
 Open access  Journal Article  DOI:10.1109/TAC.1982.1102978

Decentralized dynamic control of a multiaccess broadcast channel
— Source link 

Bruce Hajek, T. van Loon

Institutions: University of Illinois at Urbana–Champaign

Published on: 01 Jun 1982 - IEEE Transactions on Automatic Control (IEEE)

Topics: Atomic broadcast, Retransmission, Broadcast radiation and Traffic intensity

Related papers:

 Network control by Bayesian broadcast

 THE ALOHA SYSTEM: another alternative for computer communications

 ALOHA packet system with and without slots and capture

 Data networks

 Packet Switching in a Multiaccess Broadcast Channel: Dynamic Control Procedures

Share this paper:    

View more about this paper here: https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-
1og9clme44

https://typeset.io/
https://www.doi.org/10.1109/TAC.1982.1102978
https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-1og9clme44
https://typeset.io/authors/bruce-hajek-45i3u3kjkr
https://typeset.io/authors/t-van-loon-2oq7lyxbeh
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/journals/ieee-transactions-on-automatic-control-1ra13n3z
https://typeset.io/topics/atomic-broadcast-2hkyq438
https://typeset.io/topics/retransmission-134wzhey
https://typeset.io/topics/broadcast-radiation-1qgsd25u
https://typeset.io/topics/traffic-intensity-d9a7d639
https://typeset.io/papers/network-control-by-bayesian-broadcast-3jqpoq75gy
https://typeset.io/papers/the-aloha-system-another-alternative-for-computer-1m12kbuwqr
https://typeset.io/papers/aloha-packet-system-with-and-without-slots-and-capture-5gdo0p2x0q
https://typeset.io/papers/data-networks-4f4056r2oj
https://typeset.io/papers/packet-switching-in-a-multiaccess-broadcast-channel-dynamic-p79vwaaegl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-1og9clme44
https://twitter.com/intent/tweet?text=Decentralized%20dynamic%20control%20of%20a%20multiaccess%20broadcast%20channel&url=https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-1og9clme44
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-1og9clme44
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-1og9clme44
https://typeset.io/papers/decentralized-dynamic-control-of-a-multiaccess-broadcast-1og9clme44


IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON AUTOMATIC CONTROL, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAac-21. NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, ~ P J E  1982  559 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Decentralized Dynamic Control of a 

Multiaccess Broadcast Channel 
BRUCE HAJEK, MEMBER, IEEE, AND TIMOTHY VAN LOON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Absfrucf -Retransmission  policies  are  presented  for  the  decentralized 
control  of  a  multiaccess  packet-switched  broadcast  channel.  The  policies 
have  a  simple recurSiYe form yielding  a  Markov  description of the system. 
Finite  average  delay is achieved  for an infinite-population  Poisson  arrival 
model for any  rate X < e- ’ .  

It is proposed  that  the  goal  of  retransmission  policies  should be to 
maintain  the  traffic intensiv at a nearly  constant,  optimum level.  The 
policies we  introduce  achieve  this goal by  nearly  decoupling  the  dynamics 
of  the  traffic  intensity  from  the  backlog  fluctuations.  Analysis  and  simula- 
tions show  that  the policies perform well,  even when the  channel  feedback 
information is unreliable  or  incomplete. 

I.  INTRODUCXION 

T HE  fundamental  nature of the  time-slotted  packet- 
switched multiaccess broadcast  channel is that  many 

remote users compete for the use of a common resource- 
namely, access to a central  broadcast  channel. If two or 
more users  each transmit an  information  packet  during  a 
time slot,  the packets “collide”  and  are  not successfully 
broadcast. Such packets  join  the backlog of packets which 
must be rebroadcast  at a later time. During each time slot, 
each user  possessing a backlogged packet must decide 
whether or  not to transmit  the packet in that  slot. Since the 
users are  remote  from each other,  the decision malung 
mechanism  must  be  decentralized. 

The  information provided to each  user  is assumed  to be 
the  channel  output,  although in many  applications such 
information will be incomplete or  unreliable so that  differ- 
ent users may receive different  information  about  the  chan- 
nel status. Moreover, each user  knows the history of his 
own transmissions, while  he  is not informed of the  trans- 
mission history of other users. These factors cause different 
users to obtain  distinct  channel  information.  Thus,  the 
multiaccess broadcast  channel  presents  a  nontrivial  exam- 
ple of a decentralized estimation  and  control problem. 

The  purpose of this paper  is to present a class of simple 
retransmission  control policies for a multiaccess broadcast 
channel subject to an  infinite  population of users. Three 
important  ideas  are used in our selection of a control 
scheme. The first key idea is that the user’s main objective 
should be to  maintain  a  constant level of aggregate traffic. 
Our view in this paper is that  the  number of backlogged 
packets is relevant to a particular user only to the  extent 
that  the backlog size affects the  channel  traffic level. In 
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other words, the  product of the  channel backlog times the 
individual user transmission probability is much more 
fundamental  than  the size of the backlog itself. 

The second key idea of t hs  paper  is  that  there is a large 
class of retransmission  control policies for which the  dy- 
namics of the  total  traffic level is nearly decoupled from 
the size of the  channel backlog, as long as  the  channel 
backlog remains positive. In  fact, when the size of the 
backlog is near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ,  the dynamics of the  total  channel traffic 
suffer disturbances of only order O( 1 / n )  due  to the fluctua- 
tion of the amount of backlogged traffic. 

The third key idea of this paper is to use simple first-order 
recursive retransmission policies. With  this choice, a 
Markov  chain with a two-dimensional state  space is formed 
by the  state of the control variable together with the size  of 
the  channel backlog. Furthermore, the local (or uncoupled) 
dynamics of the  channel  traffic  intensity  are governed by  a 
simple discrete-state  Markov  chain. 

As an  application of the  bounding  technique related to 
drift analysis presented in [6], it is  shown  in [6] that  stable 
throughput  for any A < e-’  = 0.368 can be acheved by the 
retransmission  control policies introduced  in  this  paper. 
Moreover, the  Markov  chain  formed by the  channel back- 
log and  the  control variable can be  chosen to take  on only 
countably  many values, and then the  chain is ergodic (in a 
strong sense) [6]. Thus, by truncating  the  state space to a 
finite  set,  the  stationary  probabilities  and average delay 
can be computed to arbitrary accuracy as in [19].  Such a 
procedure could be  justified by the work of Freedman [5]. 
Here we have chosen other analysis techniques. 

Simulation results are given  which indicate  the effective- 
ness of the retransmission control policies introduced  in 
this paper.  Our retransmission control  procedure even per- 
forms nearly as  well  in simulations,  and still allows  maxi- 
mum stable  throughput e-‘, when the users are only al- 
lowed to observe the  channel  output  in every fifth slot. 
Other feedback information  reductions  are discussed in 
Section VII. Also: a modified form of the  retransmission 
policies perform well  even under severe uncertainties in the 
input traffic  statistics. (See Section VI.) 

The work of several other  authors is relevant to our 
study.  It  is well known  that  the basic ALOHA multiaccess 
algorithm (i.e.: constant  retransmission  probabilities) is 
unstable  for  the  infinite user model unless some auxiliary 
control is used [7], [3]. Stability  has been proved for  several 
control schemes in which the retransmission  probabilities 
are a function of the backlog [3 ] ,  [4]. [8].  However, these 
schemes cannot be implemented in a decentralized fashion. 

Segall [ 131 obtained  the exact recursive equations  for 
estimating the channel backlog given observation of the 
channel  output. For infinitely many users the recursive 
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estimation  equations  are  infinite dimensional.  This fact 
and the fact that decentralized information  patterns may 
be observed indicates the need to use suboptimal  control 
policies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Recently.  Mikhailov [ 101 introduced recursive schemes 
similar to those presented here. His policies do not include 
ours. nor do ours include  his. although there is a small 
nonempty intersection. A drift analysis indicates  that 
Mikhailov's  schemes  yield a maximum stable  throughput 
of  0.364 compared  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-' = 0.368 for our schemes.  We  feel 
that  our schemes  allow  more flexibility and provide  more 
insight for the control  and analysis of traffic dynamics. 
Also. the  throughput of  his  schemes  decreases appreciably 
if 0-1 feedback or similar reduced  feedback information is 
used. (See  Section  VII.) 

Lam and Kleinrock [8] introduced  a decentralized re- 
transmission control algorithm called CONTEST.  Under 
t h s  algorithm, the retransmission probabilities  are based 
on traffic estimates  obtained by  viewing a "window" of 
time slots. Although this scheme appears difficult to 
analyze. i t  did  perform well  in simulations for a finite-user 
model [8]. Similar results were obtained by  Ban-Tri-An and 
Gelenbe [ 11 and Seret and Macchi [ 151. The  control policies 
in [ l ]  use (approximations to) the  estimators of channel 
backlog found by  Segall [13], whereas the policies in [15] 
are based on estimates of channel traffic. 

An interesting analysis using the  concept of delayed 
information  patterns was  considered  by Schoute [I21 and 
Varaiya and W-alrand [ 181. but in their treatments colliding 
packets  are not  retransmitted-instead. a cost is assessed 
for collisions. Finally. tree algorithms based on  the  one 
introduced by Capetanakis.  Tsybakov,  and Mikhailov [2], 
[17]. [9] also use  only channel  output  information  and 
achieve stable  throughputs as hgh as 0.487. However. such 
algorithms  are much  more sensitive to reduced feedback 
information  than  are the algorithms presented here. Fi- 
nally, we mention the works [ l  I]. [ 141. [ 161. [19] which 
contain Markov analysis of random access systems in 
different  contexts  than  ours. 

The remainder of t hs  paper is organized as follows. In 
Sections I1 and I11 the infinite-user  channel model and the 
control policies which we consider  are  introduced. In Sec- 
tion IV we study the local model whch is obtained by 
holding  the backlog at  any  (arbitrary) fixed positive level. 
In Section V we relate the local model to the original 
channel/transmission model. In Section VI a modified 
retransmission policy  is  suggested  which is less sensitive to 
variations in input  traffic statistics. Finally, in Section VI1 
we  consider situations in whch the feedback information 
available to users is  incomplete or unreliable. 

more  than  one packet to transmit.  Thus, no queues of 
packets  are  formed by a single user. The justification of 
this simplifying assumption is that if a user station  has  a 
group of packets to transmit,  then  the  total access delay is 
essentially the  same  as  that  of  the first packet successfully 
transmitted, for  that packet could serve to reserve slots for 
the remaining packets. Time is normalized so that one 
packet/slot may  be transmitted.  For convenience  we  will 
not explicitly discuss transmission delays since they are 
easily incorporated  into what  we do and they could  also be 
eliminated in a  virtual sense through  the use of interleaved 
channels. We are  careful  not to allow carrier sensing  which 
could not  be  accomplished  because of transmission delays. 

Throughout  this  paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt will  be integer valued. Fix 
X > 0, and let be  the  number of packets which first 
arrive  during the slot ending at time t. Thus. the random 
variables ( q)rE are  independent with distribution Poisson 
(X).  Except in Section VI. we assume  that  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; packets 
which arrive during slot ( i  - 1. r]  are first transmitted  in 
slot ( I .  t + 11. which  is the first complete slot after their 
arrival. Let N, denote  the  channel backlog  (which does  not 
include the new arrivals) at time t and let Z ,  represent  the 
channel  output  during  slot ( t ,  t + I]. Thus Z, = 0, Z, = 1. or 
Z, = e, depending  on whether zero, one, or more than  one 
transmissions were attempted  during slot ( t .  r + 11. Except 
in  Section VII, we shall only consider  retransmission  con- 
trol strategies in  which? conditioned  on  the history of the 
channel  up  to time r .  each user with a backlogged packet 
independently  transmits  the packet  with the same  probabil- 
ity f ,  in the slot ( t .  t + 11. Thus  the  random sequence 
( represents the retransmission control policy. The 
sequence ( f , )  must satisfy 0 G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, G 1  and f, must be a 
function of the  channel  output history ( Z , :  s < t )  for each 
t .  As indicated in Section VII, our retransmission policy 
need not require this much information. 

The nonzero channel  output  and backlog transition 
probabilities are as follows. 

Actual Clzannel Probabilities: 

PIIL:+I=k,Z,=OIN,=n, f ,= f ]  

= e - ' ( I - f ) "  i f k = n  

11. THE CHANNEL MODEL AND THE LOCAL  POISSON 
APPROXIMATION 

The packet-switched satellite broadcast  channel model 
described in [7, sect. 5.1 11 will be assumed in ths  paper. 
We shall assume that  there is an  infinite  population of 
users and  that new  packets continually arrive according  to 
the  points of a Poisson point process at  an average rate of 
h packets/slot. We  assume that no particular user ever has 

Denote  the  intensity of retransmitted  traffic at time t by 
1, SN(f,.  Let G, = X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ p ,  be the  total  traffic  intensity at 
time t and let S, be the expected throughput  during slot 
( t .  t + 11. given A', and f,. Thus 
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where I,., denotes  the  indicator  function of an event A .  

A key  in our analysis of the broadcast  channel  model  is 
an  approximation  to  the  output  and backlog transition 
probabilities which is based on the following proposition. 

Proposition 2.1 (Poisson  Approximation  to  Binomial 
Probabilities): 

1)  If O <  f < l ,   n 3 0 ,  and O<d<f ,  then 

and if f G f , then 

(1 - f )“ < e-”/( 1 - e-“!’) G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf. (2.3) 

2) If O <  f < l ,  rial, and O<d<f,  then 

Note  the  right-hand sides of (2.2) and (2.5) tend to zero 
as n + cx) and the right-hand sides of (2.3) and (2.6) tend to 
zero as f --3 0. Proposition 2.1 is proved in Appendix A. 
Using Proposition 2.1, the following approximation to the 
channel  output  probabilities  is  obtained. 

Approximate  Channel Probabilities (Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = nf, G = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX i- 
CL): 

P[h :+ l=k :Zr=OIN,=n, f ,=   f ]=e- ‘   i fn=k  

P [ N , + , = k , Z , = l ~ N , = n , f =  f ]  

=i e-’pe-” if k = n - 1 

Xe-’ee-’ if k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

By Proposition 2.1, the  error of these approximations 
approaches zero uniformly if either f + 0 or  n --3 rx). In 
addition IS, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,e-‘I( + 0 uniformly as either f, -+ 0 or 

N, + rn since G,eFGf = P [ Z ,  = 11 N,, f,] when the  above  ap- 
proximate  transition  probabilities  are used. 

The  approximate  channel  output  and backlog transition 
probabilities given above would be exact if given ( IY,  f , )  
the  conditional  distribution of the  number of retransmitted 
packets  in slot ( 2 :  t + 11 is Poisson with mean p,. This 
approximation  shall be called the local Poisson approxima- 
tion, which is justified by the Poisson approximation  to  the 
binomial distribution.  The local Poisson traffic  approxima- 
tion should not be confused with the Poisson traffic as- 
sumption  under which the  transmitted  traffic  stream is 
assumed  to  be  a Poisson process (with  constant  intensity). 
An important observation regarding the  approximate  chan- 
nel probabilities is that they depend  on N, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, only 
through  the  product p, = N,f,. This  fact will play a key role 
in  the following sections. 

111. CONTROL PROCEDURES WHICH DECOUPLE THE 

TRAFFIC DYNA~IICS FROM THE BACKLOG 

Certain  retransmission  control  procedures cause the dy- 
namics of the  intensity of channel traffic to be nearly 
decoupled from  the  channel backlog and individual re- 
transmission probabilities.  This  is  desirable since, by the 
local Poisson approximation,  the  throughput  intensity  at 
time t is St=G,e-Gf, which depends only on  the  traffic 
intensity and not directly on the backlog or  individual 
retransmission probabilities.  Our goal is to keep G, near  its 
optimum value, namely G, = 1, no  matter what the backlog 
level PI, is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas long as N, # 0. In this section we  will first 
derive the desired form of the control strategy. Then  the 
“local  model”  for  the  traffic  intensity  and  its  relationship 
with the overall channel model  will be identified. 

For simplicity, consider a  first-order recursive retrans- 
mission control policy of the  form 

f , +  I = G (  f,, Zr) (3.1) 

for each t for  some  function G: [0, l]X (0: 1, e} -, [0,1]. 
When this retransmission control  rule is used, the pair 
process (N , ,  f,) forms  a  Markov chain with state space 
2, X[O, 11. The  transition  probabilities for the  chain  are 
determined by the channel  probabilities given  in Section I1 
(using the local Poisson approximation if desired)  and by 
(3.1). 

By (3.1), the  intensity p t + l  of the  retransmitted  traffic  in 
slot ( t  + 1, t + 21 satisfies 

Now, define h N, = N, + I - N,. Then 

ANr = - I{=,= 11 

where is Poisson with mean X and is independent  of N,. 
Thus 

~ [ ( h ~ , I ~ k ( N , = r z ] a P , ( k )   f o r k a l ,  J I ~ O  

(3.3) 

where  PA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe )  is the distribution  function of a Poisson ran- 
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dom variable with  mean X. Inequality (3.3) shows that AiV, 
is stochastically dominated, even  when conditioned  on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= tzl uniformly in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and in n. Hence,  given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAI\: /X, is 
"stochastically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO( 1 /N , ) . "  Substituting  this into (3.2) yields 

The probability  distribution  of Z, given ( f , .  p,)  depends 
only  on p ,  if the local Poisson approximation is used. Thus, 
except for the  term O( l/N,)> the  conditional  distribution of 
the  right-hand side of (3.4) given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f,, p , )  will depend  on p ,  
(but not otherwise onf,) if and only if G( f,. z,)/f, does  not 
depend onf,. Equivalent conditions  are G ( a f .  z )  = aG( f, z )  
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa > 0 or G( f, z )  = a ( z ) f  for some vector a = 

Due to the  requirement  that 0 G f, G 1 for all t ,  it is too 
much to ask that G( a f ,  z )  = aG( f, z )  for all a. f. We shall 
thus consider estimators of the  type f,-, = G( f,. Z,) such 
that G( af, z )  = aG( f, z )  if and only if af and fare smaller 
than some f i  >O.  In fact  the  estimators examined in the 
following sections are of the form 

(a(0). 4 1 1 3  4 e ) ) .  

f,,,=m+(z,)Yf,,P) (3 .5)  

for some positive constants y, P. a(O), a(l), a(e) .  
A more  general class of retransmission control  strategies 

have the form f,+, = G(Z, ;  . .,Z,--k, f,.. - . J - ~ ) .  The vec- 
tor process V, = (Z,; . -, Z,-,, f,. . . , f , - h ,  N,), then fonns a 
Markov  chain. If the  function G satisfies 

whenever max(fo ; . . , f k , a f 0 ; . . , a f k ) ~ P  for some P > O ,  
then  the analysis of the following sections carries over to 
this more  general type of retransmission control policy. 

In the remainder of this paper, unless otherwise speci- 
fied. we shall always deal with the retransmission control 
strategy (3.5). where the constants y. 8. and a = 
(a(O), a( l), a( e ) )  will  be specified later. 

For purposes of analysis it is  convenient to  define  the 
new variable v, = In( f,( N, V 1))  where 'I V" denotes maxi- 
mum. Thus when N, > 0, p ,  = exp(cp,)  is the retransmitted 
traffic intensity at time t .  Since (f,. N , )  and (v,. N,) are 
functions of each other, (v,. N,) forms a Markov  sequence. 
The following paragraphs  contain  a brief digression on 
localization of a vector Markov process. The  method will 
be applied to show that the local behavior of 'F, (and hence 
p , )  is independent of N, as  long as X, is  not too small. 

Localization of Vector Markov Chains: Suppose  that 
( X , .  q )  is a Markov  chain  with state  space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:Y X L 3  and 
transition  probability kernel 

p x v ( d . x ~ v ( x o , y o ) ,  (.xo.yo)~:Y X.?. 

For any fixed YE L?+, a new  Markov  chain (X : )  with state 
space 5 is defined as the Markov  process associated to the 
transition  probability kernel P , ~ , -  where 

The new process (X:)  is called the localization of the 
Markov process ( X , ,  q )  to the region  where (x) is identi- 
cally equal to j. 

For most  examples, the  transition  probabilities of (X : )  
depend on .F. If ( y) is "slowly  varying" relative to ( X , )  
and if the transition  probabilities P , ~ ?  are sufficiently regu- 
lar with respect to j. then the behavior of the process ( X:) 
should closely resemble the behavior of the  component 
(X,) during those periods when y, is close to J. 

The Local  Model for Retransmitted  Traffic: Fix an in- 
teger n > 0. The Markov chain ( f,") obtained by localizing 
the Markov chain (f,. N , )  to (Ar,)= n has  the  transition 
probabilities  (using the local Poisson approximation) 

! I  

1 1  

a(O)? with prob e-'; 

f,:l = min P ,  f," X ~ ( 1 ) ~  with prob G,eCGl 

.(.)'with prob 1 - ( I  +G,)eCGf , 

(3 4 
where G, = X + nf,. 

If cpy E log(nf,"), then exp(qy) represents  the  total re- 
transmitted traffic intensity  for the localized model. Fur- 
ther. (q;) is  itself a  Markov process  with transition  proba- 
bilities 

c(0) with prob e-': 

r#-, = min In ( n P ) .  9: + y c( 1) with prob G,eCGr 

c( e )  with prob  1 - (1 f G,)e-'r 

(3.7) 

where c( i )  = log a( i )  for i = 0.1 or e. The process rp; will be 
referred to as the local model ( n )  for the log retransmitted 
traffic  intensity.  The  important  point here  is that  the 
transition  probabilities of vy do not  depend on n. except 
through the term ln(nb) which  will be discussed in the 
next section. We  have thus shown that when N, is held at a 
constant Iecel n > 0 (for example. by  adding or subtracting 
blocked users at the end  of  each time slot as needed),  then  the 
total  traffic  intensit? forms a Markov chain whose transition 
probabilities  do not depend on n except through the value of 
the  upper  boundary ln(nP). This fact. of course. depends 
on our use of the local Poisson approximation. If the  actual 
transition  probabilities  are used, then the transition  proba- 
bilities for (rpr.) will depend  on n. but will converge rapidly 
to those of (3.7) as n increases. The Markov chain (cp;) 
whose transition  probabilities (3.7) do not  depend  on n will 
be referred to as  the local model for the log intensity of 
retransmitted traffic. 

Retransmitted  Truffic - Global Model us Disturbed  Local 
Model: For  contrast, the Markov chain ( ;V,. f,) or equiva- 
lently. the chain ( N , ,  9;,) with = In( f,( X, V l)), will be 
called the global model as opposed to the local model just 
described  in  which X, is  held fixed. Defining  the  random 
variables 

f%=ln(f , (%lVI))  
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and 

E,=h(N,V1)-ln(N,-,V1) 

we see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, + E ,  (3.8) 

and that  the  conditional  distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,, given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ~ ,  = 
cp) using the global model is  the  same as the conditional 
distribution of qf,, given Q J ~  = cp using the local model. 
Hence, (3.8) represents q ~ ,  for the global model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a per- 
turbation of the corresponding  variable  for  the local model, 
where the perturbation  at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + 1 is tri I = Aln( N, V 1) 
= AN,/N,-  O(l/N,)  for N, large. We shall return to these 
ideas in the sections that follow. 

Choice of the Parameter /3: The  parameters c(O), c(l), 
c(e),  and y of our retransmission control  procedure  are 
chosen in the next section based on  the local model. The 
choice of p is based on  consideration of the global model. 
As  seen from  the recursive control  equation (3.5): the 
constant /3 is the maximum value that  the retransmission 
probabilities f, can assume. A reasonable choice for j3 is 
,& = 1, although we have found  that  a  somewhat smaller 
value of /3 is preferable.  In  fact,  during  periods when 
N, = 0, the users  will not observe any collisions until two 
new arrivals occur in a single slot.  The lengths of such idle 
periods  thus have a geometric distribution with mean (1 - 
(1 + X)e-')-', which is on  the  order of 20 slots for h < e- ' .  
During these periods, since low channel traffic is  being 
observed, the users' retransmission probabilities f ;  will tend 
to drift to their maximum value p (see below).  At the end 
of the "idle" period,  there will be  at  least two users 
contending  for  the  channel. Thus, a good choice for p is 
the retransmission level f whch maximizes the throughput 
given that  there  are two  users in  contention:  that is, 

p=argmax(e- '2 f ( l - f )+~e- ' (1- f ) ' }  
f 

- I - A  -- 
2-A '  (3.9) 

This choice of p will  be  assumed throughout the remainder 
of this paper. 

Iv. DRIFT AND VARIANCE ANALYSIS OF THE LOCAL 
MODEL 

The local model for  the log intensity  of  the  retransmitted 
traffic when N, is fixed to be n is given  by  (3.7). The 
minimum  in (3.7) simply reflects the fact  that cp: = ln(nf,") 
d l n ( n p )  for all t .  However, as n increases, the  constraint 
(p: G In( n/3) becomes  less crucial as  will be seen  below. 
Hence, in this section we study only the process @, with 
transition  probabilities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I yc(0) with prob e-', 

= @, + ye( 1) with prob G,e-Gl (4.1) 

yc( e )  with prob 1 - (1 + G,)e-'! 

where G, = A +exp(@,). Thus, (@,) has  the  same  transition 
probabilities as the  local  model (cp:), except the  constraint 
to  be less than ln(tzj3) is not  imposed  on (@,). 

For numerical and theoretical purposes  it is important  to 
note  that if (c(O), c(l), c ( e ) )  = ( 8 ,  j 6 ,  j 6 )  for  some  con- 
stant 6 > 0 and integers i ,  j ,  k with greatest common  di- 
visor 1, then @ may be viewed as  an  irreducible  aperiodic 
Markov  chain with the  discrete  state space consisting of 
integer multiples of 6. 

Choice of the Parameters c(O), c(l), c(e): Define  the  quan- 
tities 

m(x)  = ,??[A@,/& = x ]  

and 

u 2 ( x ) =   v a r [ ~ @ , ~ @ , = x ]  

where 

A@, @r+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - @f. 

It  is clear from (4.1) that 

m(x) = y (c (o ) ,  c( l ) ,   c (e) ) -b(x)  

and 

where 

b ( ~ ) = ( e - ' ( " ) , G ( x ) e - ~ ( " ' , I - ( l + G ( x ) ) e - ' ( ~ ~ ) )  

for G(x) = ex + A. The  function m is the local drift  and u2 
is the local variance of the real-valued Markov  chain (et). 
Now, by the local  Poisson approximation,  the expected 
throughput in slot [ t ,  t + 1) given @, is S, = Gre-'t where 
G, = G(@,), which  is  maximized  when G, = 1. Thus, it is 
reasonable to choose the  constants c(O), c( l), c( e )  so that @, 
always drifts towards the value qOp, which  yields G, = 
exp ( @,) + h = 1. That is, c = (c(O), c( 1), c( e) )  should be 
chosen so that 

sgn(G(x)- I )=  -sgn(m(x))   foral lxER (4.2) 

where sgn(u)=  +1,0 or -1 when u>O, u=O, or u<O, 
respectively. 

Proposition 4.1: Condition (4.2) is true if and only if 
c#O, c(e)<O<c(O), and 

(See Appendix B for  proof.) 
Proposition 4.1 shows that  there  are  many choices for c 

which ensure that  the  traffic level drifts in the right direc- 
tion.  The  conditions c( e )  G 0 d c(0) are intuitively pleasing, 
for they  show that  the retransmission probabilities  should 
be decreased (respectively increased) when a collision (re- 
spectively empty  slot) is observed. The  constant c( 1) can be 
positive or negative. There is a  unique choice of c (up to a 
multiplicative constant) which satisfies (4.2) and also satis- 
fies c(1) = 0. It is 
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0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Drift.  covariance, and  throughput intensity  versus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq~ for local 
model, X = 0.32. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c =  (c(O),c(l),c(e))= (0.418,0,  -0.582). 

This choice of c will be used throughout  the rest of  this 
paper. Some  choices of c which  allow  reduced  feedback 
information are discussed in Section VII. 

In Fig. 1,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq), IS*( q), and throughput 

S (q )= (h+eF)exp ( - (h+eq) )  

are  plotted  for y =1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh =0.32.  Note that 6 tends to 
drift towards the value qopt = ln(1- X )  which  maximizes 
the  throughput level.  Moreover, m is bound away  from 
zero  outside any  neighborhood of its zero, In ( 1  - A). Since 
the  step sizes of @ are uniformly bounded. if 3 is consid- 
ered as  a discrete state (see above) Markov  chain,  then 
there exists a  unique  stationary  distribution  and the time it 
takes for 3 to get  from one  state  to  any  other  state  has  a 
distribution with a geometrically bounded tail [6]. 

The Role of the Parameter y: A glance at (4.1) shows 
that the step sizes of the Markov  chain (3 , )  are  propor- 
tional  to y. If y is fairly large, @ will  quickly approach  the 
vicinity of its  optimal value, but will continue  to  fluctuate 
so that the expected  value of throughput S(@,) when has 
its  invariant  distribution is somewhat less than S( cpopt) = 
e I .  If y is  very small, then @ approaches qop, more slowly. 
but  on the average  remains closer to qOpt after  the longer 
transient  period. It is  known (see [6, equations (5.1 1) and 
(5.12)]) that 

lim S, = e-' 

where S, = E,[S(@,)] denotes  the  expectation of S( 3,) rela- 
tive to the stationary  distribution of (9,). Moreover. it can 
be shown that 

- 

Y - 0  

S, = e-' - y 'R + o ( y ' )  
- 

(4.3) 
where 

To understand (4.3), note  that  near q = qopt. m, IS, and S 

I 512,003 T w e  Slots/Sample Polnl 
L ~ C O I  Po~sson Approx Used I 

0 201 I I I 
LO 2.0 30 40 

Fig. 3. Average throughput of local  model  versus 7: h = 0.32. 

Fig. 3. Sample paths of throughput intensity  using  local  model: h = 0.32. 

are  approximated by %( v) = nz'( cpopt)( cp - cpopl). 6( cp) = 
u(cpopt), and s(cp) = e-' - $S^"(cpop,). The diffusion with 
drift 6 7  and diffusion term d 2  is a  translation of an Om- 
stein-Uhlenbeck process  which thus  has  the  stationary 
distribution N(qopt ,  - 62/2n?'(q0pt)).  The  approximation 
e ' - y 2 R  of $ above is the expected  value of j( cp) with 
respect to ths  stationary  distribution. 

In Fig. 2 $ is plotted  as  a  function of y. The results were 
obtained by computer  simulation  runs using 50000 time 
slots for each data  point. Fig. 3 shows  two sample  paths of 
the  throughput  intensity S, = S( 3,) when y = 0.1 and y = 
0.5 are  obtained  by  computer  simulation. 

- 

V. STABILITY AND PACKET DELAY UNDER THE 

GLOBAL  MODEL 

The average throughput  rate $ under the local model 
can be made  greater  than  any fixed input  rate h <e-'  by 
choosing y small enough.  The  dynamics of the  throughput 
intensity S(q,) under  the global model are  the  same as 
those of s, under  the local model,  except for a  disturbance 
of O(l/N,) as indicated by (3.8). Thus.  when a large 
enough  backlog occurs. the throughput  rate S( qr) will  have 
a quasi-equilibrium distribution with a mean greater than 
any fixed input  rate h < e- if y is sufficiently small. Ths 
ensures  that the backlog N, will  tend to drift  downward. 
This is the intuition behind the following  theorem.  which is 
proved  in [6]. In  the theorem, the process (A:. f,) is consid- 
ered as  a  Markov chain  with the discrete state  space 

s = { ( n  , @ ) : n . k nonnegative integers} 

where 0 < A < 1 and a y  = (A'. 1, A-J) for some relatively 
prime integers i. j .  

Theorem 5: For any  input  rate h < e- I .  there is a y*  > 0 
such  that if 0 < y < y* ,  then the following are  true: 1) The 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Average throughput intensity versus backlog using local Poisson 
approximation to global model. 
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Fig. 5. Average throughput intensity versus backlog using actual global 
model. 

discrete state Markov chain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf , )  is geometrically ergodic. 
(In particular, the chain is positive recurrent with an  in- 
variant  probability measure n.) 2 )  E,[(Nk)n']  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco for all 
m > 0, where E,  denotes expectation relative to n-. 

In view of this theorem, the next problem is to find the 
expected delay D sustained by a randomly arriving packet 
and to select y to minimize D. By Little's result, if 
denotes E,[N,],  then 

D = N , / h  

so the  study of D and  the  study of are equivalent. 
Unfortunately, it is difficult to compute  or even find 
close bounds.  Our  approach  here will be  to combine com- 
puter simulation with analytical analysis. 

To get a rough estimate of F ,  the effect of the dis- 
turbance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  in (3.8) on the throughput intensity S(q,) under 
the global model should be analyzed as a  function of the 
backlog N,. In Figs. 4 and 5, the average of the  throughput 
intensity S(cp,) is plotted  as  a  function of the backlog N,. 
The results were obtained by a  computer simulation of the 
global model over a period of 50000 time slots. As indi- 
cated in Fig. 6, the sample average of S ( q , )  was computed 
over sets of time slots for which the backlog was at 
specified levels. For example, Fig. 6 indicates  that  during 
3877 out of 50000 time slots, the backlog was 2 packets, 
and the average of S( q,) over these 3 877 slots was  0.36006. 
Fig. 5 differs from Fig. 4 only in that the actual channel 
transition probabilities were used rather  than  the local 
Poisson approximations. The maximum throughput  inten- 
sity that could be achieved if all users were informed of Ai 
is also indicated in Figs. 4 and 5. The  parameter m 

m= 1 
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Fig. 6. Average throughput intensity versus backlog using local Poisson 
approximation to global model with h = 0.32 and y = 0.3. 
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Fig. 7. Average backlog for global model versus y. Computer simulation 
-50000 slots/point. h = 0.32. 

indicated in  the figures is discussed in  the next section-for 
the model discussed here rn = 1. 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy very small we conjecture that 

N,-c,/y asy-O (5.1) 

for some constant C,. The reason for this conjecture is that 
for y small, the  control  procedure will be effective when 
and only when the size of the steps [which are O(I/N,)] of 
the process E, is comparable  or smaller than  the size of the 
steps of @, (which are  proportional  to y). The relation (5.1) 
is apparent  in Fig. 7 for A = 0.32 and C, = 0.6. Fig. 7 was 
obtained by computer simulation of the global model for 
50000 time slots for each data point. 

For y greater than  about 0.3, the throughput intensity 
S( q~,) of the global model appears to be nearly the  same  for 
all N, 2 2. This is indicated by the curve for y = 0.3 in Fig. 
4. The reason for this insensitivity to N, is that the dis- 
turbance 5, is no more severe than  the  fluctuations of 9, in 
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the local model  when the  step size  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, is large enough. 
For y greater than  about 0.3, the  throughput  intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S(cp,) is thus well approximated by the average zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ com- 
puted using the local model and shown in Fig. 2. This 
approximation  leads  to  a model in which the  throughput 
intensity is a  constant  independent of the backlog N, as 
long as N, > 0. Such a model  was  analyzed  by  Ferguson 141. 
He was able  to  compute all  moments of N, with respect to 
the  invariant  distribution.  His analysis is extended in Ap- 
pendix C to yield an approximation of & as  a  function of y 
when the intensity S(q , )  is approximated by a  constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 
whenever N, > 0. T h s  yields an approximation of e as a 
function of y using the values of $ versus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy as pictured  in 
Fig. 2. The results of the  calculations  are  plotted in Fig. 7. 

It is apparent from Fig. 7 that  the best choice of y is 
approximately 0.3 and for this value of y the average 
backlog is about 5 packets using the actual  channel  transi- 
tion probabilities. 

Given Theorem 5 ,  the question arises as to what other 
recursive policies yield a  stable system.  Using the ideas of 
t h s  paper,  it is  not difficult to establish the stability result 
claimed  in 1101 for the policies considered there. It is  not 
practical to give a result that would  cover all recursive 
estimators which  yield stability, although  the principles 
used in proving Theorem 5 can be  used  more generally as 
we  will briefly describe. (Also. see [20].) 

For a given recursive policy f,, = G( f,. Z,)  which  may 
not be of multiplicative type, the local model ( n ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq$. can 
still be  defined as in Section 111, and  the  steady-state 
throughput  intensity = liminf, - , E , [ S ( q , ) ]  can  be de- 
fined. Roughly speaking, the channel will be  stable if l) 
X < liminfn-,$(n)  and if 2) the  statistics of local model 
( n )  vary  slowly enough with n for n large so that even 
when n = N, fluctuates  as  it  does in the global model, the 
process v, still drifts  to  maintain average throughput  inten- 
sity greater than y. These  conditions  are readily tested for 
multiplicative policies since for such policies the statistics 
of the local model ( n )  depend  on n only  through the 
boundary In( bn). [See (3.7).] 

VI. A POLICY INSENSITIVE TO INPUT TRAFFIC 
STATISTICS 

In practice the  statistics of the input  traffic process (Y,) 
may significantly differ from Poisson statistics. Not only 
might  each of the variables r, have a  different  distribution. 
the variables may be  dependent.  This may  severely degrade 
the  performance of the retransmission policy we have 
proposed since statistical changes  in  incoming traffic di- 
recrb change the statistics of the total transmitted traffic. 
The reason for this direct influence is that  our policy is an 
immediate-first-transmission (IFT) policy (notation sug- 
gested  by Tobagi [16]). However, as we  will show in this 
section, our policy (and the resulting analysis) can be 
readily converted  to  a delayed-first-transmission (DFT) 
policy which maintains stability over a wide class of input 
statistics with rate X < e- ' .  

Under  the DFT policy, new packets join the backlog 
before their first transmission is attempted. Thus. the num- 

ber of backlogged packets for the DFT policy satisfies 

~ , + l = ~ , + r , + l - ~ ( z , = I )  

where ( Y,) and (Z,) are  defined as before. Given ( N , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,), 
the  throughput  probability S, and the total traffic intensity 
G, satisfy 

and 

Note that IS, - G,e-''l + 0 uniformly as + + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx or as 
f ,  - 0, by (2.2) and (2.3) as before. Consider the same  rule 
(3.5) for updating retransmission probabilities  as before. 
The parameters a(O), a( l), a( e). and y should be chosen as 
before, but  a  more  appropriate choice for j3 is  now /3 = 1. 
(See discussion of p at  end of Section 111.) Since S, = G,e-'I 
as before. it is clear that the local model for the DFT 
policy is identical to  the local model  discussed in Section 
IV for the original IFT policy, at least when the arrival 
process ( Y,) is Poisson. 

However, if, for example. the variables Y, are  indepen- 
dent  but have a non-Poisson distribution.  then the local 
model for the IFT policy changes,  while the local model for 
the DFT policy just described is the same  as  it is for 
Poisson arrivals. 

For example, suppose  that P( r, = 2 )  = X / 2  and P( Y, = 
0) = 1 - X/2. If N, is large, then  under  the IFT policy the 
probability  distribution of Z,E {01 1, e} is approximately 

In particular.  the  throughput  probability is (1 - 
( X\2))pre-@?. This distribution of Z, is different  than when 
Y, is Poisson-hence the transmitted traffic level  need no 
longer drift to the optimum level.  which is now G, = 1 + X 
(so p,  = 1). Furthermore. even if the policy parameters  are 
readjusted so that G, drifts properly. the resulting maxi- 
mum throughput is (1 -( h / 2 ) ) e - ' ,  so in order for the 
channel  to  be  stable  it is required that X < (1 -( X/2))e-', 
or X < 0.31. On  the  other  hand, the DFT policy maintains 
stability  for this distribution  of ( y )  as  long as X <e-' ,  and 
no readjustment of the constants a(O), a(1). and a(e)  is 
needed. 

In certain cases, the IFT transmission  scheme can achieve 
greater  stable  throughput  than  the DFT scheme. In  fact, it 
is not  hard to show that if (and only if) X < t ,  then  there 
exists a  distribution for the arrival variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, with E[Y,]  
= X and P( Y, > 1) > 0 such  that  the  channel is stable  under 
the original retransmission policy for some choice of 
parameters y. a(O), a( I), and a( e )  depending on the distribu- 
tion of Y,. 

Thus. if the policy parameters  can be adjusted to depend 
on the arrival distribution, then neither the DFT nor  the 
IFT policy always  provides a larger maximum throughput 
than the other. However, the crucial point is that  only  the 
DFT policy can  ensure stability (in the sense of Theorem 
5.1) for any i.i.d. arrival process (Y,) with A = E( Y,) < e-' 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE[eeYr] < + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcx3 where > 0 [6]. Furthermore,  stability 
can  be  acheved by the DIT policy for all such arrival 
distributions  without  readjustment of the  parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(O), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a( l), a(e), and y ( y  must  be sufficiently small, depending 
only  on h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc). The DIT policy is also relatively insensi- 
tive to  dependence  among  the variables K .  

VII. CONTROL  UNDER FEEDBACK INFORMATION 
LIMITATIONS 

It  has been  assumed in the previous sections that each 
user can  find  out whether zero, one, or greater  than  one 
packet was transmitted  in  a given slot. It is  convenient to 
call  this feedback channel  information. In many  communi- 
cation  situations  such feedback information may be incom- 
plete  or  may  contain  errors which  may be  different  for 
different users. For example, fading channels, noise, inter- 
ference, or certain  spread  spectrum  modulation techniques 
can make it difficult for receivers to distinguish between 
one packet  transmission or more  than one, or  to  dis- 
tinguish between  noise and packet transmissions. The con- 
trol policy design and analysis ideas  presented in this paper 
readily extend to cover many such situations. 

One  assumption  stated earlier is that  during slot [ t ,  t + 1) 
all backlogged users transmit with the  same  probability f,. 
However, due to  the  channel feedback problems consid- 
ered  above, the users may not be  able  to all  maintain 
identical  retransmission  probabilities.  Instead, user zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY 

retransmits with probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA'") in slot t .  It might also  be 
desirable to let f a )  depend on  the user LY in  order to give 
some users hgher priority.  This could easily be  accom- 
plished by  assigning a larger value of the  control  constant q 
to users with  higher priority. 

Allowing f a )  to depend on LY has  little effect on  our 
retransmission  procedure. This  is  because the  retransmitted 
traffic  intensity 

PI = c A'"' 
a: user a backlogged 

has the  same  dynamics as before: 

P L + I 4 W P l  

as long as all users continue to use the  same retransmission 
probability  update scheme  (3.5). In  particular,  the  channel 
traffic  intensity  dynamics still decouple  from the backlog 
fluctuations when the backlog is moderately large. 

To understand  the effect of incomplete  channel feedback 
information  suppose  that for some m 1 the channel  out- 
put is  observed and  the retransmission probabilities  are 
updated using  (3.2)  only once every m slots. We shall see 
that  performance is not severely  degraded. The transition 
probabilities  and hence also  the average throughput  inten- 
sity for the local model do not  depend on m. The effect of 
m > 1 in the global model is that the rate of retransmission 
probability  adjustment is slower  by a  factor of m when 
compared to the  case m = 1, while the backlog fluctuates at 
about the same  rate  for all m. The effect is to increase the 
disturbance  imposed on the local model due  to backlog 
fluctuations by a  factor of m. This effect is only significant 

when the backlog is small  enough  that backlog fluctuations 
limit the retransmission control performance. 

The net effect of fixing m = m, > 1 versus m = 1 can  best 
be summarized as follows. If the backlog  is small, then  the 
average throughput for rn = m, will be  about the  same as 
for m = 1, but with y replaced  by y / m .  If the backlog 
becomes large enough, the average throughput  should  be 
about the same for m = rn, and m = 1 (with the  same y ) .  
This behavior for m, = 5 is  nicely illustrated in Figs. 4-5. 
The curves for ( m  = 5, y = 0.3) are close to the curves for 
( m  = 1, y = 0.05) for N, G 35 and they are close to  the 
curves for ( m  = 1 .. y = 0.3) for N, 40. 

The  amount of feedback information  available might be 
reduced in other ways. For example, it may not be possible 
for  a user to distinguish between one  and more than  one 
transmission in a slot (unless the user transmitted  a mes- 
sage himself). In other words,  each  user can only detect 
whether or  not  a slot was  empty. Now by  Proposition 4.1, 
two possible choices of c = (c(O), c(O), c(e)) for which  (4.2) 
is satisfied are 

e'= (0.462, -0.269,  -0.269) 

and 

c"= (0.209,0.209, -0.582). 

Since the last two entries of e' are equal, the resulting 
retransmission  rule can be implemented even if the  stations 
can only distinguish between an empty  and  a  nonempty 
slot. Similarly, if the retransmission rule  corresponding to 
e" is used, then  the  stations need  only distinguish collisions 
from noncollisions. (This has  been called "0-1 feedback" 
[ 101.) In each case, stable  throughput for any X < e-' can 
be acheved. 

The preceding analysis deals with restricted feedback 
information. Now consider  instead  situations in which the 
feedback information  contains errors. In our framework, 
the effect of channel  feedback  errors  should be analyzed in 
the local model since the occurrence of such  errors may  be 
closely linked to  the  intensity of channel traffic, but  should 
be otherwise independent of the  channel backlog. The 
effect of such  errors  could  be  quantified by seeing how 
much  they cause .$ to decrease (< is the average through- 
put  intensity  under the local model). The system perfor- 
mance  should  degrade gracefully zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the frequency of errors 
increases because of the  apparent  stability of the local 
model. These ideas and  the use of estimation techniques in 
cases of severe feedback channel  limitations pose  im- 
portant  problems  for  future research. 

APPENDIX A 
POISSON APPROXIMATION 

which  is absolutely convergent for I f 1 -= 1 yields that 
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e-"/- (1 - f )" APPENDIX C 

=e-n / [ l -exp(n( f+~n( l - f ) ) ) ]  In this  appendix we shall find an approximate expres- 

1 1  1  sion  for  the average  backlog  when the  throughput - + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-f+ - f *  + . . . 
2 3  4  intensity is given by 

i f q = o  

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, > 0 
s, = - 

for  a  constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$>O. Some quite general equations  can  be 
used. 

Random Walk with  Boundary  and Steps Bounded  Below for 0 < f <  1. This proves  (2.1). 

which is less than 1 and is monotonic  in f. Hence. for any Z +  = ( 0 ~ 1 , .  . . 1 such  that 
fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfO , 

The right side Of (2.1) is a  product Of two factors. each Of bv - 1: suppose that (X, :  k 0) is a  Markov chain on 

e-"fO i f f 2 fO P [ X , + , = i l X , = j ] =  (C.1) 

1  -exp - n/" 
e- " / -  (1 - f ) "  < 

i f j = O  1 ( ( 2( l - fO) ) )  where 

1 

X Zo 

Inequality (2.2)  follows  from this for the choice fO = n d p ' .  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu , =  2 u,=1. 
The first inequality in (2.3) is an easy  consequence of (2.1) 
and the second follows by  maximizing e-./( 1 - e-"f') over  Let 
0 =G x < x for fixed f. 

r = - i  r = O  

To prove (2.4) we note  that p : " = P [ ~ , = n ] .  

Infe-"/-nf(1-f)"-'\ = n f l e - n f - ( l - f ) " - l l  Then 

and then  apply  inequality (2.1) to each of the terms on  the 
right. Finally, inequalities (2.5) and (2.6) can be  proved Define  the generating functions 
using  (2.4)  by the same technique used to prove (2.2). X 

j =  - 1  

P y z )  = 2 p y Z "  

U ( z ) =  2 u n z n  

APPENDIX  B 
PROOF OF PROPOSITION  4.1 

n = O  

oc 

Equation (4.2) is equivalent to 

sgn(G-1)=  -sgnf(G)  forO<G< too (B.l) 

where 

f(G)=(e-G,Ge-G,l-(l+G)e-G).c. 

By defining /( + 00) = e( e) ,  f becomes continuous on the 
extended interval [0, + 301. If (B.l) is true. then 

0 =G f(0) = c(0) 

o > f ( + w ) = c ( e )  

0=f( l )=(e- ' ,e- ' ,1-2e- ' ) .c  

so the  conditions of Proposition 4.1 are necessary. 

position 4.1 are true. Note that 
To prove the sufficiency, assume the  conditions of Pro- 

f ' (G)=e-'(- l , l -G,G).c. 

Nowf'(l)= -c(O)+c(e)<Osincec(O)2Oac(e).Infact, 

I ? =  - I  

oc 

V ( 2 )  = 4 2 " .  

I ,  = 0 

Then  (C.l) becomes 

P ' " ' y z ) = P ( y Z ) U ( z ) + p p ( V ( z ) - U ( z ) ) .  

If a  stationary  distribution exists, then since the  chain  is 
irreducible and aperiodic, pAk) -, p,, for each n ,  where ( p,,: 
n 2 0) is the  stationary  distribution. So P("'(z) + P( z )  if 
I z 1 < 1 where P ( z )  = Z~==,p,z". So if a  stationary  distribu- 
tion exists, it satisfies 

P ( z ) = P ( z ) U ( z ) + p , ( v ( z ) - u ( z ) ) .  

If the  distribution (u , , )  is not  degenerate so that U(z) f 1, 
we can solve for P( z ) :  

P (  2 )  = 
V( Z )  - b7( 2 )  

l - U ( z )  PO. 

f'( 1) < 0 since c f 0. Furthermore, since (- 1.1 - G, G) . c Since  lim, - P ( z )  = 1, we find by 1'Hopitals' rule  that 
is an affine function of G, f '  has, at most, one zero in pO = - U / (  1: - U). assuming that  the means U = Zku, and 
(0, + m). Also, f( 1) = 0 and f(0) 2 0 2 f( + x ) .  These facts 5 = Xkc, exist. Let X = Zkp, be the expected  value of X,  
imply (B.l),  and Proposition 4.1  is  proved. with respect to the invariant measure. Then 2 = 
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lim, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP’( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) .  Now, using 1’Hopitals’ rule and  the  fact [5] D. Freedman, Approximuring  Countable  Stare Marks, Chins .  San 

[6] B. Hajek, “Hitting time and occupation time bounds implied by 
- 

lim, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,U“( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 - U, etc., yields that 
Francisco, CA: Holden-Day. 1971. 

- -  drift analysis with applications.” Advances Appl.  Probuhili!~~, S p t .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x= (c.3) [7] L. Heinrock. Queueing Systems, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt.01. 2: Computer  Applicutions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 u 2  - 1982, to be published. 

-2U(C-U) New York: Wiley.  1976. 
[8] S .  S. Lam and L. Kleinrock, “Packet switching i! a multiaccess 

assuming that  the first and second moments E ,  5, u2,u2 of Commun., ~01.~F0M-23. pp. 891-904. Sept. 1975. 

the  distributions ( u k )  and ( u k )  are finite. [9] J. L. Massey. Collision-resolution algorithms and random-access 
communications.” in Multi-User  Commtrnicutions, G. Longo. Ed. 

B~~ periods: consider a situation  in [ IO ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. A. Mikhailov. “A random access algorithm for a  broadcast 

the  retransmitted traffic intensity is a  constant p> 0 
channel” (Abstract, in Russian), in 5th I n t .  Sxmp.  Inform. Tlzeory. 
vol. 3.  TbiLisi, Moscow.  1979. pp. 83-86. 

chain which, under  the local Poisson approximation,  has 
access schemes for multi-access communication channels,” in Abst. 
Pupers. 1981 IEEE Inform. Theor? Symp.. Santa Monica. CA. Feb. 
1981. 

communication,” I E E E  Trans.  Automut.  Contr.. vol. AC-23. Apr. 
1978. 

k > 2  [ 131 A.  Segal, Recursive estimation from discrete-time point processes.” 
IEEE Truns.  Inform.  Theoty. vol.  IT-22. pp. 422-431, 1976. 

[I41 J. W. Sennott and L. I. Sennott, “A queueing model for analysis of 
a bursty multiple-access communication channel,” I E E E  Truns. 

[ 151 D. Seret and C. Macchi, Controle adaptatif d’un reseau a diffusion 
de paquets,“ in Flow Conrrol in Computer  Nenvorks, J. L. Grange 
and M. Gien, Eds. New York: IFIP, North-Holland, 1979. 

network, Part I: Slotted ALOHA,” I E E E  Trans. Commun., vol. 
COM-28. Feb. 1980. 

[I71 B. S. Tsybakov and U. A. “I,@. “Slotted multiaccess packet- 
Xe-(x+P) + e-’( 1 - pe-p) k = 0 broadcasting feedback channel, Problemy Pereduchi Informursii, 

vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14, pp. 32-59. 0ct.-Dec. I ? X .  
k =  -1. [I81 P. Varaiya and J. Walrand, Decentralized control in packet 

switched satellite communication,” I E E E  Trans.  Auromut.  Confr., 

_ -  broadcast channel: Dynamic control procedures, I E E E  Trans. 

Average  Backlog  Assuming  Constant  Traffic  Rate  During New York: Springer-Verlag. 1981. 

whenever N, , 0. ~h~~  the backlog process N, is a ~~~k~~ [ 1 I ]  I. Rubin  and M. Louie, “A Class Of hybrid TDMA/tree-random- 

transition probabilities which are Of the form (‘*I) with [ ] 2 ]  F. Schoute. ”Decentralized control in packet switched satellite 

( l + h ) e - A  k = O  
otherwise Inform. Theoy, vol. IT-::. May  1981. 

k !  
k 2 2  [I61 F. A. Tobagi. “Analysis of a two-hop centralized packet radio 

1 k = l  

VOI.  AC-24. Oct. 1979. 
Elementary calculations yield that [ 191 J. E. Wieselthier and A. Ephremides.,,“A  new class of protocols for 

multiple access in satellite networks. I E E E  Tmns. Auronuzt.  Con- 

(c.4) [20] R. L. Cruz, “Protocols for multi-access channels with continuous 
trol. vol. AC-25, Oct. 1980. c= X - e-h 

- entry and noisy feedback,” M.S. thesis, Lab. Jnform. Decision Syst., 
v2 = A + A’ - Ae-x (C.5) M.I.T.. Cambridge. MA, to appear. 

u=x-s (C.6) 
- p-A - 
u2=A+A2+-  

p + h S  

where s= ( X  + p) exp( - ( X  + p)) is the  throughput  inten- 
sity when N, > 0. Using these values in (C.3) yields the 
mean of N, under  the  invariant  distribution. 

Approximate  Acerage  Backlog  Assuming  Constant 
Throughput  Intensity  During Busy Periods: The  throughput 
at time t in  the general model is S, = ( X  + p,)exp(X + p,). 
If S, is held at  a fixed  level g, the traffic level p, is not 
completely determined. However, if g i s  near e-’$ then p, 
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