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Abstract—As essential building blocks of the future smart
grid, microgrids can efficiently integrate various types of dis-
tributed generation (DG) units to supply the electric loads at the
minimum cost based on the economic dispatch. In this paper,
we introduce a decentralized economic dispatch approach such
that the optimal decision on power generation is made by each
DG unit locally without a central controller. The prerequisite
power generation and load information for decision making is
discovered by each DG unit via a multiagent coordination with
guaranteed convergence. To avoid a slow convergence speed
which potentially increases the generation cost because of the
time-varying nature of DG output, we present a heterogeneous
wireless network architecture for microgrids. Low-cost short-
range wireless communication devices are used to establish an
ad hoc network as a basic information exchange infrastructure,
while auxiliary dual-mode devices with cellular communication
capabilities are optionally activated to improve the convergence
speed. Two multiagent coordination schemes are proposed for
the single-stage and hierarchical operation modes, respectively.
The optimal number of activated cellular communication devices
is obtained based on the tradeoff between communication and
generation costs. The performance of the proposed schemes is
analyzed and evaluated based on real power generation and load
data collected from the Waterloo Region in Canada. Numerical
results indicate that our proposed schemes can better utilize
the cellular communication links and achieve a desired tradeoff
between the communication and generation costs as compared
with the existing schemes.

Index Terms—Decentralized economic dispatch, heterogeneous
wireless networks, microgrid, multiagent coordination.

I. INTRODUCTION

O
PERATING at a distribution voltage level, the micro-

grids are small-scale power systems designed to utilize

the distributed generation (DG) units to supply the electrical

loads in local areas such as a residential community, a univer-

sity, and an industrial site [1]. In addition to the environmental

benefit in terms of using more renewable energy sources,

the microgrids can reduce the transmission and distribution

(T&D) losses based on the physical proximity of DG units

and loads. Since various types of DG units such as wind

turbines, photovoltaic (PV) panels, and fuel cells may co-

exist, one pivotal problem in microgrid management is the

economic dispatch which balances the power generation and
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loads at a minimum monetary cost. Different from traditional

power systems with thermal energy power generators, the

economic dispatch in microgrids is challenging because of

the intermittent and climate-dependent nature of renewable

energy sources. As the accuracy of estimating the capacity

of DG units and loads is limited, the economic dispatch is

performed in a relatively small time scale, e.g., every five

minutes for California Independent System Operator (CAISO)

with wind/solar integration [2], and a communications/control

delay within 2-10 seconds [3].

Both centralized and decentralized approaches can be used

to achieve economic dispatch. Most existing centralized ap-

proaches assume that the estimates or statistics of power gen-

eration and loads acquired by a central controller are accurate

[4], [5], [6]. Although the centralized economic dispatch has

the advantage of high efficiency, it suffers from the problem of

a single point of failure and high deployment cost in terms of a

powerful central controller and a communication infrastructure

(such as a fiber-optic network [1] to connect each DG unit

or load to the central controller). On the other hand, the

decentralized economic dispatch can avoid a single point of

failure and fits the plug-and-play nature of DG units and loads

in microgrids [7]. Since information exchange only needs

to be established among neighboring nodes (corresponding

to the DG units or loads), low-cost short-range wireless

communication devices such as WiFi and ZigBee devices can

be implemented to establish the network infrastructure [8]. In

order to achieve the same efficiency in cost minimization as

the centralized counterpart, the DG units should acquire the

accurate power generation and load information in a decentral-

ized manner [9]. Multiagent coordination is a promising solu-

tion for decentralized load restoration [10] in microgrids since

the accuracy of information discovery is guaranteed based on

the average consensus theory. Several medium access control

(MAC) protocols are proposed in [11] to facilitate multiagent

coordination in microgrids via wireless networks. However, as

the convergence speed decreases significantly as the network

size increases, how to implement multiagent coordination to

achieve economic dispatch in a small time scale is still an

open issue. Although better network connectivity can improve

the convergence speed of multiagent coordination according

to the small-world phenomenon [12], simply increasing the

transmission power of wireless devices is not helpful since

the connectivity benefit is reduced by increased wireless in-

terference [13]. Therefore, an auxiliary network infrastructure

is indispensable for efficient decentralized economic dispatch

in microgrids via wireless networks.
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TABLE I
SUMMARY OF IMPORTANT SYMBOLS USED.

Symbols Definitions

B The set of dual-mode nodes

c The set of all possible costs in economic dispatch

G The number of types of DG units

M (M ) The set (number) of activated cellular communication devices

Nv The set of neighboring nodes of node v
Qm The set of cluster members with respect to node m
SQm

The number of time slots for deterministic ad hoc communication link scheduling with respect to the

nodes in Qm

T The duration of information exchange period

TA The duration of information exchange via ad hoc network for hierarchical multiagent coordination

TB The duration of one broadcast

TD The duration of economic dispatch period

V The set of all nodes in the microgrid

Xg (X̄g) The (average) cumulative capacity of type g DG units
Y (Ȳ ) The (average) aggregated loads

In this paper, we present a heterogeneous wireless network

architecture to achieve decentralized economic dispatch in mi-

crogrids. Each node is equipped with a short-range (e.g., WiFi

or ZigBee) wireless communication device for information ex-

change in an ad hoc mode. Several nodes are further equipped

with cellular communication devices and are referred to as

dual-mode nodes for connectivity improvement. By activating

the cellular communication devices, information exchange

beyond the one-hop neighbors in the ad hoc network can be

enabled. Based on the analysis of the economic dispatch prob-

lem, an equivalence between the optimal economic dispatch

and average consensus is shown. A multiagent coordination

approach is proposed to solve the economic dispatch problem

such that each node only needs to discover the average values

of the cumulative capacity (i.e., the maximum aggregated

output) of each type of DG units and aggregated loads. To

avoid a slow convergence speed of multiagent coordination,

the cellular communication devices of the dual-mode nodes

are optionally activated. Two multiagent coordination schemes

are proposed to incorporate the cellular communication links.

The single-stage multiagent coordination scheme requires only

neighboring node information and is fully distributed, while

the hierarchical multiagent coordination scheme utilizes the

network topology information for performance improvement

based on clustering and deterministic wireless link scheduling.

The convergence speeds of both schemes are analyzed with

respect to the number of activated cellular communication

devices. The analytical results show that, with more cellular

communication devices being activated, a (possible) improve-

ment in the convergence speed can be obtained.

Although the ad hoc network based on WiFi or ZigBee

devices can operate on the license-free industrial, scientific and

medical (ISM) band without monetary cost for radio spectrum,

the cost of using cellular communication devices is compa-

rable to the incremental generation cost caused by packet

delay and packet losses [14] [15]. For economic dispatch in

microgrids which addresses the cost minimization issues, a

tradeoff between the communication and power generation

costs is indispensable. In this paper, we focus on the network

operation cost in terms of data transmission via cellular net-

work and the incremental generation cost incurred by the error

in multiagent coordination, and formulate an optimization

problem for the tradeoff. Based on an approximation of the

incremental generation cost with respect to the undelivered and

extra power in a microgrid, we show that a desired tradeoff

can be achieved without resorting to the accurate knowledge of

power generation and load statistics. The performance of the

proposed schemes is evaluated based on real power generation

and load data collected from Waterloo Region in Canada. To

the best of our knowledge, this is the first work in literature

to address the decentralized economic dispatch in microgrids

via multiagent coordination and to present a heterogeneous

wireless network architecture for better tradeoff between the

communication and generation costs. The significance of this

research is threefold. From the utilities’ point of view, the

economic dispatch in microgrids can be achieved based on

wireless communication devices at a low deployment cost and

the minimum operation cost. From the environmental point of

view, the use of traditional thermal energy power generators

can be reduced via a better utilization of the renewable energy

sources. At the same time, the customers can enjoy the

monetary benefit in terms of reduced electricity bills which,

in turn, promotes the use of the renewable energy sources.

The remainder of this paper is organized as follows. Sec-

tion II describes the system model. Section III presents the

proposed decentralized economic dispatch approach based

on multiagent coordination. The proposed single-stage and

hierarchical multiagent coordination schemes are presented

in Section IV and Section V, respectively. The tradeoff be-

tween the communication and generation costs is investigated

in Section VI. Numerical results are given in Section VII.

Section VIII concludes the paper and identifies future research
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Fig. 1. An illustration of the microgrid configuration with a heterogeneous wireless network infrastructure.

topics. As many symbols are used in this paper, Table I

summarizes the important ones.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a microgrid built for a small

residential community. Electric power is delivered from the

DG units (i.e., the wind turbines and PV panels) to the loads

(i.e., the residential houses) via the power grid infrastructure.

The power generation and loads are balanced via economic

dispatch every TD (hour), where TD < 1 for renewable

energy source integration [2]. The information exchange for

the economic dispatch is based on a heterogeneous wireless

network infrastructure1 and is completed at the beginning

of each economic dispatch period with a short duration T
(T < TD) [3], as shown in Fig. 2(a). In the following, we

consider one economic dispatch period as an example. Each

DG unit or load is represented by a node in the microgrid.

The set of all nodes in the microgrid is denoted as V and is

indexed by 1, 2, · · · , |V|.

A. Microgrid and Electricity Pricing

The microgrid is connected to the main grid (i.e., the

utility grid) via a point of common coupling (PCC) [1]. The

microgrid can operate either in a grid-connected mode or an

islanded mode, by closing or opening the circuit breaker (CB)

1The power supply of the network infrastructure is considered to be
independent of the microgrid since the supervisory control should be un-
interruptible even when fault occurs in the power grid [10].

between the PCC and microgrid bus, respectively. Without

loss of generality, we consider an islanded mode in this paper

with an opened CB. An example of the microgrid is shown in

Fig. 1. There are three feeders in the microgrid. On feeder 1,

there are two DG units (DG1 and DG2). On feeder 2, there

are two loads (L1 and L2) and two DG units (DG3 and DG4).

On feeder 3, there are two loads (L3 and L4) and three DG

units (DG5, DG6, and DG7).

Suppose there are G types of DG units in the microgrid.

For each node v (v ∈ V), its type g (g ∈ {1, 2, · · · , G})
power generation capacity is given by xgv . Specifically, we

have xgv > 0 if node v is a DG unit and belongs to type

g, and xgv = 0 otherwise. Take wind turbine as an example,
the value of xgv is equal to the maximum output of the wind

turbine given the wind speed during the economic dispatch

period. Similarly, let yv denote the power demand of each

node with yv > 0 if node v represents a load and yv = 0
otherwise. Note that we use the generalized definitions of xgv

and yv for all nodes in V for notation clarity. Denote x =
{xgv|g ∈ {1, 2, · · · , G}, v ∈ V} and y = {yv|v ∈ V} as
the sets of power generation capacity and loads, respectively.

The values of x and y are assumed to be constant within each

economic dispatch period2 and vary randomly among different

periods.

In this work, we consider a linear generation cost model

which is widely used for the integration of DG units such as

2According to experimental results, there is typically a 3%-5% relative
error for wind farm power estimation in a 10-minute interval [16].
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Fig. 2. Economic dispatch and multiagent coordination: (a) Period definition. (b) Single-stage multiagent coordination. (c) Hierarchical multiagent coordination.

the one used by the feed-in tariff (FIT) program of Ontario

Power Authority [17]. The cost of unit power generation of

type g DG unit is denoted as cg (in dollar/kWh). Without loss

of generality, we consider ordered costs, i.e., 0 < c1 ≤ c2 ≤
· · · ≤ cG. For instance, the solar energy is more expensive

than wind or hydro energy according to the FIT program. The

economic dispatch in a microgrid aims at balancing the power

generation and loads at a minimum cost. For simplicity, we do

not consider the power flow limit of the feeders and the power

losses in the microgrid. However, because of the uncertainty

in DG output and/or the error in information discovery, the

power generation and loads may not be balanced perfectly.

Specifically, if the power generation of DG units is not enough

to supply the loads, the undelivered power should be purchased

from alternative sources such as traditional thermal energy

power generators at a cost of cA per unit. On the other hand,

the extra power in the microgrid is compensated by negative

spinning reserves at a cost of cE per unit3. Generally, we

have cA > cG and cE ≥ 0. The set of all possible costs in
economic dispatch is denoted as c = {cg|g ∈ {1, 2, · · · , G}}∪
{cA, cE} and is assumed to be constant for the time frame
under consideration.

B. Heterogeneous Wireless Networks

Each node in V is equipped with a short-range wireless

communication device, such as the access point (AP) of a

WiFi or ZigBee based device4. Multi-channel wireless com-

munication is supported. For instance, we have 23 wireless

channels for IEEE 802.11a based WiFi devises and 16 wireless

channels for IEEE 802.15.4 based ZigBee devices. Because

of a limited wireless transmission range, each node can

3If the service is purchased before real-time operation, an estimation of the
maximum extra power is required. The energy waste can be reduced based
on distributed energy storage systems [1] and vehicle-to-grid systems [19],
[20], [18], which is left for our future research.
4An extension to power line communications (PLC) is straightforward since

the PLC channel is interference limited and the transmission range of PLC
devices is limited in general [10][21].

only communicate with (or cause interference to) its one-

hop neighbors operating on the same channel. For instance, in

Fig. 1, the node corresponding to DG5 can communicate with

the nodes corresponding to L1, L4, DG4, and DG7, given that

they operate on the same channel. Concurrent transmissions

over the non-overlapping channels are considered interference

free. We denote the network based on the short-range wireless

communication devices as an ad hoc network and the set

of neighbors of node v (v ∈ V) as Nv (Nv ⊆ V \ {v}).
The wireless devices have a constant transmission rate and

a transmission range equal to the interference range. Specif-

ically, a transmission of node v can interfere with another

transmission to node n only if n ∈ Nv , which results in an

unsuccessful reception at node n. For the ad hoc network,
there exists a (multi-hop) communication path between any

pair of two nodes. In other words, the ad hoc network is

strongly connected.

A subset B (B ⊆ V) of nodes are further equipped
with cellular communication devices, such as the user equip-

ments (UEs) in a universal mobile telecommunications system

(UMTS) [22]. Since the base stations (BSs) of the cellular

network are connected by the base station controllers (BSCs)

and are further connected to a backbone network, the B nodes
can communicate with each other even if they are not one-

hop neighbors in the ad hoc network. For instance, in Fig. 1,

DG1, DG7, L1, and L3 can communicate with each other. For

simplicity, we neglect the delay of information exchange via

a cellular network which can support services with stringent

delay requirements [23], [24], [25]. The cost of sending a

message from one node to another via the cellular network is

cM , which depends on the size of the data message.

III. DECENTRALIZED ECONOMIC DISPATCH BASED ON

MULTIAGENT COORDINATION

In this section, we first analyze the economic dispatch

problem and show that solving the economic dispatch problem

is equivalent to achieving average consensus in the microgrid.

Then, we propose a decentralized economic dispatch approach
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where each node makes a local decision on power generation

based on the average values of the cumulative capacity of each

type of DG units and the aggregated loads. The information

required for decision making is discovered by each node via

multiagent coordination with guaranteed convergence.

A. Economic Dispatch

The economic dispatch in a microgrid schedules the power

generation (or output) of DG units optimally such that the

electric loads are served at a minimum cost. Denote the power

generation of a type g DG unit v as ugv (0 ≤ ugv ≤ xgv). The

total generation cost (in dollar/h) equals the cost of purchasing

power from the DG units and alternative energy sources plus

the cost of purchasing negative spinning reserves, given by

CP (x,y, c,u) =
∑

g∈{1,2,··· ,G}

∑

v∈V

cgugv + cAzA + cEzE (1)

where zA and zE denote the undelivered power which should

be purchased from the alternative sources and the extra power,

respectively. Denote u = {ugv|g ∈ {1, 2, · · · , G}, v ∈ V} as
a specific policy of economic dispatch. Based on the power

balance (or demand-supply balance) equation [4], we have

zA =
(

∑

v∈V yv −
∑

g∈{1,2,··· ,G}

∑

v∈V ugv

)+

and zE =
(

∑

g∈{1,2,··· ,G}

∑

v∈V ugv −
∑

v∈V yv

)+

. Then, the optimal

economic dispatch policy u∗ is determined by problem P1 as

(P1) min
u

CP (x,y, c,u) (2)

subject to 0 ≤ ugv ≤ xgv, g ∈ {1, 2, · · · , G}, v ∈ V . (3)

Accordingly, we denote the minimum generation cost based

on u∗ as C∗
P (x,y, c) = CP (x,y, c,u∗).

B. Optimal Economic Dispatch and Average Consensus

In general, problem P1 is a linear programming (LP)

problem which can be solved by existing methods. However,

in order to solve problem P1 in a decentralized manner, the

values of all elements in x and y should be obtained by

each node, which results in a high communication overhead.

In this subsection, we derive a closed-form expression of

the optimal economic dispatch policy based on the ordered

generation costs. The information required by each node for

decentralized decision making is reduced to the average values

of the cumulative capacity of each type of DG units and the

aggregated loads.

We first have the following two lemmas with respect to the

extra and undelivered power in a microgrid. The proofs of

both lemmas are based on contradiction and are omitted here

because of space limitation.

Lemma 1. For an optimal economic dispatch policy u∗ =
{u∗

gv|g ∈ {1, 2, · · · , G}, v ∈ V} based on problem P1, there

is no extra power in the microgrid, i.e., z∗E = 0.

Lemma 2. If
∑

g∈{1,2,··· ,G}

∑

v∈V xgv >
∑

v∈V yv, there

is no undelivered power, i.e., z∗A = 0. Taking account of

Lemma 1, we have
∑

g∈{1,2,··· ,G}

∑

v∈V u∗
gv =

∑

v∈V yv, i.e.,

the optimal aggregated power generation of the G types of DG

units and the aggregated loads are balanced in a microgrid.

Denote the cumulative capacity of the DG units and the

aggregated loads as X = {Xg|g ∈ {1, 2, · · · , G}} and Y =
∑

v∈V yv, respectively, where Xg =
∑

v∈V xgv represents the

cumulative capacity of type g DG units. Define an economic

dispatch policy as follows:

ugv(X̄, Ȳ , c) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xgv, if Ȳ ≥
∑

k∈{1,2,··· ,g} X̄k

0, if Ȳ ≤
∑

k∈{1,2,··· ,g−1} X̄k

xgv

X̄g

[

Ȳ −
∑

k∈{1,2,··· ,g−1} X̄k

]

,

elsewhere

(4)

where X̄ = {X̄g|g ∈ {1, 2, · · · , G}}, X̄g = Xg/|V| and
Ȳ = Y/|V| are the average values of cumulative capacity
and aggregated loads, respectively. For the third case in (4),

the power generation of the DG units is proportional to their

capacity, also known as the proportional fairness. Then, we

have the following theorem which is proved in Appendix.

Theorem 1. Given the average values of the cumulative ca-

pacity X̄ and aggregated loads Ȳ , the decentralized economic
dispatch policy in (4) is optimal for problem P1.

Based on Theorem 1, the problem of decentralized eco-

nomic dispatch is transformed into the discovery (by each

node) of the the average values of the cumulative capacity

(X̄g) of each type of DG units and aggregated loads (Ȳ ).
Intuitively, the results follow the power balance equation

which is based on the summation of power generation and/or

loads. In this work, we consider a multiagent coordination

scheme since the convergence of information discovery can

be guaranteed based on the average consensus theory.

C. Multiagent Coordination via Ad Hoc Network

In this subsection, we investigate the multiagent coordina-

tion via the ad hoc network and show the convergence of

the information discovery process. Take the discovery of the

average cumulative capacity of type g DG units (X̄g) as an

example. The information update takes place in a discrete-

time manner, where each round of update is referred to as an

iteration. Suppose the iterations are completed at time steps

tk (k ∈ {0, 1, 2, · · · }) with t0 = 0 < t1 < t2 < · · · ≤ T .
Denote the state value kept by node v (v ∈ V) at time tk
as X̄g(v, tk). For the initial value, we have X̄g(v, t0) = xgv .

For the kth iteration, node v (v ∈ V) acquires the state values
X̄g(n, tk−1) (n ∈ Nv) kept by its neighboring nodes via ad

hoc communication links. Then, the state value kept by node v
is updated based on a weighted average of the acquired values,

given by

X̄g(v, tk) =
∑

n∈V

ωa
V(v, n)X̄g(n, tk−1) (5)

where ωa
V(v, n) ≥ 0 is the weight used by node v with respect

to node n. Here, we study a symmetric version of the natural
random walk [13] which is analytically tractable. The weight

values are given by

ωa
V(v, n) =

⎧

⎪

⎨

⎪

⎩

1
2 max{|Nv |,|Nn|} , if n ∈ Nv

1 −
∑

j∈Nv

1
2max{|Nv|,|Nj |}

, if n = v

0, elsewhere.

(6)
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Based on (6), we have ωa
V(v, n) > 0 if n ∈ Nv ∪ {v}

and ωa
V(v, n) = 0 otherwise. The update in (5) is fully

decentralized such that each node only needs the information

from its direct neighbors. Denote the weight matrix of each

iteration as W a
V = [ωa

V(v, n)]|V|×|V|, we have

X̄g,V(tk) = W a
VX̄g,V(tk−1) (7)

where X̄g,V(tk) = (X̄g(1, tk), · · · , X̄g(|V|, tk))⊤. The wire-
less links for each iteration may be scheduled sequentially to

avoid interference since we may have Nv ∩Nj �= ∅ for some
v, j ∈ V .

Define a directed graph associated with W a
V such that the

vertex set is V and there is an edge from vertex i to vertex
j (i, j ∈ V) if and only if ωa

V(i, j) > 0. Since W a
V is

doubly stochastic and the directed graph associated with W a
V

is strongly connected (based on the assumption that the ad hoc

network is strongly connected), the state value of each node

converges to a constant [26][27], given by

lim
t→∞

X̄g(v, t) = X̄g, v ∈ V . (8)

In other words, all nodes in the network can eventually obtain

the same state value on the average cumulative capacity of

type g DG units. Similarly, we can show the convergence of

the state values with respect to the average aggregated loads

Ȳ which is updated as

ȲV (tk) = W a
V ȲV(tk−1) (9)

where ȲV(tk) = (Ȳ (1, tk), · · · , Ȳ (|V|, tk))⊤.

The convergence of the multiagent coordination ensures that

an accurate decentralized decision can be made by each node

if T is sufficiently large. However, for the economic dispatch

in a small time scale, the convergence should be reached in a

short time. The error of multiagent coordination at time T is

bounded by

||Φg,V(T )||2 ≤ |λ2(W
a
V )|

⌊ T
TI (V)

⌋
||Φg,V(0)||2 (10)

where λk(·) represents the kth largest eigenvalue (in module),
and Φg,V(t) is the disagreement vector [27], given by

Φg,V(t) =
(

X̄g(1, t) − X̄g, X̄g(2, t) − X̄g, · · · ,

X̄g(|V|, t) − X̄g

)⊤
. (11)

In (10), TI(V) is the duration of each iteration via the ad hoc
network with respect to nodes in V , which depends on the
wireless link scheduling.

As the network size increases, the convergence speed of

multiagent coordination in the ad hoc network decreases

significantly [10] [13]. We propose to utilize the cellular

communication links to improve network connectivity and

thus the convergence speed according to the small-world

phenomenon [12]. Denote M (M ⊆ B) as the set of dual-
mode nodes for which the cellular communication devices are

activated, where M = |M| (M ≥ 2) represents the number
of activated cellular communication devices. In the next two

sections, we present two multiagent coordination schemes to

utilize both the ad hoc and cellular communication links.

IV. SINGLE-STAGE MULTIAGENT COORDINATION

The single-stage multiagent coordination utilizes the cel-

lular network to deliver information among the nodes in

M after each iteration in the ad hoc network, as shown in

Fig. 2(b). The single-stage multiagent coordination is fully

decentralized such that the network topology information is

not required. Given the value of M , the nodes in M are

randomly selected. All nodes in V operate on the same

frequency channel to ensure successful information exchanges

via the ad hoc network.

A. Update-and-Continue based Random Access

For the information exchange via the ad hoc network, the

wireless link access is random without requiring network

topology information. Since multiagent coordination operates

in a synchronous manner according to (5), after each update,

node v should wait until the next iteration begins (i.e., all

other nodes finish their current update) to guarantee the

convergence. However, the time of each iteration (i.e., TI(V)
in (10)) becomes a random variable because of the random

access scheme. In order to avoid that each node waits for the

worst-case iteration time (refereed to as the update-and-wait

based random access scheme [10]), we consider an update-

and-continue based random access scheme [11] such that each

node starts to transmit the updated state values to its neighbors

following the completion of its own update. The neighboring

nodes store the received state values and use them for the

next iteration following the completion of the current update.

In order to implement the update-and-continue based random

access, an index number is assigned to each iteration.

B. Iteration via Cellular Network

Since all cellular BSs are connected to a backbone network,

we consider all nodes in M as direct neighbors of each other

during the iteration via cellular network. An iteration via the

cellular network includes the information exchange among

each pair of nodes in M. A uniform weight matrix [28] with-

out the need of network topology information is used for the

update of the state values, given byW c
M = [ωc

M(v, n)]|V|×|V|,

where ωc
M(v, n) is given by

ωc
M(v, n) =

⎧

⎪

⎨

⎪

⎩

1/M, if v, n ∈ M

1, if v, n ∈ V \M and v = n

0, elsewhere

(12)

where the second case corresponds to the ad hoc nodes or

the dual-mode nodes with inactivated cellular communication

devices. For an iteration via both the ad hoc and cellular

networks, the weight matrix is given by W c
MW a

V , i.e.,

X̄g,V(tk) = W c
MW a

VX̄g,V(tk−1) (13)

ȲV(tk) = W c
MW a

V ȲV(tk−1). (14)

Since W c
M is doubly stochastic, W c

MW a
V is doubly stochastic.

In the next section, we show that the graph associated with

W c
MW a

V is strongly connected. Therefore, the convergence of

the single-stage multiagent coordination is guaranteed.
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C. Performance Analysis

In this subsection, we analyze the benefit of using the cel-

lular communication links to improve the convergence speed

of multiagent coordination. According to (10), we focus on

the second largest eigenvalue of the weight matrix. Consider

a finite-state Markov chain with state space V and state

transition matrix (or stochastic matrix) W = [w(i, j)]|V|×|V|
5.

Define the closed subset and irreducible closed subset as

follows.

Definition 1. A setM of states is a closed subset of a Markov

chain with state transition matrix W if and only if w(i, j) = 0
for any i ∈ M and j ∈ V \ M. A set M′ of states is an

irreducible closed subset if and only if M′ is a closed subset,

and no proper subset of M′ is a closed subset.

Then, the following lemma holds with respect to eigenvalues

of the state transition matrix of a Markov chain [29].

Lemma 3. The state transition matrix W has an eigenvalue 1,

and the multiplicity of the eigenvalue 1 is equal to the number

of irreducible closed subsets of the Markov chain.

Based on Lemma 3, we have the following properties with

respect to the weight matrices W c
M and W a

V .

Lemma 4. Both W c
M and W a

V are symmetric and positive

semidefinite.

Proof: According to the definitions of W c
M and W a

V , we

can easily verify that both matrices are symmetric. For the

matrix W c
M, the states of the associated Markov chain can

be partitioned into |V| − M + 1 irreducible closed subsets,
i.e., |V|−M subsets correspond to the nodes with only short-

range communication devices and the dual-mode nodes with

inactivated cellular communication devices, and one subset

corresponds to M. According to Lemma 3, the eigenvalues

of W c
M include |V| − M + 1 ones. On the other hand, we

can easily verify the rank of W c
M is |V| − M + 1 since the

weights used by all nodes in M are the same. Therefore, the

other M − 1 eigenvalues of W c
M are equal to zero, which

indicates that W c
M is positive semidefinite.

For the matrix W a
V , the Laplacian of the associated graph

is given by

La
V = I − W a

V . (15)

Since the Laplacian of the strongly connected graph is pos-

itive semidefinite [27], we have λk(La
V) ≥ 0 for all k ∈

{1, 2, · · · , |V|}. Moreover, we have

∑

j∈Ni

ωa
V(i, j) =

∑

j∈Ni

1

2 max{|Ni|, |Nj |}
≤

|Ni|

2|Ni|
=

1

2
(16)

where the inequality holds since max{|Ni|, |Nj |} ≥ |Ni|.

5Obviously, the doubly stochastic matrices W a

V
, W c

M
, and W c

M
W a

V
can

be considered as the transition matrices of Markov chains with a common
state space V .

Therefore, the spectral radius of La
V is bounded as

ρ(La
V) ≤ max

i∈V
{| −

∑

j∈Ni

ωa
V(i, j)| +

∑

j∈Ni

|ωa
V(i, j)|}

= 2 max
i∈V

∑

j∈Ni

ωa
V(i, j) ≤ 1. (17)

That is, all eigenvalues of La
V are within [0, 1]. According

to (15), La
V and W a

V have the same eigenvectors, and thus the

kth largest eigenvalue of W a
V is given by

λk(W a
V ) = 1 − λ|V|−k(La

V). (18)

Therefore, all eigenvalues of W a
V are bounded by [0, 1], which

implies that W a
V is also positive semidefinite.

By comparing the second largest eigenvalue of W c
MW a

V

with that of W a
V , we have the following theorem with respect

to the benefit of using cellular communication links.

Theorem 2. Given M ⊆ V , M ≥ 2, and the weight matrices
W a

V and W c
M, we have λ2(W

c
MW a

V ) ≤ λ2(W
a
V ).

Proof: Since both W c
M and W a

V are symmetric

and positive semidefinite, we have
∑k

i=1 λi(W
c
MW a

V ) ≤
∑k

i=1 λi(W
a
V )λi(W

c
M) for any k ∈ {1, 2, · · · , |V|} [30].

Letting k = 2, we have

λ2(W
c
MW a

V ) ≤
∑

i=1,2

λi(W
a
V )λi(W

c
M) − λ1(W

c
MW a

V ). (19)

According to the Perron-Frobenius theory [31], since the graph

associated with matrix W a
V is strongly connected, the Markov

chain associated with W a
V is irreducible. Based on Lemma 3,

the multiplicity is 1 for eigenvalue 1 with respect to W a
V , i.e.,

λ1(W
a
V ) = 1 and λk(W a

V ) < 1 for 1 < k ≤ |V|. Suppose
W c

MW a
V = [ωca

MV(i, j)]|V|×|V|, and consider an arbitrary

element ωca
MV(i, j) such that the corresponding element inW a

V

satisfies ωa
V(i, j) > 0. Then, we have

ωac
AR(i, j) =

∑

m∈V

ωc
M(i, m)ωa

V(m, j) ≥ ωc
M(i, i)ωa

V(i, j) > 0

(20)

where the first inequality holds since all elements in W c
M and

W a
V are non-negative, and the second inequality holds since

ωc
M(i, i) > 0 for all i ∈ V according to (12). Therefore, we

can conclude that the Markov chain associated with W c
MW a

V

is irreducible, given that the Markov chain associated withW a
V

is irreducible. Based on Lemma 3, we have λ1(W
c
MW a

V ) = 1
while λk(W c

MW a
V ) < 1 for 1 < k ≤ |V|. Taking into account

(19), we have

λ2(W
c
MW a

V ) ≤ λ2(W
a
V )λ2(W

c
M) + λ1(W

a
V )λ1(W

c
M)

− λ1(W
c
MW a

V )

= λ2(W
a
V )λ2(W

c
M) + 1 − 1

= λ2(W
a
V )λ2(W

c
M) (21)

where the first equality holds since the largest eigenvalues of

W a
V , W c

M, and W c
MW a

V are equal to 1. On the other hand,

since all eigenvalues of W c
M are less than or equal to 1, we

have λ2(W
c
MW a

V ) ≤ λ2(W
a
V ) based on (21).

Theorem 2 indicates that the convergence speed of mul-

tiagent coordination can be improved by using the cellular
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communication links. On the other hand, since both W c
M and

W a
V are symmetric and positive semidefinite, the lower bound

of
∑k

i=1 λi(W
c
MW a

V ) for any k ∈ {1, 2, · · · , |V|} is given by

k
∑

i=1

λi(W
c
MW a

V ) ≥ max
m1,··· ,mk

k
∑

i=1

λ|V|−mi+1(W
a
V )λmi

(W c
M)

(22)

where 1 ≤ m1 < m2 < · · · < mk ≤ |V| are ordered integers
[30]. Denote the lower and upper bounds of λ2(W

c
MW a

V ) with
respect toM as θ(M) and ϕ(M), respectively. Letting k = 2
in (22) and taking into account (21), we have

θ(M) = max
1≤m1<m2≤|V|

{λ|V|−m1+1(W
a
V )λm1(W

c
M)

+ λ|V|−m2+1(W
a
V )λm2 (W

c
M)} − 1 (23)

ϕ(M) = λ2(W
a
V )λ2(W

c
M). (24)

Based onM, we consider another setM′ with more activated

cellular communication devices such that M′ ⊆ B and M ⊆
M′. Obviously, we have M ≤ |M′|. For the potential benefit
of activating more cellular communication devices, we have

the following proposition.

Proposition 1. Given M ≥ 2 and M ⊆ M′, we have

θ(M′) ≤ θ(M) and ϕ(M′) ≤ ϕ(M).

Proof: According to the proof of Lemma 4, the eigen-

values of W c
M′ include |M′| − 1 zeros and |V| − |M′| + 1

ones. Therefore, we have λk(W c
M′) ≤ λk(W c

M) for any
1 ≤ k ≤ |V|. Substituting this result in (23) and (24), we
can easily verify θ(M′) ≤ θ(M) and ϕ(M′) ≤ ϕ(M).

V. HIERARCHICAL MULTIAGENT COORDINATION

Hierarchical multiagent coordination utilizes the network

topology information for wireless link scheduling and clus-

tering. Each of the dual-mode nodes in M is considered

as a cluster head. As shown in Fig. 2(c), the hierarchical

multiagent coordination consists of two levels. The first and

second levels are performed via the ad hoc network and

cellular network, respectively. Then, the dual-mode nodes in

M broadcast (BC) the results based on the second level

of multiagent coordination to the nodes within each cluster

via the ad hoc network. Since network topology information

is available, the wireless links can be scheduled efficiently.

Moreover, given the value of M , the selection of nodes inM
and the node clustering can be optimized. Frequency reuse is

considered such that the communication links within different

clusters are interference free.

A. Deterministic Ad Hoc Communication Link Scheduling

Compared with the random access, deterministic scheduling

improves the efficiency of information exchange by increasing

the number of concurrent transmissions [11]. Denote the node

set in the cluster corresponding to node m (m ∈ M) as

Qm. For each iteration, each node in Qm broadcasts its

own state values once. Suppose each broadcast corresponds

to one time slot with duration TB . Denote the deterministic

scheduling scheme for the nodes inQm as DQm
= {Ds

Qm
|s ∈

{1, 2, · · · , SQm
}}, where Ds

Qm
represents the set of nodes

Algorithm 1 Deterministic Scheduling Algorithm

Input: Qm, Ni (i ∈ Qm);

Output: DQm
, SQm

;

1: Initialize: S = 1, Q′
m = Qm, and D1

Qm
= ∅;

2: while ∪s∈{1,2,··· ,S}D
s
Qm

�= Qm do

3: Calculate the maximum independent set of GQ′
m
and

denote the vertex set as DS
h ;

4: Q′
m = Qm − ∪s∈{1,2,··· ,S}D

s
Qm
;

5: Update S ← S + 1;
6: end while

7: return DQm
= {Ds

Qm
|s ∈ {1, 2, · · · , SQm

}}, SQm
= S

scheduled to broadcast during time slot s, and SQm
is the

number of time slots required to complete an iteration. The

objective of the deterministic scheduling is to construct a

broadcast sequence DQm
which uses the minimum number

of time slots to complete the broadcasts of all nodes in Qm,

given by

(P2) min
DQm

SQm
(25)

subject to (Nv1 ∪ {v1}) ∩ (Nv2 ∪ {v2}) = ∅,

v1, v2 ∈ Ds
Qm

, s ∈ {1, 2, · · · , SQm
} (26)

∪s∈{1,2,··· ,SQm}D
s
Qm

= Qm (27)
∑

s∈{1,2,··· ,SQm}

∑

n∈Qm

In∈Ds
Qm

= 1. (28)

Constraint (26) indicates that there is no collision for the

concurrent broadcasts during each time slot, while constraints

(27) and (28) guarantee that each node broadcasts exactly once

for each iteration. Problem P2 defines an integer programming

problem which cannot be solved efficiently [32] [33]. In

order to reduce the computational complexity, we consider

a greedy algorithm, Algorithm 1. For each time slot, the

algorithm maximizes the number of concurrent (collision-free)

broadcasts. Note that in step 1, Q′
m represents the set of

nodes which have not completed the broadcast. In step 3, GQ′
m

denotes a directed graph corresponding to the nodes in Q′
m

based on the ad hoc network, i.e., there is an edge from node

i to node j (i, j ∈ Q′
m) if and only if j ∈ Ni, and vice

versa. The maximum independent set can be calculated based

on existing methods or heuristic algorithms [34].

B. Iteration via Cellular Network

Similar to the single-stage multiagent coordination scheme,

all nodes in M are involved in the iteration via the cellular

network. Denote the weight matrix with respect to the iteration

via the cellular network as Wh
M(v, n) = [ωh

M(v, n)]M×M .

Since each node m ∈ M is the cluster head of a set Qm of

nodes, the weight values should account for the cluster size,

given by ωh
M(v, n) = |Qn|/|V| for all v, n ∈ M. Consider the

information discovery of the average value of the aggregated

capacity of type g DG units. Given a sufficiently large duration
for the iterations via the ad hoc network (TA), we have

lim
TA→∞

X̄g(i, TA) =
1

|Qm|

∑

v∈Qm

xgv , i ∈ Qm. (29)
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Algorithm 2 Clustering Algorithm

Input: V , B, Nv (v ∈ V), M ;

Output: M, Qm, m ∈ M;

1: Initialize: M = {m} for any m ∈ B, Qm = V ;
2: for i = 2 to M do

3: m′ = arg maxm∈M {|Qm| | |Qm ∩ B| ≥ 2};
4: V ′ = Qm′ , B′ = Qm′ ∩ B;
5: Update M ← (M\ m′) ∪ f(V ′,B′);
6: Update Qm for m ∈ f(V ′,B′);
7: end for

8: return M, Qm, m ∈ M

After the iteration via the cellular network, the state value

broadcasted by each node in M to the cluster members is

given by

∑

m∈M

|Qm|

|V|
·

1

|Qm|

∑

v∈Qm

xgv

=
1

|V|

∑

m∈M

∑

v∈Qm

xgv =
1

|V|

∑

v∈V

xgv = X̄g. (30)

Therefore, the convergence of the hierarchical multiagent

coordination is guaranteed.

C. Performance Analysis and Node Clustering

Since the cluster sizes (|Qm|) corresponding to the nodes
m ∈ M are different, the performance of the hierarchical

multiagent coordination is related to the clustering algorithm.

The error of the hierarchical multiagent coordination at

time T is given by

||Φg,V(T )||2

=

√

√

√

√|V|

[(

∑

m∈M

|Qm|

|V|
X̄g(m, TA)

)

− X̄g

]2

=

√

√

√

√

1

|V|

[

∑

m∈M

|Qm|
(

X̄g(m, TA) − X̄g

)

]2

≤

√

∑

m∈M

|Qm|
(

X̄g(m, TA) − X̄g

)2

≤

√

∑

m∈M

|Qm| · ||Φg,Qm
(TA)||22

≤

√

∑

m∈M

|Qm|[λ2(W a
Qm

)]
⌊

2TA
SQm

TB
⌋
||Φg,Qm

(0)||22

≤ ||Φg,V(0)||∞

√

∑

m∈M

|Qm|2[λ2(W a
Qm

)]
⌊

2TA
SQm

TB
⌋

(31)

where the second equality holds since
∑

m∈M |Qm| = |V|,
and ||Φg,V(0)||∞ equals the largest element of the initial

disagreement vector. Compared with the multiagent coordi-

nation via the ad hoc network, the benefit of the hierarchical

multiagent coordination scheme is based on the potentially

smaller SQm
and λ2(W

a
Qm

) for smaller graphs, i.e., Qm ⊂ V .
Similar observation can be obtained by decomposing an ad hoc

network with long-range links [35].

According to (31), for a given number of activated cel-

lular communication devices M , the convergence speed of

the hierarchical multiagent coordination is determined by
∑

m∈M |Qm|2[λ2(W
a
Qm

)]
⌊

2TA
SQm

TB
⌋
, which needs to be min-

imized for all possible combinations of M nodes in B and

all nodes in V . However, the computational complexity is
O(|B|M |V|M ), which is prohibitive as the network size in-
creases. Note that the error of the hierarchical multiagent

coordination scheme is dominated by the largest cluster (by a

factor of maxm∈M |Qm|2). Therefore, we consider a heuristic
clustering algorithm which constructs the clusters by splitting

[15] the largest cluster which includes at least two dual-mode

nodes. The details are given in Algorithm 2, where the function

f(·) is used to calculate an optimal split of a cluster with
respect to a set V ′ of ad hoc nodes and a subset B′ (B′ ⊆ V ′)

of dual-mode nodes, given by

f(V ′,B′) = arg min
{m1,m2}∈B′×B′,m1 �=m2

Qm1∪Qm2=V′

{

∑

k=1,2

|Qmk
|2[λ2(W

a
Qmk

)]
⌊

2TA
SQmk

TB
⌋
}. (32)

Note that if there is only one element in a cluster Qm (i.e.,

|Qm| = 1), we denote λ2(W
a
Qm

) = 0 since each node has
accurate power generation and load information of itself. For

computational simplicity, the cluster members in terms ofQm1

and Qm2 are determined by the shortest-distance criteria, i.e.,

a Voronoi diagram with two points. In a case that Qm′ cannot

be split into two clusters without isolated nodes, step 3 is

recalculated with respect to the second largest cluster, and so

on. Since each step of the cluster splitting only takes into

account all possible pairs of dual-mode nodes in one cluster,

the complexity of the algorithm is O(M |B|2).

VI. COMMUNICATION COST VERSUS ENERGY COST

Based on the discussions in Section IV and Section V, the

error of multiagent coordination can be (potentially) reduced

by activating more cellular communication devices. With more

accurate information, each DG unit can make better deci-

sion on power generation for generation cost minimization.

However, the communication cost increases as the number

of activated cellular communication devices increases. In this

section, we investigate a tradeoff between the communication

and generation costs.

A. Cost Model

Consider one economic dispatch period as an example.

The communication cost is a function of the number of

activated cellular communication devices M . For the single-

stage and hierarchical multiagent coordination schemes, the

communication costs (in dollars) are, respectively, given by

CS
C(M) = cMM(M − 1)E [T/TI(V)] (33)

CH
C (M) = cMM(M − 1) (34)

where E [T/TI(V)] is the average number of iterations of
multiagent coordination via the ad hoc network within T .
Note that the cost of single-stage multiagent coordination is
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enlarged by a factor of E [T/TI(V)] since an iteration via the
cellular network is performed after each iteration via the ad

hoc network.

After the multiagent coordination, denote the state values of

cumulative capacity and aggregated loads obtained by node

v as X̄v = {X̄1(v, T ), X̄2(v, T ), · · · , X̄G(v, T )} and Ȳv =
Ȳ (v, T ), respectively. Based on (4), the decentralized decision
on the economic dispatch is given by ugv(X̄v, Ȳv, c), where
X̄ and Ȳ are replaced by X̄v and Ȳv , respectively. Given

the minimum cost C∗
P (x,y, c) based on problem P1 which

is a constant within TD, we consider the increment in the

generation cost by using inaccurate information, which is a

function of M and is given by

CI
P (M) = E

⎡

⎣cA(Y −
∑

g∈{1,2,··· ,G}

∑

v∈V

ugv(X̄v, Ȳv, c))+

+ cE(
∑

g∈{1,2,··· ,G}

∑

v∈V

ugv(X̄v, Ȳv, c) − Y )+

+
∑

g∈{1,2,··· ,G}

cg

∑

v∈V

ugv(X̄v, Ȳv, c)

⎤

⎦ − E [C∗
P (x,y, c)]

(35)

where the first expectation is taken with respect to the random

variables x and y, and the set of randomly activated cellular

communication devices (M) for the single-stage multiagent

coordination scheme. Denote the incremental generation cost

of the single-stage and hierarchical multiagent coordination

schemes as CIS
P (M) and CIH

P (M), respectively.

B. Cost Tradeoff

The objective is to minimize the combined communication

and incremental generation costs by properly selecting the

number of activated cellular communication devices M . The

desired value of M for the single-stage multiagent coordina-

tion is given by problem P3 as follows:

(P3) min
M∈{1,2,··· ,|B|}

CS
C(M) + CIS

P (M)TD (36)

where the second term has a factor of TD since we investi-

gate the cost (in dollars) for one economic dispatch period.

Similarly, we can calculate the desired value of M for the

hierarchical multiagent coordination scheme. Problem P3 is

an integer programming problem which is NP-hard in general.

Although an exhaustive search can be used to find the solution,

the computational complexity can be prohibitive because of

the expectation operation in (35). Moreover, the statistics of

x and y (and the network topology information with respect

to the single-stage multiagent coordination scheme) may not

be available for a microgrid. Therefore, an approximation of

the incremental generation cost CIS
P (M) is indispensable for

practical applications.

For a self-sustained microgrid, the power generation by the

G types of DG units and loads should be balanced for most

of the time. Therefore, we can approximate the incremental

generation cost based on the undelivered and extra power as

C̃IS
P (M) = (cA − c1)z̃A + (cG + cE)z̃E (37)

where z̃A and z̃E are the average values of zA and zE observed

over a certain period of time (e.g., one day) by the alter-

native energy sources and negative spinning reserve service

providers, respectively. Note that (37) provides an upper bound

of CIS
P (M) since the price of purchasing power from the

DG units is no less than c1 and no greater than cG. Based

on the estimate C̃IS
P (M), an approximation of the desired

tradeoff between the communication and generation costs

can be achieved without resorting to the statistics of x and

y, which simplifies the network optimization of microgrids.

Similarly, we can use the estimate C̃IH
P (M) for hierarchical

multiagent coordination.

VII. NUMERICAL RESULTS

The network topology used for simulations is shown in

Fig. 3. We consider the Laurelwood neighborhood located

in North-West Waterloo as a microgrid topology for the

deployment of DG units and wireless devices. We plot the

wind turbines, PV panels, and loads at adequate geographic

locations on the map. For the generation data of wind turbines,

a probability distribution of the wind speed for Waterloo is

obtained from Canadian Wind Energy Atlas [36] considering

the 50 kW wind turbines located at 30 m height [37]. The

power curve (which is the output power as a function of

instantaneous wind speed) of the actual wind turbine is used

to translate wind speeds to the amount of power generations.

The probability distribution follows the Weibull distribution

with a shape parameter 1.94 and scale parameter 4.48 m/s. The

startup, cutout, and rated wind speeds are 2 m/s, 18 m/s, and 11

m/s, respectively. For the generation data of PV panels, hourly

PV performance data of Toronto (100 km away from Wa-

terloo) is obtained from NREL (National Renewable Energy

Laboratory) PVWattsTM site specific calculator [38] which

determines the power production of PV panels for a given

geographic location. The AC rating of the PV panels is 3.08

kW. For the demand of loads, an hourly demand is obtained

from the smart meters of two residences in the Laurelwood

neighborhood subscribed to Waterloo North Hydro [39]. The

demand data is approximated by a normal distribution [40].

For instance, the mean and standard deviation in kWh during

the on-peak hours (i.e., 9 am and 6 pm) and off-peak hours

(i.e., 1 am to 7 am and 1 pm to 4 pm) are, respectively,

given by (1.5, 0.43) and (0.70, 0.04). For consistency, all

power generation and load data are taken during the month

of June in Waterloo. The costs are 0.135, 0.802, 2.080,

and 0.000 (CAD) dollar/kWh for wind turbine, PV panel

[17], diesel generator, and negative spinning reserves (i.e.

the cost is neglected) [4], respectively. For the heterogeneous

wireless network infrastructure, the transmission range of

ad hoc communication devices is 150 m with a link layer

data rate 2 Mbps and a PHY header according to the IEEE

802.11 standard [41]. For the update-and-wait and update-and-

continue based random access schemes, we consider each ad

hoc node accesses the wireless medium with probability 0.1

[42] and a retransmission mechanism is in place to guarantee

the successful broadcast. We randomly select 44 dual-mode

nodes with the cellular capability as shown in Fig. 3 and

consider a basic data plan of Rogers Canada with 40 dollars
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Fig. 3. The network topology for simulations.
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Fig. 4. Incremental generation cost (per day) versus the fraction of activated
cellular communication devices.

for 100 MB data6. Since the power generation and demand

state information can be represented by 16 bits [10], we have

cM = 2.4×10−6 dollars, which can be considered as a lower

bound of communication cost since packetization overhead

is not included. The durations of the economic dispatch and

information exchange periods are TD = 300 s (i.e., 1
12 h)

and T (= TA) = 2 s, respectively [2] [3]. The capacity of DG
units and the loads are randomly generated for each economic

dispatch period during the simulations. For a fair comparison,

we focus on the average costs since random selection of dual-

mode nodes is used by our proposed single-stage multiagent

coordination scheme and random cluster splitting is studied

in the following performance evaluation. Each simulation

run lasts for one day from which the communication and

generation costs are calculated, and the results are averaged

over 30 days.

6It is worth mentioning that this is a service plan for cell phone users. How
to customize the plan for microgrid operation is still an open issue and left
for our future work.

Fig. 4 shows the incremental generation cost (CI
P (M)) on

a daily basis versus the fraction of activated cellular com-

munication devices (M/|B|). As we can see, the generation
costs of both schemes decrease as the fraction of activated

cellular communication devices increases since more cellular

communication links can (potentially) improve the network

connectivity and thus reduce the error in multiagent coordi-

nation. The update-and-continue based random access scheme

which is used by our proposed single-stage multiagent coor-

dination scheme can reduce the generation cost as compared

with the update-and-wait scheme by reducing the duration

of each iteration via the ad hoc network. The proposed

hierarchical multiagent coordination scheme achieves the low-

est generation cost based on deterministic scheduling and

efficient clustering. For comparison, if random cluster splitting

(without information of the cluster size and eigenvalues of

weight matrices) is used, the generation cost decreases slowly

with the fraction of activated cellular communication devices.

Moreover, if update-and-continue based random access is also

used (without network topology information for wireless link

scheduling), the generation cost further increases because of an

increased iteration duration within each cluster. The generation

cost is even higher than the single-stage counterpart since the

error of the hierarchical multiagent coordination scheme is

dominated by the potential large clusters as a result of random

cluster splitting, according to our analysis in Subsection V-C.

Taking account of the cost of using cellular communication

links, a tradeoff between the communication and incremental

generation costs is shown in Fig. 5. For presentation clarity,

we normalize the combined communication and generation

costs of both schemes by their maximum actual costs, given

by 166.5 and 57.2 dollars, respectively. We can see that, the

communication and generation costs are comparable with each

other. As the fraction of activated cellular communication

devices increases, the normalized cost first decreases since

the generation cost decreases. Then, the normalized cost

increases as the communication cost increases and exceeds the

decrement in the generation cost. Therefore, there is a desired

tradeoff point between the communication and generation

costs for both single-stage and hierarchical multiagent coordi-



1072 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 6, JULY 2012

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of activated cellular communication devices

N
o
rm

a
liz

e
d
 c

o
s
t

 

 

Cost tradeoff curve (single−stage)

No cellular communication device (single−stage)

All cellular communication devices (single−stage)

Desired tradeoff point (single−stage)

Tradeoff point based on approximation (single−stage)

Cost tradeoff curve (hierarchical)

No cellular communication device (hierarchical)

All cellular communication devices (hierarchical)

Desired tradeoff point (hierarchical)

Tradeoff point based on approximation (hierarchical)

Fig. 5. Tradeoff between the communication and generation costs.

nation schemes, which provides the minimum normalized cost.

Since the network topology information is used by the hier-

archical multiagent coordination scheme, the desired tradeoff

is achieved by activating less cellular communication devices.

The normalized cost achieved at the tradeoff point based on the

approximation of incremental generation cost is close to that

of the desired tradeoff point, which implies a good estimate

for the desired value of M . The normalized cost based on

the existing schemes without using cellular communication

devices [10] or with all cellular communication devices (or

equivalently, all long-range links [35]) being activated is also

shown. We can see that, the existing schemes can only achieve

the boundary points of the cost tradeoff curves and may not

be efficient in minimizing the combined communication and

generation costs.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a decentralized economic

dispatch approach for microgrids such that each DG unit

makes local decisions on power generation based on a multi-

agent coordination with guaranteed convergence. A heteroge-

neous wireless network architecture has been established ac-

cordingly. Each node uses an ad hoc communication device for

basic information exchange, while some dual-mode nodes are

equipped with optional cellular communication devices which

can be activated to improve the convergence speed of mul-

tiagent coordination. Two multiagent coordination schemes

have been proposed to utilize the cellular communication

links based on the single-stage and hierarchical operation

modes, respectively. Numerical results indicate that our pro-

pose schemes can better utilized the cellular communication

links and achieve better tradeoff between the communication

and generation costs in comparison with the existing schemes.

Future work includes the decentralized clock synchroniza-

tion in microgrids for real-time monitoring and control [43]

and the broadcast gossip which does not require two-way

information exchange [44]. Moreover, an optimization of the

decentralized economic dispatch approach by taking account

of the prediction error of power generation and load informa-

tion [16] and the security issues in wireless networks [45] [46]

is an interesting topic and needs further investigation.
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APPENDIX: PROOF OF THEOREM 1

Denote the economic dispatch policy given by (4) as

u∗ = {u∗
gv|g ∈ {1, 2, · · · , G}, v ∈ V}. We consider two cases

with respect to the relation between the cumulative capacity

and aggregated loads: Case 1): The aggregated loads cannot

be satisfied based on the power generation of DG units, i.e.,
∑

g∈{1,2,··· ,G} X̄g < Ȳ (or equivalently,
∑

g∈{1,2,··· ,G} Xg <
Y ); Case 2): The aggregated loads can be satisfied based on
the power generation of DG units, i.e.,

∑

g∈{1,2,··· ,G} X̄g ≥ Ȳ
(or equivalently,

∑

g∈{1,2,··· ,G} Xg ≥ Y ). The proofs of both
cases are completed by contradiction.

Case 1): According to the first case of policy (4), all DG

units should operate at the maximum capacity, i.e., u∗
gv = xgv .

Suppose another policy u′ �= u∗ is optimal. Then, there exists

at least one pair (i, j) such that u′
ij < xij . Consider another

policy u′′ = {u′′
ij , u

′
gv|g ∈ {1, 2, · · · , G}, v ∈ V , (g, v) �=

(i, j)} with u′′
ij ∈ (u′

ij , xij ]. Then, the generation cost based
on policy u′′ is given by

CP (x,y, c,u′′) = cA(Y −
∑

g∈{1,2,··· ,G}

∑

v∈V
(g,v) �=(i,j)

u′
gv − u′′

ij)

+
∑

g∈{1,2,··· ,G}

∑

v∈V
(g,v) �=(i,j)

cgu
′
gv + ciu

′′
ij

= CP (x,y, c,u′) + (ci − cA)(u′′
ij − u′

ij). (38)

Since ci < cA and u′′
ij > u′

ij , we have CP (x,y, c,u′′) <
CP (x,y, c,u′), which contradicts with the assumption that
u′ is optimal.

Case 2): Based on Lemma 2, the aggregated power genera-

tion of the DG units and the aggregated loads should be bal-

anced. In other words, a policy different from u∗ should have

at least two different elements with respect to the decisions on

power generation. Because of space limitation, we consider

a policy u′ with exactly two different elements from u∗,

i.e., u′ = {u′
ij , u

′
mn, u∗

gv|g ∈ {1, 2, · · · , G}, v ∈ V , (g, v) /∈
{(i, j), (m, n)}} with u′

ij �= u∗
ij and u′

mn �= u∗
mn. An exten-

sion of the proof for a policy with more different elements is

straightforward. Note that the two elements correspond to two

different types of DG units with different generation costs.

Otherwise, the total generation cost is the same based on the

power balance equation. Suppose 1 ≤ i < m ≤ G and the

policy u′ is optimal. Since
∑

g∈{1,2,··· ,G} Xg ≥ Y , we can

define g∗ = argmaxg∈{1,2,··· ,G}

{

∑

i∈{1,2,··· ,g} Xi ≤ Y
}

.

Then, we calculate the generation costs with respect to two

different relations between i and g∗, i.e., i ≤ g∗ and i > g∗,
respectively. If i ≤ g∗, we have u′

ij < u∗
ij since u∗

ij = xij

according to (4). Moreover, we have m > g∗ and u′
mn =
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u∗
ij + u∗

mn − u′
ij to balance the power generation and loads.

Then, the generation cost based on the economic dispatch

policy u′ is given by

CP (x,y, c,u′) =
∑

g∈{1,2,··· ,G}

cg

∑

v∈V

u∗
gvI(g,v)/∈{(i,j),(m,n)}

+ ciu
′
ij + cm(u∗

ij + u∗
mn − u′

ij)

= CP (x,y, c,u∗) + (ci − cm)(u′
ij − u∗

ij)

> CP (x,y, c,u∗) (39)

where IA is an indication function which equals 1 if A is true

and 0 otherwise, while the inequality holds since ci < cm and

u′
ij < u∗

ij . The result in (39) contradicts with the assumption
that u′ is optimal. On the other hand, if i > g∗, we have
m > i > g∗ and the proof follows similar steps. For other
combinations of i and m, the generation and loads cannot be
balanced. This completes the proof.

REFERENCES

[1] S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active
Distribution Networks. Institution of Engineering and Technology, 2009.

[2] Y. V. Makarov, C. Loutan, J. Ma, and P. de Mello, “Operational impacts
of wind generation on California power systems,” IEEE Trans. Power
Syst., vol. 24, no. 2, pp. 1039–1050, May 2009.

[3] V. Vittal, “The impact of renewable resources on the performance and
reliability of the electricity grid,” Bridge on Electricity Grid, vol. 40,
no. 1, Spring 2010.

[4] H. Moraisa, P. Kadarb, P. Fariaa, Z. A. Valea, and H. M. Khodra,
“Optimal scheduling of a renewable micro-grid in an isolated load area
using mixed-integer linear programming,” Renewable Energy, vol. 35,
no. 1, pp. 151–156, Jan. 2010.

[5] J. Hetzer, D. C. Yu, and K. Bhattarai, “An economic dispatch model
incorporating wind power,” IEEE Trans. Energ. Conver., vol. 23, no. 2,
pp. 603–611, Jun. 2008.

[6] E. M. Constantinescu, V. M. Zavala, M. Rocklin, S. Lee, and M.
Anitescu, “A computational framework for uncertainty quantification
and stochastic optimization in unit commitment with wind power
generation,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 431–441, Feb.
2011.

[7] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids
management,” IEEE Power and Energ. Mag., vol. 6, no. 3, pp. 54–65,
May-Jun. 2008.

[8] H. Farhangi, “The path of the smart grid,” IEEE Power and Energ. Mag.,
vol. 8, no. 1, pp. 18–28, Jan.-Feb. 2010.

[9] W. Gatterbauer. Interdependencies of Electricity Market Characteris-

tics and Bidding Strategies of Power Producers. Master thesis, Mas-
sachusetts Institute of Technology, Cambridge, 2002.

[10] Y. Xu and W. Liu, “Novel multiagent based load restoration algorithm
for microgrids,” IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 152–161,
Mar. 2011.

[11] H. Liang, A. Abdrabou, B. J. Choi, W. Zhuang, X. Shen, and A. S. A.
Awad, “Multiagent coordination in microgrids via wireless networks,”
IEEE Wireless Commun., under review.

[12] A. Tahbaz-Salehi and A. Jadbabaie, “Small world phenomenon, rapidly
mixing Markov chains, and average consensus algorithms,” in Proc.
IEEE CDC’07, pp. 276–281, Dec. 2007.

[13] S. Vanka, M. Haenggi, and V. Gupta, “Convergence speed of the con-
sensus algorithm with interference and sparse long-range connectivity,”
IEEE J. Sel. Topics Signal Process., vol. 5, no. 4, pp. 855–865, Aug.
2011.

[14] H. Li and W. Zhang, “QoS routing in smart grid,” in Proc. IEEE

GLOBECOM’10, Dec. 2010.
[15] D. Niyato, L. Xiao, and P. Wang, “Machine-to-machine communications

for home energy management system in smart grid,” IEEE Commun.

Mag., vol. 49, no. 4, pp. 53–59, Apr. 2011.
[16] A. Kusiak, H. Zheng, and Z. Song, “Short-term prediction of wind farm

power: a data mining approach,” IEEE Trans. Energ. Convers., vol. 24,
no. 1, pp. 125–136, Mar. 2009.

[17] Ontario power authority. http://fit.powerauthority.on.ca/.
[18] H. Liang, B. J. Choi, W. Zhuang, and X. Shen, “Towards optimal energy

store-carry-and-deliver for PHEVs via V2G system,” in Proc. IEEE

INFOCOM’12, Mar. 2012.

[19] V. V. Viswanathan and M. Kintner-Meyer, “Second use of transportation
batteries: maximizing the value of batteries for transportation and grid
services,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 2963–2970,
Sept. 2011.

[20] T. K. Lee, B. Adornato, and Z. S. Filipi, “Synthesis of real-world driving
cycles and their use for estimating PHEV energy consumption and
charging opportunities: case study for Midwest/U.S.,” IEEE Trans. Veh.
Technol., vol. 60, no. 9, pp. 4153–4163, Nov. 2011.

[21] S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid:
the role of power line communications in the smart grid,” Proc. IEEE,
vol. 99, no. 6, pp. 998–1027, Jun. 2011.

[22] 3GPP. http://www.3gpp.org/.
[23] W. Song and W. Zhuang, “Multi-service load sharing for resource

management in the cellular/WLAN integrated network,” IEEE Trans.

Wireless Commun., vol. 8, no. 2, pp. 725–735, Feb. 2009.
[24] M. Ismail and W. Zhuang, “A distributed multi-service resource alloca-

tion algorithm in heterogeneous wireless access medium,” IEEE J. Sel.

Areas Commun., vol. 30, no. 2, pp. 425-432, Feb. 2012.
[25] W. Song, Y. Cheng, and W. Zhuang, “Improving voice and data services

in cellular/WLAN integrated network by admission control,” IEEE

Trans. Wireless Commun., vol. 6, no. 11, pp. 4025-4037, Nov. 2007.
[26] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Convergence

in multiagent coordination, consensus, and flocking,” Proc. IEEE CDC-
ECC, pp. 2996–3000, Dec. 2005.

[27] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-node systems,” Proc. IEEE, vol. 95, pp. 215–233, Jan.
2007.

[28] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
in Proc. IEEE CDC’03, vol. 5, pp. 4997–5002, Dec. 2003.

[29] D. L. Isaacson and R. W. Madsen. Markov Chains: Theory and

Applications. Wiley, New York, 1976.
[30] F. Zhang and Q. Zhang, “Eigenvalue inequalities for matrix product,”

IEEE Trans. Automat. Contr., vol. 51, no. 9, pp. 1506–1509, Sept. 2006.
[31] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. The Society

for Industrial and Applied Mathematics (SIAM), 2000.
[32] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-

mization. New York: John Wiley & Sons, 1988.
[33] E. Liu, Q. Zhang, and K. K. Leung, “Clique-based utility maximization

in wireless mesh networks,” IEEE Trans. Wireless Commun., vol. 10,
no. 3, Mar. 2011, pp. 948–957.

[34] S. Balaji, V. Swaminathan, and K. Kannan, “A simple algorithm to opti-
mize maximum independent set,” Advanced Modeling and Optimization,
vol. 12, no. 1, pp. 107-118, 2010.

[35] M. Epstein. Managing Information in Networked and Multi-Agent

Control Systems. PhD thesis, California Institute of Technology, 2007.
[36] Canadian Wind Energy Atlas, http://www.windatlas.ca/.
[37] ReDriven Power Inc. 50kw Wind Turbine,

http://www.redriven.ca/products/50kw-wind-turbine.
[38] NREL (National Renewable Energy Laboratory): PVWattsTM Site Spe-

cific Calculator, http://www.nrel.gov/rredc/pvwatts.
[39] Waterloo North Hydro. http://www.wnhydro.com/.
[40] M. He, S. Murugesan, and J. Zhang, “Multiple timescale dispatch and

scheduling for stochastic reliability in smart grids with wind generation
integration,” in Proc. IEEE INFOCOM’11, Apr. 2011.

[41] Y. Xiao and J. Rosdahl, “Throughput and delay limits of IEEE 802.11,”
IEEE Commun. Lett., vol. 6, no. 8, pp. 355–357, Aug. 2002.

[42] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535–547, Mar. 2000.

[43] B. J. Choi, H. Liang, X. Shen, and W. Zhuang, “DCS: distributed
asynchronous clock synchronization in delay tolerant networks,” IEEE
Trans. Parallel Distrib., 2012.

[44] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast
gossip algorithms for consensus,” IEEE Trans. Singal Process., vol. 57,
no. 7, pp. 2748–2761, Jul. 2009.

[45] M. E. Mahmoud and X. Shen, “PIS: a practical incentive system for
multi-hop wireless networks,” IEEE Trans. Veh. Technol., vol. 59, no.
8, pp. 4012–4025, Oct. 2010.

[46] M. E. Mahmoud and X. Shen, “An integrated stimulation and pun-
ishment mechanism for thwarting packet drop in multihop wireless
networks,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3947–3962,
Oct. 2011.



1074 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 6, JULY 2012

Hao Liang (S’09) received the B.Sc. degree from
Nanjing University of Science and Technology,
China, in 2005, and the M.Sc. degree from South-
east University, China, in 2008, both in electrical
engineering. He is currently working toward a Ph.D.
degree at the Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada.
His current research interests are in the areas of
wireless communications, wireless networking, and
smart grid. He is a recipient of the Best Student
Paper Award from IEEE 72nd Vehicular Technology

Conference (VTC Fall-2010), Ottawa, Ontario, Canada, and a finalist for
the Best Paper Award at the 31st Annual IEEE International Conference on
Computer Communications (INFOCOM 2012), Orlando, Florida, USA. He
served as the Technical Program Committee (TPC) Member for IEEE VTC
Fall-2011 and IEEE VTC Fall-2010. He is the System Administrator of IEEE
Transactions on Vehicular Technology.

Bong Jun Choi (M’11) received the BSc (2003) and
MSc (2005) degrees from Yonsei University, Seoul,
Republic of Korea, both in electrical and electronics
engineering, and the PhD (2011) degree from Uni-
versity of Waterloo, Canada, in electrical and com-
puter engineering. He is a postdoctoral fellow at the
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. He was a software
engineer at Telecommunication Network Division
of Samsung Electronics in 2005-2006. His current
research focuses on energy efficiency, distributed

computing, and medium access control in wireless communications and
networking. He serves as an editor of KSII Transactions on Internet and
Information Systems.

Atef Abdrabou (M’09) received the Ph.D. degree
in 2008 from the University of Waterloo, Ontario,
Canada, in electrical engineering. In 2010, he joined
the Department of Electrical Engineering, UAE Uni-
versity, Al-Ain, Abu Dhabi, UAE, where he is an
Assistant Professor. He is a co-recipient of a Best
Paper Award of IEEE WCNC 2010.
Dr. Abdrabou has been awarded the National Sci-

ence and Engineering Research Council (NSERC) of
Canada postdoctoral fellowship in 2009. His current
research interests include network resource manage-

ment, QoS provisioning and information dissemination in self-organizing
wireless networks.

Weihua Zhuang (M93-SM01-F’08) has been with
the Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada, since 1993,
where she is a Professor and a Tier I Canada Re-
search Chair in Wireless Communication Networks.
Her current research focuses on resource allocation
and QoS provisioning in wireless networks. She is a
co-recipient of the Best Paper Awards from the IEEE
Multimedia Communications Technical Committee
in 2011, IEEE Vehicular Technology Conference
(VTC) Fall 2010, IEEE Wireless Communications

and Networking Conference (WCNC) 2007 and 2010, IEEE International
Conference on Communications (ICC) 2007, and the International Conference
on Heterogeneous Networking for Quality, Reliability, Security and Robust-
ness (QShine) 2007 and 2008. She received the Outstanding Performance
Award 4 times since 2005 from the University of Waterloo, and the Premier’s
Research Excellence Award in 2001 from the Ontario Government. Dr.
Zhuang is the Editor-in-Chief of IEEE Transactions on Vehicular Technology,
and the Technical Program Symposia Chair of the IEEE Globecom 2011. She
is a Fellow of the IEEE, a Fellow of the Canadian Academy of Engineering
(CAE), a Fellow of the Engineering Institute of Canada (EIC), and an elected
member in the Board of Governors of the IEEE Vehicular Technology Society.
She was an IEEE Communications Society Distinguished Lecturer (2008-
2011).

Xuemin (Sherman) Shen (M’97-SM’02-F’09) re-
ceived the B.Sc.(1982) degree from Dalian Maritime
University (China) and the M.Sc. (1987) and Ph.D.
degrees (1990) from Rutgers University, New Jersey
(USA), all in electrical engineering. He is a Profes-
sor and University Research Chair, Department of
Electrical and Computer Engineering, University of
Waterloo, Canada. He was the Associate Chair for
Graduate Studies from 2004 to 2008. Dr. Shen’s re-
search focuses on resource management in intercon-
nected wireless/wired networks, wireless network

security, wireless body area networks, vehicular ad hoc and sensor networks.
He is a co-author/editor of six books, and has published more than 600 papers
and book chapters in wireless communications and networks, control and
filtering. Dr. Shen served as the Technical Program Committee Chair for IEEE
VTC’10 Fall, the Symposia Chair for IEEE ICC’10, the Tutorial Chair for
IEEE VTC’11 Spring and IEEE ICC’08, the Technical Program Committee
Chair for IEEE Globecom’07, the General Co-Chair for Chinacom’07 and
QShine’06, the Chair for IEEE Communications Society Technical Committee
on Wireless Communications, and P2P Communications and Networking.
He also serves/served as the Editor-in-Chief for IEEE Network, Peer-to-Peer
Networking and Application, and IET Communications; a Founding Area
Editor for IEEE Transactions on Wireless Communications; an Associate
Editor for IEEE Transactions on Vehicular Technology, Computer Networks,
and ACM/Wireless Networks, etc.; and the Guest Editor for IEEE JSAC,
IEEE Wireless Communications, IEEE Communications Magazine, and ACM
Mobile Networks and Applications, etc. Dr. Shen received the Excellent
Graduate Supervision Award in 2006, and the Outstanding Performance
Award in 2004, 2007 and 2010 from the University of Waterloo, the Premier’s
Research Excellence Award (PREA) in 2003 from the Province of Ontario,
Canada, and the Distinguished Performance Award in 2002 and 2007 from
the Faculty of Engineering, University of Waterloo. Dr. Shen is a registered
Professional Engineer of Ontario, Canada, an IEEE Fellow, an Engineering
Institute of Canada Fellow, and a Distinguished Lecturer of IEEE Vehicular
Technology Society and Communications Society.


