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Abstract 

This work considers the problem of controlling multiple nonholonomic vehicles so that they 
converge to a scent source without colliding with each other. Since the control is to be implemented on 
simple &bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control 
design. The inputs to the fuzzy controllers for each vehicle q e  the (noisy) direction to the source, the 
distance to the closest neighbor vehicle, and the directim'fo the closest vehicle. These directions are 
discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, 
Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance 
repulsive forces and the change of variables that reduces the motion control problem of each 
nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy 
inference system is used to obtain control values for inputs between the small number of discrete input 
values. Simulation results are provided which demonstrate that the fuzzy control law performs well 
compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise. 

.1-) 1. Introduction 

The distributed control of multiple robotic 
vehicles has been a subject of significant recent 
interest. When hundreds or thousands of such 
vehicles are involved, clearly to be cost effective 
each vehicle must be cheap. Thus, sensors are 
likely to be cheap, and therefore noisy, and the 
amount of compute power and memory on board 
each vehicle is likely to be small. This brings 
about the need to be able to have robustness to 
noisy sensor measurements while simultaneously 
using a simple controller. Kalman filters can-be 
relatively expensive to implement, in terms of 
required computation power and memory. Fuzzy 
control provides an alternative approach. In this 
section, we will review previous related research. 

Miyata et a1 used a steepest descent 
method to tune fuzzy rules. The cost function in 
the steepest descent search was the sum of the 
squares of the deviations from a set of training 
data, and the search variables were the parameters 
that defined the piece wise linear membership 
functions of the inputs to the fuzzy inference 
system. They demonstrated that general piece 
wise linear membership functions took 

significantly fewer steepest descent iterations than 
conventional triangular membership functions and 
guassian membership functions, especially for the 
approximation of general complicated input/output 
relationships. 

Nomura et a1 also considered the tuning 
of fuzzy rules to match closely a set of input-output 
data. They also used steepest descent. They 
included the crisp output values as part of the 
optimization variable set. They showed that the 
number of iterations required was four orders of 
magnitude smaller than for a neural network using 
back propagation. Kim et a1 also applied a 
steepest descent approach in the tuning of fuzzy 
rules, in a robotic visual servoing application. 

Fukuda and Shimojima used a 
combination of genetic algorithms and steepest 
descent to tune fuzzy rules. Here the genetic 
algorithm approach allowed them to actually 
adjust the number of membership functions in 
addition to their shapes. 

There has been much work in multiple 
mobile robotic vehicle problems, much of which 
has not considered the use of fuzzy logic. Some of 
these will now be discussed. Reynolds [8] 
considered the formation of flocks, herds, and 
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schools in simulations in which multiple 
autonomous agents were driven away from each 
other and other obstacles by inverse square law 
repulsive forces. Part of the motivation behind 
Reynold's work was the impression of centralized 
control exhibited by actual bird flocks, animal 
herds, and fish schools, despite the fact that each 
agent (bird, animal, or fish) is responding only to 
its limited-range local perception of the world, in 
Reynold's opinion. Reynolds stated "Natural 
flocks seem to consist of two balanced, opposing 
behaviors: a desire to stay close to the flock and a 
desire to avoid collisions within the flock." He 
also stated "A bird might be aware of three 
categories: itself, its two or three nearest 
neighbors, and the rest of the flock." The desire to 

be close to the flock while avoiding collisions was 
modeled by force fields that attracted a bird to its 
two to three closest neighbors but prevented it 
from getting too close to these neighbors. 

Arkin [ I ]  studied an approach to 
"cooperation without communication," for 
multiple mobile robots. He states that "by 
enabling many simple robots to cooperate together 
on a large task, it becomes possible to solve a 
problem that would be infeasible using a large- 
scale machine." Arkin also points out that 
centralized master/slave or hierarchy-based 
approaches have drawbacks of potential 
communication bottlenecks and less robustness 
than completely decentralized approaches in 
which each agent is autonomous and has the same 
control law. Arkin demonstrated such an 
approach for robots that are supposed to forage 
and retrieve objects (in a hostile environment). 
Anticipated applications mentioned were 
"housekeeping on the exterior of a space station or 
undersea base" and "mining operations at remote 
locations." Kube and Zhang [6] also considered 
decentralized robots performing tasks "without 
explicit communication." Much of their study 
examined comparisons of behaviors of different 

social insects such as ants and bees. They 
considered a box-pushing task and utilized a 
subsumption approach as well as ALN (Adaptive 
Logic Networks). Asama [2] intelligently points 
out that "an autonomous and decentralized system 
has two essentially contradictory characteristics, 
autonomy and cooperativeness, and the biggest 
problem in the study of distributed autonomous 
robotic systems is how to reconcile these two 
features." 

Noreils [7] conducted work toward 
achieving cooperation between mobile robots for 
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indoor environment applications. He dealt with 
robots that were not necessarily homogeneous. 
That is, one subset of the robots may have 
capabilities that another subset does not have. His 
architecture consisted of three levels: functional 
level, control level, and planner level. The 
planner level was the high-level decision maker. 
He developed a special purpose language for his 
application. 

Chen and Luh [5] examined decentralized 
control laws that drove a set of mobile robots into 
a specific formation. In particular, a circle 
formation was considered. Similarly, Yamaguchi 
and Ami [9] studied line-formations, and so did 
Yoshida et al, [IO]. 

The work herein considers the problem of 
controlling multiple nonholonomic robotic 
vehicles which converge to a scent source without 
collisions between vehicles, in the presence of 
noisy measurements and a small amount of 
compute-power and memory on board each 
vehicle. 

2. Problem Statement 

In this section, we will present a 

description of the problem. We have N 
nonholonomic robotic vehicles, whose detailed 
description will be presented shortly. Each vehicle 
has the following (noisy) measurements available 
to it. 

1. Distance to the closest neighbor 

2. Direction to the scent source in vehicle 

3. Direction to the closest neighbor 

vehicle (r, meters). 

coordinates ($ , radians). 

vehicle in vehicle coordinates (a, radians). 

The objective is to control these vehicles to 
converge to the scent source, without colliding 
with each other. We will now present a detailed 
description of the geometry of each robotic vehicle. 

Figure 1 below shows a schematic of the 
vehicle. 

Figure 1. Schematic of Vehicle, Showing 
Reference Frames 
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Frame 0 (whose axes are To and j o )  is a 

fixed frame. Frame 1 is fixed to the vehicle. Point 
C is at the midpoint of the independent driving 
wheels at A and B. Point P is fixed to the vehicle 
and offset forward by distance a. Let u, and u2 

denote the velocities of points A and B, 
respectively (in the < direction). Also, let R 

denote the distance between A and B. 

3. Preliminary, Non Fuzzy, Control Law 

This section presents a preliminary, non 
fuzzy, control law, which will be fuzzified to 
produce the fuzzy controller in the next section of 
this paper. Clearly we want a vehicle to move 
toward the goal but avoid collisions with other 
vehicles. We want an attractive force that pulls 
the vehicle in the direction I$ of the scent source. 

This attractive force will be given by 

k r @ )  sin@ (3.1) 

where the constant k is a scaling coefficient and 
where the vector in (3.1) is expressed in frame 1 
coordinates. 

The collision avoidance is obtained by 
using a I I r3 repulsive force exerted dong the line 

from the closest neighbor vehicle to the vehicle 
whose control we are considering. The direction 
of this repulsive force, in frame 1 (vehicle 
coordinate frame), is obtained through 
measurement of a (angular direction to the closest 
vehicle, in vehicle coordinates). In particular, this 
repulsive force, expressed in frame 1 coordinates is 

-kc,(cosa) r3 sina 
(3.2) 

where the value of c2 is chosen large enough that 

any pair of vehicles will maintain a safe distance 
apart. 

Because of the no-slip condition at the 
two wheels (at A and B in Figure l), the velocity 
of point C (Figure 1) cannot be arbitrarily 

specified. It can have no component in the 7, 
direction (Figure 1). Thus, we cannot specify the 
motion of point C. However, as will be shown 
shortly, we can specify the motion of point P (in 
Figure 1). Therefore the approach will be to let 
the repulsive and attractive forces determine the 
velocity of point P. The absolute velocity of point 
P, expressed in frame 1 coordinates, can be shown 
to be 
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I -  [ 112 y') (3.3) 
v p l o =  - a l R  a l R  u2 

The determinant of the matrix in (3.2) is a/R and 
therefore this matrix is always nonsingular. So, if 

'Cplo is specified, we can always solve for the 

required inputs uI and u2 that produce this 

velocity. In particular, we have 

So, we will let 

(3.4) 

(3.5) 
and then the control (u l  ,u,)' is determined by 

(3.4). 
The direction of motion of point P in 

(3.5) can be shown to be the LQR solution for a 
single obstacle, where the cost function J is given 

by 
1 

(x, -Fy +(y, -TIZ 
J n  1/2((x, 'X, Y +(y, -r, 1, )+c, 

(3.6) 
where (F,y) is the position of the obstacle and 

( x r , y r )  is the position of the goal. 

Differentiating (3.6) with respect to ( x p ,  y,,)', we 

obtain 

w=( Y P  XP - -1, r, )-. [(xp - F)2 + 1 (yp - J)q- ?(?) )'P - 

(3.7) 

If we note that .=,/(xi -F), + ( y p  -y)2 and let 

6 and 6 be the angular direction from P to the 

god and the obstacle to P, respectively, in frame 1 

coordinates, and also let 

s = J ( x p  - X I ) ?  + ( y p  - y, )' , then (3.7) becomes 

1.-s(?!)+c2 sin@ sina (3.8) 

We will now see that the first term of ( - V J )  is in 

the same direction as our attractive force in (3.1) 
and the second term is in the same direction as our 
repulsive force in (3.2). Let d, be the direction 

vector from P to (xt ,y8)  and let d ,  be the 

direction vector from point (x',y) to point P. 

Then, d,,  expressed in frame 0 coordinates, is 

(3.9) 
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and d, ,  expressed in frame 0 coordinates, is 

' d ,  =-( @sa  :) 
s ina  

Let R be the 2 by 2 rotation matrix between frame 
0 and frame 1. Then, 

'd ,  = R T ' d ,  = R r (  cos+ )=( cos+ 

sin+ sin+ 1) 

' d ,  = RTIdB = - R T (  cosa I=-( cosa :) 
sina sina 

(4.2) 
We also have 

or, considering the first term of lvplo in (3.3, 

'vpl0 = RT'vp10 (4.3) 

and the second term: 

(4.5) 
Thus the velocity Ovpl0 is in fact composed of two 

terms, each of which is in the direction of the 
negative gradient of the corresponding term of J. 

4. Fuzzification of the Control Law of Section 3 

We discretized the inputs to the controller 
into the following possible values: 

I 

Direction to Goal (r): Forward], Left, 

Direction to Obstacle (Q ): Forward], 

Distance to Obstacle (a): Small, 

Behind, Right, or Forward2 

Left, Behind, Right, or Forward2 

Medium, Gone 

Thus, we have 5*5*3 = 75 possible "fuzzy" inputs 
to the controller. The value of "Small" was chosen 
to be 1.5 meters, that of "Medium" to be 3 meters, 

and that of "Gone" to be I O  meters. A Sugeno 
Fuzzy Inference System was used to interpolate 
between the exact values of the control as given in 
equations (3.4) and (3.5) at these 75 data points. 
Triangular membership functions were used for 
each of the discrete values of the three inputs to 

the controller (Direction to Goal, Direction to 
Obstacle, and Distance to Obstacle). The resulting 
fuzzy controller has the same input-output 
relationship as the exact controller at these 
discrete 75 points, but has different values, in 
general, at any points in between. The 
membership functions are shown in Figures 2 and 
3 below. 

om - C) 
&lld y.dm 

Figure 2: Membership Functions for Distance to 
Obstacle 

w Fan ldz  

Figure 3. Membership Functions for Direction to 
Goal and Direction to Obstacle 

aMon~nauul 
F a d l u I  m 

The reason that we can use rather coarse 
fuzzy logic membership functions is that 
convergence is achieved as long as the estimate of 

the angle to the goal is within f 90 degrees of the 
actual angle. This can be shown by considering a 

linear perturbation of nonlinear dynamics of the 
vehicle. 
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(4.1) 

where X is the (x,y) position of the point "p" on 

the vehicle and orientation 8, u are the 
commanded right and left linear wheel velocities,' 

f(x,u) are the first order vehicle dynamics, and 

X, and U, are linearized operating points. This 

can be rewritten as 

~ _r 

where 

The first order model of a skid-driven vehicle 

x=f(x,u)  is 

a a 
cos0 --sine cos0 +-sin8 

R 
a 

R R 
1 -1 

R R 

3, =- sine +-cos0 sine 

- 
[:I :[ 

or 

x = B(x)u 

where R is one-half the wheel base, a is the 
distance between the vehicle center C and point p .  

and 8 is the orientation of the vehicle. 

Ai = B(x,)Au (4.4) 

Suppose we choose the control to be a weighted 
inverse Jacobian which is a function of the 

estimated state 2 .  Then, 

Au = [WB(2)]-' Ax (4.5) 

where 

w=[' O 01 
0 1 0  

The matrix W is chosen to drive xP,yp to the 

desired reference position yet leave 8 
unconstrained. 

Considering only the position of the 

vehicle, let 

then 

Ap = WB(x0)[WB(2)]-'Ap (4.6) 

or 

[SI- WB(X,)[WB(~)]-~~A~ = 0 

(4.7) 

For Ap + 0 ,  WB(X,)[WB(~)]-I must be 

positive definite [IS]. It can be shown that for the 
skid driven dynamics in Equation (4.3), this 

occurs if and only if - 90' < 6 - 8, < 90'. 

5. Application of the Exact and Fuzy Control 
Laws to the Multi-Vehicle Problem 

In this section, we consider the case of 
many vehicles trying to reach the goal point. The 
obstacle for each vehicle i is taken to be the 
vehicle that is nearest to vehicle i. Then, the same 
control law (from sections 3 and 4) is applied to 
this multi-vehicle problem, in which all of the 
vehicles are trying to converge to the goal position. 
An additional constraint, not considered in the 
previous sections, was imposed. Namely, a 
maximum wheel velocity (velocity of points A and 
B in Figure 1) of v, =0.45m/s  was imposed. 

For the generation of the fuzzy controller data 
points of section 2, we scaled the speedcoefficient 
k (equation (3.5)) down to k =0.1136. This 
automatically guaranteed that the fuzzy controller 
would never generate a wheel velocity greater than 
P,. The exact controller also uses this value of 

k and additionally truncates 'Spl0 to a small 

enough value so that neither wheel velocity 
exceeds v,. The parameter values used in all 
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simulations herein will be a=R=0.58 mcters. and 
c2 = I O .  

-40. 

do' 

5. Simulations of the Multi-Vehicle Problem in 

the Presence of Noise in Measurements and a 
One-Second ZOH 

\ 
We wanted to assess the effect of having a 

I-second update rate on r , $ ,  and a and noise in 

41, r, and OL. Figures 4 and 5 below correspond to 

simulations with the exact and fuzzy controllers. 
respectively, i n  which there was not only +/- 90 
degrees of noise in the direction-to-goal, +/- 9 
degrees of noise in the direction-to-obstacle and 
+/- 0.4 meters of noise in the distance to the 
obstacle (closest vehicle). but also a slow I-second 
update rate on the inputs to the controller. The 
controls were held constant over each such 
intenal. The noise on the direction to the obstacle 
was taken to be smaller than the noise on the 
direction to the goal, since the former will come 
from communication signals between bugs. while 
the latter might come from cheap chemical 
sensors. The total integration time for both Figure 
4 and Figure 5 was 780 seconds. Also, Figure 6 
shows a blown up view of the paths for Figure 4 

and Figure 5.  

60- 

40- 

-40: 

i 
bo; 

bo -40 -20 0 20 40 60 

Figure 4. Simulation Results for Exact Controllers 
With +/-go Degees of Noise on Direction to Goal, 

+/- 9 Degrees of Noise on Direction to Closest 
Vehicle, and +/- 0.4 Meters of Noise on Distance 

to Closest Vehicle, and 1-second ZOH 

-28 -25 -24 -21 -22 -21 -20 -10 -10 -17 
rWm) 

Figure 6. Blown Up View of Simulation Results 
of Figures 4 and 5 

7. Comparison of Fuzzy and Exact Controllers 
With Kalman Estimation 

It is interesting to compare Figures 4 and 
5.  The fuzzy controller exhibits a smoother 
approach to the goal. A more expensive 
smoothing controller would be one that uses a 
Kalman estimator. A comparison of such a 
controller will be made in  this section. A 
summary of an extended Kalman filter 
implementation is as follows. Suppose we have a 
nonlinear system: 

i = f ( x ,  u )  (7.1) 

J = h( x) (7.2) 

with x E R", u E R', y e  R",  and where (7.2) is 

the output equation and we have a new noisy 

6 



I . 
I :  

.. ' 

m- 

M .  

20. 

g 0 .  

30. 

-10. 

a. 
-60 

measurement 7 every T seconds. Also, suppose 

that we have either an approximate or exact state- 

transition function which takes us from time t to 

time t+T, where the input u is constant over the T- 
second interval: 

Let A E R " ' ~ ~  be an estimate of the output 
covariance matrix and Q E R'"' an estimate of the 

input covariance matrix. Let Po be an initial 

estimate for P (to be defined). Let 

F = 3 f (i. u ) / 3  x and G t a f(i, u) /a  u . One 

extended Kalman estimator, whose purpose is 
usually to provide an estimate i of the state x, is 
as follows, where an initial estimate of i would be 
provided. At each time step (of length T), 
calculate: 

x( t + T )  = j ( x ( r > ,  u ( r ) )  (7.3) 

H = a h (;)/a x 

K = P H ~  ( A +  H P H ~  ) - I  

P = ( I - K H )  P 

2 = i+ K ( y -  h ( i ) )  

(7.4) 

(7.5) 
(7.6) 

(7.7) 
Calculate the control u=u(i). (In our case this 
controller is the one in section 3.) Then further 
update i and P for the next time step by 

P =  F P F ~  + G Q G ~  (7.8) 

i = j (  i , u ( i ) )  (7.9) 
In our problem the state equation (7.1) is: 

0 z o ~ m  4 0  -10 

(7.10) 

where 8 is the angle from To to <, measured 

counterclockwise, in Figure 1 and where R is the 
distance between points A and B in  Figure 1 and 
our output is 4 , which can be easily calculated as 

a function of x as can the Jacobean H = 34/31. 

Initially, however, to avoid 0 - 2 x  wrap around 
issues, two outputs were used: cos4 and sin$. 

An exact state transition function 3 can be 

derived and is shown below 
e(t + T) = e(t)+ ~ ( - u ,  +u? 11 R (7.1 1)  

x,(r+T)= x , ( r )+  RI,UI_UI[sin(8(r+t))-sin(8(t))].~, u +u- f u: 

(7.12) 
x c  ( t  +T) = xc ( t ) +  Tu, sin(O(t)), u, = u2 (7.13) 

xc( I  + r)  = xc ( I ) -  R 12- ('8 + ' 2 )  [cos(e(r + TI) -cos(e(o)l .u8 f u: 
(u,  - u , )  

(7.14) 

?;( t  + T) = yc ( t )+  Tu, sin(O(r)),u, = u1 (7.1 5 )  

Figures 7 and 8 show single-vehicle 
simulations, for ease in comparison with such a 
controller. The total integration time is 1000 
seconds. The values of A ,  Q, and Po used were 

101, 0.11, and 101, respectively. In this Kalman 
estimator implementation, measurement of 4 and 

u alone are not sufficient to achieve estimation of 
the full state x. More measurements, such as the 
distance to the goal, would be needed to obtain full 
state estimation. However, in  scent seeking 
problems, distance to the goal may not be 
measurable since the strength of the scent source 
may not be known. 

We see that the more computationally 
intensive Kalman filter also exhibits more 
smoothing than the unfiltered exact controller, but 
the controller overshoots the target a little before 
coming back to it, whereas the fuzzy controller 
does not. 

1 0 M W  
-en 

4 0  4 -10 

Figure 7. Exact Controller, Single Vehicle, +/-90 
Degrees Noise on Direction To Goal and a I-Sec 

ZOH 

8. Conclusion 

I 
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This work investigated decentralized 
fuzzy control of multiple nonholonomic vehicles. 
A preliminary non fuzzy controller was designed 
using a change of variables that reduced the 
control problem from one with three degrees of 
freedom to a non-singular one with only two 
degrees of freedom. Fuzzy control was 
investigated because the control is to be 
implemented on simple 8-bit microcontrollers in 
the future. The fuzzy controller exhibited a 
smoother response than the preliminary non fuzzy 
controller in  the presence of noisy measurements 
and its smoothness and performance compared 
favorably to both a controller that used a Kalman 
estimator and the preliminary non fuzzy 
controller, respectively. 
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