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Abstract—Integration of Information and Communications
Technology (ICT) into the distribution system makes today’s
power grid more remotely monitored and controlled than it has
been. The fast increasing connectivity, however, also implies that
the distribution grid today, or smart grid, is more vulnerable.
Thus, research into intrusion/anomaly detection systems at the
distribution level is in critical need. Current research on In-
trusion Detection Systems for the power grid has been focused
primarily on cyber security at the Supervisory Control And
Data Acquisition, and single node levels with little attention on
coordinated cyberattack at multiple nodes. A holistic approach
toward system-wide cyber security for distribution systems is
yet to be developed. This paper presents a novel approach
toward intrusion prevention, using a multi-agent system, at the
distribution system level. Simulations of the method have been
performed on the IEEE 13-Node Test Feeder, and the results
compared to those obtained from existing methods. The results
have validated the performance of the proposed method for
protection against cyber intrusions at the distribution system
level.

Index Terms—Cyber-physical system security, smart grid, dis-
tribution systems, intrusion detection, anomaly detection, multi-
agent system.

NOMENCLATURE

S Set of likely attacks
F Threshold for determining Denial of Service (DoS)

attacks
P Maximum allowed login attempts
ωx Weight assigned to an attack x
xt Threshold for determining attack x
xr Maximum recorded normal event related to attack x
ν Attack potential
κ Criticality index
ψ Software vulnerability index
wi Weight assigned to an index i
ρ Judgement value calculated in the second phase
T Time period during which selected nodes stay in

protective mode
n Percentage reduction in thresholds
t Maximum time allowed between two attacks, after

which all nodes enter protective mode
G Graph model of distribution network
V Set of nodes of graph G
E Set of edges of graph G
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k An arbitrary graph state in agent communication
m Number of nodes in graph G
A(k) Adjacency matrix in state k of graph G
∆(k) Degree matrix in state k of graph G
pi(k) Vector in the memory of agent i for storing the values

of its neighbors in the kth state
ui(k) Vector in the memory of agent i for storing the IDs

of its neighbors in the kth state
xi(k) Selected value of agent i in the kth state of the third

phase
zi(k) ID of the selected value of agent i in the kth state of

the third phase
σi(k) Message sent by agent i in the kth state of the third

phase
D Diameter of the network graph
nc(k) Number of communicating agents in state k

I. STATE-OF-THE-ART

TRADITIONAL distribution grids have seen significant
improvements that have made the grid more automated

and remotely controllable. However, as a result, the grid is
more vulnerable to cyberattacks. In December 2015, a series
of cyberattacks were launched on six distribution utilities in the
Ukrainian grid, causing an outage [1]. Research on distribution
system cybersecurity is therefore critical.

Distribution Automation System (DAS) is an important part
of the distribution system and may encompass Supervisory
Control And Data Acquisition (SCADA). In the following
subsections, a literature survey on cybersecurity for DAS and
SCADA is provided, as well as for cybersecurity against coor-
dinated cyberattacks, and solutions using multi-agent systems
(MASs).

A. Supervisory Control And Data Acquisition (SCADA)

SCADA systems have evolved from traditional segregated
networks to internet-connected remotely accessible systems.
This, together with the use of legacy operating systems and
protocols that were built with little to no consideration for
cybersecurity, has significantly increased the attack surface for
SCADA systems. While some generic cybersecurity measures,
such as encryption, may be implemented, they are done within
the limitations imposed by SCADA devices and networks,
such as low computational capabilities, real time requirements
and low data rate [2].

To study the cybersecurity issues of SCADA, several frame-
works have been proposed. These include the integration
framework [3], which presents a two-tiered architecture for
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incorporating simulation models into industrial systems. By
incorporating real data sets into simulation models, operators
are better able to understand the dynamics of the system and
impact of cyberattacks. In reference [4], a three-level vul-
nerability assessment framework is proposed, that quantifies
the vulnerability of the SCADA system at the access point,
scenario and system-wide levels. Vulnerability assessment
metrics are derived at each level. By using Bayesian attack
graphs and a modified mean time to compromise (MTTC)
parameter, the method of [5] determines the probabilities and
outcomes for different attack paths on a SCADA network.

Some authors have proposed intrusion detection systems
(IDSs). Reference [6] proposes a SCADA-specific IDS which
combines access control white list with a protocol-based white
list and a behavior-based rule set. Other IDSs are anomaly-
based [7], and signature-based [8]. In addition, certain authors
have suggested the use of honeypots to study attack behaviors
[2].

B. Distribution Automation System (DAS)

DAS integrates communication with digital controls, switch-
ing devices, etc. to provide automated functionalities. Key
Distribution Automation (DA) applications are outage man-
agement, feeder restoration, Volt-Var management, DER man-
agement, and condition monitoring. Some devices, e.g., smart
reclosers, used in DA may be autonomous and not controlled
from a remote location. On the other hand, remote control of
field devices is also implemented. At the operations center,
data is acquired by a SCADA system for processing and
analysis. DA may also be integrated with applications such
as Outage Management System (OMS), Distribution Manage-
ment System (DMS) and Advanced Metering Infrastructure
(AMI) [9].

The vulnerabilities of DA are mainly due to the use
of unmonitored field devices and communication protocols
with known vulnerabilities [10]. DA systems may be subject
to attacks such as Denial of Service (DoS), replay, packet
modification, false packet injection, and physical tampering.
However, due to the simplicity of field devices in a distribution
system, sophisticated security algorithms may be impractical.

As a response to the cybersecurity issues of DAS, some
authors have developed vulnerability and risk assessment mod-
els using techniques such as attack-defense games [11], and
Bayesian attack graphs (BAGs) [12], to quantify the degree of
vulnerability present in DA systems. Considering that replay,
packet modification and false packet injection are some of
the attacks with serious consequences for DAS operation,
reference [13] proposes the use of a message authentication
code (MAC) and a sync code to guarantee authentication
and integrity. A similar concept to provide authentication and
integrity is proposed in references [10] and [14]. Nevertheless,
these methods are static; they are not designed to detect
other forms of attacks such as Denial of Service, or password
hacks. Subsequently, such mechanisms may be coupled with
intrusion/anomaly detection systems (IDSs/ADSs).

Reference [15] proposes a network-based intrusion detection
system (NIDS) which includes deep packet inspection to

ensure that benign-looking packets do not create an unstable
system state. This adds an extra layer of protection; however,
there is an implicit suggestion of the execution of the NIDS
on the operators’ machine. Thus, the IDS may be centralized,
and subject to single point of failures. In reference [16],
a technique using µ-PMU measurements is proposed for
detecting anomalies. The extensive mathematical operations
required suggest that the solution is intended for the operations
center.

In spite of the advances in DAS technologies, research on
intrusion detection systems, specifically for DAS, is in an early
stage. There is also a lack of a response framework for DA
cyberattacks. In addition, the current literature is primarily
concentrated on DA applications with communication to a
central office system. Furthermore, the proposed methods
do not defend against coordinated cyberattacks, which may
target multiple dispersed nodes. This underscores the critical
need for a collaborative distributed approach towards intrusion
prevention.

C. Coordinated cyberattack detection and prevention methods

In a coordinated cyberattack, an attacker may use several at-
tack strategies to attack one target, or may attack several parts
of one system, or both. The literature on studies pertaining to
coordinated cyberattacks is diverse. Reference [17] explores
the coordination of physical attacks and cyberattacks on the
grid. The authors formulate a bi-level model for coordinating
the two types of attacks which minimizes the attack cost
according to a predefined budget, while seeking to maximize
the reward. Nevertheless, this technique does not provide
preventive and mitigation steps when an attack happens.

Reference [18] uses attack templates to formulate corre-
lation indices for attacks. The correlation index is a set of
substations that are likely to be attacked based on certain
observed attack patterns. The use of optimal power flow to
determine the correlation index allows operators to sched-
ule appropriate system reconfiguration and/or load shedding
schemes in advance. However, the mechanism is centralized
and subject to single point of failures. In addition, the use
of extensive math operations restricts its usage in simple
intelligent devices.

In [19] the correlation index generator formulated in [18]
is combined with an event manager, a correlation knowledge
database and a response manager, to detect, correlate and
respond to attacks. While the proposed solution is richer
in terms of functions, it is subject to the same drawbacks
aforementioned concerning the work in [18].

Reference [20] proposes a zero-sum stochastic game ap-
proach toward modeling the relationship between the attacker
and the defender. It is possible that the attacker may take
several steps ahead of the defender while the defender searches
for an optimal step. Thus, the defender may take no action, or
suboptimal actions, until the end of the attack.

Reference [21] introduces a three-level approach toward
mitigating attacks, that includes planning which substations
and lines are to be protected, deriving the optimal attack
strategy, and the optimal restoration steps as a result of the
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attack. This paper includes a planning stage, during which
cybersecurity resources are optimally allocated.

Reference [22] proposes to use Flexible AC Transmission
System (FACTS) devices to periodically perturb the reactance
of certain lines in the network. Thus, an attack constructed
with outdated reactances can be detected by the bad data
detector (BDD).

In [23], the authors propose a method to detect and correlate
attacks, using data collected from IDSs installed at different
substations. The technique measures correlation according to
patterns of abnormal behavior, criticality of substations and the
geographical correlation. This mechanism provides correlation
of attacks, after they happen. Therefore, it is difficult for
operators to predict which substations will be attacked in
advance.

The literature on coordinated cyberattacks is heavily focused
on the transmission system. Thus, the solutions proposed
may be inapplicable at the distribution system level, due to
hardware constraints, and the use of methods specific to the
transmission system. In addition, the complete delegation of
attack response strategies to the human operator is undesirable:
in certain scenarios, the human operator may be unable to
implement specific defense strategies. An example is when an
attacker implements DoS so that the network is unreachable
to the operator. Thus, there is a critical need to investigate
coordinated attacks at the distribution system level and to
formulate solutions in the context of its limitations.

D. Multi-agent systems for intrusion detection and prevention

Traditionally, IDSs can be classified according to their data
source or detection technique. According to data source, they
may be network-based or host-based. According to detection
technique, an IDS may be anomaly-based or signature-based.
IDSs have found application in several settings, both in in-
formation systems and industrial control systems (ICSs). In
[24], the authors propose an anomaly-based IDS that applies
a variant of artificial immune system to features of application
layer protocols. The work of [25] proposes a multi-model
intrusion detection system combining the physical properties
of an ICS as well as network properties of its communication
infrastructure.

Reference [26] presents a hierarchical intrusion detection
system based on multi-agent systems. The agents detect an
attack, correlate new attacks with already known ones and
determine the extent of similarity. They also plan new attacks,
which, when approved by the administrator, are added to the
collection of known attacks, resulting in an adaptive approach.

In reference [27], a MAS approach is proposed for detecting
attacks and differentiating them from normal faults. A set of
three agents operates simultaneously at the same substation,
and coordinate with one another using Phasor Measurement
Unit (PMU) measurements However, there is a lack of co-
ordination among agents from other substations for detecting
and preventing coordinated attacks.

In reference [28], agents are deployed to perform distributed
state estimation in their assigned subsystems of the entire
network. The requirement to satisfy not only the state equation

of the network but also those of the subsystems makes it harder
for a False Data Injection (FDI) attack to be concealed.

The solution proposed in [29] is a two-tiered multi-agent
hierarchy. Lower level agents are dispersed at different nodes
to receive and process data from PMUs. Their data is then
sent to a central agent that performs anomaly detection.

II. MOTIVATION

The motivation for this work is to develop an intrusion
prevention system (IPS) for DASs. A suitable IPS for DASs
should not only be efficient but also:

1) Distributed: The architecture of the proposed systems is
preferably distributed to avoid single point of failures in
centralized systems.

2) Collaborative: A collaboration mechanism is required of
the proposed system in order to correlate attacks and
provide protection against coordinated attacks.

3) Light-weight: The hardware used in distribution system
nodes tends to have limited computational and storage
capabilities. Thus, the proposed solution should be light-
weight in order to make it feasible. Although machine
learning is useful and can offer accurate results, resource
requirements can increase significantly [30]. The intent of
this paper is to develop a light-weight intrusion detection
system. Machine learning also requires the use of training
data. This paper does not assume the availability of such
training data.

4) Allow for operator and system intervention: In response
to an attack, both the agents and distribution system
operators can take mitigation steps to augment each
other’s effort.

As can be seen from the earlier section, existing work
addresses some of the above requirements at a time; a practical
solution that addresses all requirements is critically needed.
To this end, an approach is proposed in this paper that applies
multi-agent systems for cybersecurity of DASs in a novel way
to meet the above requirements. The novelty of the paper
resides in the fact that:

1) It makes use of a lightweight yet efficient network-based
intrusion detection algorithm. The algorithm is based on
the DNP3 protocol which is commonly adopted in the
U.S.

2) Its use of a multi-agent system is not to detect an attack,
as is done in other methods, but to predict the targets of an
attack. It therefore leverages the collaboration of agents
to protect against coordinated cyberattacks. A consensus
protocol, i.e., the link drop max consensus protocol,
is formulated to govern the interaction of agents while
avoiding the accumulation of unnecessary information.

3) The mechanism of attack correlation is distributed with
no hierarchy.

The organization of the rest of the paper is as follows: in
section III, the proposed solution is presented. A core element
of the proposed solution, the link drop max consensus proto-
col, is detailed in section IV. The testbed used for simulations
is presented in section V, while simulations and results are
discussed in section VI. In section VII, the proposed solution
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is compared with other solutions. Finally, concluding remarks
are given in section VIII.

III. MAS FOR INTRUSION DETECTION

For maximum damage, intruders may attack multiple nodes
in the distribution system. First, as an attack model, assume
that the motive of the attacker is to disrupt power supply
to an area or load of their choice. Assume also, that no
social engineering practices are used, so that mainly man-in-
the-middle (MitM) attacks are exploited. The set of possible
attacks includes replay, denial of service, password hacks, and
packet modification/falsification.

An agent is an autonomous software that is able to accept
inputs from its environment, process it and take actions based
on the outcome. Suppose that a distribution network has
an agent installed at each node. The agent, implemented in
Volttron [31], is installed on a computing device integrated
with remote terminal unit (RTU) functions. Communication-
wise, the agents are connected as the nodes are electrically.
That is, if node A is connected to node B through a distribution
line, then in the communication structure, node A interacts
directly with node B. This serves as the initial communication
structure of the agents. Also, each agent has three modules:
an NIDS module, a prediction module, and a social module.

Again, all agents are assumed to be aware of their own node
parameters such as the communication protocol being run (e.g.
DNP3, Modbus, etc.), criticality of its load, its neighbors, and
software being run by communication devices deployed at the
node. The node data is essential for prediction of whether an
attack is coordinated, and the targets of the attack.

The proposed Decentralized Intrusion Prevention (DIP), is
a four-phase algorithm, depicted in Fig. 1. The phases of the
algorithm are explained next.

1) Phase 1: In the first phase, the NIDS module of the
agent monitors the local network. The NIDS may be based on
any protocol, as the application demands. However, the NIDS
implemented in this research is based on DNP3, specifically
DNP3 with Secure Authentication v5 (SAv5), as the commu-
nication protocol between the operation center and the node.
The development of a secure key distribution mechanism for
the protocol is assumed to be available. The algorithm for the
NIDS is developed to monitor for the following set of attacks
from the intruder:
• Flooding (Denial of Service (DoS)): In order to ensure

that the remote terminal unit (RTU) at the node is
not flooded, the time difference between the arrival of
packets is monitored. An alert is triggered when the time
interval is lower than a pre-determined threshold value
and observation is made F consecutive times.

• Packet falsification/modification: In DNP3 SAv5, critical
functionalities such as write, delete, and operate require
the receiver to challenge the sender. The sender produces
a unique tag through a hashing function, which is sent
to the receiver. At the receiver, the same hashing opera-
tions are performed and the results compared to the tag
received. If they are equal, the identity of the sender is
verified and the command is implemented. If the result

Fig. 1: An illustration of the proposed DIP

at the node is not the same as the tag received, the NIDS
triggers an alert.

• Replay: In DNP3 SAv5, each critical packet has a
challenge sequence number. The sequence number is
checked to ensure that already received numbers are not
repeated. In the proposed NIDS, an alert is raised when
the challenge sequence number of a received packet is
smaller than or equal to the latest recorded at the node.

• Brute-force password hack: By successfully logging in,
the adversary may be able install/delete applications,
and/or run commands. The login credentials are assumed
unavailable to the attacker. Hence, in the proposed NIDS,
P consecutive failed password attempts to log in is
flagged.

The NIDS is able to accurately detect configured attacks.
For instance, consider a complicated attack where the adver-
sary copies the unique tag of a packet in transit and attaches
this to a fabricated packet. The NIDS at the node is able
to detect this. Indeed, at the node, the hashing operation is
performed over the entire received packet, and the results
compared to the unique tag. This attack succeeds only when
the attacker is aware of the correct hash key. In this paper,
sharing of all cryptographic keys has been assumed secure
and confidential.

All agents continually monitor their own cyberspace in the
first phase, using the proposed NIDS. A transition is made into
the next phase if and when an intrusion is detected. Suppose an
intrusion is detected at one of the nodes in phase 1. The node
is required to broadcast an alert to the operations center and
to all agents in the network. The alert contains the following:
time stamp of the detected intrusion, ID of the reporting agent,
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suspected attack type, other descriptive data such as the target
device, and the protocol being run.

The broadcast alert is encapsulated in a TCP/IP packet. A
hash digest is also added to the message to provide authen-
tication. It is assumed that the key for this hashing operation
is updated when session keys for the communication between
nodes and the operation center are updated. Therefore, for
securely exchanged and updated keys, the attacker is unable
to falsify or modify an alert. Having received the alert, each
recipient agent enters the second phase.

2) Phase 2: Each recipient agent needs to predict with
some certainty whether an attacker will target its node. This
is done by measuring its correlation with an alerting node
(agent). The proposed correlation model uses three factors:
attack patterns, criticality of load at the node, and software
correlation. An attacker may be attempting different attack
techniques, such as replaying an already captured packet at
one node, while modifying the same at another node. Thus, the
observation of attack patterns is a good indicator of correlation.
In addition, nodes that serve critical loads are by nature
attractive to attackers. Subsequently, in a coordinated attack,
criticality of load at a node is an indicator of correlation.
Lastly, an attacker may leverage vulnerabilities that may be
present in firmware and other software run by the intelligent
device. In this case, targeted nodes may not be correlated
according to load type or attack patterns, but according to
the software they run. In this paper, these three factors are
used to measure correlation, and consequently used to predict
the likelihood that an attacker will target a recipient node.
The measure of correlation is obtained by calculating three
indices to quantify each of the three factors: intrusion potential,
criticality index, and software and operational vulnerability
index.

(i) Intrusion potential (ν): This is the likelihood that some
observed pattern evolves into an intrusion. The received
report is compared to current security logs from the past
h units of time. h is a user-defined variable. Let there be
a set of attacks S = {d, f, r, p} where d, f , r, p represent
flooding (DoS), packet falsification, replay, and attempted
password login, respectively. For an attack x ∈ S, let xt
be a threshold value and xr be its maximum recorded
normal occurrence in the security logs at the recipient
node. Also, let ωx be the weight assigned to that attack.
The weight is chosen according to the following rules:

a) if the attack was not reported and its occurrence in
security logs at the recipient station is below half of
its threshold, ωx = 1,

b) if the attack was not reported but its occurrence in
security logs at the recipient station is greater than or
equal to half of its threshold, ωx = 2,

c) for a reported attack, if its occurrence in security logs
at the recipient node is below half of its threshold,
ωx = 2, and

d) for a reported attack, if its occurrence in security logs
is greater than or equal to half of its threshold, ωx = 3.

TABLE I: Criticality indices for different nodes.

Node type Criticality index (κ)

Node supplying highly critical load (e.g.
hospitals, critical infrastructures such as wa-
ter supply)

0.9

Node supplying critical load (e.g. Important
industry and commercial load)

0.6

Node supplying non-critical load (e.g.
homes)

0.3

The intrusion potential is then given by:

ν =

∑
x∈S ωx(

xr

xt
)∑

x∈S ωx
(1)

(1) is a weighted average of ratios which correlates log
patterns to a reported attack. In order to capture the
possible use of different attack techniques at a time,
(1) considers log patterns for all types of attacks in the
attack set. For example, an attacker may send a command
to open the load switch at a node through replay or
a falsified packet, and immediately follow up with a
flooding attack in order to prevent the node from sending
status information to the operations center.

(ii) Criticality index (κ): In the algorithm, criticality indices
are set according to Table I.

(iii) Software and operational vulnerability index (ψ): The
software vulnerability index measures the extent to which
the affected device of the reporting node is related to that
of the recipient node. The inclusion of this index is to
capture similar software and/or operational vulnerabilities
that an attacker could be leveraging. Set ψ = 1 if
both devices are of the same manufacturer and use the
same software versions, ψ = 0.66 if they are of the
same manufacturer but use different software versions,
ψ = 0.33 if they are of the same manufacturer but
different software, and ψ = 0 if they are not related.

Note that a node may be correlated to an alerting node in
one or more of the three factors. An accurate decision is made
when all factors are considered. A weighted sum of the indices
takes into account all three factors and captures the overall
correlation between the recipient node and an alerting node.
Subsequently, having found the three indices, an empirical
judgement is made as follows:

ρ = wκκ+ wνν + wψψ (2)

wκ + wν + wψ = 1 (3)

wκ, wν , wψ ≥ 0 (4)

The symbols wκ, wν and wψ are non-negative weights as-
signed to the different indices. They are normalized by equa-
tion (3). The value ρ is a prediction made by the recipient
agent regarding the extent to which it believes it will be a
target for an attacker. Clearly, ρ is affected by the values of κ,
ψ and ν which are assigned based on how the features of the
receiving node compare with those of the alerting node. It is
also affected by the weights wκ, wν and wψ , and it is necessary
to choose the weights in order to maximize the accuracy of this
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prediction. An experiment on tuning the weights is provided
in the simulations presented in this paper.

3) Phase 3: In this phase, agents share their judgment
values, ρ, with their neighbors, encapsulating them in TCP/IP
packets. This phase is implemented by the social module of the
agent. A neighbor of a node is any node which has a direct
communication link to it. Having received their neighbors’
values, each agent selects the highest r of them, together with
the IDs of the agents whose values are selected. The selected
list is shared again, and the process repeated. At each sharing
stage, the current selected list is compared to the previously
sent list. If the two are equal, an agent does not re-share as
this will be repetitive. By doing so, network resources are
reserved for nodes that have new data to share. The process is
repeated until each agent has the same list of agent IDs and
their corresponding values, which are indeed the highest in the
network.

The proposed consensus protocol, the link drop max con-
sensus protocol, belongs to the family of max consensus
algorithms [32]–[34], in which the maximum initial value in
the network is sought. However, the proposed protocol differs
in the check for repeated information.

4) Phase 4: In this phase, agents take specific mitigation
actions based on the outcome of phase 3. If an agent’s value is
selected, it enters a protective mode for a time period T . The
agent that broadcasts the alert also enters protective mode. In
protective mode, all remote control functionalities are disabled.
This allows the operation center time to attend to the security
issues that arise. On the other hand, if an agent is not selected,
all NIDS thresholds (dt, pt, etc.) are set to n% of their initial
values. Should another alert be broadcast within t units of time
from a previously received one, all agents enter the protective
mode. T , t, and n are user-defined variables.

It should be noted that when a node undergoes an attack,
say a DoS attack, and broadcasts this, it enters protective
mode after the first round of the algorithm. Thus, before T
elapses, the node cannot be attacked again since it is isolated
from further communication. A node in protective mode
continues to function electrically and may send periodic status
information to the operations center; only outgoing traffic
from the node is allowed. This is different from an explicit
ingress filtering scheme implemented to mitigate attacks, as
discussed in [25]. In such schemes, packets from only the
offending address are dropped. While this method may serve
to selectively block an attacker’s traffic so that the operator
is still able to communicate with the node, a skillful attacker
who sends packets with varying spoofed addresses may escape
the check.

IV. THE LINK DROP MAX CONSENSUS PROTOCOL

The link drop max consensus algorithm allows a group of
distributed agents, each with some value, to share and select
the maximum value amongst them without repeating already
shared information. In this section, the terms “algorithm” and
”protocol” refers to the link drop max consensus protocol. It
is assumed that there is no data loss in the network.

Premise: Nodes in the distribution grid are not always
communicating but only initiate a conversation when a deci-

sion is to be made. They are made aware of a decision to be
made when one of the nodes informs them to that effect. The
communication topology starts with an initial structure that
changes as the conversation progresses. The initial structure
is identical to the topology of the distribution system, and
both are assumed radial. It is also assumed that there are no
islands. In the initial network, every pair of connected nodes
has a two-way link between them.

From these, the initial model of the distribution network
is a strongly connected digraph G with a set of vertices V
and a set of extraverted edges E . The vertices represent the
nodes while edges represent the active communication links
between the nodes. Hence, ‘vertex’, ‘agent’ and ‘node’ are
used interchangeably, as are ‘edge’ and ‘link’.

Thus, G = (V, E), where V is a non-empty set consisting
of m nodes. There is no loop in the graph, i.e., there is no
single edge that connects a vertex to itself.

The graph possesses an adjacency matrix A, which is a
matrix with elements aij = {0, 1}. An element aij is 1 if
node i communicates to node j, and 0 if it does not. It should
be noted that aij = 1 necessarily means aji = 1 for the
initial network, but is not guaranteed for all time. The degree
matrix of the graph is the diagonal matrix ∆ whose diagonal
elements are the total number of edges attached to a node. The
neighborhood of a node i ∈ V is given as Ni := {j : aij = 1}.

By nature, the state of the graph for max consensus pro-
tocols does not evolve according to a set of linear dynamic
equations as is the case for the average consensus protocol
(ACP) [35]. Rather, the proposed algorithm follows a sequence
of discrete logical steps. Assume that nodes in the grid are
selecting the max value among all the judgement values
calculated (in phase 2) by the nodes in the grid.

1) At the start of a conversation, each agent i in the
distribution network has an initial value ρi(0) and an
initial ID zi(0). The initial ID is the ID configured for
the node. To standardize notation, let x represent ρ going
forward. The initial state vector of the graph is x(0), and
A(0) = A>(0) ∈ Rm×m.

2) Each agent i also possesses a vector p[i](k) ∈ R|Ni| in
memory which stores the values of its neighbors, and a
vector u[i](k) ∈ R|Ni| which stores their IDs. At the start
of the conversation, p

[i]
j (0) = −∞ and u[i](0) = zj(0)

for j ∈ Ni.
3) The information shared by agent i in event k is a

concatenation of the agent’s selected value and its ID,
denoted by σi(k) = {xi(k)|zi(k)}.

4) Agent i shares σi(k) with its neighbors if aij(k) = 1, for
j ∈ Ni.

5) For i ∈ V , xi(k + 1) = max {‖p[i](k)‖∞, xi(k)}. That
is, the next state of node i is the maximum of all received
values, including its own. The agent ID of the selected
value is also stored as zi(k + 1). Thus, σi(k + 1) =
{xi(k + 1)|zi(k + 1)}.

6) Following the above steps, the adjacency matrix is up-
dated as follows. For all i ∈ V , j ∈ Ni,

aij(k + 1) =

{
1 for xi(k + 1)− xi(k) > 0

0 otherwise
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Step 6 is essential in order to avoid repetition and subsequent
information accumulation. Since the graph starts with a two-
way link between every connected pair of nodes, the dropping
of links by a node only makes those links one-way. The node,
therefore, may still receive information from its neighbors but
does not communicate back unless the update rule indicates
so. Consequently, an agent may re-establish already dropped
links.

The proof of convergence of the algorithm, as well as its
speed, is presented in the appendix. It is shown that the speed
of convergence is bounded above by the diameter D of the
network graph.

A. Advantage of the link drop max consensus protocol

Collisions are stochastic events that may occur in a given
communication network. However, repeated sharing of re-
dundant information between neighbors unnecessarily exposes
the link to collisions. This is especially true for heavily
constrained networks. When a collision occurs on the link
between neighbor agents, a retransmission is required, which
potentially increases the time required to achieve consensus.

The likelihood of collision occurring is dependent on the
probability that a link is used at the same time by neighbors.
Therefore, it is reduced when the probability of a neighbor
communicating decreases. This is the unique feature of the
link drop max consensus protocol, when compared to other
max consensus protocols, e.g., [32]–[34]; it avoids the sharing
of redundant information.

In the link drop max consensus protocol, the probability
that an agent has the max value, and subsequently will not
communicate in the next state is 1

nc(k)
where nc(k) is the

number of communicating nodes in the kth state. Considering
that there is convergence, it follows that nc(k)→ 1 as k → D.
Let the probability that a neighbor communicates in the kth
state be pc(k). In the original max consensus protocol, pc = 1
for all time during agent communication. However, in the link
drop max consensus protocol, pc = 1 only in the first state.
In subsequent, states pc(k) = 1 − 1

nc(k)
. Hence, pc → 0 as

k → D.
For simplicity of illustration, assume a circular graph with

V = 13 nodes, implementing the link drop max consensus
protocol. All agents communicate in the first state (k = 0);
pc = 1. For the second and third states, pc = 1− 1

V and pc =
1 − 1

V−1 respectively. For subsequent states k = 3, ..., D in
the circular graph, nc(k) = V −1−

∑D
k=3 2(k−1). Therefore,

pc(k) is given by:

pc = 1− 1

V − 1−
∑D
k=3 2(k − 1)

(5)

Figure 2 shows a plot of pc against state k for a circular
graph with 13 nodes.

From this, it is shown that the link drop max consensus
protocol reduces the probability of agent communication over
time, and therefore reduces the likelihood of collisions over
time.

Fig. 2: Comparing variation in pc with state in the link
drop max consensus protocol and the generic max consensus
protocol for a 13-node circular graph

Fig. 3: IEEE 13-Node test feeder

V. SETUP FOR VALIDATION

The IEEE 13-Node Feeder (shown in Fig. 3) is used for
testing and validation. In the setup, nodes 671, 675, 680 and
692 serve highly critical load; nodes 632, 633, 645 and 646
serve critical load; and nodes 611, 634, 652, 670 and 684 serve
non-critical load.

Agents are developed using Volttron, a Unix-based Pacific
Northwest National Lab (PNNL) open-source agent-based
platform [31]. Agents are developed and run on a virtual
Linux-Mint system. These agents form part of the cyber model
of the grid and are initially connected to communicate with
one another as the nodes are connected electrically.

Scapy, an open source packet manipulation tool [36], is
used. Originally, Scapy has no DNP3 library. A DNP3 library
with SAv5 functionality is built to extend its capabilities for
this test. An attack simulation platform is also developed using
the added DNP3 library of Scapy to implement the different
attacks enlisted in this paper, completing the cyber model.
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Fig. 4: A Cyber-power system simulation setup

The power system model is built using Power Factory
DIgSILENT, an industry level power system simulation tool.
DIgSILENT is run on Windows 10 operating system. Matrikon
OPC server is used to connect the cyber and power system
models in a real time environment. The interaction among
these components is shown in Fig. 4.

VI. SIMULATION AND RESULTS

Two studies are performed in the simulation. In the first
study, some properties of DIP are investigated, while in the
second, the performance of DIP under coordinated attacks is
assessed.

A. Study 1: Investigating some properties of DIP

The efficiency of DIP in detecting attacks is dependent on
that of the NIDS implemented in the first phase. Nevertheless,
the accuracy of predicting the correlation of attacks is depen-
dent on the relational weights used in finding the judgement
value in the second phase. In surveyed papers on coordinated
cyberattacks, authors do not explicitly assess the accuracy of
suggested techniques for determining correlation. In this study,
such an investigation is conducted.

1) Efficiency of NIDS implemented in Phase 1: The perfor-
mance of the NIDS in phase 1 is measured by the false positive
and false negative ratios. A smaller ratio is desirable. The
false positive ratio (FPR) is the proportion of normal packets
that are misclassified. For the implemented NIDS, the FPR
may be determined from the probability that an authorized
user enters the wrong credentials P times, the probability that
the operation center sends replayed packets or packets with
incorrect hashes, and the probability that the operational center
sends a cluster of packets greater than what is used in detecting
flooding.

Fig. 5: FNR with varying packet rates for different total
packets sent

The false negative ratio (FNR) is the proportion of abnormal
packets that are misclassified. For the proposed NIDS of phase
1, the FNR may be determined by comparing how many alerts
are generated with how many malicious packets are sent. To
measure the FNR, the NIDS was installed on the slowest
computer available, which is an Intel Core i3 computer. The
plot in Fig. 5 shows the FNR for when 2000 packets and 5000
packets are sent at varying rates.

The highest FNR, 45%, occurs when 5,000 packets are sent
at a rate of 10,000 packets per second (pps). The FNR appears
to increase with increasing number of packets sent. It is also
observed that when 5,000 packets are sent at 7,000 pps, the
FNR is close to 45% and higher than that obtained at 8,000
pps and 9,000 pps respectively. This indicates that flooding at
a higher rate is not necessarily guaranteed to result in higher
FNR. When implemented on a real RTU, the FNR may be
higher.

2) Effects of relational weights on the success rate of DIP:
In phase 2, DIP predicts the motive and/or leverage of the
attacker, and therefore predicts their target nodes. The accuracy
of this prediction is termed the prediction success rate (PSR)
of DIP. The PSR is the proportion of targeted nodes that
enter protective mode after the first detection of intrusion.
For instance, if the attacker is aiming for critical nodes, and
two, instead of all four, entered protective mode at the end of
phase 4, then the PSR is 50%. The PSR is dependent on the
judgement value ρ. As long as a node has one of the highest
three ρ values, it is guaranteed to enter protective mode. It is
therefore desired that at the end of phase 2, nodes that will be
targeted by the attacker have the highest judgement values.

The judgement value ρ is in turn determined by the prob-
abilistic indices κ, ν, ψ and the preset weights wκ, wψ, wν .
As indicated in an earlier section, the values assigned to the
indices depend on the correlation between the features of the
alerting node and those of the recipient node. The PSR is
therefore dependent on: (i) the correlation of features among
nodes, and (ii) the preset weights. Consider two networks A
and B, adapted from the IEEE 13-Node Test Feeder. Let all the
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TABLE II: Distribution of features in network B

Features Nodes

Nodes supplying highly critical load 680, 692, 671, 675
Nodes implementing fictitious software ABC OS9
1.0.1

611, 634, 671, 652

Random nodes to be attacked 632, 645, 652, 692

critical nodes of network A run the same fictitious software,
while those of network B run different software. Assuming
an attacker targets the critical nodes, then for the same set of
weights and the same attack potential, the critical nodes of A
are more likely to enter protective mode than those of network
B. This is because even though all critical nodes will have the
same κ = 0.9, those of network A will also have ψ = 1, while
those of network B will have different values of ψ < 1. Thus,
the PSR of network A is higher than that of network B, for
the same weights. In order to increase the PSR of network B,
the weights must be changed. Therefore, for every network,
the preset weights need to be well chosen in order to achieve
its maximum PSR.

Algorithm 1 details a tuning procedure for choosing the
weights. Let nodes 671, 675, 680, and 692 of the IEEE 13-
Node Test Feeder be highly critical nodes, and let them all
run a fictitious software ABC OS9 1.0.1. Using Algorithm
1, a weight w is varied from 0.1 to 0.9 while keeping the
other weights at 0.5(1 − w) each. For each variation of the
weight, M = 100 attacks are performed. The resulting PSR
is recorded and a curve is plotted, as indicated in step 10
of the algorithm. This is repeated for each of the weights.
Fig. 6 shows the curves obtained, and the common PSR that
preserves equation (3) is approximately 85%. At the end of the
tuning algorithm the weights are chosen as {wκ, wψ, wν} =
{0.1, 0.282, 0.618} and the resulting PSR is 86%.

Assume a second network adapted from the IEEE 13-Node
Test feeder. The features of the nodes are set according to
Table II. Using the same algorithm, the weights are determined
as {wκ, wψ, wν} = {0.406977, 0.2825, 0.310523}. The PSR
recorded is 61.33%. To illustrate the strengths of DIP, even
with a network of low PSR, the node features in Table II and
the weights found for this configuration are used for the second
study.

B. Study 2: assessing the performance of DIP

In this section, a base case in which there is DAS without
inter-node communication, as is the case in DIP, is first imple-
mented. Next, DIP is simulated under a sequential coordinated
attack, and under a concurrent coordinated attack. Altogether,
three scenarios are simulated. In all simulations, the following
thresholds are used: dt = 200, ft = 1, rt = 1, and pt = 5.
The replay and packet modification thresholds are chosen with
the assumption that the operation center does not send badly
crafted packets. The password threshold is chosen according
to standard industry practice. The flooding threshold is chosen
such that it is above the average cluster sent by the operations
center. Also a flooding alert is triggered much earlier before
malicious packets are missed, according to FNR patterns.

Algorithm 1 A tuning algorithm for determining the relational
weights

1: Let W = {wκ, wν , wψ}
LOOP Process

2: for each w ∈W do
3: w = 0.1
4: while w ≤ 0.9 do
5: Set wn = 0.5(1− w) for all wn ∈W \ w
6: Perform M attacks corresponding to w
7: Record the average PSR
8: w = w + 0.1
9: end while

10: Plot a curve of average success rate against w
11: end for
12: Determine the common PSR that preserves equation (3)

LOOP Process
13: for each {w1, w2} ∈W do
14: Determine the intersection of their curves with the

minimum success rate line
15: Set w3 = 1− w2 − w1 for w3 ∈W \ {w1, w2}
16: Perform N attacks with weights {w1, w2, w3} and

record the average success rate
17: end for
18: Select {wκ, wν , wψ}∗ which gives the highest PSR

Fig. 6: Plots of PSR against varying weights, as obtained from
Algorithm 1

Here in this study, the entire network, with all agents, is
run on an Intel core i7 computer. Also, agents are set to
select the agents with the maximum 3 values in addition to the
alerting node. Since the simulation is run on a single computer,
the communication between agents is considered synchronous.
The diameter D of the test feeder is 6. Thus, using a time
unit of 0.5s according to observed processing speed of the
computer, it is determined that the upper bound to convergence
is 3s. In the event that an alert is detected, all agents not in
protective mode reduce their thresholds to n = 50%, rounded
up to the nearest whole number.

The adversary has already performed reconnaissance on the
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TABLE III: Sequence of events in scenario 2

Event Attack Time Stamp Result Time Stamp

1 Replay attack launched on node 692 7:06:27,521 Attack detected 7:06:27,668
2 Agent at node 692 broadcasts alert 7:06:27,764 Agents calculate ρ and enter into conversation -
3 Agent conversation ends 7:06:30,993 Agents 646, 671, 680, 692 in protective mode. All

others have reduced thresholds
7:06:30,993

4 Attacker attempts to log in to node 692 7:07:24,693 No log in console available, node in protective mode -
5 Attacker attempts to log in to node 675 7:08:35,874 After three unsuccessful attempts, attacker is blocked 7:09:06,314
6 Alert is broadcast 7:09:06,400 All agents in protective mode 7:09:06,771

grid and has a good knowledge of which nodes to attack. Their
motive is to disrupt power supply to the highly critical load.

1) Scenario 1: DAS without inter-node communication:
In the base case, a NIDS with functions described in phase
1, is installed at each node. However, there is no inter-
node communication. The IDS, nevertheless, alerts the control
center of suspicious activities. At 06:57:43,341, the adversary
begins attacks at node 692 since this node serves a critical
load. Five password login attempts are made. The NIDS at
the node flags this and blocks the attacker. The attacker then
attempts to log in to nodes 671, 675, 680, 645 and 646 in
succession. Finally, they are able to log in to node 632 on the
third count (recorded at 07:03:34,231), and run a command to
disconnect the load. Even though there are NIDSs at each of
the nodes in the network, the attacker is still able to launch
an attack due to the large attack surface. Thus, it is observed
that the installation of non-interacting NIDSs does not provide
maximum cybersecurity.

2) Scenario 2: DAS with node communication using DIP
under sequential coordinated cyberattack: In the second sce-
nario, DIP is implemented. Table III shows the sequence of
events and results in this scenario. It is observed, in the first
event, that after the first attack is detected at 7:06:27,668, the
attacked node (node 692) broadcasts an alert. All agents come
to a consensus approximately 3s after the alert is received at
the nodes. Nodes 692, 671, 680 and 646 enter protective mode.
Node 692 is unresponsive to further attacks conducted in event
4. Having found three highly critical nodes in protective mode,
the attacker further attempts to log in to node 675. However,
after 3 unsuccessful attempts (due to a reduction of thresholds
at the end of event 3), an alert is broadcast. At 7:09:06,771,
all agents enter protective mode, an average of 371ms after
the second alert is broadcast. Compared to the first scenario,
DIP significantly reduces the effective attack surface of the
distribution system, and the performance is validated.

3) Scenario 3: DAS with node communication using DIP
under concurrent coordinated attack: In this scenario, the
system implemented in scenario 2 is used. The adversary
attacks two nodes at the same time. The attacker has already
captured a packet meant to open a switch at node 675 and
intends to replay this. Meanwhile, there is also an attempt to
log in to node 671 using a password hack. At 15:26:43,176,
node 671 detects the consistent password attempts and flags
this. An alert is sent to all other nodes and to the control center.
Agents start calculating their judgement values. However, at
15:26:43,264, less than 100ms later, node 675 receives a re-
played packet and flags this immediately. It broadcasts an alert

to all agents and to the control center. Nodes begin to abort
inter-node communication at 15:26:43,331. At 15:26:43,695
all nodes are in protective mode.

VII. COMPARISON WITH OTHER WORK

In this section, the proposed DIP for DASs is compared
with related work in the literature.

A. Comparison with Deep Packet Inspection

First, the NIDS implemented in DIP (henceforth referred
to as NIDS-DIP) is compared with an NIDS similar to that
provided in [15] (a REFerence method henceforth referred
to as NIDS-REF). NIDS-REF, among others, performs deep
packet inspection to ensure that packets adhere to accepted
operational procedures. To achieve an objective comparison,
NIDS-REF is developed according to the DNP3 SAv5 proto-
col, even though the original implementation in [15] is based
on Modbus. The following attacks are executed: flooding,
packet modification, replay, password hack, invalid command,
and breach of operational procedure.

The detection results show that NIDS-DIP is able to detect
and correctly alert on flooding, packet modification, replay,
and password hack. This is expected as it has been configured
to monitor for these attacks. However, for invalid command
and breach of operational procedure attacks, NIDS-DIP detects
the presence of attacks but alerts these under a different
category. This is due to the use of integrity and authentication
checks in DNP3 SAv5. An attacker’s packet that contains
invalid commands or breaches operational procedure also fails
integrity and/or authentication check.

NIDS-REF accurately detects and alerts on flooding, invalid
command, and breach of operational procedure attacks. Pass-
word hacks are undetected since it is not configured to monitor
for such attacks. NIDS-REF is not configured to monitor for
packet modification and replay, hence, it does not alert on
these. However, due to the use of DNP3 SAv5, a packet that
fails authentication and/or integrity checks is dropped and an
error message logged.

NIDS-DIP performs intrusion detection using network fea-
tures of a received packet; it does not perform deep packet
inspection. While this makes it easier to implement and lighter
to install, it is unable to detect insider attacks as well as attacks
from hackers with insider details.
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TABLE IV: Comparing DIP with CENTRAL-REF

Offline
Computation
Time (hrs)

Online Attack
Correlation
Time (s)

Prediction
Success Rate
(PSR) (%)

DIP 4 3.325 61.33
CENTRAL-
REF

0 0.48 41.33

B. Comparison with Centralized Correlation

Secondly, the decentralized correlation technique of DIP
is compared to the centralized correlation method proposed
in [23] (a REFerence method henceforth referred to as
CENTRAL-REF). CENTRAL-REF originally correlates a lo-
cation index, critical index and an abnormal behavior index
in an iterative matrix multiplication technique. Once a steady
state correlation vector has been obtained, the maximum value
is selected as the correlation index. Moreover, the technique
correlates already detected attacks in several substations to
establish whether they are correlated or not. However, to
achieve an objective comparison, the method has been adapted
to predict the targets of an attack. This is done by applying the
technique to correlate the three indices found for each node.

The tests are performed on the network with node features
shown in Table II. This is the same network used in studies
in subsection VI-A2 of section VI. Table IV summarizes the
outcome.

The offline computation time required in DIP is to determine
the values of the relational weights wκ, wν and wν . In
CENTRAL-REF, no such precomputation is required. The
online attack correlation time of DIP is also expectedly longer
than that of CENTRAL-REF. This is primarily due to the
time complexity of the consensus algorithm employed in DIP,
which is absent in centralized systems such as CENTRAL-
REF. The PSR of 61.33% for DIP is same as that which is
obtained under subsection VI-A2 of section VI. Nonetheless,
the PSR of DIP is found to be higher than that of CENTRAL-
REF. This is due to the fact that CENTRAL-REF applies equal
weights to the indices. Thus, for the same network features,
CENTRAL-REF tends to have a lower PSR than DIP.

VIII. CONCLUSION AND FUTURE WORK

In the first study, when 5,000 packets are sent with an
interval of 0.1ms between packets (i.e. 10,000 pps), about
45% of the malicious packets are missed, compared to 0%
for 2,000 packets. The FNR is observed to increase as the
total number of sent packets increases. While this is expected,
it could be improved. Even though the FNR is dependent on
the specifications of the machine on which it is run, the use
of data storage- and processing-efficient mechanisms impact
the performance. Future work, therefore, ought to investigate
the use of such mechanisms as the Bloom Filter to improve
the processing and storage efficiency of the NIDS. In addition,
the NIDS ought to be updated to include other signatures that
evolve with time.

Furthermore, the relational weights of phase 2 directly
impact the success rate of DIP. These weights may also vary

from one network to another since the nodes in different
networks may have different features. There is currently no
universal rule to finding these weights and they must be tuned
experimentally using initial offline simulations of the network.
While high PSRs may be obtained for certain networks, it is
believed that making the weights adaptive (such that each node
chooses its own set of weights), and inclusive of the cyber
history of the network, would help to improve the PSR for
any given network. Subsequently, future work will investigate
this.

From the second study, one of the main benefits of the
algorithm illustrated is that only two nodes are available from
the attacker’s perspective. This drastically reduces the effective
attack surface. For an N -node system, assuming all nodes are
equally vulnerable, this is a reduction by 1− 2

N . For the 13-
node test feeder, this is approximately 84.7%.

Again, the attack reward is substantially reduced. This is
because the algorithm takes into account coordinated attacks
and subsequently attempts to capture the motive or leverage
of the attacker. As can be seen from Table III, by detecting
an attack at node 692, three of the four critical nodes enter
a protective mode and are hence out of the reach of the
adversary.

This solution is scalable; operators only need to update
the node data of an agent (such as the list of neighbors)
when changes are made. Nevertheless, when applied to a
network larger than the test system used in this paper, the
number of agents will increase, as an agent is required at
each node of the network. This implies an increase in cost of
installation and maintenance. Thus, an investigation into the
optimal number and location of agents is an important task
for the future work. In addition, a larger network may possess
a larger diameter, implying that agents would take longer to
reach a consensus (Phase 3). Consequently, the use of graph
partitioning mechanisms that reduce the effective diameter of
the network should be investigated.

APPENDIX A
CONVERGENCE OF THE LINK DROP MAX CONSENSUS

ALGORITHM

The conditions for convergence are:
1) A consensus is reached: for any initial state of the

graph x(0) there exists a value xb ∈ {x(0)} where
xb = max {x(0)}, possessed by agent with initial ID zb
such that limk→∞ xi(k) = xb and limk→∞ zi(k) = zb
for all i ∈ V .

2) Nodes are no longer communicating unless another deci-
sion process is started. That is, E = ∅.

In the sub-sections that follow, convergence of the algorithm
has been shown, first for the case where the maximum value is
being chosen and for when r highest values are being chosen
(such as ranking of the 3 highest judgement values).

A. The case for one value

Assume that there is a distribution grid in which each node
i has calculated some unique initial value xi(0). This is the
first graph state x(0). Now let the maximum value be xb and
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the node that possesses xb be node b with initial ID zb. At the
beginning of each cycle, a node may drop the link between
itself and its neighbors. The probability for this is dependent
on the outcome of the update rule of the adjacency matrix
from the previous cycle. Let the probability that the ith node
will drop links in the kth cycle be pi(k). Then, at the end
of the first cycle for node b, pb(2) = 1 since xb > xi for
all i = 1, ..., b − 1, b + 1, ...,m. Since xb(1) − xb(0) = 0,
abj(2) = 0 for all j ∈ Nb in the second cycle.

In the first cycle, all neighbors of node b received xb. Thus,
in the second cycle, xj(2) = xb, pj(2) = 0 and ajt(2) = 1
for all j ∈ Nb and all t ∈ Nj . The neighbors of node b
re-share xb with their own neighbors. In the third cycle,
xj(3) = xb, pj(3) = 1 and ajt(3) = 0 for all j ∈ Nb and all
t ∈ Nj .

Thus as k →∞,

xi(k) = xb ∀ i = 1, ...,m (6)

pi(k) = 1 ∀ i = 1, ...,m (7)

aij(k) = 0 ∀ i, j = 1, ...,m, i 6= j (8)

∆(k) = 0 (9)

A(k) = 0 (10)

The Laplacian matrix is therefore:

L(k) = ∆(k)−A(k) = 0 (11)

The Laplacian is now a zero matrix, and has 0 eigenvalues
with multiplicity m. Also, E = ∅. There is no more active
communication between any two nodes. Thus, the criteria for
convergence have been achieved.

B. The case for r values

In addition to the assumption of unique values in the
previous case, it is assumed, without loss of generality, that
0 ≤ xi(0) ≤ 1. Suppose that nodes are selecting the highest
r values. Hence, as is done in phase 3, in each message sent
by a node, there is a list of the highest r values and their
agent IDs. In this case, convergence is proven by observing
the following:

(i) The system behaves like r graphs superimposed on each
other. Nodes in each graph find the maximum value in
their graph.

(ii) The r graphs are born from the same initial graph at the
start of the communication.

(iii) In the first graph, nodes vote for only the maximum value
xb1. In the second graph, nodes vote for the maximum
value xb2 with xb1 set to 0. In the third, nodes vote for
the maximum value xb3 with xb2 = 0 and xb1 = 0, and
so on.

(iv) Each graph may have a different sequence of adjacency
matrices as the conversation progresses.

(v) Nevertheless, in each graph, only the maximum value is
being voted for and is similar to the case for one value.
It follows that as k →∞, Lj(k) = 0 for all j = 1, ..., r.

Considering that the initial graph is strongly connected,
the ”spread” of xb from node b to all nodes to achieve
convergence can be viewed as a progression on a radial
static directed acyclic graph (DAG), with node b as the root.
Thus, despite the temporal nature of the graph, time analysis
pertaining to static DAGs can be applied. Consequently, the
speed of convergence, i.e., the number of iterations required
for attaining convergence, assuming synchronism, has been
shown in [37] to be bounded above by D, where D is the
diameter of the graph. Thus, the time complexity is O(D). In
the asynchronous case, this is O(BD), where B is a measure
of the asynchronism [34].

It is also noteworthy that in real implementations of the
algorithm, there could be n > r agents with the same
maximum value. Since the agent ID is stored with the selected
value, it follows that until there is an explicit rule to govern
how to select, there may not be convergence. This is because,
while agents agree on what the maximum value is, they may
not converge on the ID of the agent with this value.
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