
1

Decentralized Enterprise Systems:

A Multi-Platform Wireless Sensor Networks

Approach
Mihai Marin-Perianu, Nirvana Meratnia, Paul Havinga, University of Twente

Luciana Moreira Sá de Souza, Jens Müller, Patrik Spieß, Stephan Haller, SAP

Till Riedel, Christian Decker, University of Karlsruhe

Guido Stromberg, Infineon Technologies

Abstract— Massively deployed wireless sensor and actuator
networks, co-existing with RFID technology, can bring clear
benefits to large-scale enterprise systems, by delegating parts of
the business functionality closer to the point of action. However,
a major impediment in the integration process is represented
by the variety of customized platforms and proprietary tech-
nologies. In this paper, we present a three-layer service-oriented
architecture that accommodates different sensor platforms and
exposes their functionality in a uniform way to the business
application. Our work is motivated by real business cases from
the oil&gas industry. In our implementation, we use three sensor
platforms (Particle, µNode and Sindrion) integrated through the
Universal Plug and Play (UPnP) standard and incorporated into
an enterprise software system. The practical tests and application
trials confirm the feasibility of our solution, but also reveal a
number of challenges to be taken into account when deploying
wireless sensor and actuator networks on industrial sites.

Index Terms— Wireless sensor and actuator networks, RFID,
enterprise systems, industrial and business processes

I. INTRODUCTION

Sensing and actuating represent nowadays major functional-

ity when describing the vision of pervasive computing. Made

possible by the proliferation of wireless technologies and the

advances in manufacturing low-cost, low-power devices, mas-

sively deployed wireless sensor and actuator networks (WSN

and WSAN) [5] target a large number of applications, ranging

from smart spaces [4] to industrial processes [2], and even

planetary sensing or space exploration [10]. The enthusiasm

generated by these countless possibilities has led in recent

years to an outbreak of diverse sensor network platforms,

covering both the hardware and the software. Without claiming

to give a complete taxonomy, we can identify the following

three broad classes of sensor nodes currently in development:

Class 1 – Tiny, cheap, energy-constrained, numerous de-

vices, illustrating the vision of Smart Dust [12]. Application

domains include environmental monitoring, battlefield and

logistic processes.

Class 2 – Multi-functional, user-centric, rechargeable de-

vices, covering health care, games and sports, as well as

various mobile applications [9].

Class 3 – Powerful, reliable devices, approaching the capa-

bilities of an embedded computer [13] and targeting applica-

tions with strict requirements such as industry and military.

Today’s users are easily overwhelmed by the number of

options available when they have to choose the right tech-

nology for their application. Due to the unique challenges of

WSN [8], the platforms are typically specialized for specific

purposes (e.g. data collection, target tracking), so it is often

the case that complex applications require the combination of

multiple proprietary technologies and customized platforms.

As a result, the users are confronted with a considerable

amount of low-level programming, tuning and tedious testing.

Furthermore, the management, monitoring and administration

of a system with highly distributed logic is a very complex

task. Without the right tools and architecture, it can increase

the total cost of ownership to a point where the deployment

of this technology becomes commercially uninteresting.

A service-oriented architecture (SOA) is helpful in solving

these issues. The integration efforts are minimized by hiding

much of the implementation details and exposing only the

functionality of the WSN in use. The management is also

simplified because the logic is encapsulated in services with

a manageable granularity. The services can be deployed,

removed or upgraded from a central location in order to adapt

the system to the business needs.

In this paper, we focus on the integration of various WSN

platforms in large-scale enterprise environments. Service-

oriented architectures based on Web Services technology have

recently become popular for building complex yet flexible

enterprise systems [17]. However, taking the SOA concept

to the level of distributed embedded devices represents an

intricate problem [7]. Even if sensor nodes of Class 3 may have

the necessary resources, the ones belonging to Classes 1 and 2

are clearly too limited for such a complex task. Consequently,

the efforts of the WSN community in this direction are still

incipient and are focused on small-scale settings.

In what follows we propose a three-layer SOA designed for

large scale, heterogeneous WSN. Motivated by real business

cases identified at BP premises in UK, we utilize three

sensor platforms (see Sec. III) specialized on specific tasks:

dynamic networking under mobility conditions, large-scale

infrastructure and co-existence with RFID. In order to leverage

the effort of the resource-constrained sensor nodes (i.e. Classes

1 and 2), the platform gateways expose the WSN functionality

to the business applications in a uniform way, i.e. by using

the Universal Plug and Play (UPnP) standard. The high-



2

Fig. 1. Application trial in Hull, UK: Chemical containers stored in a warehouse (left); Detail with a sensor node attached to a container (right).

level business logic and management are implemented using

the SAP Web Application Server (WebAS) and incorporated

within the SAP enterprise software.

II. APPLICATION SCENARIO

The application scenario that motivated this work comes

from the oil&gas industry. Every year, the U.S. Department of

Labor registers numerous occupational accidents in this field

(e.g. only in 2004, there have been recorded 52,830 nonfatal

injuries and 29 fatalities due to the exposure to harmful

substances or environments). WSN represent a viable solution

to this problem. Sensor nodes can collaboratively determine

potential hazardous situations, and alert or take an action at the

point of interest [16]. In addition, the combination of WSN and

RFID technology can prevent errors in the manipulation and

storage of chemical containers, leading thus to increased safety

and reduced logistic costs. In the EU-funded project CoBIs

(Collaborative Business Items) [2], we extend these ideas

by designing and implementing a distributed, service-oriented

enterprise system, which incorporates the latest advances in

WSN technology. The field tests were carried out at a chemical

plant of BP in Hull, UK (see Fig. 1), where the following use

cases had been identified:

Storage and manipulation of hazardous substances.

Chemical containers storing reactive substances must be han-

dled according to a strict list of safety regulations. The

following situations are to be avoided: (i) storing incompatible

substances in close proximity of each other, (ii) exceeding

the maximum storage volume threshold for any hazardous

substance and (iii) storing hazardous substances in temporary,

unprotected areas longer than a specific maximum time period.

Continuous monitoring of environmental conditions. At

the site of a chemical plant, environmental parameters, such

as temperature, humidity and light, should be continuously

monitored and abnormal conditions should trigger immediate

alarms and local actions.

Smart shelves in warehouses with chemical containers.

RFID readers placed on the shelves of the warehouses can

improve significantly the tracking and identification of various

objects (chemical containers, tools, etc.), already outfitted with

RFID tags. To overcome the major problem of RFID reader

interference, sensor nodes attached to the readers can agree on

a non-overlapping subset of readers that are switched on.

These three use cases led us to an integrated approach,

since there was no single WSN platform that could optimally

fulfill all the tasks. Consequently, we opted for using three

sensor platforms, namely Particle (produced by Particle Com-

puter), µNode (produced by Ambient Systems) and Sindrion

(produced by Infineon Technologies). The prototype sensor

nodes are shown in Fig. 2. In the following section, we give a

brief technical overview of the three platforms, indicating the

specific services that each of them delivers within the given

scenario.

III. SENSOR NETWORK PLATFORMS

The Particle node [3] comprises a communication board

with the PIC18f6720 microcontroller and TR1001 transceiver.

Various types of sensors can be attached to the communica-

tion board. The wireless communication uses the AwareCon

protocol [6], which is designed to handle high mobility and

density of nodes. This makes the Particle platform well suited

for equipping chemical containers handled by human operators

and checking potential dangerous situations, as described in

use case 1 of our scenario.

The µNode platform [1] represents a low-power, general

purpose sensor node, built around the MSP430 microcontroller

and a single-chip radio transceiver for the 433/868/915 MHz

ISM band. After deployment, the µNodes self-organize into

a multihop network, through which data can be routed back

and forth to a designated sink node. This platform is ideal for

building large scale sensing infrastructures, which can function

unattended for long periods of time. Since many chemicals

must be stored under specific ambient conditions, we use

the µNode sensors for continuously monitoring environmental

conditions, as described in use case 2 of our scenario.

The Sindrion platform [11] comes with native support of

standard networking protocols (e.g. DHCP, IP, UDP, TCP,

HTTP) on the sensor nodes. The nodes comprise an Infi-

neon TDA 5250 868MHz transceiver and a 16-bit Infineon

microcontroller. The Sindrion nodes integrate natively into

the IT infrastructure by a network adapter attached as a USB

dongle. In contrast to the other platforms, the Sindrion nodes

feature standard UPnP discovery and description. In addition,

the Sindrion nodes are designed to be tightly coupled to RFID

readers. The combination represents a smart ISO15693 RFID

reader, which negotiates the access to the wireless medium

in order to prevent interferences and exposes itself in the

network as a full-blown UPnP device providing service-based

functionality. Consequently, this system implements the “smart

shelves” concept, as described in use case 3 of our scenario.



3

Fig. 2. The three sensor platforms: Particle, µNode and Sindrion.

IV. ARCHITECTURE OVERVIEW

In this section, we define a three-layer SOA, which is

intended to provide a bridge between the business applications

and the underlying sensor and actuator networks. The three

layers – the back-end, the gateway and the front-end layers –

are illustrated in Fig.3 and discussed in detail throughout the

following subsections.

A. The Back-end (or Application) Layer

The business applications should be able to access the

services offered by the WSN at the level of Web Services.

In order to achieve this goal, the back-end layer benefits

from the uniform interfaces offered by the gateway layer. The

components of the back-end layer are therefore implemented

completely independent from the underlying platforms. As

shown in Fig.3, we distinguish the following high-level com-

ponents:

Service Repository – contains a database of the avail-

able services, including their description and implementation.

A single service can have several implementations (or ex-

ecutables) on different platforms. The service descriptions

are XML documents formatted in CoBIL (an acronym for

CoBIs Language, see [2] for the XML schema). A CoBIL

description starts with the service interface, i.e. the set of

operations that all the service executables offer and the events

they generate. The interface definition is derived from WSDL

(Web Service Description Language). For each executable,

the CoBIL description contains specific information, such as

the reference point, the target platform, etc. In the end, the

technical requirements to be used at deployment time are

specified (e.g. which sensor and actuators the target nodes

have to feature, the minimum remaining energy, the necessary

network bandwidth, etc.).

System State Manager – stores the operational state of

the nodes, such as the services running, resources available,

current position information, etc.

Service Mapper – performs the systematic mapping of the

services to the nodes, based on the service descriptions (tech-

nical requirements, composition constraints) and the system

state. The Service Mapper is used during service deployment

(see Sec. V-A).

Service Invocation Manager – processes the service in-

vocations issued by the business application running on the

back-end. More specifically, the Service Invocation Manager

contacts the node(s) executing the specified service and re-

trieves the results of the service invocation back to application.

Notification Manager – implements a web service interface

for distribution of event messages. Interested client appli-

cations can register with the Notification Manager and will

receive notifications for all relevant event messages.

B. The Gateway (or Platform Abstraction) Layer

The gateway layer has an essential role in harmonizing

different sensor platforms. We opted for the UPnP stan-

dard as the uniform interface between the application layer

and the underlying WSN. In recent years, UPnP has been

widely accepted as a simple and robust standard for ad-hoc

and unmanaged networks. Being designed to support zero-

configuration and automatic discovery for a breadth of devices

from different vendors, UPnP facilitates the integration of

new platforms via simple standardized mechanisms. In our

case, the Sindrion platform already implements a basic UPnP

interface, which makes it capable of connecting directly to the

back-end layer. However, the Particle and µNode platforms

are too resource constrained to run natively UPnP. It is

therefore the responsibility of the gateway layer to handle the

proprietary WSN mechanisms and expose the service-oriented

functionality through a standard UPnP interface.

With respect to our reference architecture, the gateway layer

provides the following functionality:

Message Transformation – handles the packet-level trans-

lation between the proprietary WSN messages and UPnP

arguments.

Service Lifecycle Manager – assists the deployment of

new services in the network. Deployment requests are issued

to the gateway by specifying the service executable and the

XML-based deployment description.

The key feature of the gateway is the dynamic instantiation

of service proxies. Service proxies can be accessed like native

UPnP devices, providing detailed service descriptions for the

implemented functionality. However, the service proxies only

exist as virtual representations of the service interfaces. The

gateway transforms the requests issued to the service proxies

into WSN messages and vice-versa. In addition, UPnP handles

service discovery natively once a proxy is initiated. This means

that service proxies have to be instantiated whenever a new

service is provided by the WSN and destructed when the

service becomes unavailable.

C. The Front-end (or Device) Layer

The device layer encompasses the multitude of WSN and

RFID technologies. The design guidelines are driven by the



4

Fig. 3. Three-layer service-oriented architecture.

requirements of the industrial applications and the typical con-

straints in terms of energy, bandwidth, computational power

and storage. As a result, the components developed within the

device layer have to meet the following objectives: (1) energy

efficiency (both at the node level and the network level),

(2) responsiveness, (3) reliability, (4) scalability, (5) recon-

figurability and (6) usability. In Fig. 3, we highlight the most

relevant components with respect to the service integration:

Reliable Dissemination – enables the service deployment

and updating. It works on top of the unreliable WSN commu-

nication protocols and guarantees that the new service executa-

bles are transferred correctly to the target nodes. Due to the

heterogeneity of the deployed WSN, the reliable dissemination

provides multicast support for addressing selectively groups of

nodes, being thus more scalable than unicast or flood-based

solutions (see Sec. VI-B). In addition, it works in conjunction

with the MAC layer in order to reduce the communication and

idle listening to a minimum. From the design perspective, the

reliable dissemination component fulfills therefore objectives

1, 3, 4 and 5.

Platform-dependent Service Executables – represent run-

ning instances of the services, which can be invoked by

the business application in order to execute specific tasks

or retrieve a certain information. The platform-dependent

services that we developed include synchronization, proximity,

localization, data aggregation and querying. With respect to the

design guidelines, these services relate mainly to objectives 1,

4 and 6.

Event Detection and Alarms – target timely and reliable

detection of special situations that should be reported to

the central system. In addition, the sensor nodes may signal

and handle locally these situations, for increasing the overall

responsiveness. Compact rule engines (see Sec. VI-A) are

shown to be an effective solution to objectives 2 and 6,

as they involve minor overhead at runtime while facilitating

significantly the task of the business application developer.

Basic Network Protocols – form the platform-specific

communication stack. Considerable importance is given to the

MAC protocols, which contribute directly to the fulfillment of

objectives 1, 2, 3 and 4.

For the detailed design of all the components within the

device layer, as well as the performance evaluation and

implementation results, the reader is referred to the public

deliverables of the CoBIs project [2].

V. FUNCTIONAL OVERVIEW

This section gives a functional overview of the entire

system. More specifically, the three main operations – service

lifecycle management, service invocation and event notifica-

tion – are explained with respect to the reference architecture

(see the thick arrow flows in Fig. 3).

A. Service Lifecycle Management

Service Lifecycle Management is responsible for three ma-

jor administrative tasks: the deployment, update and removal

of services. For the sake of brevity, we describe only the

service deployment; the other two operations bear clear simi-

larities in their work flows. The deployment of a new service is

initiated by the administrator command in the Administrative

Console running on the back-end. Firstly, the Service Mapper

creates a service mapping, based on the current state of the



5

Fig. 4. The complete system using a hybrid setting with both Particle nodes and µNodes.

system (retrieved from the System State Manager) and the

technical requirements specified in the CoBIL description

of the service (from the Service Repository). As a result,

the nodes (identified by individual IDs, group ID or just a

geographical area) where to instantiate the service are chosen.

Secondly, the deployment request is sent to the Service Life-

cycle Manager counterpart on the UPnP gateway. The gateway

uses the URI (Uniform Resource Identifier) of the service

executable and the executable-specific information from the

service description in order to launch the platform-dependent

deployment. Thirdly, the new executable is transferred to the

WSN, in our case using a reliable multicast dissemination

protocol (see Sec. VI-B). Finally, the result of the deployment

(success/error) is sent back to the Administrative Console. The

log of the dissemination session in the WSN is stored on the

gateway for post-analysis purposes.

B. Service Invocation

Service invocation is the key operation through which

the business applications running on the back-end use the

functionality of the WSN. To initiate this process, the business

application issues a service invocation request to the Service

Invocation Manager, which in turn retrieves the service de-

scription from the Service Repository, in order to validate the

parameters and check the service requirements. After identify-

ing the nodes that offer the service by consulting the System

State Manager, the service invocation request is delivered

to the gateway layer. On the gateway, the UPnP - WSN

transformation takes place. For this purpose, a transformation

description is associated with each UPnP service description.

The descriptions are automatically parsed by the UPnP stack,

which already provides the RPC (Remote Procedure Call)

dispatching and eventing facilities. For specifying the trans-

formations we use a simple template-based transformation

mechanism that works bi-directionally. When a RPC call

is received, each outgoing argument is serialized via the

template-based transformation to the UPnP state variable and

the assembled message is then sent to the WSN. The addressed

nodes execute the service and issue a response message, or

a timeout/error message. The response messages from the

WSN are converted to the according arguments by inverting

the template-based transformation process. In the Sindrion

platform, however, application-specific proxies are optionally

made available directly from the sensor nodes. In this case,

the message transformation is not required, since the Sindrion

programming environment supports the native development of

UPnP device representations.

C. Event Notification

An important functionality of the WSN is the ability to

detect and signal events. In this case, the business appli-

cations represent event consumers, which subscribe to the

Notification Manager component and provide a filter of the

relevant events. The sensor nodes detecting the event send

notification messages toward the gateway. After being routed

in the WSN, the messages arrive at the gateway, which

performs the WSN – UPnP transformation that leads to a UPnP

state variable change. UPnP’s General Event Notification

Architecture (GENA) handles the events and transmits them

to the Notification Manager. The Notification Manager selects

the consumers that have subscribed for the specific events,

and distributes them accordingly. In addition, it publishes the

notifications to the System State Manager for updating the

system operational state.

VI. IMPLEMENTATION AND TESTING

The previous sections provided a general overview of the

integrated SOA, abstracting from the underlying hardware

and software platforms. In this section, we discuss the most

relevant implementation details and present the operation of

our system with a hybrid setting using both Particle and µNode

sensor nodes (see Fig. 4). For brevity, we focus on these

two platforms because they illustrate best the abstraction of

the platform gateway, in contrast with the Sindrion platform,

which is directly accessible through the standard UPnP mech-

anisms.

As gateway device, we utilize an off-the-shelf WLAN router

(Asus WL-550g) running OpenWRT (Linux derivative for

embedded devices), on which we implement the Cyberlink

UPnP stack. The connection to the WSN communication



6

protocols is achieved by connecting both Particle and µNode

bridge nodes to the USB ports of the router. In this way, we can

build a cost-effective hybrid gateway that can communicate

with both sensor network platforms.

The components of the back-end layer are implemented

as Web Services and deployed on a SAP Web Application

Server. They are developed in Java for portability, using SAP

NetWeaver Developer Studio.

In the following, we present the experiments and application

trials that we performed according to the scenario described

in Sec. II.

A. Hazardous Substances and Environmental Monitoring

The first setting illustrates the use cases 1 and 2 of our

scenario, namely handling hazardous substances and monitor-

ing the environmental conditions. The first of these tasks is

implemented on the Particle nodes and the latter on µNodes.

Both platforms use the UPnP hybrid gateway to receive

requests from the back-end and report the events generated

within the network.

The Particle nodes execute the “hazardous substances”

service in order to alert about situations that do not comply

with the safety regulations given by the oil&gas company (BP

in our case). The alarms are triggered locally by the nodes

placed on the chemical containers and are reported to the

back-end application (along with the location information).

The overall responsiveness of the service has to be less than

2 seconds.

In our setting, the Particle nodes use the AwareCon [6]

communication protocol, which is a TDMA-based protocol.

The timeframe is divided in 70 slots, each of 13ms. The duty

cycle is set to 35% (25 slots). Therefore, it can be guaranteed

that the delay for detecting a hazardous situation is less than 2

seconds. In order to detect the situations where incompatible

substances come in close proximity of each other, the Particle

nodes are equipped with TSOP IR receivers and implement a

diffuse infrared-based location method. The main advantages

of this solution are the low signal processing overhead and

the low power operation. The disadvantages concern the distur-

bances from occluding objects and direct sun light. Depending

on these conditions, the accuracy lies between 30cm-1m.

The “hazardous substances” service is loosely coupled to

the location service and takes its input to compute storage

incompatibilities and limits. Limits and incompatibility classes

can be configured via the service update interface from the

back-end system. The nodes update the storage status within

the surrounding space by broadcasting their information during

the wake phase of the AwareCon protocol. The alarms are

signalled collectively by flashing visible LEDs, and reported

to the back-end system. The resources needed on the Particle

nodes are 746 bytes of FLASH memory and 10 bytes of RAM

for the location service, and 8.5 kB of FLASH memory and

242 bytes of RAM for the “hazardous substances” service,

respectively.

Monitoring the environmental conditions for potential

dangerous situations is implemented through the business

rules [15] support of the µNodes. The business rules for

sensor nodes express simple business logic in a compact and

efficient way, by following the execution chain Observe –

Check rules – Take action. A simple example is the following

rule: ”Measure humidity level H at rate r; if it is outside the

interval [Hmin;Hmax], launch alarm service Salarm”. This

approach is well suited to our scenario, as it minimizes the

network traffic and prolongs the network lifetime by reacting

only to the situations that do not comply with the rule set.

Complex conditions can be expressed by forming chains of

rules, logically linked through a next rule field. In addition,

the lifetime of a rule can be set by specifying a certain running

time value. Our implementation results show that the business

rules are very compact (20 bytes each) and easy to write even

by inexperienced users.

In our setting, the µNodes are equipped with the following:

internal voltage and temperature sensors, a light dependent

resistor (LDR), a combined temperature and humidity sensor

(SHT), and a push-button. A typical rule set for this setting

amounts to approximately 10 rules (200 bytes), which means

little network overhead in the reconfiguration phase. The rule

engine is also very lightweight, with less than 1 kB code

memory footprint. The average sensing driver size is ≈ 300

bytes, whereas the average action service module size is ≈ 130

bytes. In total, a typical business rule-based program requires

only ≈ 3.5 kB, which represents 7.3% of the available FLASH

memory.

As depicted in Fig. 5a, the integration of the Particle nodes

and µNodes is successful. Events (hazardous substances and

business rules alarms) from both platforms reach the back-end

(a Web-based console in this case) through the UPnP gateway.

Sensor readings, e.g. the light level, can also be obtained, by

invoking the corresponding service. The integration process is

completely transparent to the back-end layer.

B. Service Deployment

Dynamic reconfiguration of the sensor network at runtime

directly supports the service deployment in our reference

architecture (see Sec. V-A). Due to the critical reliability

and scalability requirements, a specialized protocol must be

used within the WSN, which guarantees data delivery with

minimal energy expenditure. We use RMD [14], a multicast-

based dissemination protocol that supports reconfiguration

of groups of sensor nodes at scale. RMD is a cross-layer

solution, utilizing MAC layer information about neighborhood

and packet losses. Moreover, RMD controls the MAC protocol

in order to reduce idle listening to a minimum. Compared to

other transport protocols for WSN, RMD ensures data delivery

to all recipients even under high error rates, while consuming

less energy and maintaining a comparable delay. Due to the

cross-layer design, the resources demanded by RMD are very

low: 2.7 kB of FLASH memory for the code and ≈ 190 bytes

RAM for internal data.

In RMD, the gateway acts as the source of the reconfig-

uration message (the new service executable in the case of

service deployment). After the initial phase, when the recon-

figuration is announced in the network and the multicast tree

is reinforced, the source starts sending the message divided in



7

Fig. 5. Web console: Events from both Particle nodes and µNodes (left); A new service is being deployed in the WSN (right).

windows of packets. The packets are further pipelined down

the tree by the intermediate nodes, which are responsible for

the local error detection and retransmissions.

Figure 5b shows the successful deployment of a service

based on business rules. The target nodes are identified by

their group ID. The detailed log of the dissemination session

(including the average speed, number and types of errors, etc.)

is stored on the gateway and can be retrieved in the web

console for analysis purposes.

C. Application Trials

To test our system in a realistic environment, we conducted

two application trials at a BP petrochemical plant in UK. In

both trials we equipped 20 chemical containers with wireless

sensor nodes and distributed them in three different locations.

A gateway was installed at each location, in order to connect

the WSN to the WLAN and further to the back-end server.

Each trial lasted about four weeks and consisted of two phases:

the supervised phase (installation and manual testing) and the

unattended phase (normal operation on-site). The goals of the

first trial were to check if the WSN and the back-end system

react correctly to real situations, and to measure the scalability

of the overall solution. The second trial focused on improving

the stability and scalability of the back-end system, and on

prolonging the battery lifetime of the sensor nodes.

Both application trials confirmed the feasibility of our

solution. During the second trial, for example, the system

handled successfully a total number of 162294 messages from

the sensor nodes, with an average message load of ≈ 7

messages/minute. The last day of the trial was allocated for

testing under stress conditions, by placing all the 20 containers

in the same location and generating continuously alarms. As

a result, the average message load increased to 212 mes-

sages/minute, with a peak rate of 225 messages/minute. Even

under these conditions, the WSN continued to operate reliably.

However, the stress test revealed a scalability limitation of

the UPnP eventing. The UPnP GENA uses TCP connections

for eventing on subscriptions, which leads to a complete TCP

connection setup on each event. Unless the client implements

HTTP/1.1 pipelining and reuses callback sockets for multiple

services, there is no way of reducing the overhead of the

UPnP eventing. In the following, we briefly list other problems

encountered during the application trials. Firstly, the UPnP

implementation that we used (Cyberlink) is intended to serve

a few services and therefore scales poorly for productive usage,

by overwhelming the gateway with excessive multi-threading.

Secondly, the real deployment conditions, such as the weather

conditions, can adversely affect the performance of the system.

For example, during the application trials, the 802.11 network

exhibited high packet loss at times due to rather high humidity.

This affected the UDP traffic of the UPnP discovery operation

and the DHCP-based dynamic addressing for the routers.

Finally, when dealing with safety-critical scenarios, the costs

of intrinsically safe equipment adds a high factor concerning

packaging and quality control. Even if the WSN technology

is ubiquitous and cheap, these costs remain rather constant,

since strict guidelines have to be fulfilled, such as the directive

94/9/EC (Equipment intended for use in potentially explosive

atmospheres – ATEX).

VII. CONCLUSIONS

In this article we address the integration of ubiquitous

technologies into decentralized enterprise environments. The

ultimate goal is to delegate well-defined parts of the business

logic to the low-cost embedded devices, and thus reduce

the process execution costs and improve the response time

in safety-critical situations. We present a layered service-

oriented solution that accommodates three different sensor

platforms and exposes their functionality seamlessly through

the UPnP standard to the business process based on SAP

enterprise software. Such a service-oriented approach proves

to be beneficial both at design and implementation. The system

can be designed top-down, with business services of coarse

granularity broken down into lower-level system services.

Thereby, the communication between the business process



8

experts and the technical experts is simplified and allows for

a separation of concerns.

The practical tests and application trials confirm the feasi-

bility of our solution. The multi-platform integration provides

versatile functionality to the user, in a uniform way. The local,

collaborative execution of tasks within the WSN reduces the

load on the back-end and improves the overall responsiveness.

Energy-efficiency remains a major concern for the battery-

powered sensor nodes. This is why low duty cycle operation,

lightweight execution models (such as business rules) and

cross-layer solutions (such as RMD) should be favored. The

scalability of the gateway layer and the integration with the

back-end also represent important challenges. Consequently,

we consider as future work to evaluate DPWS (Devices Profile

for Web Services) as an alternative to UPnP.

VIII. ACKNOWLEDGMENTS

This work has been partially sponsored by the European

Commission as part of the CoBIs project (IST-004270).

REFERENCES

[1] Ambient Systems. http://www.ambient-systems.net.
[2] Collaborative Business Items (CoBIs). http://www.cobis-online.de.
[3] Particle Computer. http://www.particle-computer.de.
[4] Smart Surroundings. http://www.smart-surroundings.nl.
[5] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor networks:

Research challenges. Ad Hoc Networks Journal, 2(4):351–367, 2004.
[6] M. Beigl, A. Krohn, T. Zimmer, C. Decker, and P. Robinson. Awarecon:

Situation aware context communication. In UbiComp, pages 132–139,
2003.

[7] C. Bornhövd, T. Lin, S. Haller, and J. Schaper. Integrating smart
items with business processes: An experience report. In International

Conference on System Sciences (HICCS), 2005.
[8] C.-Y. Chong and S. P. Kumar. Sensor networks: evolution, opportunities,

and challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003.
[9] S. Eisenman, N. Lane, E. Miluzzo, R. Peterson, G. Ahn, and A. Camp-

bell. Metrosense project: People-centric sensing at scale. In ACM SenSys

Workshop on World-Sensor-Web (WSW), 2006.
[10] E. Gaura and R. Newman. Wireless sensor networks: The quest for

planetary field sensing. In SenseApp, 2006.
[11] Y. Gsottberger, X. Shi, G. Stromberg, T. Sturm, and W. Weber. Em-

bedding low-cost wireless sensors into universal plug and play environ-
ments. In 1st European Workshop on Wireless Sensor Networks (EWSN),
pages 291–306, 2004.

[12] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
mobile networking for smart dust. In MobiCom ’99: Proceedings of the

5th annual ACM/IEEE international conference on Mobile computing

and networking, pages 271–278, 1999.
[13] R.M. Kling. Intel motes: advanced sensor network platforms and

applications. In IEEE MTT-S International Microwave Symposium,
2005.

[14] M. Marin-Perianu and P.J.M. Havinga. RMD: Reliable multicast data
dissemination within groups of collaborating objects. In Local Computer

Networks (LCN), pages 656–663, 2006.
[15] M. Marin-Perianu, T.J. Hofmeijer, and P. J. M.Havinga. Implementing

business rules on sensor nodes. In 11th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA), pages 292–
299, 2006.

[16] M. Strohbach, H.-W. Gellersen, G. Kortuem, and C. Kray. Cooperative
artefacts: Assessing real world situations with embedded technology. In
Ubicomp, pages 250–267, 2004.

[17] D. Woods and T. Mattern. Enterprise SOA Designing IT for Business

Innovation. O’Reilly, 2006.


