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a b s t r a c t

The ability of a robot team to reconfigure itself is useful in many applications: for metamorphic robots
to change shape, for swarm motion towards a goal, for biological systems to avoid predators, or for
mobile buoys to clean up oil spills. Inmany situations, auxiliary constraints, such as connectivity between
team members or limits on the maximum hop-count, must be satisfied during reconfiguration. In this
paper, we show that both the estimation and control of the graph connectivity can be accomplished in
a decentralized manner. We describe a decentralized estimation procedure that allows each agent to
track the algebraic connectivity of a time-varying graph. Based on this estimator, we further propose a
decentralized gradient controller for each agent to maintain global connectivity during motion.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Amobile sensor network consists of nmobile sensors (or agents),
some of which are connected by communication links along
which information flows. Applications for mobile sensor networks
include target tracking (Martínez & Bullo, 2006; Oh & Sastry,
2005; Yang, Freeman, & Lynch, 2007; Zhao, Shin, & Reich, 2002),
formation and coverage control (Belta & Kumar, 2004; Cortés,
Martínez, Karatas, & Bullo, 2004; Fax & Murray, 2004; Freeman,
Yang, & Lynch, 2006a), environmental monitoring (Leonard et al.,
2007; Lynch, Schwartz, Yang, & Freeman, 2008; Simic & Sastry,
2003; Susca, Martínez, & Bullo, 2006), and several others. These
applications exploit the sensors’ ability to dynamically reposition
themselves to maximize the collective information gained by
the network. For these cooperative sensing applications, it is
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often also desirable to maintain a connected communication
graph, even as communication links are established or lost as the
agents move. To date, the connectivity-maintenance problem has
been addressed using two different approaches: control of local
connectivity measures using decentralized schemes, and control
of global connectivity measures using centralized schemes.

The first approach focuses on devising decentralized controllers
that enable each agent to maintain local connectivity. For discrete-
time second-order agents, a feasible control space is computed
in Notarstefano, Savla, Bullo, and Jadbabaie (2006) for each agent
to maintain all existing pairwise connections. In comparison,
in Spanos and Murray (2004) each agent tries to maintain its
two-hop communication neighbors. The use of local connectivity
measures allows each agent to compute a feasible motion
controller with only local information. In many cases, however, it
is the global connectivity of the network that is of primary interest,
and the strict maintenance of local connectivity may be overly
restrictive.

The second approach in De Gennaro and Jadbabaie (2006) and
Zavlanos and Pappas (2005, 2007) uses global connectivity mea-
sures such as algebraic connectivity (Fiedler, 1973). Given a graph,
a k-connectivitymatrix1is computed in Zavlanos and Pappas (2005).

1 Given a graph’s adjacency matrix A, its k-connectivity matrix is defined as

I +
∑k

i=1 A
i, k ∈ {1, . . . , n}.
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To maintain graph connectivity, gradient controllers are designed
such that each off-diagonal entry of the k-connectivity matrix,
where k = n, remains positive over time. In comparison, the gradi-
ent controller designed in Zavlanos and Pappas (2007) uses the fact
that connectedness of the graph is equivalent to the determinant
of the reduced Laplacianmatrix being positive. However, computing
the k-connectivity matrix and the determinant of a reduced Lapla-
cian matrix are both centralized procedures. A method to com-
pute the k leading eigenvectors of an n × n matrix is proposed in
Kempe and McSherry (2008). In De Gennaro and Jadbabaie (2006)
this method is used to compute the Fiedler eigenvector (Fiedler,
1973), an eigenvector corresponding to the second-smallest eigen-
value of a Laplacian matrix. The Fiedler eigenvector is then used
in De Gennaro and Jadbabaie (2006) to derive a subgradient algo-
rithm that increases the algebraic connectivity of a graph. How-
ever, the method in Kempe and McSherry (2008) is not scalable:
In the task of estimating the Fiedler eigenvector, each agent has
to keep O(n) estimator states, communicate with each neighbor
messages of length O(n2) and perform O(n2) computations at each
state update. Moreover, the initialization step in Kempe and Mc-
Sherry (2008) is not decentralized.

In this paper we focus on controlling the global connectivity
of the network (as in the second approach above) using only
local communication and decentralized computations (as in the
first approach above). The key component in our solution is a
decentralized power iteration algorithm that enables each agent i
to compute xi, which is an estimate of the ith component of the
Fiedler eigenvector. This algorithm is entirely decentralized and
scalable: each agent updates only O(1) estimator states, and the
communication and computational load at each state update is
proportional to its local degree of connection. Each agent uses xi

to estimate the algebraic connectivity of the network. Each agent
also uses xi in a decentralized controller that maintains the global
connectivity of the graph over time.

The rest of the paper is organized as follows. We summarize
the necessary graph theoretical background in Section 2. In
Section 3, we first review the centralized discrete-time power
iteration algorithm and then describe our modified continuous-
time version. We further characterize the gain conditions that
guarantee the correct convergence of this continuous-time power
iteration algorithm. In Section 4, we describe a decentralized
version of this continuous-time power iteration procedure and use
it to estimate the connectivity of a graph. This algorithm is scalable:
the computational complexity of each agent is only proportional
to its number of connections in the network. A controller to
maintain connectivity is proposed in Section 5. Future research
directions are outlined in Section 6 and the full stability analysis
of the continuous-time power iteration algorithm is given in the
Appendix.

2. Preliminaries

Given n mobile agents, we assume they can exchange infor-
mation on an undirected communication network. For agent i,
we denote its set of communication neighbors as N

i. We denote
the overall communication graph as G and the edge set as E =
{(i, j)|j ∈ N

i}. The adjacencymatrix A ∈ R
n×n is defined as

Aij =
{
Aji > 0 if j ∈ N

i,
0 otherwise.

(1)

The degree of each node is di =
∑n

j=1 Aij or d = A1 where
1 is a column vector of all ones. The degree matrix is defined as
D = diag(d), and the weighted Laplacian matrix of the graph is
defined as L = D − A. The unweighted Laplacian matrix L can

be treated as a special case where Aij = 1 for j ∈ N
i. The spec-

tral properties of L have been shown to be critical in many multi-
agent applications, such as formation control (Fax &Murray, 2004;
Freeman et al., 2006a), consensus seeking (Olfati-Saber & Murray,
2004) and direction alignment (Jadbabaie, Lin, & Morse, 2003).

For the weighted Laplacian L, because we restrict the weights
Aij to be positive, the spectral properties of L are similar to those of

L (Mohar, 1991). Specifically, we know

(1) L1 = 0.
(2) Given {λi|i = 1, . . . , n} as the spectrumof L, all the eigenvalues

are real and they satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, and λ2 > 0
if and only if the graph is connected. As in the unweighted case,
we call λ2 the algebraic connectivity of the graph.

3. Centralized power iteration

We want to design an algorithm to estimate the graph
connectivity measure λ2. To do this, we first estimate the
corresponding eigenvector v2 (Lv2 = λ2v2), which is then used
to determine λ2.

Throughout the rest of the paper, we use superscripts to
index the agents and components of a vector, and subscripts
to index eigenvalues, eigenvectors, and their estimates. For
example, a Laplacian L has n eigenvalues λ1, . . . , λn and n

eigenvectors v1, . . . , vn. The components of an eigenvector are
vi = (v1

i , . . . , v
n
i )

T . In addition, if x ∈ R
n is the network’s estimate

of the eigenvector v2, then xi ∈ R is the ith component of the
estimate x, stored by agent i. We also write λi

2 ∈ R for agent i’s
estimate of λ2.

3.1. Discrete-time power iteration

Given a square matrix Q with eigenvalue spectrum satisfying
|µ1| < |µ2| · · · < |µn|, power iteration is an established
iterative method to compute the eigenvalue µn and its associated
eigenvector vn (Trefethen & Bau, 1997). Now assume instead of
µn, we are interested in its second-largest eigenvalue µn−1. If we
already know µn and vn, we can estimate µn−1 by running the
power iteration on the deflated matrix

Q̃ = Q − µnvnv
T
n . (2)

Specifically this power iteration procedure is carried out in three
steps. For a random initial vector w,

(1) Deflation on Q : Q̃ = Q − µnvnv
T
n .

(2) Direction update: x = Q̃w.
(3) Renormalization: w = x

‖x‖ . Then go to step 2.

This power iteration method converges linearly in the ratio
µn−2/µn−1. Once it converges, w is the eigenvector corresponding
to the second-largest eigenvalue µn−1 of Q . In the case of repeated
eigenvalues where µn−1 = · · · = µn−k+1 > µn−k, the iteration
converges in the ratio µn−k/µn−1. If µn−1 = · · · = µ1, then any
unit vector w is a solution.

3.2. Continuous-time power iteration

Inspired by the power iteration algorithm, we define a
continuous-time variant, and use it to find the second-smallest
eigenvalue λ2 (and corresponding eigenvector v2) of the weighted
Laplacian L. Modifications necessary for continuous time are
described below. Because all eigenvalues of L are nonnegative, to
find the second-smallest eigenvalue, we can run power iteration
on I−αL for some sufficiently small α > 0. Since L1 = 0, we know
that 1 is the eigenvector corresponding to the largest eigenvalue of
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I − αL. So, deflation is simple: we just ensure that our estimated
eigenvector has zero mean.

Let x = (x1 . . . xn)T ∈ R
n be the estimate of the eigenvector

v2. The continuous-time algorithm has three parts, which we will
execute simultaneously:

(1) Deflation: ẋ = −Ave({xi})1.
(2) Direction update: ẋ = −αLx.
(3) Renormalization: ẋ = −(Ave({(xi)2}) − 1)x

where the function Ave({qi}) , (
∑

i q
i)/n. Step 1 drives x to

the null space of 1, i.e., the space spanned by the eigenvectors
{v2, . . . , vn}. For most initial conditions the direction update in
step 2 drives x towards the eigenvector v1 = 1. But if the state
x satisfies 1T x = 0, then the direction update step will drive x
towards the eigenvector v2. Step 3 drives x towards a sphere of
radius

√
n.

In order to achieve the three steps simultaneously, we combine
the three pieces in a linearly weighted fashion:

ẋ = −k1Ave({xi})1 − k2Lx − k3(Ave({(xi)2}) − 1)x (3)

where k1, k2, k3 are scalar control gains (and we have absorbed α
into k2). This equation can be rewritten as

ẋ = −k1

n
11T x − k2Lx − k3

(xT x
n

− 1
)
x. (4)

The weighted Laplacian matrix L is real symmetric, so it has an
eigenvalue decomposition L = T T L∗T with L∗ = diag(0, λ2, . . . ,
λn) and T an orthonormal matrix. It is easier to analyze system (4)
under a new set of coordinates y = (y1 . . . yn)T = Tx where both
matrices L and 11T can be simultaneously diagonalized:

ẏ = −k1diag(1, 0, . . . , 0)y − k2L
∗y − k3

(yTy
n

− 1
)
y. (5)

Denoting L̃∗ = diag{k1/k2, λ2, . . . , λn}, the system (5) can be
rewritten as

ẏ = −k2̃L
∗y − k3

(yTy
n

− 1
)
y. (6)

The following theorem shows that for suitable gain conditions
on k1, k2 and k3, system (3) is convergent from almost all initial
conditions to an eigenvector ṽ2 corresponding to the eigenvalue
λ2.

Theorem 1. Given any initial condition x(t0) and positive gains
k1, k2, k3 > 0, as long as vT

2 x(t0) 6= 0, the gain conditions

k1 > k2λ2 (7)

k3 > k2λ2 (8)

are necessary and sufficient for system (4) to converge to an
eigenvector ṽ2 corresponding to the eigenvalue λ2 of the weighted

Laplacian matrix L satisfying ‖ṽ2‖ =
√
n

(
k3−k2λ2

k3

)
.

Proof. See the Appendix. �

Remark 1. In case of repeated eigenvalues λ2 = · · · = λk < λk+1,
Theorem 1 still holds. In this case all trajectories with vT

2 x(t0) 6= 0
converge to an equilibrium point on the k-dimensional manifold{
y|‖y‖ =

√
n

(
k3−k2λ2

k3

)
, y1 = 0, yi = 0, ∀i > k

}
.

Next we modify the continuous-time power iteration (3) so that
it is decentralized over the graph. In the decentralized algorithm,
no single agent maintains an estimate of the entire eigenvector ṽ2;
instead, agent imaintains the single component xi of the network’s
estimate x of ṽ2. This is sufficient to maintain an estimate λi

2 of λ2.

4. Decentralized power iteration and connectivity estimation

To obtain a decentralized version of the power iteration
algorithm, we first note that it is possible for each agent to
satisfy the gain conditions (7) and (8) without knowing the graph
topology. We know
∑

i

λi = trace(L) =
∑

Aij ≤ n(n − 1)max Aij.

Additionally, in our edge weighting scheme introduced in
Section 5,wehaveAij ≤ 1. Therefore each agent satisfies (7) and (8)
by employing identical gains k3, k1 > n(n − 1)k2. If n may change
with time, we can replace it by an upper-bound on n.

Next we point out that the matrix iteration ẋ = −Lx is a
naturally decentralized operation, and its implementation only
requires local communication.

The last obstacle to decentralizing the continuous-time power
iteration (3) is the averaging operation Ave(·). We can use the PI

average consensus estimator (Freeman, Yang, & Lynch, 2006b) to
decentralize this averaging operation. As there are two averaging
functions in (3), we need two consensus estimators. Average
consensus estimators allow n agents, each ofwhichmeasures some
time-varying scalar αi(t), to compute an approximation of α(t) =
1
n

∑
i α

i(t) using only local communication. The PI estimator has
the form (see Freeman et al., 2006b, for details):

ż i = γ (αi − z i) − KP

∑

j∈N i

[
z i − z j

]
+ KI

∑

j∈N i

[
wi − wj

]
(9)

ẇi = −KI

∑

j∈N i

[
z i − z j

]
. (10)

Here z i is the average estimate, γ > 0 is the rate new information
replaces old information, N

i contains all one-hop neighbors of
agent i in the communication network, and KP , KI are estimator
gains. The estimator error is ei(t) = yi(t) − 1

n

∑n

i=1 αi(t) for
each agent i. Compared to other dynamic average consensus
estimators (e.g. Spanos, Olfati-Saber, & Murray, 2005), this
consensus estimator has several advantages. First, when the
network is connected, the error approaches a ball around zero
whose size is related to the rate of change of the input, with
constant input producing errors that decay exponentially to zero
(Freeman et al., 2006b). For the high-pass estimator (Spanos
et al., 2005), zero steady-state error requires extra bookkeeping to
keep track of which communication links are active. In addition,
intermittent communication noise or drops cause the high-pass
filters to drift, whereas a ‘‘forgetting’’ factor in the PI filter results
in a stable filter from communication noise to errors relative to the
solution manifold.

In the decentralized implementation of (3), agent i runs two
consensus estimators of the form (9)–(10), onewith inputαi,1 = xi
and states (z i,1, wi,1), and another with input αi,2 = (xi)2 and
states (z i,2, wi,2). Here z i,1 is the agent’s estimate of Ave({xi})
and z i,2 is its estimate of Ave({(xi)2}). Each agent i also runs the
update law (3) but with Ave({xi}) and Ave({(xi)2}) replaced by z i,1

and z i,2, respectively:

ẋi = −k1z
i,1 − k2

∑

j∈N i

Aij(x
i − xj) − k3(z

i,2 − 1)xi. (11)

In this implementation, agent i receives its neighbors’ five variables
{xj, z j,1, wj,1, z j,2, wj,2} for all j ∈ N

i. If the consensus estimators
are running fast enough relative to the update law (3), that is, if
the gains γ , KP , and KI are large enough relative to k1, k2, and k3,
then we expect the resulting dynamics to converge semiglobally.
Indeed, we see from (11) that peaking in the variables z i,1 and z i,2

will not cause finite escape times as might be possible in general
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Fig. 1. (a) A five-nodenetworkwith all linkweights equal to 1. Nodes are numbered

counter-clockwise from 1 to 5 starting from the top node. (b) Eigenvalue estimation

through Eq. (13). The initial eigenvalue estimate for each agent is randomized. The

inset plot shows the transient dynamics of the eigenvalue estimator.

nonlinear systems (Sussmann & Kokotović, 1991), so after a
transient period the decentralized update law (11) will agree with
the centralized one (3).

There are two ways to estimate λ2. First, noticing −Lṽ2 = λ2v2,
agent i can estimate λ2 as

λi
2 = −

∑
j∈N i

Lijx
j

xi
(12)

whenever xi 6= 0. This equation is singular when xi passes
through zero, however. Therefore we use a second method, based

on Theorem 1, which says that z i,2 → ‖ṽ2‖2
n

= k3−k2λ2
k3

. Agent i can

therefore compute its estimate of λ2 as

λi
2 = k3

k2
(1 − z i,2). (13)

Example 1. We simulated the eigenvalue estimation algorithm
over the 5-node constant graph (Fig. 1), where the weights are
set as Aij = 1 for j ∈ N

i. The eigenvalue spectrum of its
Laplacian matrix is {0, 0.83, 2.69, 4.00, 4.48}. The gains for the
two PI average consensus estimators are γ = 25, KP = 50, KI =
10 and the gains for the eigenvector estimator are k1 = 6, k2 =
1, k3 = 20, satisfying (7) and (8). Fig. 1(b) shows the estimated λi

2

for each node i as they converge to the correct eigenvalue of 0.83.

5. Control to maintain connectivity

In this section we show how the connectivity estimator can be
applied in a connectivity-maintenance algorithm for fully-actuated
point robots, where each robot’s configuration is given by pi ∈ R

d.
We start by showing one additional property of λ2.

Lemma 2. Given any positivelyweighted graphG,λ2 is a nondecreas-
ing function of each weight Aij.

Remark 2. This lemma is easily demonstrated from the following
equivalent definition of λ2:

λ2 = min
x⊥1,x6=0

xT Lx

xT x
= min

x⊥1,x6=0

∑
(i,j)∈E

Aij(x
i − xj)2

xT x
. (14)

Based on this property, we can choose a weight function Aij that is
position-dependent. Thenwe can design connectivity-maintaining
motion controllers, moving the agents to increase the connectivity
of the network.

Given a scalar r as the maximal reliable inter-agent communi-
cation distance, one simple weighting choice is

Aij =
{
e−‖pi−pj‖2

2
/2σ 2

if ‖pi − pj‖2 ≤ r,
0 otherwise.

(15)

The weight decreases as the inter-agent distance gets larger. We
choose the scalar parameter σ to satisfy a threshold condition

e−r2/2σ 2 = ǫ, with ǫ being a small predefined threshold.

We know λ2 > 0 for connected graphs, and based on Lemma 2,
λ2 increases as the graph adds more links or as individual link
weights increase as two agents come closer. We can design a
gradient controller where each node moves to maximize λ2, and
thiswill in effectmaintain the connectivity of a graph. The gradient
controller in Zavlanos and Pappas (2007) was designed based on
a similar idea. In that paper, each node moves to maximize the
determinant of the reduced Laplacian matrix of a graph, in effect
guaranteeing the algebraic connectivity λ2 is bounded away from
0.

Next we derive the analytical form of the gradient controller
for fully-actuated first-order agents. We use the normalized
eigenvector corresponding to λ2 to make the gradient of λ2 easier
to derive. Given the normalized eigenvector v̂2 (‖v̂2‖ = 1)
corresponding to λ2, the differential of λ2 is

dλ2 = d(v̂T
2 Lv̂2)

= dv̂T
2 Lv2 + v̂T

2dLv̂2 + v̂T
2 Ldv̂2. (16)

Because LT = L, we know that

v̂T
2 Ldv̂2 = dv̂T

2 Lv2 = λ2dv̂T
2 v̂2 = 1

2
d(v̂T

2 v̂2) = 0. (17)

Based on (16) and (17), the gradient controller for agent k is

uk = ṗk = ∂λ2

∂pk
= v̂T

2

∂L

∂pk
v̂2. (18)

Next we replace the v̂2 in (18) with the ṽ2 in Theorem 1, which
scales the control effort but does not change its direction:

uk = ṽT
2

∂L

∂pk
ṽ2 =

∑

(i,j)∈E

∂Aij

∂pk
(ṽi

2 − ṽ
j

2)
2. (19)

Since we have defined Aij = e−‖pi−pj‖2
2
/2σ 2

, we can compute

∂Aij

∂pi
= −Aij(p

i − pj)/σ 2 i 6= j (20)

∂Aij

∂pj
= Aij(p

i − pj)/σ 2 i 6= j (21)

∂Aii

∂pi
= 0 (22)

∂Aij

∂pk
= 0 k 6= i, j. (23)

Plugging (20)–(23) into (19), we get

uk =
∑

(k,j)∈E

∂Akj

∂pk
(ṽk

2 − ṽ
j

2)
2

=
∑

(k,j)∈E

−Akj(ṽ
k
2 − ṽ

j

2)
2 p

k − pj

σ 2
. (24)

Implementation of (24) requires agent k to obtain its neighbors’

positions {pj, j ∈ N
k}. Agent k approximates the exact ṽk

2, ṽ
j

2 with

the estimates xk, xj, yielding the final control law:

ṗk = uk =
∑

(k,j)∈E

−Akj(x
k − xj)2

pk − pj

σ 2
, (25)

with xk and xj coming from the estimators of Section 4.
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Fig. 2. Snapshots of the agents during motion: (a) t = 0; (b) t = 14; (c) t = 27;

(d) t = 47.

Example 2. We simulated the connectivity-maintaining algo-
rithm over a randomly-generated six-node network moving in a
plane. The communication radius is r = 20 and we set the thresh-
old ǫ = 0.01. In this network, three nodes are leaders and three
nodes are followers. The leaders, shown as larger dots in Fig. 2,
use the same sinusoidal motion model ṗix(t) = −0.2, ṗiy(t) =
0.5 cos(pix) from different initial configurations. The three follower
agents run the control law (25) to move along with the leaders and
maintain graph connectivity.

The gains for the two average consensus estimators are γ =
100, KP = 50, KI = 200 and the gains for the eigenvector
estimator are k1 = 18, k2 = 3, k3 = 60. For reasons given
in Section 4, we choose the time constant of the consensus
estimation to be significantly less than the time constant of the
eigenvector estimation. For entirely analogous reasons, we choose
this latter time constant to be significantly less than the time
constant of the motion controller, so that after a transient period,
the decentralized controller (25) will behave like the gradient
controller (19). Again, it is clear from the linear dependence of
the control law (25) on the positions pk and pj that peaking in the
transient will not cause instabilities.

Typically, connectivity-maintenance is not the only objective
of a mobile sensor network; the agents will also move to collect
information, follow leader agents, etc. In general, the connectivity-
maintenance controller (25) should be used in conjunction with
some other control objective to prevent the agents from simply
collapsing on each other. In the example above, the independent
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Fig. 3. Each agent’s estimate of the graph connectivity λ2 over time. All agents’

estimates converge to the true algebraic connectivity of the graph within a few

seconds.

motion of the leader robots prevents this collapse. In practice, the
controller (25) could be augmented by a collision-avoidance term,
for example bymodifying the linkweights in (15) to bemaximized
at a nonzero distance between agents.

6. Future work

In this paper we present a decentralized power iteration
algorithm that agent i uses to estimate its component ṽi

2 of
the eigenvector ṽ2 of the Laplacian matrix L. We further show
how each agent uses the estimate of ṽi

2 to estimate the graph
connectivity λ2 and choose a motion direction to increase λ2 (see
Fig. 3). In future work, we will explore the properties of discrete-
time implementations of the estimator and controller, particularly
considering packet drops, asynchronous updates, and time delays.

Appendix

In the appendix we analyze the stability properties of sys-
tem (3). We show the boundedness of all trajectories, character-
ize the equilibrium sets and their local stability, and finally give a
proof of Theorem 1. For simplicity, we assume throughout that λ2

is an isolated eigenvalue of L (otherwise the proof needs some mi-
nor modifications).

Proposition 3. Given any initial condition x(t0) and any positive

gains k1, k2, k3 > 0, the system trajectory remains bounded over

time:

‖x(t)‖ ≤ max{‖x(t0)‖,
√
n}. (A.1)

Proof. Defining V1 = xT x = yTy, we have

V̇1 = 2yT ẏ (A.2)

= 2yT
[
−k1diag(1, 0, . . . , 0) − k2L

∗ − k3

(yTy
n

− 1
)
I

]
y.

If ‖x(t0)‖ >
√
n, then k3(

yT y

n
− 1) > 0 and V̇1 < 0 until ‖x(t)‖

≤
√
n. If ‖x(t0)‖ ≤

√
n, then ‖x(t)‖ ≤

√
n for all t > 0. �

The following two propositions completely characterize the
equilibrium sets of system (3) and their local stability properties.

Proposition 4. System (3) has an equilibrium point x = 0, and it is

locally unstable when k3 > k2λ2.

Proof. It is easy to verify that x = 0 (or y = 0) is an equilibrium
state of system (3). Linearizing the equivalent system (6) around
the point y = ỹ we get
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ẏ =
[
−k2̃L

∗ − k3

( ỹT ỹ
n

− 1 + 2
ỹỹT

n

)
I

]
y. (A.3)

Plugging in ỹ = 0, Eq. (A.3) simplifies to ẏ = [k3 − k2L̃
∗]y. The gain

condition k3 > k2λ2 makes the equilibrium point y = 0 locally
unstable, at least in one direction. �

Now we proceed to investigate the nonzero equilibrium points of
system (3).

Proposition 5. When the gain conditions (7), (8) are satisfied,

system (3) has n (when k3 > k1) or n − 1 (when k3 ≤ k1) pairs

of distinct nonzero equilibrium points {yi | 1 ≤ i ≤ n} where

y1 =
(

±
√
n

(
k3 − k1

k3

)
, 0, . . . , 0

)T

, if k3 > k1; (A.4)

and {yi | 2 ≤ i ≤ n} is

y
j

i =





0 if 2 ≤ j ≤ n, j 6= i,

±
√
n

(
k3 − k2λi

k3

)
if j = i.

(A.5)

Additionally, among all the n or n − 1 pairs of equilibria, only y2 is

locally stable.

Proof. The insight here is that any nonzero equilibriumpoint of (6)
has to be a real eigenvector of the matrix L̃∗: setting ẏ = 0,

we get L̃∗y = − k3
k2

(
yT y

n
− 1)y. In particular, if v 6= 0 satisfies

L̃∗v = λv, then y = ±
√
n

k3−k2λ

k3
v is a nonzero equilibrium point

iff the quantity inside the square root is positive. Furthermore,
we know the n different unit eigenvectors for the diagonal matrix
L̃∗ ∈ R

n×n. Therefore, we can solve for all of the equilibria of the

system (6) by looking at the eigenvectors of L̃∗. There are n such
eigenvectors in total, described in (A.4) and (A.5). Additionally, we
use the linearized models (A.3) to check the local stability of every

yi. For y1, its eigenvalue spectrum {µj

1 | j = 1, . . . , n} is
{

µ1
1 = −2(k3 − k1) if j = 1,

µ
j

1 = k1 − k2λj if j = 2, . . . , n.
(A.6)

Since at least µ2
1 > 0, y1 is locally unstable. Similarly for the

equilibrium point yi, i = 2, . . . , n, its eigenvalue spectrum {µj

i |
j = 2, . . . , n} is




µ1
i = k2λi − k1 if j = 1,

µ
j

i = k2(λi − λj) if j = 2, . . . , n, j 6= i,

µi
i = −2(−k2λi + k3) if j = i.

(A.7)

Because 0 < λ2 ≤ · · · ≤ λn, yi is unstable for any i > 2 (at least in
some directions), and y2 is stable. �

Finally we give a proof for the near-global convergence result
stated in Theorem 1.

It is useful to write out Eq. (6) in its scalar form:

ẏ1 =
(

−k1 − k3

(yTy
n

− 1
))

y1 (A.8)

ẏ2 =
(

−k2λ2 − k3

(yTy
n

− 1
))

y2 (A.9)

...

ẏn =
(

−k2λn − k3

(yTy
n

− 1
))

yn. (A.10)

We first notice that the value of each component yi will not change
its sign over time and if yi(t0) = 0, yi(t) remains zero. Next we
present the complete proof of the main theorem.

Proof (Sufficiency). Let us first consider y1. If y1(t0) = 0, then
y1(t) = 0 for all t . If y1(t0) 6= 0, combining (A.8) and (A.9) we
get

d

dt

(
ln

y2

y1

)
= d

dt
(ln y2) − d

dt
(ln y1) = k1 − k2λ2 > 0 (A.11)

which implies y2/y1 → ∞. We know y2 is bounded from
Proposition 3, therefore y1 → 0. The cases are similar for yi, i > 2.
If yi(t0) = 0, then yi(t) = 0 for all t . If yi(t0) 6= 0, then y2/yi → ∞
and yi → 0. Therefore over time Eq. (A.9) is reduced to ẏ2 =
(−k2λ2 − k3(

(y2)2

n
− 1))y2. When (8) holds, this scalar dynamical

system can be rewritten as

ẏ2 = k3

n

(√
n

(k3 − k2λ2

k3

)
+ y2

)

×
(√

n

(k3 − k2λ2

k3

)
− y2

)
y2. (A.12)

We see that y2 → ±
√
n

(
k3−k2λ2

k3

)
depending on the initial

condition y2(t0) and the equilibrium point y2 = 0 is unstable.

(Necessity) When y2 → ±
√
n

(
k3−k2λ2

k3

)
obviously condition (8)

holds. Nowwe suppose the condition k1 ≤ k2λ2 holds. If k1 < k2λ2,
using the same argument method in (A.11), y1/y2 → ∞ and
therefore y2 → 0, which is a contradiction. If k1 = k2λ2, then
d
dt

(ln
y1

y2
) = 0 and y1/y2 is a constant c. For initial conditions

y1(t0) 6= 0, c = y1(t0)/y
2(t0) 6= 0; therefore y cannot converge

to y2 where y12/y
2
2 = 0, which is also a contradiction. Therefore,

the gain condition (7) must hold. �
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