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Decentralized Edge Intelligence: A Dynamic Resource
Allocation Framework for Hierarchical Federated Learning

Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Jiangming Jin, Yang Zhang,
Dusit Niyato, Fellow, IEEE, Cyril Leung, Chunyan Miao

Abstract—To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing
has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge
servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving
machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to
transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed
devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the
Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data
owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller,
e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In
this paper, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads
offer rewards in exchange for the data owners’ participation, and the data owners are free to choose which cluster to join. Specifically,
we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head
can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster
heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head’s services. The
performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing
properties of the deep learning based auction.

Index Terms—Federated Learning, Edge Intelligence, Resource Allocation, Evolutionary Game, Auction
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1 INTRODUCTION

Today, the predominant approach for Artificial Intelligence
(AI) based model training is cloud-centric, i.e., the data
owners transmit the training data to a public cloud server
for processing. However, this is no longer desirable due to
the following reasons. Firstly, privacy laws, e.g., the General
Data Protection Regulation (GDPR) [1], are increasingly
stringent. In addition, the privacy-sensitive data owners
can opt out of data sharing with third parties. Secondly,
the transfer of massive quantities of data to the distant
cloud burdens the communication networks and incurs
unacceptable latency especially for time-sensitive tasks. As
such, this necessitates the proposal of Edge Computing [2]
as an alternative, in which raw data are processed at the
edge of the network, closer to where data are produced.

The confluence of Edge Computing and AI gives rise to
Edge Intelligence, which leverages on the storage, commu-
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nication, and computation capabilities of end devices and
edge servers to enable edge caching, model training, and
inference [3] closer to where data are produced. One of the
enabling technologies [4] of Edge Intelligence is the privacy
preserving machine learning paradigm termed Federated
Learning (FL) [5]. In FL, only the updated model parameters,
rather than the raw data, need to be transmitted back to the
model owner for global aggregation. The main advantages
of FL are: (i) FL enables privacy preserving collaborative
machine learning, (ii) FL leverages on the computation
capabilities of IoT devices for local model training, thus
reducing the computation workload of the cloud, and (iii)
Model parameters are often smaller in size than raw data,
thus alleviating the burden on backbone communication
networks. This has enabled several practical applications,
e.g., in the development of next-word-prediction models
for text messaging [6], healthcare [7], Unmanned Aerial
Vehicles (UAV) sensing [8], and mobile edge computing [9].

However, the FL network is envisioned to involve thou-
sands of heterogeneous distributed devices, e.g., smart-
phones and Internet of Thing (IoT) devices [10]. In this
case, the communication inefficiency remains a key bottle-
neck in FL. Specifically, node failures and device dropouts
due to communication failures can lead to inefficient FL.
Moreover, workers, i.e., data owners, with severely limited
connectivity are unable to participate in the FL training,
thus adversely affecting the model’s ability to generalize.
As such, solutions from edge computing have recently been
incorporated to solve the communication bottleneck in FL.
In [4], [11], [12], a hierarchical FL (HFL) framework is pro-
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posed in which the workers do not communicate directly
with a central controller, i.e., the model owner. Instead, the
local parameter values are first uploaded to edge servers,
e.g., at base stations, for intermediate aggregation. Then,
communication with the model owner is further established
for global aggregation. Besides reducing the instances of
global communications with the remote servers of the model
owner, this relay approach reduces the dropout rate of
devices.

While [11] discusses convergence guarantees and
presents empirical results to show that the HFL approach
does not compromise on model performance, the challenges
of resource allocation and incentive mechanism design have
not yet been well-addressed in the HFL framework. In 5G
and Beyond networks, the resource sharing and incentive
mechanism design for end-edge-cloud collaboration is of
paramount importance to facilitate efficient Edge Intelli-
gence [4].

In this paper, we consider a decentralized learning based
system model inspired by the HFL. In our system model,
there exist data owners, hereinafter referred to as workers,
that participate in the FL model training facilitated by
different cluster heads, e.g., base stations that support the
intermediate aggregation of model parameters and efficient
relaying to the model owners (Fig. 1). We consider a two-
level resource allocation and incentive design problem as
follows:

1) Lower level (Between workers and cluster heads): Each
worker can freely choose which cluster to join. To
encourage the participation of workers, the cluster
heads offer reward pools to be shared among work-
ers based on their data contribution in the cluster.
For example, a worker that has contributed more
data1 during its local training will receive a larger
share of the reward pool. Moreover, the cluster
heads offer the workers resource blocks, i.e., band-
width, to facilitate efficient uplink transmission of
the updated model parameters. However, as more
workers join a cluster, the payoffs are inevitably
reduced due to the division of rewards over a larger
number of workers and the increased communica-
tion congestion. Thus, the cluster selection strategies
of each worker can affect the payoffs of other work-
ers. Accordingly, the workers may slowly adapt
their strategies in response to other workers. In con-
trast to conventional optimization approaches, we
use the evolutionary game theory [14] to derive the
equilibrium composition of the clusters. Our game
formulation enables the bounded rationality and
worker dynamics to be captured. Specifically, the
workers gradually adapt their strategies in response
to other non-cooperative workers. To achieve their
objectives, they observe each others’ strategies and
gradually adjust their strategies accordingly. The
solution is therefore, not immediately derived.

1. Note that this knowledge is available to the cluster heads given
that the workers have to report their available resources during the
client selection procedure [13]. In this paper, we omit discussions
regarding the client selection phase.

2) Upper level (Between cluster heads and model owners):
There may be multiple model owners in the net-
work that aim to train a model for their respective
usage collaboratively with the participation of the
workers and cluster heads. However, at any point
of time, each worker and cluster head can only
participate in the training process with a single
model owner. To derive the allocation of cluster
head to the model owner, as well as the optimal
pricing of the services of the cluster head by the
competitive model owners, we adopt a deep learn-
ing based auction mechanism which preserves the
properties of truthfulness of the bidders, while si-
multaneously achieving revenue maximization for
the cluster heads.

The main contributions of our paper are as follows:

1) We propose a joint resource allocation and incentive
design framework for the HFL. The “Edge for AI”
[15] approach supports decentralized Edge Intelli-
gence, i.e., FL at the edge with reduced reliance on
a central controller.

2) We model the cluster selection decisions of the
workers as an evolutionary game. Then, we provide
proofs for the uniqueness and stability of the evo-
lutionary equilibrium. In contrast to conventional
optimization tools which assume that the players
are perfectly rational, our model enables us to cap-
ture the dynamics and bounded rationality of player
decisions.

3) To assign the cluster heads to model owners, we
use a deep learning based auction mechanism. In
contrast to conventional auctions, the deep learning
based auction ensures seller revenue maximization
while satisfying the individual rationality and in-
centive compatibility constraints.

The organization of our paper is as follows. In Section
2, we provide a review of related works. In Section 3,
we discuss the system model and problem formulation. In
Section 4, we study and analyze the evolutionary game.
In Section 5, we discuss the deep learning based auction
mechanism. Section 6 provides the performance evaluation
and Section 7 concludes the paper.

2 RELATED WORK

FL is a privacy-preserving machine learning paradigm first
proposed in [5]. In distributed learning schemes such as FL,
the communication cost often dominates the computation
cost. In particular, the uplink transmission rate of workers
is a major bottleneck in the training process and can lead
to the straggler’s effect [16]. Several works have proposed
a variety of solutions, e.g., model compression techniques
such as quantization and subsampling [17], client selection
protocols to reduce the occurrences of stragglers [13], as well
as Broadband Analog Aggregation (BAA) with over-the-air
computation [18].

However, despite the above measures, the FL process
is still susceptible to device dropouts. In addition, devices
that are located at geographically distant locations are un-
able to participate in the FL model training process. This
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affects the model’s ability to generalize well. Recently, edge
computing-inspired solutions have been proposed to further
enhance the communication efficiency of FL. These methods
generally attempt to reduce the reliance of the FL training
process on a central controller. In [11], the HFL framework is
proposed in which the workers do not communicate directly
with a central controller, i.e., the model owner. Instead, the
intermediate aggregation of parameters is first conducted at
the edge, e.g., with the aid of cluster heads, such as, base
stations or other devices. Then, communication with the
central controller is established only when there is a need
for global aggregation.

Similarly, [19] proposes that mobile devices can form
clusters to participate in self-organized FL. Besides improv-
ing communication efficiency, it reduces the likelihood that
the training fails due to the unexpected malfunctioning of
the central controller. In [19], the cluster head selection
algorithm is studied, and the cluster head is chosen based on
its social relationship with the other devices. The studies in
[4], [12] also propose a collaborative FL, in which the device-
to-device (D2D) and device-to-edge (D2E) communication
is leveraged to ensure the efficient transmission of model
parameters to the model owner.

While the aforementioned studies validate the feasibility
of HFL and highlight the advantages of conducting FL
in a decentralized manner, thereby reducing the reliance
on a central controller, resource allocation and incentive
mechanism design have not been addressed in the HFL
framework. For example, in a network, the workers are free
to join any cluster. In addition, they need to receive some re-
wards as a compensation for the resources expended during
training. Given that the worker decisions are dynamic, it is
important to develop a framework that can potentially serve
to guide each cluster head’s incentive design. As such, in
this paper, we propose the evolutionary game to incorporate
and analyze the dynamics of cluster selection in HFL.

In addition, the services of the cluster head have to be
compensated. Given the competing model owners within a
network, we utilize a deep learning based auction mecha-
nism [20] to match the cluster head according to the varying
valuations of the model owner.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model
We consider a network that consists of a set
N = {1, . . . , n, . . . , N} of N workers. There exist L
distinct model owners, each of which desires to develop an
AI model for its own purposes, e.g., traffic crowdsensing
[21] or location based recommendation [22]. Given the
communication constraints of individual workers, the
central controller-reliant conventional FL architecture is
prone to high device dropout rates [12]. Moreover, we
have J cluster heads, e.g., base stations, employed across
the network to facilitate the HFL task, the set of which is
denoted by J = {1, . . . , j, . . . , J}. Each worker can choose
to associate with any one j ∈ J cluster head.

Without loss of generality, each cluster head j ∈ J
can only serve a single model owner l ∈ L at a time and
facilitates the HFL process for a cluster j of pjN workers,
where

∑J
j pj = 1.
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Fig. 1: An illustration of our system model involving two
populations of workers. Within each population, all workers
have the same data quantities. The workers may choose
to join either cluster head. The dynamics is modeled at
the first level using the evolutionary game. Cluster head
2 eventually has higher data coverage across the network
given that it offers the workers higher rewards. Thus, the
services of cluster head 2 are valued higher at the auction.

In HFL, a cluster head j first receives an initial global
model, i.e., parameters denoted by the vector w, from a
model owner that has chosen its services. It then relays
the global model to its workers. The FL model training
takes place over K iterations to minimize the global loss
FK (w) where K is stipulated by the model owner. Each
kth iteration, k ∈ {1, . . . , k, . . . ,K}, consists of three steps
[17] namely:

1) Local Computation: Each worker trains the received
global model w(k) locally.

2) Wireless Transmission: The worker transmits the
model parameter update to its cluster head j.

3) Intermediate Model Parameter Update: All parameter
updates received from its pjN workers are aggre-
gated by the cluster head to derive an updated in-
termediate modelw(k+1)

j , which is then transmitted
back to the worker for the (k+1)th training iteration.

AfterK iterations, the intermediate modelw(K)
j is trans-

mitted to the model owner for global aggregation with the
intermediate parameters collected from other clusters. A
new set of updated global parameters is derived by the
model owner which sends it out to its cluster heads for
another round of local model training.

In this paper, we assume that the cluster heads are pre-
determined, e.g., through the cluster head selection algo-
rithms based on energy efficiency [23], [24], trust [25], and
social effects [26]. Instead, we focus our study on a two-
level optimization problem as follows: i) in the lower level,
we adopt an evolutionary game approach to study the
dynamics of cluster selection by the workers to derive the
dynamics of the composition of each cluster, and ii) in the
upper level, we adopt a deep learning based auction to value
each cluster head’s worth to a model owner.
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3.2 Lower-Level Evolutionary Game
In the lower level, the cluster formation is derived given
J cluster heads. Each cluster head has the objective of
attracting more workers to join its cluster, since this ensures
that the cluster will have a larger data coverage across the
network. With a larger data coverage, the cluster value is
increased, e.g., due to the fact that the model performance
increases with more training data [16].

To encourage the participation of the workers, each
cluster head offers a reward pool to be shared by all workers
in the cluster. The reward to be distributed to each worker
is based on the proportion of the worker’s contributions in
the cluster, i.e., its data quantity relative to the total amount
of data in the cluster. On one hand, a cluster that offers
a high reward pool is more attractive to workers. On the
other hand, when more workers join that cluster, the reward
pool has to be shared among a larger number of workers.
Thus, the worker decisions as to which cluster they choose
to join are interrelated with the decisions of other workers.
We adopt an evolutionary game theory approach to model
the dynamics of cluster formation.

3.3 Upper-Level Deep Learning Based Auction
The lower-level evolutionary game gives us the data cover-
age of each cluster. For example, a cluster head that has
greater data coverage will be deemed more valuable to
an FL model owner, since the model performance, e.g.,
inference accuracy, is improved [27]. However, recall from
Section 3.1 that there exists more than one model owner
in the network seeking to secure the services of the cluster
head to facilitate the HFL. In consideration of the competi-
tion among model owners, we adopt an auction mechanism
in which L model owners bid for the services of each cluster
head j ∈ J . Specifically, we utilize the deep learning based
auction mechanism which has the attractive properties of
ensuring the truthfulness of the bidders, as well as revenue
maximization for the seller (i.e., cluster head), as discussed
in Section 5.

4 LOWER-LEVEL EVOLUTIONARY GAME

4.1 Evolutionary Game Formulation
In the following, we formulate the cluster selection as an
evolutionary game:

• Players: The set of workers N = {1, . . . , n, . . . , N} in
the FL network are the players of the evolutionary
game. For clarity, we use the terms “workers” here-
inafter.

• Population: We partition the workers into M =
{1, . . . ,m, . . . ,M} populations based on the data
quantities2 that each worker owns or the data cov-
erage proportion of the worker using conventional
data mining tools, e.g., k-means. The data coverage
proportion can be a reflection of the workers’ market
share in the case when organizations are considered,

2. For simplicity, we only consider data quantity as the criterion for
clustering here. Note that we may cluster the workers based on other
important factors [28] such as geolocation (as a proxy for data distri-
bution) and reputation metrics (as a proxy for quality of contribution).
Our work can easily be extended to cover such measures.

e.g., based on the proportion of users a bank has,
or usage frequency in the case in which individuals
are considered, e.g., based on how often the worker
uses an IoT device. Each worker of population m
owns dm training data samples, whereas the total
data quantity in a population is denoted Dm. We
denote the number of workers in each population as
nm = pmN where pm ∈ [0, 1] and

∑M
m=1 pm = 1. In

other words, we have M populations of workers in
the network, where all workers within a population
own the same number of data samples.

• Strategy: The strategy of each worker in popula-
tion m is the selection of a cluster to join so as
to achieve utility maximization. The strategy space
of each worker n in population m is denoted by
S(m)
n = {a(m)

n,1 , . . . , a
(m)
n,j , . . . , a

(m)
n,J } in which a

(m)
n,j is

a binary variable where a
(m)
n,j = 1 represents that

the worker n in population m chooses the cluster
j, whereas a(m)

n,j = 0 indicates otherwise.
• Population Share: We denote the fraction of pop-

ulation m that selects strategy j, i.e., cluster j,
by x

(m)
j where

∑J
j=1 x

(m)
j = 1. The popula-

tion state [29] is denoted by the vector x(m) =

[x
(m)
1 , . . . , x

(m)
j , . . . , x

(m)
J ]T ∈ X.

• Payoff: The expected payoff of each worker is de-
termined by its net utility, which is the difference
between the reward that it derives from joining a
cluster, and the cost of participating in the FL model
training. We further discuss payoffs in Section 4.2.

As an illustration, the system model and game formula-
tion are illustrated in Fig. 1, for the case of two populations.
Each worker in population 1 has fewer data samples than
each worker in population 2. Each worker in the population
can also choose to join either cluster heads. Eventually,
each cluster head is associated with a certain level of data
coverage, and has its worth evaluated using the auction
mechanism discussed in Section 5.

Note that in this paper, we consider that each worker
can only join a single cluster, as the worker device is unable
to support two instances of model training in parallel.
However, our model can be extended to the situation in
which each worker can join more than one cluster at a
time. In this case, the worker can be modeled to decide,
in an evolutionary process, on how its limited resources can
be divided among the model owners. Then, x(m)

j ∈ [0, 1]
is denoted to represent the share of resources a worker
from population m contributes to cluster head j, where∑J
j=1 x

(m)
j = 1.

4.2 Worker Utility and Replicator Dynamics
The rewards derived by workers of population m, from
joining a cluster j for K iterations of FL model training,
is given by:

p
(m)
j = αj

x
(m)
j Dm∑M

m=1 x
(m)
j Dm

+Rj , (1)

where αj is the reward pool to be divided across all workers

in cluster j based on their data contributions,
x
(m)
j Dm∑M

m=1 x
(m)
j Dm
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is the share of rewards based on the worker’s data contribu-
tion3, and Rj is a fixed reward offered to workers in cluster
j based on the compensation for the workers’ participation
costs.

The cost of workers of population m incurred from
joining a cluster j is given by an addition of the computation
and communication cost over the K iterations of the model
training. The computation cost is as follows:

ccmpm = ηκθmf
2
m, (2)

where η is the unit cost of energy consumption, κ is the
coefficient of the value that is determined by the circuit
architecture of the worker Central Processing Unit (CPU)
[30], θm is the number of CPU cycles required to perform
local computation, i.e., model training, and f2

m refers to the
computation capability of the worker which is determined
by the clock frequency of the worker CPU. Without loss
of generality, we have the computation cost held constant
throughout for all workers, i.e., ccmpm = ccmp, ∀m ∈ M. To
account for the varying computation and communication
capabilities, we can straightforwardly extend our work to
include multiple heterogeneous populations with varying
computation capabilities. For example, if there are Λ varying
computation costs, we can have ΛM populations accord-
ingly.

The main benefit of HFL is that devices with communi-
cation constraints are able to participate in FL. To facilitate
the communication of parameters, the cluster head, e.g.,
a base station, distributes communication resource blocks
to all participants within the cluster. On the one hand,
clusters with more communication resources are attractive
to participants since the participants can benefit from a
higher achievable uplink transmission rate. On the other
hand, with more participants attracted to join the cluster,
the increased competition for resource blocks leads to more
congestion. As such, following [31], we model the disutili-
ties arising from network congestion effects as

ccomm,j (t) = ζj

( ∑
m∈M

x
(m)
j (t)

)2

, (3)

where ζj is the congestion coefficient determined by the
resource constraints of the cluster head [31], whereas(∑

m∈M x
(m)
j

)2
represents the usage profile across popu-

lations in the network for a particular cluster. Specifically,
a cluster head with more resources will have a lower con-
gestion coefficient. Moreover, workers in a less-populated
cluster experience less congestion.

The total cost of participation incurred by worker nm (of
population m) in cluster j is obtained as

c
(m)
j (t) = ccmp + ccomm,j (t). (4)

At time t, the net utility that the workers in class m
receive for their participation in cluster j is:

u
(m)
j (t) = U

(
p

(m)
j (t)− c(m)

j (t)
)
, (5)

3. In this work, we make a simplifying assumption that the workers
are not malicious. In practice, the parameter contributions of the
workers can be randomly verified, e.g. detecting model parameters
with outlying magnitudes, and malicious workers with anomalous
contributions can be penalized from participating in the future FL
training.

where we assume U(·) to be a linear utility function indicat-
ing the risk neutrality of workers without loss of generality
[8], [16].

Accordingly, at time t, the average utility of workers in
population m across all J clusters is

ū(m)(t) =
J∑
j=1

x
(m)
j u

(m)
j (t). (6)

In practice, information regarding the utility derived
from joining different clusters can be exchanged and com-
pared among workers within the network [32]. Workers
may thus switch from one cluster to another to seek higher
utilities. To capture the dynamics of the cluster selection
and model the strategy adaptation process, we define the
replicator dynamics [33] as follows:

ẋ
(m)
j (t) = f

(m)
j (x(m)(t)) = δx

(m)
j (t)

(
u

(m)
j (t)− ū(m)(t)

)
,

∀m ∈M,∀j ∈ J ,∀t,
(7)

where δ refers to the positive learning rate of the popula-
tion that controls the speed at which workers adapt their
strategies. For example, in a network with communication
bottlenecks [32] or negative network effects [26], the learn-
ing rate tends to be slower as the worker requires more time
to collect the information required to change its decision.

The replicator dynamics is a series of ordinary differen-
tial equations (ODEs) with the initial condition x(m)(0) ∈ X
[34]. Specifically, based on the replicator dynamics, work-
ers in population m can adapt their strategy, i.e., switch
from one cluster to another if their utilities are lower
than the expected utility. The evolutionary equilibrium is a
fixed point in (7) that is reached in a particular t when
ẋ

(m)
j (t) = 0,∀m ∈ M,∀j ∈ J . In other words, at the

evolutionary equilibrium, workers from all clusters derive
an identical payoff such that there is no longer a need to
deviate from their prevailing clusters.

In a dynamic system, it is of paramount importance that
the equilibrium is stable and unique. In terms of stability, an
evolutionary equilibrium remains to be ẋ(m)

j (t) = 0 for all
time periods after the equilibrium is first reached. In terms
of uniqueness, the same evolutionary equilibrium is reached
regardless of the initial conditions. In Section 4.3, we prove
the existence, uniqueness, and stability of the solution to (7).

4.3 Existence, Uniqueness, and Stability of the Evolu-
tionary Equilibrium

In this section, we first prove the boundedness of (7) in
Lemma 1.

Lemma 1. The first order derivatives of f (m)
j (x(m)(t)) with

respect to x(m)
v (t) is bounded for all v ∈ J .

Proof. For ease of presentation, we omit the notations of t
and (m) in this proof. The first order derivative of fj(x)
with respect to xv , where v ∈ J , is given by

dfj(x)

dxv
= δ

[
dxj
dxv

(uj − ū) + xj

(
duj
dxv
− dū

dxv

)]
. (8)
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For ease of notation, denote A(xj) =
∑M
m=1 xjDm. Next,

we derive duj

dxv
as follows:

duj
dxv

= αj

( dxj

dxv
Dm

A(xj)
− xjD

2
m

A2(xj)

)
− 2ζj

( ∑
m∈M

xj

)
. (9)

It follows that
∣∣∣ duj

dxv

∣∣∣ and thus
∣∣∣ dū
dxv

∣∣∣ are clearly bounded

∀v ∈ J . Therefore, this represents that
∣∣∣dfj(x)

dxv

∣∣∣ is bounded.
This proof also applies to all M populations and T time
periods.

Theorem 1. For any initial condition x(m)(0) ∈ X, there exists
a unique evolutionary equilibrium to the dynamics defined in (7).

Proof. From Lemma 1, we have proven that the replicator
dynamics f (m)

j (x(m)(t)) is bounded and continuously dif-
ferentiable ∀x(m)(t) ∈ X,∀m ∈ M,∀j ∈ J , ∀t. There-
fore, the maximum absolute value of its partial derivative
given in (8) is a Lipschitz constant. According to the Mean
Value Theorem, there exists a constant c between x

(m)
1 (t)

and x
(m)
2 (t) such that

∣∣∣f(m)
j (x

(m)
1 (t))−f(m)

j (x
(m)
2 (t))

∣∣∣
(x

(m)
1 (t)−x(m)

2 (t))
=

dfj(c)
dxv

.
Therefore, we can define the relation∣∣∣f (m)

j (x
(m)
1 (t))− f (m)

j (x
(m)
2 (t))

∣∣∣ ≤ Γ
∣∣∣x(m)

1 (t)− x(m)
2 (t)

∣∣∣ ,
∀(x(m)

1 , x
(m)
2 ) ∈ X,∀m ∈M,∀t.

where Γ = max
{∣∣∣dfj(c)

dxv

∣∣∣}. Following the Lipschitz condi-
tion [35], this implies that the replicator dynamics, i.e., an
initial value problem with x(m)(0) ∈ X, in (7) has a unique
solution x(m)

j

?
∈ X.

Next, we prove the stability of the evolutionary equilib-
rium in the following theorem.

Theorem 2. For any initial condition x(m)(0) ∈ X, the evolu-
tionary equilibrium to the dynamics defined in (7) is stable.

Proof. We define the Lyapunov function

G(x(m)(t)) =

 M∑
m=1

J∑
j=1

x
(m)
j (t)

2

, (10)

which is positive definite since:

G(x(m)(t))

{
= 0 if x(t) = 0
> 0 otherwise.

Taking the first-order derivative with of G(x(m)(t)) with
respect to t,

dG(x(m)(t))

dt
= 2

 M∑
m=1

J∑
j=1

x
(m)
j (t)

 M∑
m=1

J∑
j=1

ẋ
(m)
j (t)

 .
(11)

Note that at any point of time
∑M
m=1

∑J
j=1 x

(m)
j (t) = M .

Thus, the replicator dynamics have to equate to zero for this
to hold, i.e., the net movements and strategy adaptations
across clusters are zeroed out in order for the population to
remain constant. Specifically,

M∑
m=1

J∑
j=1

ẋ
(m)
j (t) = 0,∀t. (12)

Therefore, (12) ensures that dG(x(m)(t))
dt = 0, which satisfies

the Lyapunov conditions required for stability, as defined in
the Lyapunov’s second method for stability [36].

As such, we have proven the uniqueness and stability of
the evolutionary equilibrium.

Next, we discuss the procedures to derive the equilib-
rium cluster data coverage based on the replicator dynamics
in (7). In contrast to the population evolution algorithm [32]
which involves the intervention of a centralized controller,
e.g., in disseminating information of potential payoffs that
can be derived from joining a particular cluster, we consider
the implementation of a decentralized cluster selection algo-
rithm in Algorithm 1.

At the initialization phase, workers in each populationm
are randomly assigned to j clusters, where m ∈ M, j ∈ J .
At each time period t, the workers compute their utilities
and the average utility of workers in the population. Note
that in practice, the workers may not have the complete
information of all workers belonging to the same population
in a large network. As such, its knowledge of the average
utility in the population is based on the worker’s “best
guess”, i.e., the expected average utility. This procedure is
simply a comparison between (i) the worker’s own utility
from joining a particular cluster j, i.e., u(m)

j (t) and (ii) the
expected average utilities of other workers from the same
population which have chosen to join other clusters, i.e.,
E(ū(m)(t)). Thereafter, the evolution of population state can
be derived following the replicator dynamics.

The output of Algorithm 1 is the population state that
is observed after tmax iterations. Then, we are eventually
able to derive the data coverages of the cluster head, i.e., the
proportion of data across the network that each cluster head
can cover, as follows:

Dj =
M∑
m=1

x
(m)
j (tmax)Dm. (13)

5 DEEP LEARNING BASED AUCTION FOR VALUA-
TION OF CLUSTER HEAD

5.1 Auction Formulation

Based on the cluster formations from the evolutionary game,
we are able to derive the data coverage Dj of the cluster
head j ∈ J .

As each cluster head can only offer its services to a single
model owner, i.e., the workers’ participation in the FL model
training, the model owners need to compete for the services
of the cluster heads. Each model owner l ∈ L has different
preference for the accuracy of their models, e.g., applications
for accident warning and prediction [37] require higher
accuracy than the route planning and navigation systems.
Following the work in [38], the FL model accuracy Al of
model owner l, can be expressed as a power law function
that is denoted as follows:

Al(µl) = σ − vµ−rl , (14)

where σ, v, and r are calibrable parameters depending on
the model to be trained. µl is the data coverage required by
model owner l to achieve its required model accuracy, σ is
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Algorithm 1 Cluster Selection for HFL

Input: Worker and cluster characteristics
Output: Dj ,∀j ∈ J

1: Initialization: Workers in population m each assigned
to a random cluster

2: while t < tmax do
3: for m ∈M do
4: Payoff Computation
5: for j ∈ J do
6: Derive u(m)

j (t) = p
(m)
j (t)− c(m)

j (t)
7: end for
8: Compute E(ū(m)(t)) = E(

∑J
j=1 x

(m)
j u

(m)
j (t))

9: Cluster Selection
10: for j ∈ J do
11: Derive ẋ

(m)
j (t) = δx

(m)
j (t)

(
u

(m)
j (t)− ū(m)(t)

)
and x(m)

j (t)
12: end for
13: end for
14: end while
15: for j ∈ J do
16: Compute Dj =

∑M
m=1 x

(m)
j (tmax)Dm

17: end for

the upper bound of the accuracy that can be derived from
historical data, whereas v and r are the fixed parameters of
the function.

In general, when the requirement for data coverage of
the model owner µl is larger, the model owner has more
incentive to pay a higher price for the services of the cluster
heads which has more data coverage. In contrast, a model
owner that already has some pre-existing training data dl
will have less incentive to bid for the services of a cluster
head. Therefore, the valuation bl of model owner l for the
services offered by the cluster heads can be expressed as
bl = µl − dl.

In order to maximize the revenue of the cluster heads
and to ensure that the services from the cluster heads are
allocated to the model owners that value them most, we
model the allocation problem as multiple rounds of single-
item auctions. In this auction, the cluster heads are the
sellers, i.e., auctioneers, while the model owners are the
buyers, i.e., bidders. The cluster head with the highest
amount of data coverage is the first to auction its services
to the model owners. All model owners submit their bids
to compete for the service. Then, the cluster head collects
the bid profile (b1, . . . , bl, . . . , bL) to decide on the winning
model owner l? and the corresponding payment price θl? .
After each round of auction, the winning model owner has
higher data coverage, i.e., higher dl. Thus, its valuation in
the next round of auction naturally has to be updated and
decreases. The auction ends when all cluster heads have
been allocated to the model owners. Note that the model
owners may participate in more than one round of auction
to fulfill their data coverage requirement, e.g., if the data
coverage that single cluster has is insufficient to fulfill its
needs.

Accordingly, the utility of the model owner in each

round of the auction is as follows

ul =

{
bl − θl? if the model owner wins the bid,
0 otherwise.

(15)

An optimal auction [39] has two characteristics:

1) Individual Rationality (IR): By participating in the
auction, the model owners receive non-negative
payoff, i.e., ul ≥ 0.

2) Incentive Compatibility (IC): There is no incentive
for the model owners to submit bids other than
their true valuations, i.e., the bidders always bid
truthfully.

In each round of the auction, in order to determine the
payment price θl? of the winning model owner, traditional
auction schemes such as the first-price auction and second-
price auction (SPA) may be adopted. However, each of these
traditional auction schemes has its own drawbacks.

The traditional first-price auction, in which the highest
bidder pays the exact bid it submits, maximizes the revenue
of the seller but does not ensure that the bidders submit their
true valuations. On the other hand, the SPA, in which the
highest bidder pays the price offered by the second highest
bidder, ensures that the bidders submit their true valuations,
i.e., ensures IC, but does not maximize the revenue of the
seller. Therefore, in order to ensure that both conditions
of truthfulness and revenue maximization of the seller are
satisfied, we design an optimal auction using the Deep
Learning approach with reference to the study in [20].

5.2 Deep Learning Based Auction for Valuation of Clus-
ter Heads
In this section, we illustrate the neural network architecture
for the design of an optimal auction. Following the proce-
dure in [20], we describe the neural network architecture
(Fig. 2) which renders the design of an optimal auction.
Then, we elaborate on the proposed implementation of
multiple round single-item auctions for the valuation of the
services of cluster heads.

By adopting the SPA scheme to determine the payment
price of the winning model owner, the revenue of the cluster
head is not maximized, especially when the bid of the
second highest bidder is low. Thus, in order to maximize the
revenue of the cluster heads, the monotonically increasing
functions are applied to the bids of the model owners to
transform the bids into transformed bids, which are used to
determine the allocation and the corresponding payment of
the model owners in the network. The input bids and the
transformed bids of model owner l are denoted as bl and b̄l
respectively. The transform function for the bids submitted
by model owner l is denoted as φl. In order to determine
the allocation and conditional payment of the model own-
ers, the SPA with zero reserve price (SPA-0) is applied to
transform the bids. The reserve price is the minimum price
that the cluster head requires to offer its service. The SPA-
0 allocation rule and the SPA-0 payment rule of the model
owner l are represented by g0

l (b̄) and θ0
l (b̄), respectively,

where b̄ is the vector of the transformed bids. The SPA-0
allocation rule g0

l (b̄) determines the winning model owner
which has the highest bid if the bid is greater than zero.
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Fig. 2: Neural Network Architecture for the Optimal Auc-
tion.

The SPA-0 payment rule θ0
l (b̄) determines the conditional

payment price θl of model owner l by applying the inverse
transform function which is represented by φ−1

l .

Theorem 3. For any set of strictly monotonically increasing
function {φ1, . . . , φl, . . . , φL}, an auction which is defined by the
allocation rule gl = g0

l ◦φl and the payment rule θl = φ−1
l ◦θ0

l ◦φl
satisfies the properties of IC and IR, where g0 and θ0 represent the
SPA-0 allocation rule and the SPA-0 payment rule, respectively
[20].

Based on the theorem, for any choices of strictly mono-
tonically increasing transform functions, the proposed auc-
tion with the allocation rule gl and conditional payment rule
θl satisfy the characteristics of the optimal auction, i.e., IR
and IC. Therefore, the monotone transform functions are
used in the neural network to ensure the IR and IC prop-
erties of the auction. In addition to this, the cluster heads
want to maximize their revenues. Based on the allocation
and the conditional payment rules, the revenue of the cluster
head is determined. In particular, the revenue of the cluster
head is equivalent to the payment price of the winning
model owner. Thus, the objective of the cluster heads is
to maximize their individual revenues while fulfilling the
properties of IR and IC of the optimal auction. In order to
do so, the neural network architecture learns the appropriate
transform functions for the optimal auction to minimize
the loss function which is defined as the expectation of
the negated revenue of the cluster head. The minimization
of the loss function is equivalent to the maximization of
the revenue of the cluster head. With this, the optimal
auction design based on the neural network architecture
maximizes the revenues of the cluster heads while satisfying
the necessary and sufficient conditions for IC and IR.

The algorithm for the implementation of the optimal
auction based on the neural network architecture is illus-
trated in Algorithm 2.

In the following, we discuss the three important func-

Max

Max

Min 𝑏!"𝑏!

ℎ"" = 𝑤""! 𝑏! +𝛽""!

ℎ"# = 𝑤"#! 𝑏! +𝛽"#!
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Group Q

Group 1

…
…

…

Fig. 3: Monotone Transform Functions.

Algorithm 2 Algorithm for Deep-Learning Based Optimal
Auction.
Input: Set of cluster heads J = {1, . . . , j, . . . , J}, bids of

model owners bi = (bi1, . . . , b
i
l, . . . , b

i
L)

Output: Revenue of the cluster heads
1: while J 6= ∅ do
2: Identify the cluster head the highest data coverage,

Dj

3: Initialization: w = [wlqs] ∈ RI×QS+ , β = [βlqs] ∈
RI×QS

4: Deep-Learning Based Optimal Auction:
5: while Loss function R̂(w,β) is not minimized do
6: Compute the transformed bids b̄il = θl(b

i
l) =

minq∈Qmaxs∈S(wlqsbl + βlqs)
7: Compute the allocation probabilities gl(b̄) =

softmaxl(b̄1, . . . , b̄l, . . . , b̄L+1; γ)
8: Compute the SPA-0 payments θ0

l (b̄) =
ReLU(maxs6=l b̄s)

9: Compute the conditional payments
θl = φ−1

l (θ0
l (b̄))

10: Compute the loss function R̂(w,β)
11: Update the network parameters w and β using the

SGD solver
12: end while
13: Update the data coverage of the winning model

owner dnewl = doldl +Dj

14: Update the valuation of the winning model owner
bl = µl − dl

15: Remove the cluster head from set J
16: end while
17: return The revenue gain by the cluster heads

tions in the neural network architecture

1) the monotone transform function φl,
2) the allocation rule gl,
3) the conditional payment rule θl.
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5.3 Monotone Transform Functions

In the auction, the valuation, i.e., bid bl of each model owner
l is the input to the transform function φl. The transform
function maps the input to its transformed bid, b̄l = φl(bl).
Each transform function φl is modelled as a two-layer feed
forward network which consists of the min and max opera-
tors over several linear functions, as shown in Fig. 3. There
are Q groups of S linear functions hqs(bl) = wlqsbl + βlqs,
Q = {1, . . . , q, . . . , Q}, S = {1, . . . , s, . . . , S}, wlqs ∈ R+

and βlqs ∈ R are the positive weight and bias respectively.
With these linear functions, the transform function φl of
each model owner l is defined as follows:

φl(bl) = min
q∈Q

max
s∈S

(wlqsbl + βlqs). (16)

Based on the parameters for the forward transform function
φl, the inverse function φ−1

l can be derived as follows:

φ−1
l (y) = max

q∈Q
min
s∈S

(wlqs)
−1(y − βlqs). (17)

5.4 Allocation Rule

The allocation rule in the neural network architecture is
based on the SPA-0 allocation rule. In particular, the data
coverage Dj of the cluster head j is allocated to the
model owner with the highest transformed bid if the trans-
formed bid is more than zero. Otherwise, the cluster head
does not sell its service to any model owner. In order
to model the competition among the model owners, we
use a softmax function on the vector of transformed bids
b̄ = (b̄1, . . . , b̄l, . . . , b̄L) and the additional dummy input
b̄L+1 = 0 in the allocation network. The output of the
softmax function is a vector of allocation probabilities, which
is represented by g = (g1, . . . , gl, . . . , gL). The softmax func-
tion used in the neural network architecture is defined as
follows:

gl(b̄) = softmaxl(b̄1, . . . , b̄l, . . . , b̄L+1; γ)

=
eγb̄l∑L+1
l=1 eγb̄l

, γ > 0,∀l ∈ L.
(18)

The parameter γ in the softmax function measures the
quality of the approximation where the higher the γ, the
more accurate the approximation of the function. However,
a better quality of approximation results in a less smooth
allocation function.

5.5 Conditional Payment Rule

The conditional payment rule determines the price θl that
needs to be paid by the winning model owner l. The
conditional payment rule is carried out in two steps. Firstly,
the SPA-0 payment θ0

l for each model owner l is calculated.
Specifically, the SPA-0 payment θ0

l is the maximum of the
transformed bids of other model owners and zero which is
determined by using the ReLU activation unit function as
follows:

θ0
l (b̄) = ReLU(max

s 6=l
b̄s), ∀l ∈ L. (19)

The ReLU(x) = max(x, 0) activation function guarantees
that the SPA-0 payment of each model owner is non-
negative. Secondly, based on the SPA-0 payment θ0

l , the

conditional payment θl of model owner l is calculated as
follows:

θl = φ−1
l (θ0

l (b̄)), (20)

where the inverse transform function from Equation (17) is
applied to the SPA-0 payment of the model owner l.

5.6 Neural Network Training

The aim of the neural network is to optimize the weights
and biases of the linear functions in the neural network such
that the loss function is minimized. In the neural network,
the loss function is defined as the expectation of the negated
revenue of the cluster head. The loss function of the neural
network is formulated based on the inputs, i.e., the training
dataset and the outputs, i.e., the allocation probabilities and
the conditional payments of the model owners. The train-
ing dataset of the neural network consists of the bidders’
valuation profiles of which the bidders’ valuation profile
i is denoted as bi = (bi1, . . . , b

i
L), I = {1, . . . , i, . . . , I}

where I is the size of the training dataset. bil is the valuation
of model owner l for the data coverage of cluster head is
drawn from a valuation distribution function fB(b). Since
the valuation bil of the model owner l depends on the data
coverage requirement µl and the current amount of data
coverage dl of the model owner, i.e., bil = µil − dil , the
distribution function fB(b) can be determined based on
the distribution of the data coverage requirement, which
is represented by fµ(µ). In our work, we assume that the
data coverage requirement of the model owners follows a
uniform distribution, i.e., µ ∼ U [µmin, µmax].

The parameters of the monotone transform functions,
i.e., weights wlqs and biases βlqs are the entries of matrices w
and β. The matrices are needed to determine the allocation
probability and conditional payment of model owner l,
which are represented by g(w,β)

l and θ(w,β)
l respectively.

The objective of the training is to find the optimal weight
w∗ and bias β∗ matrices that minimize the loss function
of the neural network, i.e., the expectation of the negated
revenue of the cluster head j. Specifically, the approximation
of the loss function, R̂ is defined as follows:

R̂(w,β) = −1

I

I∑
l=1

g
(w,β)
l (bi)θ

(w,β)
l (bi). (21)

For the optimization of the loss function R̂(w,β) over
the parameters (w,β), a stochastic gradient descent (SGD)
solver is used.

6 PERFORMANCE EVALUATION

In this section, we present the performance evaluation of the
evolutionary game based cluster formation and deep learn-
ing based auction for the valuation of cluster data coverage.
Unless otherwise stated, the simulation parameters are as
shown in Table 1. Note that we use the terms “cluster” and
“cluster heads” interchangeably.
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Fig. 4: Phase plane of the replicator
dynamics.
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Fig. 5: Evolutionary equilibrium of
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Fig. 7: Evolution of population states
for population 1.
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TABLE 1: Simulation Parameters [38], [40].

Parameter Values
Total number of workers in the network N 90
Number of data samples of population m
Dm

[2400, 4800]

Reward pool offered in cluster αj [100, 300]
Fixed rewards offered in cluster Rj 80
Congestion coefficient ζj [10, 20]
Computation cost ccmp 0.1
Rate of strategy adaptation δ 0.001
Total Number of Model Owners, L 10
Size of Training Dataset, I 1000
Number of Groups for Linear Function Q 5
Linear Functions in Each Group S 10
Learning Rate 0.001
Quality of Approximation 1000, 2000
Range of the model owners’ data coverage
requirement, µl

∼ U [0.5, 0.9],
∼ U [0, 0.4]

6.1 Lower-level Evolutionary Game
For the first part of our simulations, we analyze the lower-
level evolutionary game. We consider a network which
consists of 90 workers. The workers have different data
quantities that follow a uniform distribution. Using the k-
means algorithm, we derive 3 populations4 of 30 workers
each based on the data quantities that they possess. In the
first population m = 1, each worker has 80 data samples.
In the second population m = 2, each worker has 100 data
samples. In the third populationm = 3, each worker has 160
samples. Without loss of generality, the data samples that
each worker owns are assumed to be characterized by the

4. For ease of exposition, we use only three populations for compari-
son. Our model can easily be extended to multiple populations.

populations that they belong to. Thus, the populations are
arranged in the ascending order based on the data samples
each worker has.

Besides, there exist 3 cluster heads in the network with
each offering different reward pools αj , as well as conges-
tion coefficients ζj . Recall from Section 4.2 that a higher
value of αj indicates that a cluster offers a larger reward
pool for the workers to share, whereas a higher value of ζj
represents that a cluster head has more limited communi-
cation resources. The clusters are arranged in the ascending
order based on the reward pool they offer, i.e., cluster 3
offers the highest reward pool to its workers.

Accordingly, in each time period, workers in the popula-
tions choose one of the clusters to join. Then, following Al-
gorithm 1, the strategy adaptation is performed and evolved
such that the workers evaluate their payoffs and churn to
another cluster with higher payoffs with some probabilities.
Eventually, the evolutionary equilibrium is achieved.

6.1.1 Stability and Uniqueness of the Evolutionary Equilib-
rium
To demonstrate the uniqueness of the evolutionary equilib-
rium, i.e., the solution to the replicator dynamics defined in
(7), we first derive the phase plane of the replicator dynam-
ics in Fig. 4. For ease of exposition, population 3 is excluded
initially. As such, only the first and second populations of
workers are considered to choose among the three clusters
to join. Figure 4 shows the population states of populations 1
and 2, i.e., the proportion of workers in each population that
join cluster 1. We consider varying initial conditions in Fig.
4 and plot the corresponding dynamics. For example, for
the first condition, we have 10% of the workers from both
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Fig. 12: Data coverage vs.
varying congestion coeffi-
cient in cluster 1.
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Fig. 13: Population states in
cluster 3 vs. varying popula-
tion data for population 1.

populations choose cluster 1. Clearly, despite varying initial
conditions, the evolutionary equilibrium always converges
to a unique solution.

To evaluate the stability of this evolutionary equilibrium,
we consider that 30% and 70% of workers in populations 1
and 2 respectively are initially allocated to cluster 1. Then,
we plot the evolution of population states in Fig. 5. We
observe that the proportion of workers from population 2
joining cluster 1 declines as more workers from population
1 joins the cluster. This is due to the division of rewards
and congestion effects as more workers join the cluster.
Eventually, the evolutionary equilibrium is reached and the
population states no longer change.

Next, we consider the situation in which there are three
populations and three clusters. We set the initial conditions
such that a third of the workers from each population are
assigned to each cluster initially. Then, we plot the evolution
of utilities in Fig. 6. Specifically, within each population, we
plot the utilities derived by workers which have chosen each
of the three clusters. We observe that for each population,
the utilities derived from choosing the varying clusters
eventually converges with time. This implies that an evolu-
tionary equilibrium is reached whereby at the equilibrium,
the workers no longer have the incentive to adapt their
cluster selection strategies. Moreover, at the equilibrium,
workers which belong to population 3 derive the greatest
utilities, given that they are compensated for having larger
data shares in the clusters.

In Figs. 7-9, we plot the evolution of population states
of each population respectively. We observe that cluster 3,
which offers the highest reward pool for distribution across
workers, has the largest proportion of workers from popu-
lation 3. The reason is that the workers from population 3
have the largest number of data samples. Hence, they can
have the largest shares of the large reward pool if they join
cluster 3. In contrast, the lowest proportion of workers from
population 1 joins cluster 3 because they have the lowest
reward shares. However, there is an upper limit to how
many workers can join cluster 3. Even though cluster 3
offers the highest reward pool, the distribution of rewards
and congestion effects set in eventually when more workers
have joined the cluster. Thus, workers of population 3 may
also join clusters 1 and 2 as well when this occurs.

6.1.2 Evolutionary Equilibrium Under Varying Parameters
and Conditions

In this section, we vary the simulation parameters to study
the evolutionary equilibrium under varying conditions. In
Fig. 10, we vary the learning rate of the population, which
controls the speed of strategy adaptation. Naturally, when
the learning rate is low, the evolutionary equilibrium can
only be reached after a longer time period. However, we can
observe that the stability of the evolutionary equilibrium is
not compromised. The speed of convergence depends how
fast the workers can observe and adapt their strategies, e.g.,
they have more accurate information about the system.

In Fig. 11, we vary the reward pool offered by cluster 1
between [50, 350] while keeping the reward pool for clusters
2 and 3 constant at 200 and 300 respectively. Then, we plot
the changes in data coverage of each cluster, i.e., how much
data coverage a cluster has as a result of worker contri-
bution. Naturally, the data coverage of cluster 1 increases
with an increment of the reward pool. The reason is that the
cluster is more attractive to workers as shareable rewards
increase. We further note that at the points α1 = 200 and
α1 = 300, the data coverage for cluster 1 is identical to
those of clusters 2 and 3 respectively. The reason is that at
these points, the cluster 1 is identical to the corresponding
clusters and thus, workers are indifferent between choosing
the cluster to join.

In Fig. 12, we vary the congestion coefficient of cluster 1
between [2, 18] while keeping the other clusters’ constant.
Then, we plot the changes in data coverage of each cluster.
We observe that as the congestion coefficient increases, the
cluster has lower data coverage. Instead, the workers that
used to join the cluster 1 adapt their strategies and churn to
clusters 2 and 3. This is given that with a large congestion
coefficient, the cluster head has more limited communica-
tion resources and can no longer support as many workers
without them having to incur larger communication costs,
e.g., due to device interference.

In Fig. 13, we vary the data quantities of workers in
population 1 while keeping the other populations constant.
Then, we plot the population states of all populations with
respect to participation in cluster 3. Specifically, the figure
shows the proportion of workers from each population
which have joined cluster 3 as the data quantities of pop-
ulation 1 vary. Clearly, as the data owned by workers in
population 1 increases, more workers from population 1 are
able to join cluster 3, which is the cluster with the largest
reward pool as mentioned in Section 6.1.1. The reason is
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Fig. 14: Revenue of cluster
head 1 under different dis-
tribution of model owners.
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Fig. 15: Revenue of cluster
head 2 under different dis-
tribution of model owners.
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Fig. 16: Revenue of cluster
head 3 under different dis-
tribution of model owners.
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Fig. 17: Revenue vs data cov-
erage of cluster heads.
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Fig. 18: Revenue of cluster head 1 un-
der different approximation qualities.
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Fig. 19: Revenue of cluster head 2 un-
der different approximation qualities.
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Fig. 20: Revenue of cluster head 3 un-
der different approximation qualities.

that with more data, the workers in the population can gain
a larger proportion of the pooled rewards, relative to that of
workers from other populations.

6.2 Upper-Level Deep Learning Based Auction

In this section, we perform simulations to evaluate the
performance of the Deep-Learning based auction. For com-
parison, the classic SPA is chosen as the baseline scheme.
The TensorFlow Deep Learning library is used to implement
the optimal auction design. We consider a network with
the formations of 3 clusters and 10 model owners. We first
evaluate the performance of the Deep-Learning based auc-
tion against the traditional SPA. Then, we proceed to study
the impacts of (i) data coverage of the cluster heads, (ii)
model owners with varying distribution for data coverage
requirement, and (iii) different quality of approximation, on
the revenues of the cluster heads.

6.2.1 Evaluation of the Deep Learning Based Auction

From Figs. 14 to 16, we observe that the revenue of the
cluster heads determined by the deep-learning based auc-
tion is consistently higher than that of the conventional SPA
scheme. The reason is that the SPA scheme guarantees IC,
but does not guarantee that the revenue of the seller is
maximized. While preserving the properties of IC and IR
of the traditional auction, the deep-learning based auction
maximizes the revenue earned by the cluster heads by
providing their services to the model owners that value their
services the most.

The revenues of the cluster heads are affected by the
amount of data coverage. In Fig. 17, we observe that
when the data coverage of the cluster head is higher,

the revenue earned is also higher. In particular, when the
model owners have high requirement for data coverage,
i.e., µl ∼ U [0.5, 0.9], cluster head 3 with the highest data
coverage of 0.4 earns a revenue of 8944 whereas cluster head
1 with the lowest data coverage of 0.26 earns a revenue
of 7182. This is due to the fact that the cluster head with
the highest data coverage is allowed to conduct auction its
services first. Hence, it will be able to offer its service to the
model owner with the highest data coverage requirement in
which the model owner is willing to pay the highest price as
compared to other model owners in the network. Intuitively,
this serves to compensate the cluster head for the higher
rewards expense it incurs.

We examine the impacts on the cluster heads’ revenues
when they are presented with model owners with data cov-
erage requirement of different distribution ranges. Specifi-
cally, model owners can take on two distribution ranges, i.e.,
µl ∼ U [0, 0.4] and µl ∼ U [0.5, 0.9]. In Fig. 14, cluster head
1 which has a total data coverage of 0.26 earns a revenue
of 2724 when model owners have data coverage require-
ments that range between 0 and 0.4. On the other hand,
when model owners have higher range of data coverage
requirements, i.e., between 0.5 and 0.9, cluster head 1 earns a
higher revenue of 7182. Since the model owners with higher
data coverage requirement value the cluster head more, they
have more incentive to pay a higher price which results
in the higher revenue earned by the cluster head. Similar
trends are observed for cluster head 2 and cluster head 3 in
Fig. 15 and Fig. 16 respectively.

To further evaluate the performance of the deep-learning
based auction, we consider the cluster heads’ revenues
under different quality of approximation, γ. The quality
of approximation is used in the softmax function in the
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determination of the winning model owner. We consider
two values for the quality of approximation, i.e., 1000 and
2000. We observe in Fig. 18 to 20, the revenue of the cluster
head increases slightly when the quality of approximation
is higher. Specifically, given the model owners with a high
requirement for data coverage, i.e., µl ∼ U [0.5, 0.9], the
revenues of cluster head 3 are 8944 and 8969 when the
values of γ are 1000 and 2000, respectively. This follows that
with a greater value of approximation quality, the neural
network is able to solve the optimization problem which
maximizes the revenue of the cluster heads.

7 CONCLUSION

In this paper, we proposed a resource allocation and incen-
tive mechanism design framework for HFL. We considered
a two-level problem and leveraged on the evolutionary
game theory to derive the equilibrium solution for the
cluster selection phase. Then, we introduced a deep learn-
ing based auction mechanism to value the cluster head’s
services. The performance evaluation shows the uniqueness
and stability of the evolutionary equilibrium, as well as the
revenue maximizing property of the auction mechanism.
In the future work, we will consider social network effects
and their impact on the cluster selection decisions of the
workers, as in [26]. Moreover, we may also account for the
existence of malicious workers.
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