any simple
but nontrivial exampies in which the solution of the above optimization problem
and the corresponding value of the optimal threshold may be obtained analytically.

In the case of binary hypotheses (M = 2) and messages of arbitrary cardinality
D > 2, it is known that likelihood ratio tests are again optimal except that each
decision rule consists of D — | thresholds which determine which one of the D
messages is to be sent. The same discussion as for the case of D = 2 applies here
and (asymptotically) each sensor should use the same set of thresholds. The only
difference ts that y is parametrized by a (D — 1)-dimensional real vector (as opposed
to a scalar). Thus, the problem (6}, which needs to be solved in order to determine
the optimal thresholds. is a D-dimensional optimization problem. This may become
quite hard unless D is small, the reason being that, in general, u(y, s) is not a convex
function of the parameters specifying y.

For the case where M > 2, Theorem 1| is less useful for computing an asympto-
tically optimal set of decision rules. The reason is that we have to perform an
optimization problem over all subsets of " of cardinality M(M — 1)/2. In principle,
it seems possible to reformulate the optimization problem defining A* in a way that
avoids having to consider each such subset of I' (which would be impossible anyway
if T is infinite). Namely, we might perform the minimization

min max min J- iy, s) dx(3),
xeP {(.#j se{0.11 Jr

where x(-) 1s a positive measure on I with x{I") = 1 and where P is the set of all
such measures. Leaving aside the technical difficulties in showing that this is an
equivalent problem, it still does not seem particularly promising from a computa-
tional point of view. It appears that the only cases in which a numerical solution is
possible are those cases in which the set Y is finite and has small cardinality, because
in that case T is also finite and has small cardinality. Notice that if F, < F,, then
A(F;) < A(Fy). Therefore, if T is {inite, we have A* = A(I"). This suggests that in
order to compute A* it is preferable to ignore Theorem 1: instead of computing
A(F) for each F of cardinality M(M — 1)/2, and then taking the minimum. we may
just compute A(T).

Example 1. Let M =3, D = 2, and Y = {1,2,3}. Let each hypothesis be equally
likely and let the statistics of the observation y be as follows: conditioned on H;
being true, y takes the value i with probability 1 — 2¢ and takes each one of the



Decentralized Detection by 2 Large Number of Sensors 175

remaining two values with probability ¢ (0 < ¢ < 1/4). There are three possible
decision ruies. The ith possible decision rule is: y,(y) = 1 if and oniy if y = i. Notice
that y, does not provide any information useful in dsicriminating between H, and
Hj. Thus, py4(y,, 5) =0 for all s; similarly, u,,(ys, s) = y3(7;,5) =0 for all s.
Furthermore, by symmetry, u,,(71, 5) = Uy3(¥1. 8} = f33(¥2, 8}, etc. Let « be the
value of the minimum of x, ;(y,, s), overs & [0, 1]. Let x; be the proportion of sensors
using y;. The optimal values of x,, x,, x; are determined by solving the problem

a max min{x, + x;. x; + X3, X1 + X3},
Xy X3.Xy
over the unit simplex. It is easy to see that the optimal solution is x, = x, = x; = },
exactly as expected from the symmetry of the problem. and the corresponding value
of the optimal exponent A* is 2z/3.

4. Alternative Interpretations

Theorem | may be restated in a different language referring to a different context.
For simplicity, we only consider the case M = 2. Suppose that we want to transmit
a binary message and that we have a collection of noisy, memoryless, and indepen-
dent channels at our disposal. We are allowed to transmit a total of N times using
any of the available channels each time. A receiver observes the N outputs of the
channels, uses its knowledge of which channels were being used, and makes a
decision on what was transmitted. The problem consists of finding which channels
should be used and how many times each, in order to maximize the probability of
correct decoding. For small N, it may be better to use a different channel each time,
even if the original message is binary. However, our result states that, for binary
messages, as N —» o0, there is a single best channel which should be used for all
transmissions. To see the analogy, think of the hypothesis H, or H, as the value of
the binary message which we want to transmit and think of u; as the output of the
ith transmission. A different channel corresponds to a different decision rule and
the characteristics of the channel correspond to the quantities p/(d).

A different analogy may be made in the context of optimal design of measure-
ments for failure detection. Suppose that we have a system which may be in one of
two states: up or down. We have a collection of devices which may be used for
failure detection. They are, however, unreliable and may make errors of both types.
Furthermore, the probabilities of either type of error can be different for different
devices. Suppose that, in order to increase reliability, we want to use N such devices.
Then, our result states that, as N — oo, there exists a single best device and that

we should use N repiicas of it, rather than using many devices with different
characteristics.

5. The Content of Assumption 1

In this section we explore Assumption 1. Our objective here is to obtain conditions

on the distributions P; under which Assumption 1 can be shown to hold. Proposition
1 below deals with Assumption 1(a).

"

N

T
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Proposition 1. Assumption 1(a) fails to hold if and only if there are two hypotheses
H;, H;, such that the corresponding measures P; and P; are mutually singular.!

-
-

Proof. Suppose that Assumption l(a) fails. Then there exist some i, j and some
ye I for which p/(d)p/(d) =0 for alld e {1,..., D}. Thus, for any d e {{,..., D},
the set {y € Y: y(y) = d} has nonzero measure under P, only if it has zero measure
under P,. Since the sets {y € Y: y(y) = d} cover the entire set Y. it follows that P,
and P, are mutually singular. |

As a consequence of Proposition 1, we can see that if there are only two hypo-
theses and Assumption [(a) fails to hold we are dealing with the uninteresting
situation where each sensor is able to determine the true hypothesis on its own. with
zero probability of error. For the case of more than two hypotheses. however, there
are nontrivial detection problems in which Assumption 1(a) fails to hold. We
conjecture that a somewhat modified version of Theorem 1, covering such a case,

is possible. We now explore Assumption 1(b) and show that it holds for two
interesting situations.

Proposition 2. Suppose that the observation set Y is finite and that Assumption 1(a)
holds. Then Assumption 1(b) aiso holds.

Proof. Thederivatives of u,(y, 5), with respect to s are easily calculated to be [SGB,
equations (3.24)—(3.25)1:
2 (pH@))' (p}(d)Y 1 pjid)

Ky )= 2 52 oran o @r ¢ pr@”

o (e @y [ @\
# "'(”s)'[agl Z?ﬂ(p!(c))“’(p}(c)f("’gp.—'/(d)) ~hatals @

where all summations are over those ¢’s and d's for which p/(c)p;(c) (respectively,
pi(d)pj(d)) is nonzero.

Let a be the minimum of p/(c), where the minimum is taken over all choices of
¥, ¢, i, such that p/(c) > 0. Since Y is finite, the set of all possible decision rules y is
also finite and therefore « is the minimum of finitely many positive quantities and
is itself positive. By Assumption [(a) the denominator in equation (7) must have a
nonzero summand and this summand will be bounded below by o' x* = «. The

()

numerator is bounded by D. Concerning the logarithmic term, it is bounded, in’

absolute value, by |log |, for any d in the range of the summation. We conclude
that u(y, s) is bounded in absolute value by a constant independent of i, j, 7, 5. A
similar argument applies to u"(y, s} and concludes the proof. |

Proposition 3. Suppose that, for any i, j, the measure P, is absolutely continuous
with respect to P; and let L;; denote the Radon—Nikodym derivative dP,/dP;. Assume

! Two positive measures P,, P,, defined on a2 common (measurable) space Y are called mutually
singular if there exists 2 measurable subset U of Y such that P (U} = P,(Y — U) = 0.
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that

Eflog* L;] <= forallj 9) :

Then Assumption | holds.

Proof. The fact that Assumption (a) holds is immediate from our assumption of
absolute continuity and Proposition .

For any decision rule y: Y— {1, ..., D}, let #7 be the smallest o-field contained
In Fy with respect to which the function y 1s measurable. Let PY denote the restriction
of the measure P, on the o-field #. 1t follows from the absolute continuity assump-
tion that P! is absolutely continuous with respect to £ We define L/ to be equal
to the Radon~Nikodym denvative dP!/dP}. As is well known

Lt = E[L;F'] as (P) (10)

Constider the function ¢: (0, c0)+— (0. o) defined by ¢(t) = ¢ log? t. An easy calcula-
tion shows that it 1s convex. Therefore, using (10} and Jensen's inequality,

Eflog L} = E[Lylog® L}] = E;[é(L})] = E;[$(E[L,IF D]

S E][EJ[¢(L”)1"/'—Y]] = E]ELlj log: Lij] = Ex[:logz Lij]'

Using (9), we conclude that there exists a constant B < = such that £,[log” L] < B
forall y, i,j; using the mequality E[|x{] < 1 + E[x?], we obtain the same conclusion
for E;{log L} 1.

Notice now that L] (y) = p/(d)/p/(d}, for every v such that y(y) = d. almost surety.
Using this observation, equation (7) may be rewritten as

_EQ(Lflog L]

w8} = — (tn
e E‘[(Lﬂ) }
similarly, equation (8) becomes
v o E[LhYlogt L , s
iy, s) = LT, pd Ly 9117 (12)

El{([‘)}x)x:l
Using the obvious inequality (L)) < (1 + L}),foralls € [0, 1], we obtain the bound

|Ei[log LI + |E[L; log L] (E[log L;]] + 1E;[log L]
EQ(L;y] E.[(L;)]

We have already proved that the numerator 1s bounded. We now establish a lower
bound on E,[(L})]. Since E,[L ] = 1, it follows that there exists an #,-measurable
set Yo = Y and some ¢ > 0,4 > 0, such that P(Y,) = eand L,(y) > dforall ye Y.
Since x* > min{l, x}, we obtain E,[L};] > ¢ min{l, &} forall s € [0, 1]. We now use
the fact that the function ¢(x) = x° is concave. for any fixed s € [0, 1]. and Jensen’s
inequality to obtain

ELLLY] = ENELLFY’) 2 ELEILHF7]] = E[L;] =z emin{l, J}.

This concludes the proof that u'(y, s) is bounded. The proof of the boundedness of
w"(y, 5) 1s identical and 1s omitted. |

(3, 91 <
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6. The Neyman—Pearson Problem

In this section we consider the Neyman—Pearson version of the probiem studied in
the preceding sections. We are given an observation set Y, endowed with a g-field
#y;. There are two hypotheses (M = 2) and for each hypothesis we are given a
measure P, on (Y, #),i = 1, 2. Let D be a fixed positive integer and let I" be the set
of all measurable functions y: Y+ {1,..., D}. As before, the ith sensor makes an
independent observation y; whose statistics are described by P, assuming that
hypothesis H; is true. Again, the ith sensor transmits a message y,(y;) to a fusion
center, where y; € I', and finaily the fusion center makes a final decision using a
decision rule y,. We aliow v, to be randomized. That is. the final decision of the
fusion center may depend on the messages it has received as well as an internaily
generated random variable. Let [, be the set of all candidate decision rules y, for
the fusion center.

Forany given (g, 1, - --» 7v) € [o x 'V, consider the probabilities of error defined
by

InGor 715 -0 7)) =Py (Y1) - .-, A n)) = 2), - (13)
L3010 -5 ) = P21 )s -0 ¥(ya)) = 1), (14)

Let us fix a constant § belonging to (0, 1). We would like to minimize Jt(yg, ..., ¥n),
over all y,, ..., yy satisfying

Jl%(Y(h Frs---s 7N)s 1 —ﬁ' (15)

The optimal value of J§ decreases exponentially with N and we define

i
rN(‘YOs LR yN) = NIOg JNl(YOQ"'Q yN)-

RN = inf rN(?O’ casy ?N)! (16)

where the infimum is taken over all (yg, ..., yv) € I, x [V satisfying (15). We will
use the following assumption:

Assumption 2.

(a) P, is absolutely continuous with respect to P,.

(b) E, [logl (ji’)] =A < o, (17
1

where dP,/dP, is the Radon-Nikodym derivative of the two measures.

We define #” and P} as in Section 5: &7 is the o-field on Y generated by
yand P7 is the measure P, restricted to & *. The argument in the proof of Proposition
3. in Section S, applies here and shows that E,[log*(dP}/dP})] < Aforall yeT.

-
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The latter inequality also implies that there exists some B < =c such that
dPj
Ky) = [log dP"] <B forail yeTl. (18)

The quantity K(y) defined by equation (18) may be recognized as the Kullback-
Liebler [KL] information distance between the distributions of the random variable
7(y) under the two alternative hypotheses. It is guaranteed to be nonnegative.
Furthermore, Stein's lemma {B] states that K(y) is the asymptotic error exponent
if all sensors are using the same decision rule y and if the fusion center chooses y,,

according to the Neyman—-Pearson lemma. In light of this fact, the following result
should be expected.

Theorem 2. If Assumption 2 holds, then:

(l) limN-"x: RN = —SUpP,cr K()’)
(ii) The value of Ry stays the same if in the definition (16) we impose the additional
constraint y, = *-* = yy.

Proof. (Qutline) Fix some ¢ > Qandlety* € I" be such that K(y*) > sup, . K(y) —
e. Let the fusion center choose y, optimally, subject to (15). From Stein’s lemma
we obtain limy.,ry(Ye, ¥*, ..., 7*) = —K(y*). In particular, limsupy.., Ry <
—K{(y*) < —sup,.rK(y) +& Since & was arbitrary, we conclude that
lim supy ., Ry < —sup,.r K(y), and we have shown this bound to be valid under
the additional constraint y, = --- = yy.

In order to complete the proof, it is sufficient to show that for any. y4, ..., ¥n
satisfying (15) we have

1 &
'(Yos---r TN} 2 N Zl K@)+ f(N) = —sup K(y) + f(N), (19

where f is a function with the property limy .., /{N) = 0 and which does not depend
on Yo, - - -, Yn- While this result does not follow from the usual formulation of Stein's
lemma (which uses the assumption y, = --- = yy), it may be proved by a small
variation of the proof of that lemma, and for this reason the proof will be omitted.
Suffice it to say that we may follow the proof of Stein’s lemma given in [B]. Wherever
in that proof convergence in probability of a log-likelihood ratio to its mean is
asserted, we replace such a statement with an inequality which bounds the prob-
ability of a deviation of a log-likelihood ratio from its mean. Such an inequality
is obtained from Chebychev’s inequality. Because of (17) the variance of the log-
likelihoods of interest admits the same bound, regardless of the choice of the
y;'s. For this reason, the function f in (19) may be taken independent of the ys.
The proof is then completed by taking the infimum of both sides of (19) over ali
Yos ---+ v and then letting N tend to infinity. |

We continue with a few observations. For simplicity we restrict our discussion
to the case of binary messages (D = 2).
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It is easy to prove that there is no loss of optimality if we constrain the y;'s to
correspond to likelihood ratio tests [HV]. If we are only interested in asymptotics,
the same conclusion may be obtained from Theorem 2: it is not hard to show that
if a decision rule does not have the form of a likelihood ratio test, then another

decision rule can be found for which K(y} is even larger. This leads to the conclusion -

that asymptotically optimality is not lost by assuming that each y, consists of a
comparison of the likelihood ratio computed by that sensor with a threshoid.

As is well known, randomization is generally required in optimal hypothesis
testing, under the Neyman—Pearson formulation. For this reason we allowed the
decision rule of the fusion center to employ an internally generated random variable.
We may ask whether anything can be gained by allowing the sensors as well to use
randomized decision rules. The answer is generally positive. For exampile. if N = 1,
then the best strategy is to let the single sensor perform an optimal Neyman-
Pearson test (for which randomization is needed) and have the fusion center adopt
the decision of the sensor. Interestingly enough, however, randomization does not
help asymptotically as N — o0, which we now prove. For any two measures P, Q
on (Y, %), let K(Q, P) = E[log(dQ/dP)], where the expectation is with respect to
Q. With this notation, K(y) = K(P}, P})forall y e I'. It is known, and easy to show,
that K(Q, P)is a convex function of (Q, P). Suppose now that a sensor uses a decision
rule which involves randomization. The pair (P}, P}) of the probability distribution
of the message transmitted by a sensor using a randomized decision rule y lies in
the convex hull of such pairs of probability distributions corresponding to non-
randomized decision rules. Using the convexity of K, it follows that randomization
cannot help in increasing the supremum of K(y) and, therefore, does not help
asymptotically.

From a computational point of view, the problem of this section is a little easier
than the problem of Section 2, the reason being that we do not have the additional
free parameter s of Section 2. In particular. with decision rules parametrized by a
scalar threshold, maximization of K(y) is equivalent to a one-dimensional optimiza-
tion problem. As there may be muitiple locai optima. some form of exhaustive search
may be required.

As an illustration we study the performance of a naive selection of the decision
rule y of each sensor. We let each sensor perform a maximum likelihood test and
transmit its decision to the fusion center. This is certainly a bad idea if N = | because
in that case the sensor should perform a Neyman—Pearson test which is, generally,
different from a maximum likelihood test. Still, one may wonder whether such a
naive prescription has any performance guarantees, as N — o. The answer is
negative, as the following example shows. Let P, and P, be as in Fig. 1. A decision
rule y corresponding to a maximum likeithood test is to let ¥{y) = 1 if and only if
y > 4. For this choice of y, if we assume that ¢ is small enough and use a Taylor
series expansion, we obtain

1 i
K@) =141 2 it ) < Ae’
(l’) 2 Og(-zL—e)-*.z Og('zL+£ £

where A is some positive constant. Let us now consider the decision rule y given by
y(y) = 1l if and only if y > 1. We then have K(y)-= log(1/(1 — &2)) = /2 + Be? for

|
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¢ Py

1+ ¢
P R B

1l P.(y)

Fig. {

some constant B. We conclude from this example that the naive decision rule

suggested above can be far from optimal (in terms of error exponent) by an arbitrary
multiplicative factor.

Acknowledgments. The author is grateful to Professor Robert Gallager who sug-
gested that the results of [SGB] couid be used in proving Theorem 1.

Appendix

We consider here the problem introduced in Section 2, with two hypotheses (M = 2),
binary messages (D = 2), two sensors (N = 2), and with y,, y, identically distributed
and conditionally independent given either hypothesis. We present an example
which shows that it is possible that different sensors may have to use different
decision rules even if their observations are identically distributed. An example of
this type was presented in { TS]. However. that example used a special cost function
which introduced a large penalty if both sensors send the same message and the
wrong decision is made by the fusion center. Naturally, this creates an incentive for
the sensors to try to transmit different messages. and therefore use different decision
rules. Thus, the asymmetry of the optimal decision rules of the two sensors can be
ascribed to this particular aspect of the cost function and does not prove that
asymmetrical decision rules may be optimal for our cost function (probability of
error).

Our example is the following. We let H, and H, be equally likely. The observa-
tions y,, y, are conditionally independent, given either hypothests, take vaiues in
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{1, 2, 3}, and have the following common distribution:
P(y=1H,) =% Py=2H,)=4%  P(y=3iH,)=0,
P(y=1H,)=35  Py=2H,)=4%  Ply=3|H)=1

An optimal set of decision rules may be found by exhaustive enumeration. Since
each sensor has to perform a likelihood ratio test, there are only two candidate
decision rules for each sensor:

(A) u; = lifand only if y; = 1.
(B) u; = 1 if and only if y; & {1, 2}.

Thus., we need to consider three possibilities:

(i) Both sensors use (A).
{(i1) Both sensors use (B).
(iii) Sensor 1 uses (A) and sensor 2 uses (B).

Naturally, we assume that the fusion center is using the maximum a posteriori
probability rule.

Explicit evaiuation of the expected cost for each possibility shows that the optimal
set of decision rules consists of one sensor using decision rule A. one sensor using
decision rule B, and the fusion center deciding H, if and only if u, = u, = 1,foran
expected cost of 19/90.
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CORRECTION
Decentralized Detection with a Large Number of Sensors
MCSS, Vol. 1, 1988, pp. 167-182
John N. Tisitsiklis

Example 1 in page 174 of the paper is incorrect. This is because calculations were carried out as
if p;;(7y, 8) was the same for all 4, 7, v for which u;;(7, s) is not identically equal to zero. However,
it is seen from the definition of u;;(7, s) [cf. Eq. (1)] that u;;(~, 8) = p:(~, 1 — s), which'is different
than p;;(«, 8), in general.

The correct solution to the problem considered in Example 1 proceeds as follows. We have
B23(71,8) = w13(72,8) = p12(7s,8) = 0. Also, there exists a function v(s) such that u;;(v:,s) =
v(s) and p;;(7,,8) = v(1 — s), for every i, j, and s. Thus, the optimization problem that has to
be solved in order to compute the optimal exponent A" is

A= min ma.x{ El [zxﬂxz('h:s)+~‘52F12(72,8)+4=3I‘12(‘73,3)],
)

ZT1:%3.,33

'Elo n [zx #13(71,8) + Zap13(72, 8) + T3 prs (s, 8)],

.gl%n,[ztllzs(‘h, 8) + Z2p23 (72, 8) + Tspas(7a, 3)] }
= min ma.xs[ rmn [zlv(s) + zp0(1 — 8)],
Z1:T3.23

.%l[zlu(s) + z3v(1 - 8)],

.g(%n y [z20(8) + zav(1 - 5)] }
(The outer minimization is over all nonnegative z,, z;, z3 which sum to 1.} Unfortunately, sym-
metry considerations alone are not sufficient to ascertain that the symmetrical solution (z; = 1/3
for each 1) is the optimal one, as we now indicate. The exponent corresponding to the symmetrical
solution is seen to be ; min,¢(o,1)[¥(8) + v(1 — 8)] = 2v(2). On the other hand, the nonsymmetric
solution z;, =z, = é—, z3 = 0, results to an exponent equal to

max {u( )y = u(s)}

2 e{o 1]

In particular, if £ min,e|o,1) ¥(8) < 2v(}), then the symmetric solution is not optimal. An analyt-
ical method for determining whether this is the case is not apparent.
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